
Efficient Learning-based Scheduling for Information
Freshness in Wireless Networks

Bin Li
Department of Electrical, Computer, and Biomedical Engineering

University of Rhode Island, Kingston, RI 02881, USA
Email: binli@uri.edu

Abstract—Motivated by the recent trend of integrating arti-
ficial intelligence into the Internet-of-Things (IoT), we consider
the problem of scheduling packets from multiple sensing sources
to a central controller over a wireless network. Here, packets
from different sensing sources have different values or degrees
of importance to the central controller for intelligent decision
making. In such a setup, it is critical to provide timely and
valuable information for the central controller. In this paper,
we develop a parameterized maximum-weight type scheduling
policy that combines both the AoI metrics and Upper Confidence
Bound (UCB) estimates in its weight measure with parameter η.
Here, UCB estimates balance the tradeoff between exploration
and exploitation in learning and are critical for yielding a small
cumulative regret. We show that our proposed algorithm yields
the running average total age at most by O(N2η). We also prove
that our proposed algorithm achieves the cumulative regret over
time horizon T at most by O(NT/η+

√
NT log T ). This reveals a

tradeoff between the cumulative regret and the running average
total age: when increasing η, the cumulative regret becomes
smaller, but is at the cost of increasing running average total
age. Simulation results are provided to evaluate the efficiency of
our proposed algorithm.

I. INTRODUCTION

With the recent advances in artificial intelligence (AI), there
is a trend for incorporating AI into the Internet-of-Things (IoT)
consisting of multiple wireless sensing sources to provide wise
decisions. In such an IoT system, it is critical to make sure
that the received sensing information is valuable and timely.
As such, in this paper, we consider the problem of scheduling
packets from multiple sensing sources to a central controller
over a wireless network as shown in Fig. 1, where packets from
different sensing sources have different values or degrees of
importance to the central controller for decision making.

In particular, we assume that each sensing source constantly
generates packets with random values independently and iden-
tically distributed (i.i.d.) with an unknown distribution. The
value of a packet is revealed only after the central controller
successfully receives it. On the one hand, we would like to
deliver packets from the most important sensing sources to the
central controller for making a better decision subject to the
wireless interference constraints. However, the controller does
not have any prior knowledge of the degree of importance of
these sensing sources and requires to gradually learn these
statistics while scheduling the best sensing sources (a.k.a.
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exploration-exploitation tradeoff in online learning). On the
other hand, we should also ensure that the received packets
have a low Age-of-Information (AoI) that measures the du-
ration between the packet generation time and its received
time. This is because the stale information is less useful to
the central controller and might even mislead the controller
to make harmful decisions. To that end, we aim to develop a
scheduling algorithm to achieve this dual objective, which is
complicated by the strong coupling between the learning and
AoI performance.
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Each sensing source generates a packet in each time slot

Fig. 1: An intelligent Internet-of-Things (IoT) system.

Without the AoI constraint, the considered problem can
be formulated as a combinatorial multi-armed bandit (MAB)
problem (e.g., [1], [2], [3], [4]), where each arm corresponds
to a sensing source, and the goal is to minimize the cumulative
regret over a finite time horizon (i.e., the difference between
the optimal cumulative reward and the cumulative reward
under an algorithm). The combinatorial MAB algorithms
allow to play multiple arms simultaneously in each time slot
instead of one arm as in classical MAB algorithms such as
Upper-Confidence-Bound (UCB [5]), Kullback-Leibler UCB
(KL-UCB [6]), and Thompson sampling [7]. The efficient
combinatorial MAB algorithms should quickly identify the
set of best arms and keep pulling them. This, however, leads
to the large AoI for other relatively poor arms. In particular,
the AoI keeps increasing over time and this implies that the
received information from relatively poor arms is outdated.
This motivates us to incorporate the AoI metric into the
learning algorithm design for combinatorial MAB problems.

While there are some recent works on AoI-efficient wireless



scheduling (e.g, [8], [9], [10] and see [11] for an overview),
their goal was to minimize AoI while guaranteeing the desired
throughput. They did not consider the MAB setting with
unknown system statistics, which is typical in intelligent IoT
systems. As such, in this paper, we integrate the main ideas of
UCB algorithm (e.g., [5]) and AoI-efficient scheduling (e.g.,
[8]), and propose a Learning-based Age-Efficient Scheduling
(LAES) Algorithm that utilizes both the UCB estimates and
AoI metrics. While there are some recent works in combinato-
rial bandits with fairness constraints (e.g., [12]), they focused
on the long-term fairness constraint, i.e., each arm should at
least be played for a fixed fraction of times on average. The
main approach is to maintain a virtual queue for each arm
that keeps track of its debt and prioritizes arms with high
virtual queue lengths, typically referred to as virtual queue
techniques (e.g., see [13] for an overview). However, the AoI
captures the short-term dynamic of the system and thus its
evolution is fundamentally different from the virtual queue
length. In particular, it has an unbounded decrement whenever
a packet is successfully delivered, which has a significant
impact on the performance analysis of the proposed algorithm.
Our contributions in this work are summarized as follows:
• We develop a parameterized maximum-weight type

scheduling policy that combines both the AoI metric and UCB
estimate in its weight measure (cf. Section IV). In particular,
we use the parameter η to balance the AoI metric and UCB
estimate. The larger the η, the more emphasis on the UCB
estimate and thus leads to the smaller regret, but it is at the
cost of the larger AoI.
•We derive an upper bound on the running average total age

under our proposed algorithm with any η > 0 (cf. Proposition
1), which linearly increases with the parameter η. Such an
upper bound is tight in some cases in the sense that the average
total average under our proposed algorithm linearly scales with
the parameter η.
• We show that the cumulative regret over a finite time

horizon T can be bounded from above by O(NT/η +√
NT log T )1 under our proposed algorithm (cf. Proposition

2). Here, the second term has the same order as that of
the UCB algorithm and is attributed to the cost for explo-
ration/exploitation in online learning, while the first term
NT/η is the cost paid for improving AoI performance. This,
together with the derived upper bound on the running average
total age, reveals a tradeoff: when increasing η, the regret
upper bound decreases, but the upper bound on running
average total age increases.
• We support our analytical results with extensive simula-

tions (cf. Section V), which demonstrates the superior perfor-
mance of our proposed algorithm over both UCB algorithm
and age-based algorithm (i.e., our proposed algorithm with
η = 0). Simulation results also confirm a tradeoff between
the cumulative regret and the running average total age. The

1f(x) = O(x) if there exists a positive real number M such that f(x) ≤
Mx, ∀x ≥ 0.

desired tradeoff can be achieved by tuning the value of
parameter η.

The remainder of this paper is organized as follows: Section
II reviews related work. Section III introduces system model
and problem statement. Section IV introduces our proposed
algorithm, and analyzes both its AoI and regret performance.
Section V presents simulation results and Section VI concludes
this paper.

II. RELATED WORK AND CONTEXT

In this section, we overview two main areas that are
closely related to our work: multi-armed bandit and age of
information, and further provide a brief discussion of our
design methodology in the context of prior work.

(a) Multi-Armed Bandit: The MAB problem models an
agent that attempts to learn system statistics while optimiz-
ing its decision based on existing learning experiences, and
has wide applications in recommender systems, healthcare,
finance, and computer networks. As such, it has been received
extensive research efforts (e.g., [14], [5], [6], [7]). The seminal
work of Lai and Robbins [14] established a fundamental
logarithmic lower bound on the cumulative regret (i.e., the
difference between the optimal cumulative reward and the cu-
mulative reward under an algorithm) over a finite time horizon
under a class of uniformly good policies and developed a UCB
algorithm that asymptotically achieves this fundamental lower
bound. Such a logarithmic regret bound has been shown to
be achieved by the sample-mean-based UCB algorithm and ε-
greedy policy (see [5]), Kullback-Leibler UCB (KL-UCB [6]),
and Thompson sampling [7].

Subsequent works extended the classical MAB problem to
various settings that account for different applications. The
one closest to ours is combinatorial MAB (e.g., [1], [2], [3],
[4]), where a subset of arms can be played simultaneously at
each time. More recent works considered the combinatorial
MAB with fairness constraint (e.g., [12], [15]), where each
arm should at least be played for a certain fraction of time
on average. The authors introduced the virtual-queue-length
to address fairness constraint and incorporated it into the
algorithm design. However, all these MAB works did not
address the AoI performance and thus yet unbounded AoI over
time, as demonstrated in our simulations (cf. Section V).

(b) Age of Information: AoI measures the duration be-
tween the time when the information was generated and its
received time. It directly captures the information freshness
and thus has received great attention in recent years. Unlike the
traditional queueing delay that is negligible in the case with a
low sampling rate (i.e., low arrival rate), the AoI is dominated
by the inter-arrival time and thus is rather large in the low
sampling rate regime. This key difference has spurred AoI
research in several aspects in recent years, e.g., AoI analysis
and optimization (e.g., [16], [17]), AoI in vehicular networks
(e.g., [18], [19]), online sampling and remote estimation (e.g.,
[20], [21]), AoI and energy harvesting (e.g., [22], [23], [24]),
just to name a few.
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The one that is closest to our research is the AoI-efficient
scheduling in wireless networks (e.g., [8], [9], [10] and see
[11] for an overview) that aims to develop wireless scheduling
algorithms with the goal of minimizing AoI. For example,
the authors in [8] developed an age-based scheduler for real-
time traffic that achieves not only desired timely throughput
but also guaranteed AoI performance. Our research differs
from this line of research in that we explicitly incorpo-
rate AoI metrics into the MAB algorithm design, which is
desirable in the emerging intelligent IoT applications. This
key difference poses significant challenges in guaranteeing
information freshness in the MAB setting that is unseen in
existing AoI research. While a recent work [25] considered
the AoI performance in the MAB setting, it focused on the
single-user setting and did not consider the case with multiple
users and wireless interference constraints.

(c) Our Design Philosophy: In this paper, we extend a
UCB-type algorithm to our setting that demands desired AoI
performance while minimizing cumulative regret over time.
One extreme is to serve arms with the largest UCB estimates
in order to minimize the cumulative regret, but it can result
in increasing AoI over time. The other extreme is to serve
arms with the largest ages, yet this could lead to a large
regret. This is because it does not learn any system statistics
nor exploit the best arms so far. Therefore, it is clear that
one should tradeoff the benefits of these two approaches. The
natural idea is to integrate both UCB estimates and AoI metrics
into the scheduling decisions. However, the AoI metric in
our work is fundamentally different from the virtual queue
length, since it has an unbounded decrement whenever a
packet is successfully delivered. Such an abrupt dynamic poses
a significant challenge in characterizing AoI performance. The
main contribution of this paper is to develop a parameterized
learning-based age-efficient algorithm and to show that such
an algorithm achieves a tradeoff between the cumulative regret
and average total age, which can be tuned by our algorithmic
parameter.

III. SYSTEM MODEL

We consider a wireless network with N links, where each
link represents a transmitter-receiver pair that are within the
transmission range of each other. We assume that the system
operates in slotted time with normalized slots t ∈ {0, 1, 2, . . .}.
In each time slot t, the transmitter of link n (n = 1, 2, . . . , N )
generates a packet with a random value Xn(t) ∈ [0, 1], which
is independently and identically distributed (i.i.d.) with an
unknown mean µn. Here, Xn(t) represents the reward when
a packet is successfully delivered over link n in time slot t.
Due to the wireless interference constraints, only a subset of
links can transmit in each time slot. We use Sn(t) = 1 if link
n is scheduled for transmission in time slot t, and Sn(t) = 0
otherwise. We call S(t) , (Sn(t))Nn=1 the feasible schedule
denoting the set of links that can be active simultaneously in
time slot t. Let S be the collection of all feasible schedules.
We assume that each link n experiences i.i.d. ON-OFF channel
fading over time with Cn(t) = 1 denoting that the channel of

link n is ON in time slot t. Let pn , Pr{Cn(t) = 1} be
the probability that link n has an available channel in time
slot t. We assume that each link has a non-zero probability
that its channel is ON, i.e., pmin , minn pn > 0. Hence, the
received reward R(t) in each time slot t can be expressed
as R(t) ,

∑N
n=1Xn(t)Cn(t)Sn(t). We consider the case

where the channel state is known via channel probing at the
beginning of each time slot2.

Our goal is to maximize the cumulative reward
∑T−1
t=0 R(t)

until the T th time slot while guaranteeing the desired infor-
mation freshness. If the statistics of rewards (i.e., {µn, n =
1, 2, . . . , N}) are known in advance, then the first objective can
be achieved by solving the following optimization problem:

S∗(t) , (S∗n(t))Nn=1 ∈ arg max
S∈S

N∑
n=1

µnCn(t)Sn. (1)

That is, it serves a set of non-interfering and available links
with the maximum sum of mean rewards in each time slot.
Unfortunately, the statistics of rewards are unknown. This
requires the algorithm not only to learn these statistics (also
known as (a.k.a.) exploration) but also to select the best
schedule so far (a.k.a. exploitation). Our first goal is equivalent
to minimizing the cumulative regret over consecutive T time
slots, which is the gap between the accumulated reward and
the optimal reward, i.e.,

Reg(T ) ,
T−1∑
t=0

N∑
n=1

(E [µnCn(t)S∗n(t)]− E [µnCn(t)Sn(t)]) .

To address our second goal for the desired information
freshness, we introduce Zn(t) to denote the age of information
received from the nth link in time slot t, which increases by
one if a packet is not received by the receiver of link n in
time slot t and reset to one otherwise, i.e.,

Zn(t+ 1) =

{
Zn(t) + 1 if Sn(t)Cn(t) = 0;

1 if Sn(t)Cn(t) = 1.
(2)

Fig. 2 shows one sample path of age of link n. We can
obverse from Fig. 2 that Zn(t) resets to one whenever there
is a successful packet delivery. We note that the dynamics of
the age is similar to that of Time-Since-Last-Service (TSLS)
counter in [26], [27], [28], [29].
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Fig. 2: The evolution of age of link n.

2Our algorithm design and its analysis can be easily adapted to the case
with unknown channel state.
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Our second goal is to keep information as fresh as possible,
i.e., minimizing

∑N
n=1E[Zn(t)]. We achieve this dual objec-

tive by developing a parametric class of wireless schedulers
that efficiently utilize a combination of UCB estimates for
minimizing the cumulative regret and ages in its decision.

IV. ALGORITHM DESIGN AND PERFORMANCE ANALYSIS

In this section, we develop a learning-based wireless sched-
uler by integrating the key idea of the well-known UCB
algorithms (see [5]) and age metrics. In particular, the UCB is
utilized to deal with the fundamental exploitation-exploration
tradeoff in online learning and aims to achieve minimum cu-
mulative regret. On the other hand, age metrics are employed
to guarantee desired information freshness.

In order to obtain the weight for exploitation and explo-
ration, we introduce the following notations. Let Hn(t) be the
number of times link n has successfully received a packet until
time slot t, i.e., Hn(t) ,

∑t−1
τ=0 Cn(τ)Sn(τ). We set Hn(0) =

0 due to the fact that the system starts at t = 0. We use µn(t) to
denote the sample mean of the received rewards of link n until
time slot t, i.e., µn(t) ,

(∑t−1
τ=0Xn(τ)Cn(τ)Sn(τ)

)
/Hn(t).

If Hn(t) = 0 (i.e., link n has not successfully received a packet
yet until time slot t), we set µn(t) = 1. Let wn(t) denote the
UCB estimate of link n in time slot t and is defined as follows:

wn(t) , min

{
µn(t) +

√
3 log t

2Hn(t)
, 1

}
, (3)

where
√

3 log t/(2Hn(t)) is the exploration term that mea-
sures the uncertainty of the received reward of link n until time
slot t. Indeed, the smaller the Hn(t), the less exploitation of
link n and thus less accuracy of its sample mean estimation, in
which case link n should get a higher priority to be scheduled.
Here, we use the truncated version of the UCB estimate, since
the actual reward of each link is at most 1. Again, when
Hn(t) = 0, we set wn(t) = 1. That is, if link n has not
been scheduled yet until time slot t, it has the highest priority
to get served.

In order to achieve a low cumulative regret, we prefer
to serve links with large UCB estimates in each time slot.
Indeed, we would like to serve links with high sample mean
rewards and links with large uncertainties of received rewards
due to fewer explorations. In order to address information
freshness guarantees, we also need to incorporate age metrics
into the scheduling design. In particular, the links with large
ages should get high priorities to be scheduled. This naturally
motivates the following algorithm.

Note that η is a parameter that balances the age metrics and
the UCB estimates. In particular, if η = 0, then the LAES
coincides with the age-based policy (see [11, Ch. 4.5.4]).
In the presence of fully-connected networks with non-fading
channels (i.e., at most one link can be scheduled in each
time slot and Cn(t) = 1, ∀n, t ≥ 0), the age-based policy is
equivalent to the well-known Round-Robin policy that serves
links in turn. In such a case, the age-based policy, in fact,
minimizes the average total age (see [26, Proposition 2]). The

Algorithm 1 Learning-based Age-Efficient Scheduling
(LAES) Algorithm
In each time slot t, given the channel state (Cn(t))Nn=1, select
a schedule Ŝ[t] , (Ŝn(t))Nn=1 satisfying

Ŝ[t] ∈ arg max
S∈S

N∑
n=1

(Zn(t) + ηwn(t))Cn(t)Sn, (4)

where η ≥ 0 is some control parameter.

larger the η, the higher priority the UCB estimates and hence
yields a smaller cumulative regret.

Next, we characterize the age performance of the proposed
LAES Algorithm.

Proposition 1: [Information Freshness Guarantee] If
Zn(0) = 0, ∀n = 1, 2, . . . , N , then, under the LAES algorithm
with any η ≥ 0, the running average total age can be bounded
from above as follow:

1

T

T−1∑
t=0

N∑
n=1

E [Zn(t)] ≤ (η + 1)N2

pmin
,

holding for any T ≥ 1, where pmin , minn pn > 0.
Proof: We consider the Lyapunov function V (t)

V (t) ,
N∑
n=1

Zn(t). (5)

and study its drift. Using telescoping techniques as in the
classical Lyapunov drift analysis (e.g., [13]), we obtain an
upper bound on the running average total age. Please see
Appendix A for the detailed proof.

Remarks 1: From Proposition 1, we can see that the running
average total age is bounded under the LAES Algorithm with
any η ≥ 0, which is desirable since the central controller
always demands a certain degree of information freshness.
In addition, the derived upper bound on the running average
total age linearly increases with the parameter η. This matches
our intuition on the LAES Algorithm that a large η implies
a smaller weight on the age metric and thus deteriorates the
AoI performance.

Remarks 2: The derived upper bound on the running average
total age linearly scales with the parameter η, which might
be tight in some cases. Indeed, consider two interfering non-
fading links, where Cn(t) = 1, ∀n = 1, 2, ∀t, and at most one
link can be scheduled in each time slot. Suppose µ1 > µ2, and
assume that both links are scheduled sufficiently many times.
In such a case, both w1(t) and w2(t) are close to µ1 and µ2,
respectively. As such, under the LAES Algorithm, link 2 is
scheduled roughly one every dη(µ1−µ2)e time slots and link
1 is scheduled in all other time slots. Hence, the average age
of link 2 in each time slot is roughly equal to (1+2+3+ . . .+
dη(µ1−µ2)e)/dη(µ1−µ2)e = (1 + dη(µ1−µ2)e)/2. On the
other hand, the average age of link 2 in each time slot is equal
to (dη(µ1−µ2)e−1+2)/dη(µ1−µ2)e = 1+1/dη(µ1−µ2)e.
Hence, the average total age in each time slot is O(η).
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Remarks 3: In the case that all links have a non-zero
probability of the channel being OFF (i.e., pn < 1, ∀n =
1, 2, . . . , N ), the upper bound on the mean total age is inde-
pendent of the parameter η. Indeed, if the event Fn(τ) ,
{Cn(τ) = 1, Cn′(τ) = 0, ∀n′ 6= n} happens for some
τ ∈ [t − m + 1, t), then under the LAES Algorithm, link
n should be scheduled at least once during the past m time
slots, and thus Zn(t) < m. This implies that

Pr {Zn(t) ≥ m}
≤Pr {Fn(τ) does not happen for all τ ∈ [t−m+ 1, t)}
(a)
=νmn

(b)

≤ νm, (6)

where step (a) is true for νn , 1 − pnΠn′ 6=n(1 − pn′) ∈
(0, 1) under the assumption that pn < 1, ∀n, and follows from
the fact that channel rates are independently distributed across
links and i.i.d. over time for each link, and (b) holds for ν ,
maxn νn. Hence, we have

E [Zn(t)] =
∞∑
m=1

Pr{Zn(t) ≥ m} ≤
∞∑
m=1

νm =
ν

1− ν
. (7)

As such, the average total age in each time slot is upper
bounded by Nν/(1 − ν), which is independent of parameter
η. However, such an upper bound is extremely large, as
demonstrated in Section V, and thus it does not say too much
on the dependence of the average total age on the parameter
η when the average age is moderate or small.

Lastly, we provide an upper bound on the cumulative regret
under the LAES Algorithm with η > 0.

Proposition 2: [Upper Bound on Regret] If Zn(0) =
0, ∀n = 1, 2, . . . , N , then, under the LAES Algorithm with
η > 0, the cumulative regret Reg(T ) until time slot T > 0
can be bounded from above as follows:

R(T ) ≤ NT

η
+ 2
√

6N |S|maxT log T +N

(
1 +

5π2

12

)
,

where |S|max denotes the maximum number of links that can
be scheduled simultaneously in each time slot.

Proof: We first perform drift-plus-penalty analysis on

E [V (t+ 1)− V (t)] + η∆R(t), (8)

where ∆R(t) ,
∑N
n=1E

[
µnCn(t)S∗n(t)− µnCn(t)Ŝn(t)

]
and the cumulative regret Reg(T ) ,

∑T−1
t=0 ∆R(t). Then,

we carefully incorporate the regret analysis for classical UCB
algorithm (e.g., [5]) into our analysis. The analysis is similar
to the line of regret analysis in [30] and [12], and is available
in Appendix B.

Remarks 4: The derived upper bound on the cumulative
regret consists of two terms: (i) 2

√
6N |S|maxT log T+N(1+

5π2/12) has the same order O(
√
NT log T ) as the instance-

independent upper bound for the classical UCB algorithm
(see [31, Ch. 2.4.3]) and thus this term is attributed to the
cost involved in the exploration/exploitation process in online
learning; (ii) NT/η decreases as parameter η increases. This
also matches our intuition on the LAES Algorithm: the larger

the η, the larger the weight put on the UCB estimate and thus
yields a smaller cumulative regret.

This together with Proposition 1 reveals a tradeoff between
the running average total age and the regret performance
in the general network setup under the LAES Algorithm:
when increasing η, the regret upper bound decreases, but the
upper bound on running average total age increases. That is,
the improvement of the cumulative regret is at the cost of
increasing running average total age. Moreover, it can be easily
derived that the product of the upper bound on the running
average total age and the upper bound on the cumulative regret
is on the order of O(N3T ) for any η ≤ O(

√
NT/ log T ). In

Table I, we provide three different η values to illustrate the
tradeoff between the running average total age and cumulative
regret.

Parameter η Regret Age

O(
√
NT/ log T ) O(

√
NT log T ) O(

√
N5T/ log T )

O( 3
√
NT ) O(

3
√
N2T 2) O(

3
√
N7T )

O(1) O(NT ) O(N2)

TABLE I: Cumulative Regret vs. Running Average Age.

From Table I, we can see that in order for the cumulative
regret to be on the same order as that for UCB algorithm
(i.e., Reg(T ) = O(

√
NT log T )), the running average total

age should be on the order of O(
√
N5T/ log T ) under the

LAES Algorithm. Nevertheless, we can use a relatively large
η (e.g., η = 200) and achieve both low regret and low average
age, as demonstrated in Section V.

V. SIMULATIONS

In this section, we perform simulations to evaluate the
performance of our proposed LAES Algorithm. We consider
the following two network setups: (i) a fully-connected non-
fading network with N = 5 links (at most one link can
be scheduled in each time slot and Cn(t) = 1, ∀n, t ≥ 0),
and (ii) a 10−link ON-OFF fading network where at most
two links can be scheduled in each time slot. For the first
setup, the mean reward vector is µ = (0.9, 0.8, 0.5, 0.7, 0.2).
For the second network setup, we set the mean reward
vector µ = (0.9, 0.8, 0.4, 0.7, 0.5, 0.6, 0.75, 0.65, 0.5, 0.4) and
heterogeneous ON-OFF channel fading parameters p =
(0.8, 0.7, 0.6, 0.9, 0.2, 0.5, 0.8, 0.9, 0.7, 0.85). We compare the
LAES Algorithm with η ∈ {0, 10, 50, 100, 200} with the UCB
algorithm that makes the decision only based on the UCB
estimates. Note that the LAES with η = 0 coincides with the
age-based scheduler. We run 500 experiments, each of which
has simulated 3× 104 time slots.

Fig. 3 shows the performance of UCB algorithm and LAES
Algorithm with different η values in the fully-connected non-
fading network. We can observe from Fig. 3a that UCB
algorithm outperforms the LAES Algorithm with all η values
in terms of cumulative regret performance. The larger the η,
the smaller the cumulative regret. This is because the larger η
puts more weight on the UCB estimates and thus the LAES
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Fig. 3: Performance of the LAES Algorithm in a fully-connected non-fading network.
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Fig. 4: Performance of the LAES Algorithm in a 10−link ON-OFF fading network.

Algorithm with an extremely large η value should have similar
regret as the UCB algorithm. Indeed, we can see from Fig. 3b
that the packet successful delivery ratio of the best link (i.e.,
link 1) increases as η increases.

However, the cumulative regret performance improvement
is at the cost of increasing running average total age, as
shown in Fig. 3c that shows the running average of total
age over time. Indeed, we can observe from Fig. 3c that
under the LAES Algorithm, the age becomes larger as η
increases. Nevertheless, it is worth pointing out that the age
keeps increasing over time under the UCB algorithm while it
is always bounded under the LAES Algorithm with all fixed
η values. We can observe similar phenomena in a relatively
complicated network with 10 links, as shown in Fig. 4, despite
the derived upper bound on the average total average (cf. (7))
in each time slot is independent of the parameter η. This is
because such an upper bound is equal to 4.6 × 107 (much
larger than 100).

VI. CONCLUSION

In this paper, we considered the problem of scheduling
packets from multiple sensing sources to a central controller
over a wireless network with the goal of minimizing cu-
mulative regret over time while guaranteeing desired AoI
performance. We developed a parameterized maximum-weight

type scheduling policy that combines both the AoI metrics
and UCB estimates in its weight measure with parameter
η. We derived an upper bound on the running average total
age, which linearly increases with the parameter η. We also
derived an upper bound on the cumulative regret under our
proposed algorithm. These derived upper bounds reveal a
tradeoff: the improvement of the cumulative regret is at the
cost of increasing running average total age. Simulation results
were provided to confirm such a tradeoff and to demonstrate
the superior performance of our proposed algorithm over the
UCB algorithm and the age-based algorithm.

APPENDIX A
PROOF OF PROPOSITION 1

Select the Lyapunov function

V (t) ,
N∑
n=1

Zn(t). (9)

Then, under the LAES Algorithm, we have

V (t+ 1) =

N∑
n=1

Zn(t+ 1)

(a)
=

N∑
n=1

(
(Zn(t) + 1)(1− Cn(t)Ŝn(t)) + Cn(t)Ŝn(t)

)

6



=
N∑
n=1

Zn(t)−
N∑
n=1

Zn(t)Cn(t)Ŝn(t) +N

(b)
=V (t)−

N∑
n=1

Zn(t)Cn(t)Ŝn(t) +N, (10)

where step (a) uses the dynamics of the age (cf. (2)) and (b)
follows from the definition of the Lyapunov function V (t).
Let Z(t) , (Zn(t))Nn=1. Then, we have

E [V (t+ 1)− V (t)|Z(t)]

=− E

[
N∑
n=1

Zn(t)Cn(t)Ŝn(t)

∣∣∣∣∣Z(t)

]
+N. (11)

Given the age vector Z(t) and channel state C(t) ,
(Cn(t))Nn=1, according to the definition of the LAES Algo-
rithm, we have

N∑
n=1

(Zn(t) + ηwn(t))Cn(t)Ŝn(t)

≥
(
Zn∗(t)(t) + ηwn∗(t)

)
Cn∗(t)(t)

≥Zn∗(t)(t)Cn∗(t)(t), (12)

where the first step is true for n∗(t) ∈ arg maxn Zn(t). This
implies that

E

[
N∑
n=1

Zn(t)Cn(t)Ŝn(t)

∣∣∣∣∣Z(t)

]
(a)

≥E

[
Zn∗(t)(t)Cn∗(t)(t)− η

N∑
n=1

wn(t)Cn(t)Ŝn(t)

∣∣∣∣∣Z(t)

]
(b)

≥pminZn∗(t)(t)− ηN, (13)

where step (a) uses (12), and (b) uses the fact that wn(t) ≤ 1
Cn(t) ≤ 1 and Ŝn(t) ≤ 1, ∀n, t ≥ 0 and pmin , minn pn > 0.

By substituting (13) into (11), we have

E [V (t+ 1)− V (t)|Z(t)]

(a)

≤ − pminZmax(t) + (η + 1)N

(b)

≤ − pmin

N

N∑
n=1

Zn(t) + (η + 1)N (14)

where step (a) is true for Zmax(t) , maxn Zn(t) = Zn∗(t)(t)

and (b) follows from the fact that Zmax(t) ≥ 1
N

∑N
n=1 Zn(t).

Taking the expectation on both sides of (14), we have

E [V (t+ 1)− V (t)] ≤ −pmin

N

N∑
n=1

E [Zn(t)] + (η + 1)N.

Summing the above inequality over time t = 0, 1, . . . , T−1,
we have

E [V (T )− V (0)] ≤ −pmin

N

T−1∑
t=0

N∑
n=1

E [Zn(t)] + (η + 1)NT,

which implies

1

T

T−1∑
t=0

N∑
n=1

E [Zn(t)] ≤ (η + 1)N2

pmin
. (15)

Here, we use the fact that V (0) = 0 and V (T ) ≥ 0.

APPENDIX B
PROOF OF PROPOSITION 2

We rewrite the regret of the LAES Algorithm as

Reg(T ) ,
T−1∑
t=0

N∑
n=1

(
E [µnCn(t)S∗n(t)]− E

[
µnCn(t)Ŝn(t)

])
=
T−1∑
t=0

∆R(t), (16)

where ∆R(t) ,
∑N
n=1E

[
µnCn(t)S∗n(t)− µnCn(t)Ŝn(t)

]
.

We add the term η∆R(t) on both sides of the drift of
Lyapunov function V (t) (cf. (11)) and obtain

E [V (t+ 1)− V (t)] + η∆R(t)

=−
N∑
n=1

E
[
Zn(t)Cn(t)Ŝn(t)

]
+N + η

N∑
n=1

E [µnCn(t)S∗n]

− η
N∑
n=1

E
[
µnCn(t)Ŝn(t)

]
=N +

N∑
n=1

E
[
(Zn(t) + ηµn)Cn(t)

(
S∗n − Ŝn(t)

)]
−

N∑
n=1

E [Zn(t)Cn(t)S∗n]

≤N +

N∑
n=1

E
[
(Zn(t) + ηµn)Cn(t)

(
S∗n − Ŝn(t)

)]
, (17)

where the last step is true since
∑N
n=1E [Zn(t)Cn(t)S∗n] ≥ 0.

Summing (17) over t = 0, 1, 2, . . . , T − 1, we have
T−1∑
t=0

E [V (t+ 1)− V (t)] + η
T−1∑
t=0

∆R(t)

≤NT +
T−1∑
t=0

N∑
n=1

E
[
(Zn(t) + ηµn)Cn(t)

(
S∗n − Ŝn(t)

)]
,

which implies

Reg(T ) ,
T−1∑
t=0

∆R(t) ≤ NT

η

+
1

η

T−1∑
t=0

N∑
n=1

E
[
(Zn(t) + ηµn)Cn(t)

(
S∗n − Ŝn(t)

)]
(18)

Here, we use the fact that V (0) = 0, V (T ) ≥ 0, and the
definition of Reg(T ).
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Next, we focus on the term
N∑
n=1

(Zn(t) + ηµn)Cn(t)
(
S∗n − Ŝn(t)

)
.

Then, we have
N∑
n=1

(Zn(t) + ηµn)Cn(t)
(
S∗n − Ŝn(t)

)
(a)

≤
N∑
n=1

(Zn(t) + ηµn)Cn(t)S̃n(t)

−
N∑
n=1

(Zn(t) + ηµn)Cn(t)Ŝn(t)

(b)

≤
N∑
n=1

(Zn(t) + ηµn)Cn(t)S̃n(t)

−
N∑
n=1

(Zn(t) + ηµn)Cn(t)Ŝn(t)

+

N∑
n=1

(Zn(t) + ηwn(t))Cn(t)Ŝn(t)

−
N∑
n=1

(Zn(t) + ηwn(t))Cn(t)S̃n(t)

=η
N∑
n=1

(wn(t)− µn)Cn(t)Ŝn(t)

+ η

N∑
n=1

(µn − wn(t))Cn(t)S̃n(t), (19)

where step (a) is true for

S̃(t) , (S̃n(t))Nn=1 ∈ arg max
S∈S

N∑
n=1

(Zn(t) + ηµn)Cn(t)Sn,

and (b) uses the definition of Ŝ(t).

By substituting (19) into (18), we have

Reg(T ) ≤ NT

η
+
T−1∑
t=0

N∑
n=1

E
[
(wn(t)− µn)Cn(t)Ŝn(t)

]
︸ ︷︷ ︸

,G1(T )

+
T−1∑
t=0

N∑
n=1

E
[
(µn − wn(t))Cn(t)S̃n(t)

]
︸ ︷︷ ︸

,G2(T )

. (20)

Next, we focus on G1(T ) and G2(T ), respectively. Let tn,τ
denote the time slot at which link n successfully received a
packet, i.e., Cn(tn,τ )Ŝn(tn,τ ) = 1 and Cn(tn,τ )Ŝn(tn,τ ) =
0 if t 6= tn,τ , τ = 1, 2, . . . ,Hn(T ). Therefore, we have
Hn(tn,τ ) = τ − 1.

Let Gn,1(T ) ,
∑T−1
t=0 E

[
(wn(t)− µn)Cn(t)Ŝn(t)

]
and

thus G1(T ) =
∑N
n=1Gn,1(T ).

Hence, we have

Gn,1(T )
(a)

≤
T−1∑
t=0

E
[
(wn(t)− µn)Cn(t)Ŝn(t)1Fn(t)

]
(b)

≤E

Hn(T )∑
τ=1

(wn(tn,τ )− µn)1Fn(tn,τ )


(c)

≤1 + E

Hn(T )∑
τ=2

(wn(tn,τ )− µn)1Fn(tn,τ )


(d)

≤1 + E

Hn(T )∑
τ=2

(wn(tn,τ )− µn)1Fn(tn,τ )∩Gn(tn,τ )


+ E

Hn(T )∑
τ=2

1Gn(tn,τ)

 , (21)

where step (a) is true for Fn(t) , {wn(t) ≥ µn} and 1{·}
being an indicator function; (b) uses the definition of tn,τ , and
the fact that Cn(t) ≤ 1 and Ŝn(t) ≤ 1, ∀t ≥ 0; (c) follows
from the fact that wn(t) ≤ 1, ∀t ≥ 0; (d) is true for

Gn(t) ,

{
µn(t)− µn ≤

√
3 log t

2Hn(t)

}
,

and Gn(t) being the complement of the event Gn(t).

Next, we consider the second term on the right hand side
(RHS) of (21).

E

Hn(T )∑
τ=2

(wn(tn,τ )− µn)1Fn(tn,τ )∩Gn(tn,τ )


(a)

≤E

Hn(T )∑
τ=2

2

√
3 log tn,τ
2Hn(tn,τ )


(b)

≤
√

6 log TE

Hn(T )∑
τ=2

1√
τ − 1


≤
√

6 log T

(
1 +

∫ Hn(T )

1

1√
x
dx

)
≤2
√

6 log TE
[√

Hn(T )
]
, (22)

where step (a) uses the definition of wn(t) and Gn(t), and (b)
follows from the fact that tn,τ ≤ T and the definition of tn,τ .
With regard to the third term on the RHS of (21), we have

E
[
1Gn(tn,τ )

]
= Pr{Gn(tn,τ )}

(a)

≤ Pr

{
T−1⋃

m=τ−1

{
µn(m)− µn >

√
3 logm

2(τ − 1)

}}

≤Pr

{
T−1⋃

m=τ−1

{
µn(m)− µn >

√
3 logm

2m

}}
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(b)

≤
T−1∑

m=τ−1
Pr

{
µn(m)− µn >

√
3 logm

2m

}
(c)

≤
T−1∑

m=τ−1

1

m3
≤ 1

(τ − 1)3
+

∫ ∞
τ−1

1

x3
dx

(d)

≤ 3

2(τ − 1)2
,

where step (a) follows from the fact that

Gn(tn,τ ) ⊂
T−1⋃

m=τ−1

{
µn(m)− µn >

√
3 logm

2(τ − 1)

}
;

(b) uses the union bound; (c) follows from the Chernoff-
Hoeffding Bound (see, e.g., [5, Fact 1]), i.e., for
X1, X2, . . . , Xn be i.i.d. random variables with common
range [0, 1] and mean µ, then for any a ≥ 0, we have

Pr

{
1

n

n∑
i=1

Xi ≥ µ+ a

}
≤ e−2na

2

, (23)

(d) is true for τ ≥ 2.

Hence, the third term on the RHS of (21) can be bounded
as follows.

E

Hn(T )∑
τ=2

1Gn(tn,τ )

 ≤E
Hn(T )∑

τ=2

3

2(τ − 1)2


≤
∞∑
τ=1

3

2τ2
=
π2

4
, (24)

where the last step use the fact that
∑∞
n=1 1/n2 = π2/6. By

substituting (22) and (24) into (21) and using the definition of
G1(T ), we have

G1(T ) ≤ N
(

1 +
π2

4

)
+ 2
√

6 log T
N∑
n=1

E
[√

Hn(T )
]

(a)

≤N
(

1 +
π2

4

)
+ 2N

√
6 log TE


√√√√ 1

N

N∑
n=1

Hn(T )


(b)

≤N
(

1 +
π2

4

)
+ 2
√

6N |S|maxT log T , (25)

where step (a) uses the Jensen’s inequality, and (b) is true
since

∑N
n=1Hn(T ) ≤ T |S|max and |S|max is the maximum

number of links that can be scheduled in each time slot.

Next, we consider the term G2(T ). First, we note that

G2(T ) ≤
T−1∑
t=0

N∑
n=1

E
[
(µn − wn(t))S̃n(t)1Fn(t)

]
, (26)

where we recall that Fn(t) , {wn(t) ≥ µn}. Note that for t ≤
tn,1, we have wn(t) = 1 and thus Fn(t) happens. Therefore,

we have

G2(T ) ≤
N∑
n=1

E

 T−1∑
t=tn,1+1

(µn − wn(t)) S̃n(t)1Fn(t)


(a)

≤
N∑
n=1

E

 T−1∑
t=tn,1+1

Pr

{
µn(t)− µn ≤ −

√
3 log t

2Hn(t− 1)

}
≤

N∑
n=1

T−1∑
τ=1

τ∑
m=1

Pr

{
1

m

m∑
i=1

X(i)− µn ≤ −
√

3 log τ

2m

}
(b)

≤
N∑
n=1

T−1∑
τ=1

τ∑
m=1

1

τ3
=

N∑
n=1

T−1∑
τ=1

1

τ2

(c)

≤ Nπ2

6
, (27)

where step (a) follows from the fact that µn ≤ 1 and
S̃n(t) ≤ 1 as well as the definition of Fn(t); (b) again uses
the Chernoff-Hoeffding Bound (cf. (23)); (c) is true since∑T−1
τ=1 1/τ2 ≤

∑∞
τ=1 1/τ2 = π2/6.

Hence, by substituting (25) and (27) into (20), we have the
desired result.
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[20] K. Nar and T. Başar, “Sampling multidimensional wiener processes,”
in 53rd IEEE Conference on Decision and Control. IEEE, 2014, pp.
3426–3431.

[21] T. Z. Ornee and Y. Sun, “Sampling for remote estimation
through queues: Age of information and beyond,” arXiv preprint
arXiv:1902.03552, 2019.

[22] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in 2015 IEEE International Symposium on Information Theory
(ISIT). IEEE, 2015, pp. 3008–3012.

[23] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, 2017.

[24] Y. Dong, P. Fan, and K. B. Letaief, “Energy harvesting powered sensing
in iot: Timeliness versus distortion,” IEEE Internet of Things Journal,
2020.

[25] S. Fatale, K. Bhandari, U. Narula, S. Moharir, and M. K. Hanawal,
“Regret of age-of-information bandits,” arXiv, pp. arXiv–2001, 2020.

[26] R. Li, A. Eryilmaz, and B. Li, “Throughput-optimal wireless scheduling
with regulated inter-service times,” in 2013 Proceedings IEEE INFO-
COM. IEEE, 2013, pp. 2616–2624.

[27] B. Li, R. Li, and A. Eryilmaz, “Throughput-optimal scheduling design
with regular service guarantees in wireless networks,” IEEE/ACM Trans-
actions on Networking, vol. 23, no. 5, pp. 1542–1552, 2014.

[28] B. Li, A. Eryilmaz, and R. Srikant, “Emulating round-robin in wireless
networks,” in Proceedings of the 18th ACM International Symposium
on Mobile Ad Hoc Networking and Computing, 2017, pp. 1–10.

[29] ——, “Emulating round-robin for serving dynamic flows over wireless
fading channels,” in Proceedings of the Twenty-First International Sym-
posium on Theory, Algorithmic Foundations, and Protocol Design for
Mobile Networks and Mobile Computing, 2020, pp. 231–240.

[30] W.-K. Hsu, J. Xu, X. Lin, and M. R. Bell, “Integrate learning and
control in queueing systems with uncertain payoffs,” Purdue University,
available at https://engineering. purdue. edu/% 7elinx/papers. html,
Tech. Rep, 2018.

[31] S. Bubeck and N. Cesa-Bianchi, “Regret analysis of stochas-
tic and nonstochastic multi-armed bandit problems,” arXiv preprint
arXiv:1204.5721, 2012.

10


