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Bin Li, Senior Member, IEEE, and Jia Liu, Senior Member, IEEE

Abstract—The proliferation of smart mobile devices has
spurred an explosive growth of mobile crowd-learning services,
where service providers rely on the user community to voluntarily
collect, report, and share real-time information for a collection
of scattered points of interest (PoI). A critical factor affecting
the future large-scale adoption of such mobile crowd-learning
applications is the freshness of the crowd-learned information,
which can be measured by a metric termed “age-of-information”
(AoI). However, we show that the AoI of mobile crowd-learning
could be arbitrarily bad under selfish and rational users’ be-
haviors if the system is poorly designed. This motivates us to
design efficient reward mechanisms to incentivize mobile users
to report information in time, with the goal to keep the AoI and
congestion level of each PoI low. Toward this end, we consider a
simple linear AoI-based reward mechanism and analyze its AoI
and congestion performances in terms of price of anarchy (PoA),
which characterizes the degradation of the system efficiency
due to selfish and rational behavior of users. In this paper,
we consider both average maximum age and average weighted
sum of age. Remarkably, we show that the proposed mechanism
achieves the optimal AoI performance in terms of average
maximum age asymptotically in a deterministic scenario, i.e.,
the corresponding PoA decreases to 0 asymptotically. Moreover,
the PoA in terms of average total age under our proposed mech-
anism can be upper-bounded by 1/2 asymptotically. Further, we
prove that the proposed mechanism achieves a bounded PoA
in general stochastic cases, and the bound only depends on
system parameters. Particularly, when the service rates of PoIs
are symmetric in stochastic cases, the achieved PoA is upper-
bounded by 1/2 asymptotically. Collectively, this work advances
our understanding of information freshness in mobile crowd-
learning systems.

Index Terms—Age of Information, Congestion Control, Price
of Anarchy, Mobile Crowd-Learning.

I. INTRODUCTION

Fueled by the proliferation of smart mobile devices (e.g.,
smartphones, tablets, etc.), recent years have witnessed a rapid
growth of information services and data analytics based on
large-scale crowd-learning. A key defining feature of these
crowd-learning applications is that they rely on the user
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community to voluntarily collect, report, and share real-time
information for a set of distributed points of interest (PoI).
Such crowd-learned information will in turn benefit the users
themselves and attract more users to join the community
(by reputation, word of mouth, etc.), which further enhances
the accuracy, value, and significance of the crowd-learning
applications. For example, the real-time traffic congestion and
accident information on Google Waze [1] (a community-based
GPS system) relies on the reports from mobile devices and
the tracking of their locations, densities, and trajectories. As
another example, by offering a variety of incentives, many
data analytics services leverage their user communities to share
real-time information of scattered commodities and resources,
such as cheap gasoline stations (e.g., GasBuddy [2]), parking
space availability (e.g., Pavemint [3]), free WiFi hotspots (e.g.,
WiFi Finder [4]), popular grocery deals information (e.g.,
Basket [5]), to name just a few. It can be foreseen that new
crowd-learning applications will continue to emerge.

Although mobile crowd-learning holds a great potential to
fundamentally change our modern society, a critical factor
affecting its future large-scale adoption is the freshness of
the crowd-learned information, which can be measured by a
fundamental metric termed “Age-of-Information” (AoI). Guar-
anteeing information freshness in crowd-learning is critical
because stale information discourages existing and new users
from participating, which in turn degrades the information
freshness and creates a vicious circle. Unfortunately, due to
the special dynamics between the service provider and the
users, there is an inherent lack of information freshness guar-
antee in mobile crowd-learning: First, to maintain information
freshness, the service provider needs to incentivize the users
to update the states of the PoIs. Second, the crowd-learning
users are “selfish and rational” in the sense that their best
interest is to maximize their own benefit from participating in
crowd-learning, rather than minimizing the AoI for the service
provider. Hence, a poorly designed incentive mechanism could
result in two undesirable consequences: (i) too many users
flock to an attractive PoI, which leads to redundant sampling
and severe queueing congestion; and (ii) all other PoIs suffer
from large AoI because of under-sampling. In light of these
unique characteristics of mobile crowd-learning, several fun-
damental open questions naturally arise:

1) Is it possible to guarantee information freshness by incen-
tivizing selfish and rational users in mobile crowd-learning?

2) If the answer to 1) is “yes,” what is the fundamental
relationship between reward and AoI in crowd-learning?

3) How to design reward mechanisms to avoid large queueing
congestion while guaranteeing AoI in crowd-learning?



However, answering the above questions is non-trivial be-
cause joint AoI and congestion analysis in mobile crowd-
learning faces the following challenges: First, there is a lack
of analytical model that characterizes the essential features of
mobile crowd-learning in the literature. Most of the existing
work on crowd-sensing are based on static models that hardly
capture the dynamic and stochastic nature of participating
users in mobile crowd-learning. Second, as shown by recent
studies (see, e.g., [6]–[9]), AoI dynamics are fundamentally
different from the traditional queueing evolution, which ne-
cessitates new theoretical tools. Third, as will be shown later,
there is a strong coupling between the AoI and queue-length
processes in crowd-learning, where changing the design of
either one would significantly affect that of the other.

In this paper, we overcome the above challenges and pro-
pose a new analytical model coupled with the Price of Anarchy
(PoA) metric, which characterizes the degradation of a system
due to selfish and rational behavior of users1. This enables
us to analyze and understand the relationships between AoI,
queueing congestion, and reward mechanism design under
users’ selfishness and rationality. The most significant and
perhaps somewhat surprising insight is that, even under selfish
users’ behaviors, it remains possible to design simple (linear)
reward mechanisms for mobile crowd-learning systems that
enjoy good (or even optimal in the deterministic case) AoI
and queueing congestion performances in terms of PoA (price
of anarchy) metrics. The main results and contributions of this
paper are summarized as follows:

• First, we develop a new analytical model for mobile crowd-
learning, which takes into account the strong couplings
between the stochastic arrivals of participating users, PoIs’
information evolutions, and reward mechanisms. As will
be discussed next, this new analytical model enables us to
reveal the fundamental scaling law between AoI, queueing
congestion, and the reward rate set by the service provider.

• Next, as a starting point, we analyze the AoI performance
under a linear AoI-based reward mechanism in a determin-
istic setting, where there is exactly one arriving user in
each time slot, and each PoI serves exactly one user (if
any) in each time slot (and hence no queueing effect in
this setting). We show that given an AoI reward rate β,
the PoA in terms of average maximum age and average
total age are upper-bounded by O(1/β) and O(1/2 + 1/β),
respectively, which implies that the system achieves the
optimal average maximum age and guaranteed average total
age as β increases asymptotically.

• Finally, based on our results for the deterministic case,
we characterize the joint AoI-congestion performance of
mobile crowd-learning for stochastic settings. Although the
reward policy design for joint AoI and queueing congestion
optimization remains an open problem in stochastic settings,
surprisingly, we show that the above linear AoI-based re-
ward mechanism yields a bounded PoA, which only depends
on the arrival and service parameters of the system. In the

1The value of PoA is always between 0 and 1, and the larger the PoA, the
less efficient the system. See Sections IV–VI for more in-depth discussions.

case of symmetric services, the PoA is upper-bounded by
1/2 as the reward rate β increases asymptotically.
Collectively, our results in this paper advance the under-

standing of achieving information freshness in mobile crowd-
learning with selfish and rational users. The remainder of this
paper is organized as follows: Section II reviews related work.
Section III introduces system model and problem statement.
Section IV introduces a linear reward mechanism, and Sec-
tions V–VI study its PoAs in the deterministic and stochastic
cases, respectively. Section VII presents numerical results and
Section VIII concludes this paper.

II. RELATED WORK

To put our work in comparative perspectives, in this section,
we provide an overview on the related work in the areas of
crowd-sensing and age-of-information, respectively.

a) Crowd-Sensing: In the literature, crowd-sensing refers
to the sensing model where a group of individuals collec-
tively measure some common phenomena, e.g., environmental
quality monitoring [10], noise pollution assessment [11], [12],
and traffic monitoring [13]. Although crowd-sensing bears
some similarity to mobile crowd-learning, the main focuses
of the crowd-sensing research community are on network
resource management, system infrastructure, incentive mech-
anism designs, etc. (see [14] for a comprehensive survey). In
contrast, the overarching theme of this paper is to guarantee
information freshness in learning scattered objects by a selfish
and rational crowd. Moreover, most of the existing crowd-
sensing research adopts either a static model, where the set
of sensing individuals is fixed (see, e.g., [15] and references
therein); or based on a static game-theoretic model, where a
fixed set of sensing individuals are incentivized/contracted by a
fixed set of employers (see, e.g., [16] and references therein).
These are fundamentally different from our dynamic model
described in Section III. Hence, our work fills a critical gap
in understanding large-scale mobile crowd-learning.

b) Age-of-Information (AoI): Originated from sensing
systems, AoI has attracted increasing attention from the infor-
mation theory, signal processing, and communications com-
munities in recent years. Besides being a useful performance
metric, AoI also possesses several key features that distinguish
itself from the traditional notion of queueing delay. Most
notably, in many sensing systems, it has been found that while
queueing delay benefits from lower sampling rates (implying
less data traffic), AoI is non-monotone with respect to sam-
pling rates. This key difference has sparked AoI research in
several aspects, e.g., real-time sampling and remote estimation
trade-off [17], [18], joint source-channel coding exploitation
[19], [20], caching [21], [22], optimization algorithms for AoI
minimization [23], [24], age-based scheduling [25]–[27], just
to name a few. We note that the key differences between
our research and the existing AoI research are: i) the tight
coupling and dependence between multi-user arrival dynamics
and multi-source information time series on a network level;
and ii) the complex interactions between AoI, fresh/outdated
information, and queueing, all of which are governed by
the service provider’s reward mechanism designs. These key
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differences introduce new dimensions of challenges in guaran-
teeing stochastic network information freshness that is unseen
in existing AoI research.

III. NETWORK MODEL AND PROBLEM STATEMENT

As shown in Fig. 1, we consider a mobile crowd-learning
system consisting of N nodes that represent N points of
interest (PoI) associated with the same application. Depending
on the application, the PoIs could be road intersections,
parking garages, potential WiFi hotspots, or gas stations. We
consider a time-slotted system. This mobile crowd-learning
system follows the operating procedure: we suppose that the
system has a set of points of interest (PoI) (which could
represent gas stations, or a set of routes between Point A
and Point B on Google Waze). Each PoI has a real-time state
information denoted as pn[t], which could represent gas price,
real-time congestion state, etc. For each PoI n, the service
provider maintains a record, denoted as rn[t], which is sampled
by the users, and may or may not be up-to-date. Meanwhile, a
stream of users randomly arrive at the service provider, which
models the fact that users at different places pull out their
phones to check the recorded information rn[t]. Based on the
information they see, they would pick one PoI to go, e.g.,
picking the cheapest gas station, or the least congested route,
etc. For some applications, it could happen that when they
arrive at the chosen PoI, they need to stay in line waiting to
get service. We assume that once they reach the head of line
and get their services, the real-time state pn[t] is revealed.
Upon observing the real-time information, the users will be
able to earn some reward by feeding back the information to
the service provider and the rn[t] will get updated.

In what follows, we model the above operating procedure
analytically. In each time slot t, each PoI n has some state
information pn[t] (e.g., congestion level, parking rate and
space, gas price, etc.) that is time-varying and to be sampled by
their users. We assume that pn[t] ∈ [pmin, pmax], ∀t, for some
positive constants pmin and pmax. A service provider (i.e.,
a crowd-learning-based information/data analytics platform)
relies on randomly arriving users to sample and report the
states of the PoIs. The service provider maintains a record
for each PoI, whose value in time slot t is denoted as rn[t],
n = 1, . . . , N . For ease of exposition, we will refer to pn[t]
and rn[t] as “price” and “recorded price” in the rest of
this paper, respectively. Let un[t] be the most recent update
time up to time slot t for PoI n’s record. Hence, the age
(freshness) of record rn[t] in time slot t can be represented as
∆n[t] = t− un[t].

Let A[t] be the random number of users arriving at the
system in time slot t. We assume that A[t], t ≥ 0, are
independently and identically distributed (i.i.d.) across time
with mean λ , E[A[t]] > 0 and a bounded second moment
E[A2[t]] < ∞. The arrivals model the scenario that users at
different locations use their mobile apps in each time slot
to acquire information of the PoIs before making decisions.
Each arriving user will first observe the current records of
all PoIs and choose one that maximizes his/her benefits, e.g.,
choosing the least congested route, the lowest gas price, or the
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Fig. 1: A system model for mobile crowd-learning.

cheapest and nearest parking space, depending on the specific
application. However, due to the random updating time in
crowd-learning, the information of some PoI n’s record could
be old and hence rn[t] may be outdated and inaccurate.

On the other hand, upon the arrival at his/her chosen PoI,
say n in time slot t, the user will report the PoI’s real-time state
(e.g., real-time price, congestion level), i.e., pn[t]. Let Rn[t]
denote the number of users that can be served by PoI n in
time slot t. We assume that Rn[t], t ≥ 0, are i.i.d. across time
and independently distributed across PoIs with mean µn ,
E[Rn[t]] > 0, ∀n, and Rn[t] ≤ Rmax, ∀n, t, for some Rmax <
∞. We use Qn[t] to denote the number of users awaiting for
service at PoI n in time slot t.

The service provider’s goal is to achieve minimum time-
average AoI while keeping queueing congestion at each PoI
low. The rationale behind this goal is that low AoI (i.e., fresh
information) implies multiple benefits, e.g., high information
accuracy, which attracts more users; hence more advertising
revenues due to large user volume, etc. However, the following
toy example shows that, without an appropriately designed
incentive mechanism, the natural greedy behavior of selfish
and rational users could yield AoI instability in a mobile
crowd-learning environment:

A Motivating Example (AoI Instability due to Selfishness):
Consider a two-PoI example as shown in Fig. 2. The most
straightforward incentive mechanism is that the service
provider offers the same reward for whatever PoI a user
samples. Since sampling different PoIs makes no difference
in terms of reward, the users would naturally choose the
following price-greedy policy: In time slot t, each arriving
user compares the recorded prices r1[t] and r2[t] and chooses
the cheaper PoI, i.e., choosing n∗[t] ∈ arg minn∈{1,2}{rn[t]}.
Suppose that pn[t] ∈ [0, pmax], n = 1, 2. Assume that the
probability Pr{pn[t] = pmax} = ε, n = 1, 2, where ε > 0
is some small value. Now, suppose also that in the initial
state, p1[0] = pmax and p2[0] = δ < pmax. Thus, at t = 0,
all users choose PoI 2 and the record r2[t] will be updated,
in which case the age of PoI 2 in time slot 1 becomes zero,
i.e., ∆2[1] = 0. However, due to the high initial price p1[0],
no user chooses PoI 1. Also, due to the low probability
of p2[t] reaching pmax, it would take a long time (could
be unbounded if ε is arbitrarily small) for PoI 1 to receive
any user to update r1[·], although p1[t] may be lower than
p2[t]. For example, in Fig. 3, p1[t] and p2[t] are uniformly
distributed in [0, 1]. We let p1[0] = 0.999 (large initial value)
and p2[0] = 0.1. Clearly, we can see that PoI 1’s AoI is large
and grows linearly with respect to time.
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The above observation of AoI instability due to users’
selfishness and rationality highlights the importance of reward
mechanism design and motivates us to develop crowd-learning
reward mechanisms to ensure information freshness.

IV. A LINEAR AOI-BASED REWARD MECHANISM

To keep the AoI being bounded, the service provider
would like users to go to and sample a PoI with the most
outdated information. However, unlike traditional scheduling
problems, the crowd-learning service provider cannot enforce
each arriving selfish and rational user to go to a certain PoI.
Rather, the service provider can only offer incentives/rewards
to influence the users to choose certain PoIs. So far, however,
the problem of optimal reward mechanism design for mobile
crowd-learning with selfish and rational users has not been
addressed in the literature. As a starting point, in this paper,
we consider a simple linear reward mechanism for mobile
crowd-learning.

Specifically, we let β > 0 represent the “reward per unit
of age” offered by the service provider. Note that each user
prefers to select a PoI with both low price and congestion
level. We use a parameter γ > 0 to denote users’ sensitivity
to queueing congestion, which depends on specific mobile
crowd-learning application2. Hence, in each time slot t, an
arriving user’s presumed benefit for choosing PoI n and
reporting its state is: β∆n[t] − γQn[t] − rn[t]. In this work,
we assume that all arriving users are selfish and rational in
the sense that they would select a PoI n∗[t] to maximize their
presumed benefit, i.e.,

n∗[t] ∈ arg max
n∈{1,2,...,N}

(β∆n[t]− γQn[t]− rn[t]) , ∀t. (1)

Although the above linear reward mechanism is simple, it
captures the following first-order dynamics of age-based in-
centives: On one hand, for any fixed γ, when the reward
rate diminishes, i.e., β ↓ 0, each user essentially follows
the “greedy” scheme to select a PoI with the smallest value
of γQn[t] + rn[t]. On the other hand, when the reward rate
approaches infinity, i.e., β ↑ ∞, the component of age-based
reward dominates and the effects of Qn[t] and rn[t] become
negligible asymptotically in users’ presumed benefit. Thus,
it encourages users to help the service provider maintain
information freshness.

To facilitate our subsequent analysis, we use Sn[t] to denote
whether there is at least one user selecting PoI n in time slot

2Here, we assume that all users are homogeneous and have the same γ-
value. The impact of users’ heterogeneity in congestion sensitivity will be
studied in our future work.

t. In particular, Sn[t] = 1 if at least one user selects PoI n in
time slot t, and Sn[t] = 0 otherwise. Under the assumption of
users’ selfishness and rationality, the dynamics of queue-length
and age of PoI n can be described as follows:

Qn[t+ 1] = max{Qn[t] +A[t]S∗n[t]−Rn[t], 0}, ∀n. (2)

and ∆n[t+ 1] =

{
∆n[t] + 1, if S∗n[t]1{A[t]>0} = 0,

0, otherwise,
(3)

where S∗n[t] = 1 if n = n∗[t] and S∗n[t] = 0 otherwise, and
1{·} is an indicator function. Let S∗[t] , (S∗n[t])Nn=1.

To understand the impact of users’ selfishness and rational-
ity on AoI and queueing congestion, in this paper, we adopt
the so-called Price of Anarchy (PoA) metric from the game
theory literature, which characterizes the degradation of the
system efficiency due to the selfish and rational behavior of
users compared to the optimum. Roughly speaking, the notion
of PoA ρ is defined as:

ρ = 1− Minimum cost
Cost under selfish and rational behavior

. (4)

Here, the definition of cost in (4) depends on specific systems
scenarios that will be further defined in subsequent sections.
Note that ρ ∈ [0, 1] and the smaller the PoA, the more efficient
the system under selfish and rational user behaviors.3 In what
follows, we will analyze the PoA performance of the linear
reward scheme.

V. PRICE OF ANARCHY: A DETERMINISTIC CASE

In our proposed crowd-learning model, there exists a strong
coupling between AoI and queueing congestion. Indeed, when
a user joins a PoI, the AoI of that PoI decreases while
its queue-length increases. Such a coupling poses significant
challenges on the performance analysis of the linear reward
mechanism. As a starting point, in this section, we first
consider a simple deterministic case, where, in each time slot,
there is exactly one arriving user and each PoI serves exactly
one user if there is any. This deterministic case not only
provides interesting insights, its results and proof strategies
will also serve as a foundation for analyzing general cases
with stochastic arrivals and services later in Section VI.

Note that due to the special arrival and service patterns in
this deterministic case, there is no queueing effect at each PoI.
Hence, user’s selfish and rational selection (cf. (1)) becomes:

n∗[t] ∈ arg max
n∈{1,2,...,N}

(β∆n[t]− rn[t]) . (5)

In addition, the evolution of age of PoI n in (3) becomes:

∆n[t+ 1] = (∆n[t] + 1)(1− S∗n[t]). (6)

Next, we study the information freshness performance under
the selfish and rational behavior of users (cf. (5)) based on
the notion of PoA. Since queueing does not play a role,

3It is insightful to point out that the notion of PoA in this paper has the
following subtle difference compared to the traditional PoA in the game theory
literature. As will be seen later, the cost in (4) will be based on AoI and
queueing congestion, which are more from the system provider’s perspective.
By contrast, the traditional PoA in the game theory literature is often measured
by the users’ social costs (or welfare).
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the cost in PoA in the deterministic case is only related to
age. To this end, we consider two different cost functions
characterizing the AoI performance: average maximum age
∆

(β)

max , E [maxn ∆n[t]] and total average age ∆
(β)

Σ ,∑N
n=1 E [∆n[t]] under some reward rate β. Correspondingly,

their associate PoAs are defined as follows.

ρm(β) , 1− ∆
(OPT)

max

∆
(β)

max

, and ρs(β) , 1− ∆
(OPT)

Σ

∆
(β)

Σ

,

where ∆
(OPT)

max and ∆
(OPT)

Σ are the average maximum age and
the total average age under an optimal policy, respectively. The
first main result of this paper is stated as follows:

Theorem 1 (AoI-Based PoA for the Deterministic Case). If
there is exactly one user arriving in each time slot and each
PoI serves exactly one user per time-slot if there is any, the
users’ selfishness and rationality yields the following PoA
performance:

ρm(β) ≤ pmax

(N − 1)β + pmax
= O

(
1

β

)
, (7)

and ρs(β) ≤ (N − 1)β + 2pmax

2(N − 1)β + 2pmax
= O

(
1

2
+

1

β

)
. (8)

Proof. The proof consists of two main steps: (i) Finding
an upper bound on the average maximum age ∆

(β)

max and
the total average age ∆

(β)

Σ due to users’ selfishness and
rationality, respectively; and (ii) deriving a lower bound on the
average maximum age ∆

(OPT)
max and the total average age ∆

(OPT)
Σ

achieved by their corresponding optimal policies, respectively.
Please see Appendix A for details.

Remark 1. From Theorem 1, we can observe that if β
increases asymptotically (i.e., β ↑ ∞), we have ρm(β) ↓ 0.
This implies that the system is optimal in terms of average
maximum age and mimicking Round-Robin when the service
provider increases the incentive asymptotically. On the other
hand, if β reduces to zero (i.e., β ↓ 0), we can see from (5)
that each user just follows a price-greedy strategy. In this case,
Theorem 1 suggests that the upper bound of ρm(β) approaches
1, which is consistent with our observation (cf. motivating
example in Section III) that the system suffers a poor AoI
performance and potentially AoI instability (i.e., ∆

(β)

max ↑ ∞).
iii) ρs(β) ↓ 1/2 as β increases to infinity. However, we will
observe from the numerical results in Section VII that ρs(β)
indeed converges to zero as β increases asymptotically. This
indicates the looseness of our upper bound analysis for the
average total age. This is due to the intrinsic deficiency of the
Lyapunov analysis methodology, which only captures the drift
among neighboring slots in temporal domain and is not able
to characterize the Round-Robin behavior in spatial domain.

VI. PRICE OF ANARCHY: STOCHASTIC CASES

Based on the results for the deterministic case, we are now
in a position to analyze the AoI and congestion performances
under users’ selfishness and rationality in cases with stochastic
arrivals and services. To facilitate analysis, we define a param-
eter q,Pr{A[t]>0} for the arrivals, which is strictly positive

for λ , E[A[t]] > 0. Let µΣ ,
∑N
n=1 µn. Here, we adopt

the cost function with the weighted sum of average age and
average queue-length, i.e.,

J(β, γ) ,
γε

N

N∑
n=1

Qn + β
N∑
n=1

µn
µΣ

∆n, (9)

where ε > 0 satisfies µn/λ ≥ µn/µΣ+ε/N, ∀n = 1, 2, . . . , N
due to the fact that λ < µΣ (necessary for guaranteeing
the system’s queueing stability4), and Qn and ∆n are the
average queue-length and average age of PoI n under the
user’s selfishness, respectively. We note that in J(β, γ), ε is
used as a scaling parameter to reduce the cost’s sensitivity to
average queue-length 1

N

∑N
n=1Qn under different arrival rates

λ. Also, γ and β are used to emphasize the relative importance
between queueing and AoI costs, as in the presumed benefit
for users’ selfish decisions (cf. (1)). Also, note that J(β, γ) is
based on weighted average age, where the weight µn

µΣ
is used to

“equalize” the different AoI scales caused by the heterogeneity
of the PoIs.5 As a result, the PoA is specialized to

ρ(β, γ) , 1− J (OPT)(β, γ)

J(β, γ)
.

Here, we would like to point out that we could not provide
a tight analysis for cost function involving average maximum
age as we did in the deterministic case. This is due to the
intricate coupling among queue-lengths and age. Nevertheless,
the PoA performance under the considered cost function can
still provide an upper bound on that with a cost function
involving average maximum age, despite its looseness. In Sec-
tion VII, we provide numerical results on the PoA performance
with cost functions involving both average maximum age and
average total age.

Next, we state our second key result for the stochastic cases
as follows:

Theorem 2 (Joint AoI-Congestion PoA of Stochastic Cases).
If λ < µΣ, then there exists an ε > 0 satisfying µn/λ ≥
µn/µΣ + ε/N, ∀n = 1, 2, . . . , N . In such a case, the users’
selfishness and rationality yields the following PoA perfor-
mance:

ρ(β, γ) ≤ B(γ)− γM + pmax

B(γ) + β
(
N
q − 1

)
+ pmax

+
β
(
N
q −

1
2qµmax

∑N
n=1 µn −

1
2

)
B(γ) + β

(
N
q − 1

)
+ pmax

, (10)

where B(γ) , γ
2λ

(
E[A2[t]] +

∑N
n=1 E[R2

n[t]]
)
, M ,

ε
2N(µΣ−λ)

(
Var(A[t]) +

∑N
n=1 Var(Rn[t]) + (µΣ − λ)2

)
−

1
2εRmax, and µmax , maxn µn.

Proof. Similar to the proof of Theorem 1, we first find an up-
per bound on J(β, γ) by using the Lyapunov drift analysis and

4In this paper, we say that a queue n is stable if its average queue-length
is finite, i.e., lim supT→∞

1
T

∑T−1
t=0 E[Qn[t]] < ∞. A system is stable if

all its queues are stable.
5This is also motivated by the fact that the service provider prefers a better

AoI for the PoI with a faster service rate.
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then determine a fundamental lower bound on J (OPT)(β, γ).
The detailed proof is available in Appendix B.

Remark 2. From Theorem 2, we can see that for any fixed γ
value, we have

lim
β→∞

ρ(β, γ) ≤ 1− 1

2

1
qµmax

∑N
n=1 µn − 1

N
q − 1

,

whose upper bound is equal to 1/2 in the case with symmetric
services, i.e., µ1 = µ2 = · · · = µN . However, we shall see
from the numerical results presented in Section VII that for
any fixed γ value, as β increases, the PoA actually converges
to zero in the case with symmetric services. The looseness
of the upper bound analysis is due to the intrinsic nature of
the Lyapunov analysis methodology, which only captures the
drift among neighboring slots in temporal domain and does
not characterize the Round-Robin behavior in spatial domain.

VII. NUMERICAL RESULTS

In this section, we conduct simulations to study the PoA
performance under users’ selfishness and rationality (cf. (1))
in a mobile crowed-learning system. We use a 10-PoI system
and assume that each PoI n’s state information pn[t] belongs
to the finite set {0.25, 0.5, 0.75, 1}, and pn[t] changes to a
different value uniformly at random every 100 time slots.
We consider both deterministic and stochastic cases. For the
deterministic case, we assume that there is exactly one arriving
user in each time slot and each PoI can serve one user in
one time slot if any. For the stochastic case, we assume
that users arrive at the system according to the Bernoulli
distribution with mean λ = 0.9 and service provided by each
PoI n follows an i.i.d. Bernoulli distribution with mean µn,
n = 1, 2, . . . , 10. We consider both symmetric and asymmetric
services: For symmetric services, we let µn = 0.1, ∀n; For
asymmetric services, we let µn = 0.11, n ∈ {1, 2, . . . , 5} and
µn = 0.09, n ∈ {6, 7, . . . , 10}.

1) Deterministic Scenario: Fig. 4 illustrates the PoA per-
formance in terms of both average maximum age and total
average age in the deterministic case. In this case, there is
no queueing effect and the PoA performance reflects the
information freshness due to users’ selfish and rational be-
havior compared to the optimal AoI performance. We can
observe from Fig. 4a and Fig. 4b that PoA in terms of both
average maximum age and total average age decrease as the
reward rate β increases and roughly follows the O(1/β) law,
meaning that the AoI performance improves. This corroborates
our analytical result on the PoA performance in Theorem 1.
This simulation result also indicates that although the PoA
analysis in Theorem 1 in terms of total average age is not
asymptotically tight, the key message is true in the sense that
the PoA improves as the reward rate β increases. Moreover,
PoA in terms of both average maximum age and total average
age decrease to zero for β ≥ 0.5. This means that the AoI
performance is optimal even with selfish and rational users.

2) Stochastic Scenario: Next, we study the PoA perfor-
mance with cost function involving average weighted sum
of age (as defined in (9)) as well as average maximum
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Fig. 4: PoA with respect to reward rate β in the deterministic
case: (a) PoA in terms of average maximum age; (b) PoA in
terms of average total age.

age in stochastic cases. We consider both symmetric and
asymmetric services. Here, PoA reflects the gap between
joint AoI-congestion performance under users’ selfishness and
rationality compared to the optimal performance. We note
that, even without incorporating AoI, it remains an open
problem to find an optimal policy to minimize the total
mean queue-length. In deriving the upper bound on PoA,
we use the fundamental lower bound on total mean queue-
length (cf. [28, Lemma 5]), which may not be tight. In
this simulation, we adopt the Join-the-Shortest-Queue (JSQ)
policy (e.g., [28]) and use its mean queue-length to serve
as a lower bound for the queueing component in PoA. This
is because JSQ minimizes the total mean queue-length (see
[29, Proposition 3]) in the case with Bernoulli arrival and
symmetric Bernoulli services, and it is optimal (see [28]) in the
case with general arrival and service processes in the heavy-
traffic regime (i.e., arrival rate approaches the total service rate
asymptotically). Since we also evaluate the PoA performance
with cost function involving average maximum age, we need to
know the fundamental lower bound on the average maximum
weighted age. This can be easily derived from equation (25)
that E

[
maxn µn∆̂

(OPT)
n

]
≥ µΣ/q − µmax.
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(b)
Fig. 5: PoA with respect to β and γ in the stochastic case with
asymmetric services: (a) PoA in terms of average maximum
age; (b) PoA in terms of average total age.

Fig. 5 shows the PoA performance with cost function
involving both average maximum age and total average age
in the case with asymmetric services under different values of
γ. From Fig. 5b, we can see that, for any fixed γ value, PoA
converges to 0.1 instead of 0 as β increases. The main reason
is that we adopt the weighted sum of mean age as the metric
for information freshness, and the policy that achieves optimal
information freshness is unknown. Thus, we use our derived
fundamental lower bound on the weighted mean sum-age to
replace the optimal value for the information freshness, which
may render a loose bound on PoA. However, we point out that
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Fig. 6: PoA with respect to β and γ in the stochastic case with
symmetric services: (a) PoA in terms of average maximum
age; (b) PoA in terms of average total age.

our derived bound on PoA is tight in the symmetric service
case as the reward rate β increases asymptotically, even though
the derived upper bound of PoA is 1/2 (cf. Remark 2). Indeed,
we can observe from Fig. 6b that PoA actually converges
to zero as β increases in the case with symmetric services.
Despite that we did not provide any analytical results on the
PoA with cost function involving average maximum age, we
can see similar phenomenon from both Fig. 5a and Fig. 6a.

VIII. CONCLUSION

In this paper, we have strived to understand whether or not
we can achieve information freshness guarantee with selfish
and rational users in mobile crowd-learning. To answer this
question, we first developed a new analytical model that takes
into account the essential features of mobile crowd-learning.
Then, based on this model, we showed that the natural greedy
behavior of selfish and rational users could lead to AoI insta-
bility, which necessitates the design of reward mechanisms to
induce information freshness guarantee. Toward this end, we
proposed a linear AoI-based reward mechanism, under which
we analyzed the impacts of users’ selfishness and rationality
on AoI based on the notion of Price of Anarchy (PoA). We
showed that the proposed reward mechanism achieves bounded
AoI and congestion performances in terms of PoA, and can
even achieves optimal AoI asymptotically in a deterministic
scenario. Collectively, these results serve as an exciting first
step toward optimizing information freshness in mobile crowd-
learning systems.

APPENDIX A
PROOF OF THEOREM 1

Step 1): To find upper bounds on both average maximum
age and average total age due to users’ selfish and rational
behavior, we perform Lyapunov drift analysis through an age-
based Lyapunov function defined as follows:

V [t] ,
N∑
n=1

∆n[t]. (11)

Let M[t],({∆n[t]}Nn=1, {rn[t]}Nn=1), and consider the one-
step conditional expected drift of V [t] as follows:

∆V [t] ,E [V [t+ 1]− V [t]|M[t]]

=
N∑
n=1

E [∆n[t+ 1]−∆n[t]|M[t]]

(a)
=

N∑
n=1

E [1− (∆n[t] + 1)S∗n[t]|M[t]]

(b)
=N − 1−

N∑
n=1

E [∆n[t]S∗n[t]|M[t]] (12)

≤N − 1−
N∑
n=1

E

[(
∆n[t]− 1

β
rn[t]

)
S∗n[t]

∣∣∣∣M[t]

]
,

(13)

where (a) uses dynamics of ∆n[t] in (6); (b) follows from the
fact that each user joins one of the PoIs in each time slot, i.e.,∑N
n=1 S

∗
n[t] = 1.

Next, we first develop an upper bound on the average
maximum age due to users’ selfishness and rationality. As
such, we consider the following irrational policy

S̃[t],(S̃n[t])Nn=1 ∈ arg max
S

N∑
n=1

∆n[t]Sn[t],

i.e., users select the PoI with the largest age. Hence, (13)
becomes

∆V [t]
(a)

≤N − 1−
N∑
n=1

E

[(
∆n[t]− 1

β
rn[t]

)
S̃n[t]

∣∣∣∣M[t]

]
(b)

≤N − 1−∆max[t] +
1

β
pmax, (14)

where (a) follows from the definition of S∗n[t]; and (b) uses
the fact that rn[t] ≤ pmax, ∀n, t ≥ 0, the definition of S̃[t],
and the fact that exactly one S̃n[t] is non-zero. It then follows
from (13) that:

E [V [t+ 1]− V [t]] ≤ N − 1− E[∆max[t]] +
1

β
pmax. (15)

Summing (15) for t = 0, 1, 2, . . . , T − 1, we obtain:

E[V [T ]− V [0]]≤−
T−1∑
t=0

E[∆max[t]]+(N − 1)T+
T

β
pmax,

which implies that

∆
(β)

max , lim sup
T→∞

1

T

T−1∑
t=0

E[∆max[t]] ≤ N − 1 +
1

β
pmax. (16)

Finally, we develop an upper bound on the total average
age due to users’ selfishness and rationality. To that end, we
consider a uniformly randomized policy S̆[t] with Pr{S̆n[t] =
1} = 1/N . As such, (13) becomes

∆V [t]
(a)

≤N − 1−
N∑
n=1

E

[(
∆n[t]− 1

β
rn[t]

)
S̆n[t]

∣∣∣∣M[t]

]

=N − 1−
N∑
n=1

E

[(
∆n[t]− 1

β
rn[t]

)
1

N

∣∣∣∣M[t]

]
(b)

≤N − 1− 1

N

N∑
n=1

∆n[t] +
1

β
pmax, (17)

Taking the expectation on both sides of the above inequality
and using the similar telescoping technique in deriving the
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upper bound on the average maximum age, we can derive the
following upper bound on the total average age.

∆
(β)

Σ , lim sup
T→∞

1

T

T−1∑
t=0

E[∆n[t]] ≤ N(N − 1) +
N

β
pmax.

Step 2): We first derive a fundamental lower bound on the
average maximum age that can be achieved by the optimal
policy. By using the same Lyapunov function in (11) to
compute the conditional expected one-step drift under the
optimal policy {S(OPT)

n [t]} and following similar steps, we
have

∆V [t] = N − 1−
N∑
n=1

E[∆(OPT)
n [t]S(OPT)

n [t]|M[t]],

where ∆
(OPT)
n [t] is the age of PoI n in time slot t under the

optimal policy. In Step 1, we have already shown that the
average maximum age is finite under the selfish and rational
policy. This readily implies that the average maximum age is
also finite under the optimal policy. Therefore, E[∆V [t]] will
be equal to zero in steady-state and thus we have

N∑
n=1

E[∆̂(OPT)
n Ŝ(OPT)

n ] = N − 1, (18)

where ∆̂
(OPT)
n and Ŝ(OPT)

n are random variables with the same
distribution as ∆

(OPT)
n [t] and S

(OPT)
n [t] in steady-state under

the optimal policy, respectively. Hence, we have

∆
(OPT)

max

(a)
=E[∆̂(OPT)

max ]
(b)
= E[max

n
∆̂(OPT)
n ]

(c)

≥
N∑
n=1

E[∆̂(OPT)
n Ŝ(OPT)

n ]
(d)
= N − 1, (19)

where step (a) follows from the boundedness of the aver-
age maximum age under the optimal policy; (b) is true for
∆̂

(OPT)
max , maxn ∆̂

(OPT)
n ; (c) follows from the fact that each

arriving user joins exactly one of the PoIs, i.e.,
∑N
n=1 Ŝ

(OPT)
n =

1; and (d) uses (18).
The fundamental lower bound on the total average age that

can be achieved by the optimal policy is expressed as follows:

∆
(OPT)

Σ =
N∑
n=1

E
[
∆̂(OPT)
n

]
≥ 1

2
N(N − 1). (20)

Its derivation is a special case of that in Step 2 in the proof
of Theorem 2 and thus is omitted here for brevity.

Note that the lower bounds of both ∆
(OPT)
max and ∆

(OPT)

Σ are
tight and can be achieved by the Round-Robin policy, i.e.,
the system guides each arriving user to the PoIs in a Round-
Robin fashion. Indeed, under Round-Robin, the ages of PoIs
are a permutation of {0, 1, 2, . . . , N−1} in each time slot, and
hence the maximum age and total age under Round-Robin are
∆(RR)

max[t] = N − 1 and ∆
(RR)
Σ [t] = 0 + 1 + 2 + . . . + (N −

1) = N(N − 1)/2, ∀t ≥ 0, respectively, which imply that
∆

(RR)
max = N−1 = ∆

(OPT)
max and ∆

(RR)

Σ = N(N−1)/2 = ∆
(OPT)

Σ .
Lastly, by dividing the upper bounds in Step 1 by the lower

bounds in Step 2, the desired PoA results in Theorem 1 follow
and the proof is complete.

APPENDIX B
PROOF OF THEOREM 2

Step 1): Consider the following Lyapunov function:

L[t] ,
γ

2λβ

N∑
n=1

Q2
n[t] +

1

q

N∑
n=1

∆n[t].

Let Z[t] , ((Qn[t])Nn=1, (∆n[t])Nn=1, (rn[t])Nn=1). Then, the
one-step conditional expected drift can be computed as:

∆L[t] ,E [L[t+ 1]− L[t]|Z[t]]

=E

[
γ

2λβ

N∑
n=1

(
Q2
n[t+ 1]−Q2

n[t]
)

+
1

q

N∑
n=1

(∆n[t+ 1]−∆n[t])

∣∣∣∣Z[t]

]
(a)

≤ B(γ)

β
+ E

[
γ

λβ

N∑
n=1

Qn[t](A[t]S∗n[t]−Rn[t])

+
1

q

N∑
n=1

(
1− (∆n[t] + 1)S∗n[t]1{A[t]>0}

) ∣∣∣∣Z[t]

]
,

where (a) is true for B(γ) = γ
2λ (E[A2[t]] + NR2

max) < ∞,
and uses dynamics of Qn[t] (cf. (2)) and ∆n[t] (cf. (3)), and
the fact that (max{x, 0})2 ≤ x2, ∀x.

Next, we let Z′[t] , (Z[t],1{A[t]>0}). Then, for any
function f(Z[t]), the following sequence of equalities holds:

E{f(Z[t])A[t]|Z[t]} =qE{f(Z[t])A[t]|Z′[t]}
=qE{A[t]|A[t] > 0}E{f(Z[t])|Z′[t]}
=E{A[t]}E{f(Z[t])|Z′[t]}. (21)

Note that each arriving user joins one of the PoIs in each time
slot, i.e.,

∑N
n=1 S

∗
n[t] = 1. Also, the users’ decisions S∗[t]

only depend on Z[t]. Hence, we have that:

∆L[t]
(a)

≤ B(γ)

β
+
N

q
− 1− γ

λβ

N∑
n=1

µnQn[t]

+ E

[
γ

β

N∑
n=1

Qn[t]S∗n[t]−
N∑
n=1

∆n[t]S∗n[t]

∣∣∣∣Z′[t]]

≤B(γ)

β
+
N

q
− 1− γ

λβ

N∑
n=1

µnQn[t]

− E

[ N∑
n=1

(
∆n[t]− γ

β
Qn[t]− 1

β
rn[t]

)
S∗n[t]

∣∣∣∣Z′[t]],
(22)

where (a) follows from (21) and the fact that q ∈ (0, 1).
Next, consider an unselfish stationary randomized policy with
E[S̃n[t]] = µn/µΣ, ∀n, if A[t] > 0, and µΣ ,

∑N
n=1 µn.

Clearly, from the definition of S∗[t], we have:

(22) ≤B(γ)

β
+
N

q
− 1− γ

β

N∑
n=1

µn
λ
Qn[t]

− E

[ N∑
n=1

(
∆n[t]− γ

β
Qn[t]− 1

β
rn[t]

)
S̃n[t]

∣∣∣∣Z′[t]],
8



Noting that µn/λ ≥ µn/µΣ + ε/N, ∀n, we have

∆L[t]
(a)

≤ B(γ)

β
+
N

q
− 1 +

pmax

β
− γε

Nβ

N∑
n=1

Qn[t]

− γ

β

N∑
n=1

µn
µΣ

Qn[t]−
N∑
n=1

µn
µΣ

E

[(
∆n[t]− γ

β
Qn[t]

)∣∣∣∣Z′[t]]

=− γε

Nβ

N∑
n=1

Qn[t]−
N∑
n=1

µn
µΣ

∆n[t]+
B(γ)

β
+
N

q
−1+

pmax

β
,

where (a) follows from rn[t] ≤ pmax, ∀n, t, and the definition
of the stationary randomized policy {S̃[t]}t≥0. This implies

E [L[t+ 1]− L[t]] ≤− γε

Nβ

N∑
n=1

E[Qn[t]]−
N∑
n=1

µn
µΣ

E[∆n[t]]

+
B(γ)

β
+
N

q
− 1 +

pmax

β
. (23)

Summing (23) for t = 0, 1, 2, . . . , T − 1, we obtain

E[L[T ]− L[0]] ≤ − γε

Nβ

T−1∑
t=0

N∑
n=1

E[Qn[t]]

−
T−1∑
t=0

N∑
n=1

µn
µΣ

E[∆n[t]] +

(
B(γ)

β
+
N

q
− 1 +

pmax

β

)
T,

which further implies the following upper bound on J(β, γ):

J(β, γ)

, lim sup
T→∞

1

T

T−1∑
t=0

[
γε

N

N∑
n=1

E[Qn[t]] + β
N∑
n=1

µn
µΣ

E[∆n[t]]

]

≤B(γ) + β

(
N

q
− 1

)
+ pmax. (24)

Step 2): Next, we derive a fundamental lower bound on
J (OPT)(β, γ). Since we have shown that J(β, γ) is upper-
bounded under the selfish and rational policy in Step 1,
J (OPT)(β, γ) is also bounded under the optimal policy. There-
fore, we have

J (OPT)(β, γ) =
γε

N

N∑
n=1

E[Q̂(OPT)
n ] + β

N∑
n=1

µn
µΣ

E[∆̂(OPT)
n ],

where Q̂(OPT)
n and ∆̂(OPT)

n are random variables with the
same distribution as Qn[t] and ∆n[t] in steady-state un-
der the optimal policy, respectively. Next, we lower-bound∑N
n=1 E[Q̂(OPT)

n ] and
∑N
n=1 µnE[∆̂(OPT)

n ] individually. In the
rest of the proof, we omit the signifier “(OPT)” for notational
convenience and better readability.

We first consider
∑N
n=1 µnE[∆̂n]. By choosing the Lya-

punov function V1[t] ,
∑N
n=1 µn∆n[t] and following similar

steps as in the derivation of (12), we have

∆V1[t] , E [V1[t+ 1]− V1[t]|Z′[t]]

=µΣ − q
N∑
n=1

µnE{Sn[t]|Z′[t]}

−q
N∑
n=1

µnE{∆n[t]Sn[t]|Z′[t]}.

Since J (OPT)(β, γ) is bounded under the optimal policy, the
weighted sum of average age must also be finite under the
optimal policy. Therefore, one can conclude that E[∆V1[t]] =
0 in steady-state. It then follows that:

N∑
n=1

µnE
[
∆̂nŜn

]
=

1

q
µΣ −

N∑
n=1

µnE[Ŝn], (25)

where Ŝn is the random variable with the same distribution as
Sn[t] in the steady-state under the optimal policy.

Similarly, using Lyapunov function V2[t],
∑N
n=1µn∆2

n[t]
and setting its drift to zero in steady-state yields:

2
N∑
n=1

µnE[∆̂n] = q
N∑
n=1

µnE[∆̂2
nŜn] + q

N∑
n=1

µnE[∆̂nŜn].

(26)

For any sample path, by Cauchy-Schwarz’s Inequality, we have( N∑
n=1

µn∆̂nŜn

)2

=

( N∑
n=1

√
µnŜn ·

√
µnŜn∆̂n

)2

≤
( N∑
n=1

µnŜn

)( N∑
n=1

µn∆̂2
nŜn

)
, (27)

which implies
∑N
n=1 µn∆̂2

nŜn ≥
(
∑N

n=1 µn∆̂nŜn)2∑N
n=1 µnŜn

, and hence

E

[
N∑
n=1

µn∆̂2
nŜn

]
≥ E

[(∑N
n=1 µn∆̂nŜn

)2

∑N
n=1 µnŜn

]
. (28)

Since f(X,Y ) = X2/Y is convex for all X ≥ 0 and Y >

0, by using Jensen’s Inequality, we have E[X
2

Y ] ≥ (E[X])2

E[Y ] .
Thus, setting X =

∑N
n=1 µn∆̂nŜn and Y =

∑N
n=1 µnŜn,

inequality (28) becomes:

N∑
n=1

µnE
[
∆̂2
nŜn

]
≥

(∑N
n=1 µnE[∆̂nŜn]

)2

∑N
n=1 µnE[Ŝn]

. (29)

By combining (25), (26) and (29), we have:
N∑
n=1

µnE[∆̂n] ≥µΣ

2

[
µΣ

q
∑N
n=1 µnE[Ŝn]

− 1

]
≥µΣ

2

[
µΣ

qµmax
− 1

]
, (30)

where the last step is true for µmax , maxn µn.
In order to lower-bound

∑N
n=1 E[Q̂n], we construct a hypo-

thetical single-server queue {Φ[t]} with the same arrival pro-
cess {A[t]}t≥0 and an aggregated service process {RΣ[t]}t≥0,
where RΣ[t] ,

∑N
n=1Rn[t]. The queue-length evolution

of this single-server queue can be written as: Φ[t + 1] =
max{Φ[t]+A[t]−RΣ[t], 0}. Due to resource pooling, the con-
structed hypothetical single-server’s queue-length {Φ[t]}t≥0

is stochastically smaller than {
∑N
n=1Qn[t]}t≥0 under any

feasible policy. Hence, by [28, Lemma 5], we immediately
have the following lower bound:

N∑
n=1

E[Q̂n] ≥ MN

ε
, (31)

9



where M , ε
2N(µΣ−λ)

(
Var(A[t])+

∑N
n=1 Var(Rn[t])+(µΣ−

λ)2
)
− 1

2εRmax. Lastly, combining (30), (31), and (24) yields
the desired result in Theorem 2 and the proof is complete.
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