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a b s t r a c t 

This study is the most comprehensive test to date aiming at defining the optimal number of fitting pa- 

rameters for a reliable mathematical description of the diffusion behavior of a binary solid solution. Our 

systematic test of 18 diverse binary systems has yielded a surprisingly simple model with only one fitting 

parameter/constant which can be evaluated from experimental diffusion data. The rest of the quantities 

in the model are the self-diffusion and impurity (dilute) diffusion coefficients of the pure elements and 

the thermodynamic factor which can be computed from a CALPHAD thermodynamic assessment of the 

pertinent binary system. The 1-parameter Z-Z-Z model has been demonstrated to be very reliable and 

robust since the 18 binary systems tested in this study include very asymmetrical systems such as Co-Pd 

and Fe-Pd as well as Nb-Ti whose experimental diffusion coefficient data cover ~9 orders of magnitude 

and over a temperature range spanning ~1200 °C (from ~800 °C to ~20 0 0 °C). The Z-Z-Z model allows both 

tracer and intrinsic diffusion coefficients to be reliably computed for any composition at any temperature 

after the sole constant is evaluated from the interdiffusion or all experimental diffusion data. Extension 

of such a simple and robust model from binary to ternary and higher order systems will lead to a sub- 

stantial reduction of fitting parameters and an enhancement of the reliability of future multicomponent 

diffusion (atomic mobility) databases for simulation of kinetic processes in materials. 

© 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. 
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. Introduction 

Diffusion coefficients are essential materials data to understand 

nd simulate kinetic behaviors in materials such as precipitate 

rowth and creep deformation as well as materials processing such 

s casting/solidification, homogenization, and surface modification. 

athematical models are required to describe diffusion coefficients 

s a function of composition and temperature, either within the 

ALPHAD (CALculation of PHAse Diagrams) framework [1–6] or be- 

ng used directly in various modeling studies outside the CALPHAD 

pproach. Ågren and Andersson have systematically established 

uch models of the diffusion coefficients in binary and multicom- 

onent systems by systematizing the framework of atomic mobili- 

ies [ 7 , 8 ]. Their models are widely adopted by the CALPHAD com-

unity and the fitting parameters in their semi-empricial models 

re evaluated from experimental diffusion coefficients and com- 

uted data when reliable experimental values are not available. 

Four fitting parameters are often employed to model the dif- 

usion coefficients of a binary solid solution (e.g., fcc, bcc or 
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cp); i.e., two parameters ( a + bT ) for each diffusing element 

or each phase. Up to 6 and 8 fitting parameters are used for 

any binary systems. Questions remain to date: (1) do we re- 

lly need four fitting parameters for each binary solid solution 

nd are we over-fitting? and (2) what is the optimal number 

f fitting parameters? We set out to answer these questions by 

erforming the most comprehensive test of the number of fit- 

ing parameters of diffusion coefficient models for binary sys- 

ems. Ascribing to the Occam’s Razor—that the simplest solu- 

ion/explanation is most likely the right one, we posited that such 

 systematic test might yield simpler and more robust binary dif- 

usion models with the fewest fitting parameters to avoid over- 

tting, which will further contribute to more robust models for 

ernary and multicomponent systems. This article reports the in- 

ights gained from our comprehensive model test of diffusion co- 

fficients in 18 binary systems. A surprisingly simple yet gen- 

ral model has emerged from this study which will substantially 

implify future assessments of diffusion coefficients and atomic 

obilities. 

https://doi.org/10.1016/j.actamat.2021.117077
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.actamat.2021.117077&domain=pdf
mailto:jczhao@umd.edu
https://doi.org/10.1016/j.actamat.2021.117077
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. Methodology 

There are various types of phenomenological diffusion coeffi- 

ients which can be measured under different experimental set- 

ings [9] . Self-diffusion coefficient and impurity (dilute) diffusion 

oefficient are measured for pure elements. Their temperature de- 

endence can generally be represented by the Arrhenius Eq. (1) or 

2) : 

 

j 
i 
= D 0 

j 
i 
exp 

(
−Q 

j 
i 

RT 

)
(1) 

n D 

j 
i 
= −Q 

j 
i 

RT 
+ ln D 0 

j 
i 

(2) 

here R is the gas constant, T is the absolute temperature, D 0 
j 
i 

s the pre-exponential factor and Q 

j 
i 

is the activation energy for 

lement i diffusion in element j. D 

j 
i 
denotes self-diffusion coeffi- 

ient when i = j and represents impurity diffusion coefficient of i 

n j when i � = j. In addition to the above temperature dependency, 

racer, intrinsic and interdiffusion (chemical diffusion) coefficients 

re also composition dependent. Darken’s equations relate these 

hree types of diffusion coefficients of a binary A-B system [10] : 

 
I 
A = D 

∗
A ϕ, D 

I 
B = D 

∗
B ϕ (3) 

˜ 
 = x B D 

I 
A + x A D 

I 
B = ( x B D 

∗
A + x A D 

∗
B ) ϕ (4) 

here D 
∗
i 
represents tracer diffusion coefficient of i ( A or B ), D 

I 
i 

enotes intrinsic diffusion coefficient of i , and ˜ D is the interdiffu- 

ion coefficient. x A and x B are the mole fractions of elements A and 

 , respectively. ϕ is the thermodynamic factor which can be easily 

omputed using CALPHAD software and associated thermodynamic 

atabases/assessments and is defined in a binary system as: 

 = 1 + 

d ln γi 

d ln x i 
= 

x i 
RT 

dμi 

dx i 
= 

x A x B 
RT 

d 2 G 

dx 2 
B 

(5) 

here γi is the activity coefficient and μi is the chemical poten- 

ial of element i in the alloy. G is the molar Gibbs free energy. The

hermodynamic factor is the same for both elements of a binary 

ystem due to the Gibbs-Duhem relation. The Darken’s equations 

re an approximation which assumes the vacancy wind factor to 

e unity. Nevertheless, they are found to be a good approximation 

hrough years of assessments and applications in numerous sys- 

ems. The composition-dependent molar volume can be taken into 

ccount in this framework using a more sophisticated treatment 

 8 , 11 ], but its effect is ignored in the current analysis similar to

ost CALPHAD atomic mobility assessments. 

Based on Darken’s Eq. (4) , the tracer diffusion coefficient of el- 

ment A (e.g., Fe) becomes either the self-diffusion coefficient of 

 when the concentration of B (e.g., Ni) approaches 0, or the im- 

urity diffusion coefficient of A in B when the concentration of B 

eaches 100% in the binary A-B system; and the same holds for the 

racer diffusion coefficient of B, as shown in Fig. 1 using the fcc 

hase of the Fe-Ni system as an example. Therefore, reliable self- 

iffusion coefficients and impurity diffusion coefficients, as shown 

n both sides of Fig. 1 , are the essential foundation upon which 

he binary diffusion models can be built. These data serve as a 

heck for the diffusion coefficients measured across the composi- 

ion – agreement on both sides with the independently measured 

elf-diffusion and impurity diffusion coefficients (often via reliable 

racer experiments) is testament for reliability. 

It is noted that tracer diffusion coefficients serve as a bridge 

elating all the other types of diffusion coefficients, as explained 

bove, and as shown in Fig. 1 . Hence, modeling tracer diffusion 
2 
oefficients is fundamental, and other types of diffusion coeffi- 

ients can then be computed using Darken’s equations. A straight- 

orward model of a binary A-B solid solution, based on the Ågren- 

ndersson treatment, describes the composition and temperature 

ependence of tracer diffusion coefficients as: 

n D 
∗
i = x A ln D 

A 
i + x B ln D 

B 
i + x A x B 

∑ 

r=0 , 1 , ···

r 
�i 

A,B 
( x A − x B ) 

r 
/ RT (6) 

here i = A or B . The first two terms on the right side of Eq. (6) are

he linear combinations of self-diffusion and impurity diffusion co- 

fficients of the pure elements (A and B) in the composition space 

hile the third term is a Redlich-Kister polynomial [12] that mod- 

ls the non-linear (non-ideal) contributions through the binary in- 

eraction parameters, r �i 
A,B . Considering only the zeroth-order in- 

eraction r = 0 , the above equation is simplified into Eq. (7) or

8) : 

n D 
∗
i = x A ln D 

A 
i + x B ln D 

B 
i + �A,B 

i 
x A x B / RT (7) 

 
∗
i = exp 

(
x A ln D 

A 
i + x B ln D 

B 
i 

)
exp 

(
�A,B 

i 
x A x B / RT 

)
(8) 

The interaction parameter �A,B 
i 

= a i + b i T with a i and b i being 

onstants ( i = A or B ). �A,B 
i 

is the same as the interaction parame-

ers in the atomic mobility notation according to the Einstein rela- 

ion D 
∗
i 

= RT M i , where M i is the atomic mobility of i . As a matter

f fact, one can multiply both sides of Eqs. (6) and (7) with RT

o convert them into the atomic mobility notation that is widely 

sed by the CALPHAD community since the atomic mobility pa- 

ameter �i = RT ln( RTM i ) = RT ln D i 
∗. The intrinsic and interdif-

usion coefficients can then be derived from tracer diffusion coef- 

cients using Darken’s Eqs. (3) and (4) with the thermodynamic 

actor ϕ computed using CALPHAD software and thermodynamic 

atabases/assessments. 

We set out to perform the most comprehensive test of the bi- 

ary diffusion models described in Eq. (7) or (8) to determine 

he optimal number of fitting parameters (from 0 to 4) as listed 

n Table 1 . Completely/mutually soluble binary systems are the 

est test grounds since they provide the widest composition range 

from 0% to 100%) to test the models. Moreover, since the crystal 

tructure is the same for both elements in a completely soluble 

ystem at the temperature range of mutual solubility, the impurity 

iffusion coefficients are much more likely measured and available 

or the model assessment. In contrast, non-mutually soluble sys- 

em such as Al-Mg would require the impurity and self-diffusion 

ata of hypothetical (metastable) fcc Mg or hcp Al, which adds un- 

ertainty to the model testing. 

After an exhaustive search of the literature, including going 

hrough diffusion data compilations such as Landolt-Bornstein 

9] , Smithells [13] , and Neumann and Tuijin [14] , we found 18

utually-soluble binary systems whose self-diffusion and impu- 

ity diffusion coefficients of pure elements are reliable and there 

re sufficient interdiffusion coefficients and tracer (and/or intrinsic) 

iffusion coefficients across the compositions for a reliable model 

ssessment/test. The 18 binary systems are briefly summarized in 

ig. 2 , including 11 binary systems with the fcc crystal structure 

Ag-Au, Au-Cu, Au-Ni, Co-Fe, Co-Ni, Co-Pd, Cu-Ni, Cu-Pt, Fe-Ni, Fe- 

d, and Ni-Pd), 6 bcc systems (Nb-Ti, Nb-V, Nb-Zr, Ta-Ti, Ti-V, and 

i-Zr), and 1 diamond cubic system (Ge-Si). We did not find any 

inary hcp systems that satisfy the requirements of having high 

uality data of both the self-diffusion and impurity diffusion co- 

fficients of the pure elements as well as reliable interdiffusion 

oefficients and tracer diffusion coefficients across the composi- 

ion range. Nevertheless, it is our belief that the conclusions drawn 

rom our comprehensive assessment will be equally applicable to 

cp systems as well. 
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Fig. 1. Diffusion coefficients and thermodynamic factor of the fcc phase of the Fe-Ni binary system (The plots in the center are for 1200 °C only). 

Table 1 

Fitting parameters (constants) in the diffusion models explored in this study. 

Model Interaction term of element A Interaction term of element B 

0-parameter model �A,B 
A 

= 0 �A,B 
B 

= 0 

1-parameter model �A,B 
A 

= a �A,B 
B 

= a 

2-parameter model �A,B 
A 

= a A �A,B 
B 

= a B 
4-parameter model �A,B 

A 
= a A + b A T �A,B 

B 
= a B + b B T 

Fig. 2. Summary of assessments of the self-diffusion and impurity diffusion coeffi- 

cients of pure elements in the 18 binary systems. 
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The self-diffusion and impurity diffusion coefficients D 

j 
i 

are 

valuated first to determine the parameters D 0 
j 
i 

and Q 

j 
i 
. The 
3 
nteraction terms �A,B 
i 

= a i + b i T were then evaluated from the 

omposition-dependent interdiffusion coefficients. The interdiffu- 

ion coefficients, most often obtained from diffusion couple exper- 

ments (e.g. [15] ), are employed to optimize different numbers of 

nteraction parameters listed in Table 1 while the tracer and intrin- 

ic diffusion coefficients are used to test the model performance. 

he objective of the optimization/fitting is to find optimal coeffi- 

ients of �A,B 
i 

that minimize the objective function: 

 = 

1 

2 

n ∑ 

i =1 

(
ln D 

pred 

i 
− ln D 

exp 
i 

)2 
(9) 

here n is the number of input data points, D 

exp 
i 

and D 

pred 
i 

are 

he experimental diffusion coefficients and predicted diffusion co- 

fficients of the i th data point, respectively. A Python program 

as coded to perform the whole parameter-optimization and test 

rocesses. It is noted that both tracer diffusion coefficients and 

ntrinsic diffusion coefficients were not used to fit the parame- 

ers, they are used only for model test/validation. The datasets 

re separately employed in this manner to investigate whether a 

iffusion model can be developed only with reliable interdiffu- 

ion coefficients as input since they are the most common type of 

omposition-dependent data reported in the literature. The model 

est process is also summarized at the bottom of Fig. 1 . The results

f this study are described in the ensuing sections. 

. Results and discussion 

.1. Self-diffusion and impurity diffusion coefficients 

The self-diffusion and impurity diffusion coefficients D 

j 
i 
of the 

8 binary systems are mostly evaluated from experimental data 
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Table 2 

Summary of the Arrhenius equations for the self-diffusion 

and impurity diffusion coefficients of the pure elements in 

the 18 binary systems (TS: This Study). R = 8 . 314 J/ ( mol · K ) , 
T in Kelvin, and D j 

i 
(diffusion of i in j) in m 

2 /s . 

Notation Diffusion equation, m 
2 /s Ref 

D Ag 
Ag 

1 . 3 × 10 −5 exp (−175892 / RT ) [16] 

D Au 
Ag 

7 . 9 × 10 −6 exp (−1690 0 0 / RT ) [18] 

D Ag 
Au 

6 . 2 × 10 −5 exp (−1990 0 0 / RT ) [14] 

D Au 
Au 

6 . 1 × 10 −6 exp (−170900 / RT ) TS 

D Cu 
Au 

2 . 2 × 10 −5 exp (−196943 / RT ) TS 

D Ni 
Au 

2 . 1 × 10 −6 exp (−219200 / RT ) TS 

D Co 
Co 

2 . 2 × 10 −4 exp (−301654 / RT ) [22] 

D Fe 
Co 

1 . 1 × 10 −4 exp (−301710 / RT ) [14] 

D Ni 
Co 

2 . 4 × 10 −4 exp (−284724 / RT ) [22] 

D Pd 
Co 

6 . 2 × 10 −6 exp (−255124 / RT ) [19] 

D Au 
Cu 

9 . 3 × 10 −6 exp (−167950 / RT ) [23] 

D Cu 
Cu 

4 . 9 × 10 −5 exp (−205872 / RT ) [16] 

D Ni 
Cu 

3 . 5 × 10 −5 exp (−250125 / RT ) [25] 

D Pt 
Cu 

6 . 5 × 10 −6 exp (−247994 / RT ) [23] 

D Co 
Fe 

2 . 1 × 10 −5 exp (−262500 / RT ) [14] 

D Fe 
Fe 

4 . 6 × 10 −5 exp (−284100 / RT ) [14] 

D Ni 
Fe 

1 . 0 × 10 −4 exp (−269400 / RT ) [14] 

D Pd 
Fe 

5 . 0 × 10 −5 exp (−272534 / RT ) [21] 

D Ge 
Ge 

7 . 8 × 10 −3 exp (−310423 / RT ) [24] 

D Si 
Ge 

4 . 5 × 10 −1 exp (−478686 / RT ) [24] 

D Nb 
Nb 

5 . 2 × 10 −5 exp (−395599 / RT ) [30] 

D Ti 
Nb 

8 . 9 × 10 −7 exp (−171238 / RT ) [27] 

D V 
Nb 

3 . 4 × 10 −4 exp (−330149 / RT ) [31] 

D Zr 
Nb 

2 . 7 × 10 −9 exp (−116800 / RT )+ 

2 . 6 × 10 −5 exp (−238500 / RT ) 

[14] 

D Au 
Ni 

2 . 5 × 10 −5 exp (−188400 / RT ) . [14] 

D Cu 
Ni 

1 . 9 × 10 −4 exp (−232788 / RT ) [25] 

D Co 
Ni 

2 . 8 × 10 −5 exp (−270348 / RT ) [17] 

D Fe 
Ni 

3 . 0 × 10 −4 exp (−3140 0 0 / RT ) [14] 

D Ni 
Ni 

2 . 3 × 10 −4 exp (−2870 0 0 / RT ) [17] 

D Pd 
Ni 

5 . 3 × 10 −6 exp (−242479 / RT ) [19] 

D Co 
Pd 

6 . 6 × 10 −6 exp (−255685 / RT ) [20] 

D Fe 
Pd 

4 . 0 × 10 −6 exp (−251348 / RT ) [21] 

D Ni 
Pd 

6 . 9 × 10 −5 exp (−265700 / RT ) [14] 

D Pd 
Pd 

2 . 0 × 10 −5 exp (−266300 / RT ) [14] 

D Cu 
Pt 

3 . 6 × 10 −5 exp (−227726 / RT ) [23] 

D Pt 
Pt 

6 . 6 × 10 −6 exp (−261427 / RT ) [23] 

D Ge 
Si 

3 . 2 × 10 −3 exp (−319954 / RT ) [24] 

D Si 
Si 

3 . 7 × 10 −1 exp (−485572 / RT )+ 

2 . 5 × 10 −7 exp (−345476 / RT ) 

[24] 

D Ta 
Ta 

2 . 3 × 10 −5 exp (−426474 / RT ) [26] 

D Ti 
Ta 

1 . 0 × 10 −7 exp (−155731 / RT ) [26] 

D Nb 
Ti 

2 . 8 × 10 −5 exp (−369003 / RT ) [27] 

D Ta 
Ti 

2 . 5 × 10 −5 exp (−438281 / RT ) [26] 

D Ti 
Ti 

2 . 2 × 10 −7 exp (−151990 / RT ) [28] 

D V 
Ti 

3 . 9 × 10 −4 exp (−329984 / RT ) [28] 

D Zr 
Ti 

6 . 1 × 10 −8 exp (−140357 / RT ) [29] 

D Nb 
V 4 . 4 × 10 −5 exp (−375659 / RT ) [31] 

D Ti 
V 

2 . 7 × 10 −6 exp (−179393 / RT ) [28] 

D V V 1 . 4 × 10 −4 exp (−325008 / RT ) [28] 

D Nb 
Zr 

2 . 8 × 10 −5 exp (−3570 0 0 / RT ) [14] 

D Ti 
Zr 

1 . 1 × 10 −7 exp (−131671 / RT ) [29] 

D Zr Zr 2 . 8 × 10 −10 exp (−81100 / RT )+ 

1 . 7 × 10 −6 exp (−194100 / RT ) 

[14] 

d

f

t

m

t

9

a

a

c

T

F

hile some of them are determined from first-principles calcula- 

ions when experimental data are not available, as shown in Fig. 2 . 

or simplicity, most of the optimized D 0 
j 
i 
and Q 

j 
i 
are taken from 

he mobility assessments in the literature or the handbook of Neu- 

ann and Tuijin [14] , depending on which source better repro- 

uces all the available experimental data. D 
Au 
Au 
, D 

Cu 
Au 

and D 
Ni 
Au 

are re- 

valuated in this study, while D 
Pd 
Co 
, D 

Pd 
Ni 

and D 
Co 
Pd 

are estimated from 

rst-principles calculations due to the lack of direct experimental 

easurements. It is noted that there is neither direct experimen- 

al measurement nor first-principles calculations of the impurity 

iffusion coefficient of Ti in Ta, thus D 
Ta 
T i 

is taken from the mobil- 

ty assessment by Liu et al. [26] . The D 

j 
i 
values of all 18 systems,

epresented in the form of the Arrhenius Eq. (1) , are summarized 

n Table 2 . It should be noted that D 
Si 
Si 
, D 

Zr 
Zr , and D 

Zr 
Nb 

are not ex-

ressed as a single Arrhenius Eq. (1) but a combination of two 

xponentials to describe their abnormal temperature dependence, 

ollowing the literature practice for these elements. All the eval- 

ated self-diffusion and impurity diffusion coefficients are plotted 

s a function of temperature in comparison with experimental data 

when available) in the Supplementary Information, Fig. S1. 

.2. Composition-dependent diffusion coefficients 

According to the Darken’s Eqs. (3) and (4) , the thermody- 

amic factor ϕ is essential to derive intrinsic and interdiffusion 

oefficients from tracer diffusion coefficients. In this study, the ϕ
alues of 17 binary systems are obtained using the commercial 

atabases TCNI9 [32] , TCFE10 [33] , TCTI2 [34] , TCSLD3 [35] and 

CCU3 [36] from the Thermo-Calc Software [37] while the ϕ val- 

es are obtained from a thermodynamic assessment in the litera- 

ure for the Ge-Si system [38] . The ϕ versus composition curves at 

arious temperatures for all 18 binary systems are plotted in Fig. 3 . 

With the assessed self-diffusion and impurity diffusion coeffi- 

ients ( Table 2 and Fig. S1) as well as the computed thermody- 

amic factor ( Fig. 3 ) of each system, the diffusion model with dif-

erent combinations of interaction parameters ( Table 1 ) is fitted us- 

ng the critically reviewed experimental interdiffusion coefficients. 

he model performance is then evaluated by comparing the ex- 

erimental and predicted tracer and intrinsic diffusion coefficients. 

he experimental information of tracer, intrinsic and interdiffusion 

oefficients of the 18 binary systems in the literature are summa- 

ized in Table S1 in the Supplementary Information file. In this sec- 

ion, four representative examples, the Ag-Au and Fe-Pd systems 

ith the fcc crystal structure, the Ge-Si system with the diamond 

ubic crystal structure, and the Nb-Ti system with the bcc crystal 

tructure, are presented to illustrate the model testing process. The 

esults of other systems including 9 fcc binaries and 5 bcc binaries 

re then followed while the corresponding figures are provided in 

he Supplementary Information, Figs. S2-S15. 

.3. The fcc phase of the Ag-Au system 

Ag and Au form a continuous solid solution with the fcc crystal 

tructure over the entire composition range. Mead and Birchenall 

39] measured the Au tracer diffusion coefficients at 25 and 75 at.% 

u with the radioactive Au over a range of temperatures. They also 

easured interdiffusion coefficients but admitted that the results 

ere of low accuracy due to the porosity formation in the diffu- 

ion couples. The Ag and Au tracer diffusion coefficients were also 

easured by Mallard et al. [40] with radioactive Ag and Au diffus- 

ng into a series of Ag-Au alloys at different temperatures. Inter- 

iffusion coefficients and tracer diffusion coefficients of Ag and Au 

t 49.2 at.% Au at various temperatures were obtained by Johnson 

41] with chemical analysis and radioactive isotopes in incremental 

iffusion couples. The interdiffusion coefficients of Ag-Au system at 

00 °C were reported by Seith and Kottmann [42] based on a Ag-Au 
4 
iffusion couple. Balluffi and Seigle [43] investigated the interdif- 

usion using Ag-Au vapor-solid diffusion couple at 940 °C, and de- 
ermined the intrinsic diffusion coefficients with the help of inert 

arkers in the diffusion couple. Ebert and Trommsdorf [44] de- 

ermined the temperature-dependent interdiffusion coefficients at 

1.23 at.% Au by means of incremental diffusion couples. 

The collected interdiffusion coefficients from the literature are 

ll employed to fit the diffusion model with 0, 1, 2, and 4 inter- 

ction parameters, respectively. The intrinsic and tracer diffusion 

oefficients are predicted accordingly using Eqs. (3) , (4) and (8) . 

he experimental data are compared with the modelled values in 

ig. 4 , showing that the model with no interaction parameter (i.e., 
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Fig. 3. Thermodynamic factor ϕ of the 18 binary systems analyzed in this study showing the diversity of behaviors including very asymmetrical systems such as Au-Cu, 

Au-Ni, Co-Pd, Cu-Pt, Fe-Ni, Fe-Pd, and Ni-Pd. Some of the abrupt changes in the thermodynamic factor plots are due to magnetic transitions, ordering transitions, or other 

effects. 

5 
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Fig. 4. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid solution of the Ag-Au binary system. 
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ideal” diffusion behavior) can predict both the tracer and intrin- 

ic diffusion coefficients reasonably well. It should be noted that 

he diffusion coefficients at different compositions were shifted by 

ifferent factors to separate the data for visualization in the plots 

f subfigures (e) to (p). The 1-parameter model further enhance 

he model performance, especially in terms of interdiffusion co- 

fficients. The 2-parameter and 4-parameter models do not show 

uch improvement; and as a matter of fact, the two subfigures 

l) and (p) of Fig. 4 clearly show signs of over-fitting with the 4-

arameter model. 

.4. The fcc phase of the Fe-Pd system 

Fe and Pd form a complete solid solution of the fcc phase 

ver a wide temperature range. Gomez et al. [45] measured the 

nterdiffusion coefficients at 4 temperatures between 1100 °C and 
250 °C using diffusion couples. Fillon and Calais [46] determined 
6 
he tracer diffusion coefficients of the Fe-Pd system using radioiso- 

opes Fe and Pd at the same temperatures. Intrinsic and interdif- 

usion coefficients were obtained by van Dal et al. [47] via regular 

iffusion couples and multi-foil couples at 1100 °C. 
All the above interdiffusion coefficients are fed to the model 

ith different number of interaction parameters. The comparisons 

etween computed data and experimental data are plotted in 

ig. 5 , showing that the 0-parameter model does not work for this 

inary system and the 1-parameter model drastically improve the 

odel performance. Additional fitting parameters (2 and 4) do not 

ead to improved model performance, and the 4-parameter model 

as led to reduced agreement with the Pd tracer diffusion coeffi- 

ients (See subfigures (j) to (l) in Fig. 5 ). 

One can see from subfigures (e) to (l) of Fig. 5 that the 

racer diffusion coefficients of both Fe and Pd behave quite “reg- 

larly/symmetrically”, and the very asymmetrical behavior of both 

he interdiffusion coefficients (subfigures (a) to (d) in Fig. 5 ) and 
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Fig. 5. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid solution of the Fe-Pd binary system. 
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7

he intrinsic diffusion coefficients (subfigures (m) to (p) in Fig. 5 ) is 

redominately the result of the very asymmetrical thermodynamic 

actor, ϕ, showing in subfigure (j) of Fig. 3 . 

.5. The diamond cubic phase of the Ge-Si system 

The Ge-Si system forms a continuous solid solution with a di- 

mond cubic crystal structure. Kube et al. [48] determined the Si 

nd Ge tracer diffusion coefficients in Si-Ge isotope heterostruc- 

ures at several compositions in the temperature range of 690 –

270 °C using secondary ion mass spectrometry (SIMS). Zangenberg 

t al. [49] also employed SIMS to measure the Ge isotope con- 

entration profiles and calculated its tracer diffusion coefficients 

t various compositions over the temperature range of 850 °C to 
050 °C. Strohm et al. [ 50 , 51 ] conducted tracer experiments in var-

ous SiGe wafers or epilayers and obtained the Ge tracer diffu- 
7 
ion coefficients between 653 and 1263 °C and Si tracer diffusion 
oefficients between 861 and 1047 °C. The Si and Ge tracer diffu- 
ion coefficients in Si 0.2 Ge 0.8 layers were extracted by Latinen et al. 

52] via tracer experiments. 

Xia et al. [53] studied the interdiffusion in Si-Ge heterostruc- 

ures with Ge composition between 0 and 56 at.% over the temper- 

ture range of 770 – 920 °C from the diffusion profiles measured 

sing SIMS. The interdiffusion coefficients over the full composi- 

ion range over a wide range of temperatures were extracted by 

avelle et al. [54] using SIMS. Aubertine and McIntyre [55] ob- 

ained the interdiffusion coefficients over the composition range 

f 7.5 – 19.2 at.% Ge between 770 and 870 °C from SiGe superlat- 

ices over a small concentration gradient. Ozguven and McIntyre 

56] also employed a similar approach and reported the interdiffu- 

ion coefficients at 91 at.% Ge at four temperatures from 600 °C to 
00 °C. 
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Fig. 6. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the diamond cubic solid solution of the Ge-Si binary system. 
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It is noted that the interdiffusion coefficients decrease dramat- 

cally as the Si concentration increases, varying by ~6 orders of 

agnitude (~10 –17 to ~10 –23 ). The data reported by Gavelle et al. 

54] show a characteristic “bend-over” (subfigure (a) to (d) in 

ig. 6 ), leading to disagreement with the highly reliable impurity 
iffusion coefficient of Ge in Si. Such a “bend-over” of interdiffu- H

8 
ion coefficients as a function of composition is the result of insuf- 

cient spatial resolution of the composition measurement in re- 

ation to the sharp concentration gradient, as explained in detail 

y Chen and Zhao [57] . Such a “bend-over” situation has been ob- 

erved in other systems such as Au-Ni, Nb-Ti, Nb-Zr, Ta-Ti, and Ti-V. 

ence, the data points of Gavelle et al. in the high Si concentration 
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ange are excluded from being used for the fitting of the diffusion 

odel. Fig. 6 shows the comparisons between the model results 

nd experimental data. The 0-parameter model (“ideal” diffusion 

ehavior) already predicts the experimental interdiffusion coeffi- 

ients and the tracer diffusion coefficients well. Additional fitting 

arameters do not improve the model performance much. 

.6. The bcc phase of the Nb-Ti system 

A completely soluble bcc phase is formed between Nb and Ti 

ver a wide temperature range. Peart and Tomlin [58] obtained the 

b tracer diffusion coefficients in a series of Nb-Ti alloys as a func- 

ion of temperature. The Nb tracer diffusion coefficients in Nb-Ti 

lloys with less than 15 at.% Nb at various temperatures were also 

etermined by Gibbs et al. [59] . Pontau and Lazarus [60] measured 

he Nb and Ti tracer diffusion coefficients at 3 compositions in a 

emperature range of 950 – 1511 °C. 
Diffusion couple experiments were conducted to obtain the in- 

erdiffusion coefficients of the Nb-Ti system. The data were re- 

orted in temperature ranges of 1450 – 2075 °C by Roux and Vignes 
61] , 10 0 0 – 140 0 °C by Ugaste and Zajkin [62] , 10 0 0 – 120 0 °C by
olyanskii et al. [63] , 90 0 – 10 0 0 °C by Fedotov et al. [64] , 800 –
200 °C by Gryzunov et al. [65] , 1100 – 1300 °C by Vergasova et al.
66] , 900 – 1100 °C by Zhu et al. [67] , and 800 – 1200 °C by Chen
t al. [68] . 

The interdiffusion coefficients drop remarkably as Nb compo- 

ition increases. Zhu et al. [67] and Chen et al. [68] reported 

he interdiffusion coefficients in the Ti-rich side compositions. The 

ata measured by Roux and Vignes [61] and Ugaste and Zajkin 

62] have good agreement with the Ti impurity diffusion coeffi- 

ients in Nb. These data sets are used to fit the diffusion model. 

he modeled diffusion coefficients are compared with the experi- 

ental data in Fig. 7 . While 1, 2 and 4 interaction parameters re-

roduce the interdiffusion coefficients in similar agreements, the 

-parameter model performs best in predicting the tracer diffu- 

ion coefficients. In fact, the predicted Nb tracer diffusion coeffi- 

ients from the model with 4 interaction parameters are not in 

ood agreement with the experimental data, and show a clear sign 

f over-fitting – See subfigure (l) of Fig. 7 . It is noted that the 1-

arameter model shows a good overall fit for this binary system 

hose experimental diffusion coefficient data cover ~ 9 orders of 

agnitude (~10 –11 to ~10 –20 m 
2 /s) and over a temperature range 

panning ~1200 °C (from ~800 °C to ~2000 °C), Fig. 7 . 

.7. The fcc phase of the Au-Cu system 

The tracer diffusion coefficients of Au in disordered Cu 3 Au al- 

oy were determined by Benci et al. [69] , as well as Alexander 

70] with radioactive Au over a range of temperatures. Heumann 

nd Rottwinkel [71] measured the interdiffusion, intrinsic and 

racer diffusion coefficients in Cu-rich Au-Cu solid solutions at 

60 °C with various diffusion couples and radioactive Au and Cu. 

adia and Vignes [72] , Borovskii [73] , Pinnel and Bennett [74] and 

avi and Paul [75] obtained the interdiffusion coefficients of Au- 

u system from diffusion couples at various temperatures, respec- 

ively. Interdiffusion coefficients at 725 °C were reported by Ziebold 

nd Ogilvie [76] based on diffusion couple experiments. The lat- 

ice interdiffusion coefficients at 750 °C were reported by Austin 

nd Richard [77] along with grain boundary diffusion coefficients 

sing electroplated Au onto Cu bicrystals. The diffusion model is 

tted with different number of interaction parameters using the 

nterdiffusion coefficients reported by Badia and Vignes [72] , Pinnel 

nd Bennett [74] , Ziebold and Ogilvie [76] and Heumann and Rot- 

winkel [71] . The interdiffusion coefficients reported by Ravi and 

aul [75] , Austin and Richard [77] , and Borovskii [73] are less reli-

ble because they do not agree well with the impurity diffusion 
9 
oefficients of Au in Cu or Cu in Au. The 0-parameter diffusion 

odel does not work as shown in the left-hand column (subfigures 

a), (e), (i), (m), (q), (u)) of Fig. S2 in the Supplementary Informa- 

ion. The 1-parameter model works well as shown in the second 

olumn (subfigures (b), (f), (j), (n), (r), (v)) in Fig. S2. Additional 

tting parameters (2 and 4) do not improve the fitting, as shown 

n Fig. S2. 

.8. The fcc phase of the Au-Ni system 

Kurtz et al. [78] used the radioactive Au to extract the Au tracer 

iffusion coefficients in various Au-Ni alloys at different tempera- 

ures. Reynolds et al. [79] employed tracer method to determine 

he Ni tracer diffusion coefficients in Au-Ni solid solutions as well 

s diffusion couples to extract the interdiffusion coefficients at 

arious temperatures, respectively. The interdiffusion coefficients 

f Au-Ni were determined with regular diffusion couples at four 

emperatures while the intrinsic diffusion was analyzed via multi- 

oil couple experiment at 900 °C by van Dal et al. [80] . Iijima and

amazaki [81] studied the interdiffusion of the Au-Ni system by 

eans of diffusion couple at three temperatures. The collected in- 

erdiffusion coefficients from the studies by Iijima and Yamazaki 

81] , Reynolds et al. [79] and van Dal et al. [80] were used to fit

he diffusion model with various number of interaction parame- 

ers, except for the data at high Ni concentrations from the study 

f Reynolds et al. [79] . The problem with the Ni-rich data has 

een explained by Chen and Zhao [57] . The modeling results are 

resented in Fig. S3 in the Supplementary Information. One can 

learly see that the 0-parameter model does not work (the left 

olumn – subfigures (a), (e), (i), (m), (q)); the 1-parameter model 

orks well (the second column – subfigures (b), (f), (j), (n), (r)) 

nd additional fitting parameters lead to no improvement. 

.9. The fcc phase of the Co-Fe system 

Radioactive Fe and Co were used to determine the tracer diffu- 

ion coefficients in Co-Fe alloys in the composition range of 4 9-6 8 

t.% Fe at 1200 °C by Kohn et al. [82] . Ugaste et al. [83] also ex-
racted the tracer diffusion coefficients of the Co-Fe system while 

ishman et al. [84] determined the values at equiatomic Co-Fe 

lloy as a function of temperature. Hirano and Cohen [85] ex- 

racted the Co tracer diffusion coefficients as a function of com- 

osition from 1060 °C to 1310 °C. Badia and Vignes [72] , Ustad and
orum [86] and Hirano et al. [87] employed diffusion couples to 

xtract interdiffusion coefficients at various temperatures, respec- 

ively. However, the interdiffusion coefficients reported by Ustad 

nd Sorum [86] and Hirano et al. [87] are not in good agree- 

ent with the impurity diffusion coefficients. Consequently, only 

he dataset from Badia and Vignes [72] is fed to the diffusion 

odel with different numbers of interaction parameters. Fig. S4 in 

he Supplementary Information shows that the 0-parameter model 

hows a reasonable agreement; the 1-parameter model leads to 

lightly better performance; and additional parameters slightly de- 

rade the model performance. 

.10. The fcc phase of the Co-Ni system 

Million and Kucera measured the Co tracer diffusion coefficients 

n the composition range of 0-80 at.% Ni between 1057 °C and 
306 °C [88] as well as the Ni tracer diffusion coefficients in the full 

omposition space of the Co-Ni system in the temperature range of 

065-1290 °C [89] . Hirano et al. [90] obtained the Co and Ni tracer 
iffusion coefficients in 4 Co-Ni alloys as a function of temperature. 

irai et al. [91] and Ugaste et al. [83] determined the interdiffu- 

ion coefficients at 1100 °C using diffusion couples. The interdiffu- 
ion coefficients of the Co-Ni system at various temperatures were 
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Fig. 7. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the bcc solid solution of the Nb-Ti binary system. 
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xtracted from diffusion couples in several studies by Zhang and 

hao [92] , Heumann and Kottmann [93] , Borovskiy et al. [94] , Us-

ad and Sorum [86] , Kucera et al. [95] , and Iijima and Hirano [96] ,

espectively. The model with 0, 1, 2 and 4 interaction parameters is 

tted respectively with all the interdiffusion coefficients reported 

n the above literature except the data obtained under the mag- 

etic transition condition. Fig. S5 in the Supplementary Informa- 

ion shows the model test results. The tracer diffusion coefficients 

t different compositions were shifted by different factors to sep- 

rate them for better visualization in subfigures (i) to (l) and (q) 

o (x). The 0-parameter (“ideal” diffusion behavior) model works 

ell; the 1-parameter model leads to slightly better performance; 

nd the 2-parameter and 4-parameter models lead to worse agree- 

ent of the Ni tracer diffusion coefficients (the bottom row – sub- 

gures (u) to (x) of Fig. S5). Clear sign of over-fitting is seen for 

he 4-parameter model for the Ni tracer diffusion coefficients in 

ubfigure (x) of Fig. S5. 
10 
.11. The fcc phase of the Co-Pd system 

Iijima and Hirano [97] determined the intrinsic diffusion coeffi- 

ients of Co and Pd at the Kirkendall marker composition of 22.5 

t.% Pd at 1149 °C in a Co-Pd diffusion couple. They also studied 
he interdiffusion in the Co-Pd binary system using a series of dif- 

usion couples in the temperature range of 880 – 1193 °C. Only this 
et of interdiffusion coefficients is used to fit the diffusion model 

ith various number of interaction parameters. It is noted that the 

ata obtained in the ferromagnetic region are not used to feed the 

odel. Only two data points of intrinsic diffusion coefficients were 

eported so there is insufficient data to make a sound judgement 

n the model performance. However, one can clearly see from Fig. 

6 in the Supplementary Information that the 0-parameter model 

oes not work, the 1-parameter model fits the interdiffusion co- 

fficients really well, and the additional fitting parameters do not 

ead to any appreciable improvement. 



W. Zhong, Q. Zhang and J.-C. Zhao Acta Materialia 215 (2021) 117077 

3

e

a

i

D

N

s  

t

I

s

a  

f

[

i

t

s  

B

7  

1

d

s

f

f  

f

0

a

p

3

t

a

fi

c

d

a

i

c

u

c

a

e

d

r

w

b

3

c

V  

b  

7

e

b

i

t

t

L

[

c

d

1

w

d

T

t

r

p

p

3

e

w

f

t

i

m

m

t

3

p

e

e

a

w

d

[

t

O

l

[

a

s

i

m

a

m

o

3

b  

a  

1

Z

a

a

u

s

1

t  

1  

a

Z

1

i

r

c

p

f

.12. The fcc phase of the Cu-Ni system 

Monma et al. [98] reported the Cu and Ni tracer diffusion co- 

fficients in three Cu-Ni alloys at various temperatures. The Cu 

nd Ni tracer diffusion coefficients as a function of temperature 

n three other Cu-Ni alloys were also determined by Ausavice and 

ehoff [99] . Damkohler and Heumann [100] obtained the Cu and 

i tracer and intrinsic diffusion coefficients in Cu-rich Cu-Ni solid 

olution compositions (up to 20 at.% Ni) at 10 0 0 °C using radioac-
ive tracers and diffusion couples. Levasseur and Philibert [101] and 

ijima et al. [102] studied the interdiffusion and intrinsic diffu- 

ion coefficients with the Kirkendall markers in diffusion couples 

t 10 0 0 °C. In addition, foil method was employed to obtain dif-

usion data at the same temperature by Heumann and Grundoff

103] . Thomas and Birchenall [104] investigated the interdiffusion 

n Cu-Ni diffusion couples annealed at temperatures from 923 °C 
o 1049 °C. Marchukova and Miroshkina [105] obtained interdiffu- 

ion coefficients at 920 °C and 10 0 0 °C from diffusion couples while

runel et al. [106] measured the interdiffusion coefficients between 

10 °C and 10 6 6 °C. It is noted that the interdiffusion coefficients at

0 0 0 °C reported by various groups are in good agreement, but the 

ata at other temperatures show considerable disagreement and 

ome datasets do not agree with the well-established impurity dif- 

usion coefficients, as shown in Fig. S7 in the Supplementary In- 

ormation. Only the data at 10 0 0 °C were employed to fit the dif-

usion model with various numbers of interaction parameters. The 

-parameter (“ideal” diffusion behavior) model already show good 

greement and additional fitting parameters do not lead to im- 

rovements, Fig. S7. 

.13. The fcc phase of the Cu-Pt system 

Johnson and Faulkenberry [107] determined the Cu and Pt 

racer diffusion coefficients in four Cu-Pt alloys at various temper- 

tures. Kubaschewski and Ebert [108] reported interdiffusion coef- 

cients at 13.9 at.% Cu as a function of temperature from diffusion 

ouple experiments while Mishra et al. [109] measured the inter- 

iffusion coefficients over the full composition range at 4 temper- 

tures. However, the data from Mishra et al. do not agree with the 

mpurity diffusion coefficients. Therefore, only the interdiffusion 

oefficients determined by Kubaschewski and Ebert [108] were 

sed to fit the diffusion model. With such limited interdiffusion 

oefficient data, the diffusion model is vulnerable to overfitting, 

s shown in Fig. S8 in the Supplementary Information. The mod- 

ls with 2 or 4 interaction parameters predict unrealistic Pt tracer 

iffusion coefficients, pushing the predicted lines below the data 

ange in subfigures (k) and (l) of Fig. S8. The 0-parameter model 

orks for this binary system, but the 1-parameter model yields 

etter agreement and is the best choice for this binary system. 

.14. The fcc phase in the Fe-Ni system 

Interdiffusion coefficients of Fe-Ni were obtained via diffusion 

ouples at temperatures between 1136 °C and 1356 °C by Badia and 
ignes [72] , between 1100 °C and 1300 °C by Borovskiy et al. [94] ,
etween 950 °C and 1100 °C by Ganeshan et al. [110] , and between

05 and 1426 °C by Ustad and Sorum [86] , respectively. Million 

t al. [111] determined the Fe and Ni tracer diffusion coefficients 

etween 985 °C and 1305 °C using radioisotopes and measured the 

nterdiffusion coefficients from diffusion couples in the tempera- 

ure range of 950 – 1250 °C at the full composition range. The in- 

rinsic and interdiffusion coefficients at 1200 °C were reported by 

evasseur and Philibert [112] using diffusion couples. Kohn et al. 

82] used radioactive Fe and Ni to determine the tracer diffusion 

oefficients of the Fe-Ni system and employed diffusion couples to 

etermine the interdiffusion and intrinsic diffusion coefficients at 
11 
200 °C. The diffusion model with different interaction parameters 

as fed with the collected interdiffusion coefficients except some 

atasets which disagree with the impurity diffusion coefficients. 

he model test results are compared in Fig. S9 in the Supplemen- 

ary Information, showing that the 0-parameter model serves as a 

ough approximation, the 1-parameter model improve the model 

erformance, and additional fitting parameters do not lead to im- 

rovement. 

.15. The fcc phase of the Ni-Pd system 

van Dal et al. [47] measured the intrinsic and interdiffusion co- 

fficients of the Ni-Pd binary system between 900 °C and 1200 °C 
ith incremental and multi-foil diffusion couples. Those interdif- 

usion coefficients are fed to the diffusion model with various in- 

eraction parameters and the results were summarized in Fig. S10 

n the Supplementary Information, showing that the 0-parameter 

odel does not work for this binary system, the 1-parameter 

odel substantially improves the model performance, and addi- 

ional fitting parameters do not lead to too much improvement. 

.16. The bcc phase of the Nb-V system 

Interdiffusion coefficients of the Nb-V system at various tem- 

eratures have been determined using diffusion couples. Vergasova 

t al. [66] measured the values at 1300 – 1500 °C while Babkin 

t al. [113] and Ugaste et al. [114] conducted experiments at 1500 °C 
nd 1200 °C, respectively. A temperature range of 1450 – 2075 °C 
as investigated by Roux and Vignes [61] . In addition to inter- 

iffusion coefficients, Geiss et al. [115] and Mokrov and Zharkov 

116] also determined the intrinsic diffusion coefficients over the 

emperatures of 1404 – 1750 °C and 1250 – 1710 °C, respectively. 
verall, all the datasets of interdiffusion coefficients have a simi- 

ar trend of composition dependence. The data from Babkin et al. 

113] , Geiss et al. [115] and Mokrov and Zharkov [116] were chosen 

mong them to feed the diffusion model since they are more con- 

istent with one another. The results are summarized in Fig. S11 

n the Supplementary Information, showing that the 0-parameter 

odel does not work, the 1-parameter model works really well, 

nd additional fitting parameters do not lead to too much improve- 

ent. As a matter of fact, subfigure (l) of Fig. S11 shows sign of 

ver-fitting of the Nb intrinsic diffusion coefficients. 

.17. The bcc phase of the Nb-Zr system 

Both Nb and Zr tracer diffusion coefficients were determined 

y Herzig et al. [117] at 5.5 at.%, 16.3 at.% and 28.1 at.% Nb over

 temperature range of 762 – 1598 °C, and by Tiwari et al. [118] at

 wt.% and 2 wt.% Nb over a temperature range of 900 – 1200 °C. 
ou et al. [119] measured the Nb diffusion coefficients in a Zr-19 

t.% Nb alloy between 647 °C and 894 °C. Interdiffusion between Nb 

nd Zr has been investigated extensively by several research groups 

sing diffusion couples. Patil et al. [120] determined the interdiffu- 

ion coefficients over the full composition range from 1320 °C to 
720 °C while Balakir et al. [121] measured at 4 temperatures be- 

ween 70 0 °C and 150 0 °C and Vergasova et al. [66] measured at

10 0 °C and 130 0 °C. On the other hand, Chen et al. [68] and Prasad
nd Paul [122] only reported the interdiffusion coefficients at the 

r rich side at temperature range of 800 – 120 0 °C and 10 0 0 –
200 °C, respectively. It is because the steep concentration gradients 
n the Nb-rich side of the diffusion couples is beyond the spatial 

esolution of the measurement and thus the interdiffusion coeffi- 

ients could not be determined reliably from such steep-gradient 

art of the concentration profiles. Consequently, only the interdif- 

usion coefficients at the Zr-rich side are considered as input to the 
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iffusion model. Fig. S12 in the Supplementary Information sum- 

arizes the results and shows that the 0-parameter model does 

ot work, the 1-parameter model substantially improves the fit to 

oth the interdiffusion and tracer diffusion coefficients, and addi- 

ional fitting parameters do not lead to further improvement. It 

s noted that the tracer diffusion coefficients at different compo- 

itions in subfigures (m) to (f) were shifted by differnt factors to 

eparate them for visualization purpose. 

.18. The bcc phase of the Ta-Ti system 

Fedotov et al. [64] employed diffusion couples to determine 

he interdiffusion coefficients at both 900 °C and 1000 °C. Ansel 
t al. [123] investigated the interdiffusion of the Ta-Ti system from 

0 0 0 °C to 190 0 °C using various diffusion couples and measured

he intrinsic diffusion coefficient at 12.25 at.% Ta of the Kirkendall 

arker plane. The interdiffusion coefficients in the Ti-rich region 

ere reported by Chen et al. [68] since they realized the problem 

ssociated with the steep concentration gradients in the Ta-rich 

art of the diffusion profiles as explained earlier [57] . The “bend- 

ver” region of the interdiffusion coefficients in the Ta-rich com- 

ositions obtained by Ansel et al. [123] are not reliable and were 

xcluded from being used to fitting the diffusion model. Fig. S13 in 

he Supplementary Information shows that the model with 1 inter- 

ction parameter performs better than the others in predicting the 

ntrinsic diffusion coefficients. The 0-parameter model does not fit 

he interdiffusion coefficients well for this binary system. 

.19. The bcc phase of the Ti-V system 

Murdock et al. [124] measured the tracer diffusion coefficients 

f the Ti-V systems at 10 wt.% increments over the entire compo- 

ition range from 900 °C to about 50 °C below the melting points. 

iffusion couples were employed by various groups to obtain the 

nterdiffusion coefficients. Carlson [125] reported the interdiffu- 

ion coefficients and determined the intrinsic diffusion coefficients 

f the marker plane compositions at 1350 °C. Interdiffusion coeffi- 

ients at several temperatures from 10 0 0 °C to 140 0 °C were mea-

ured over the full composition range by Ugaste and Zajkin [62] . 

hu et al. [67] reported the interdiffusion coefficients in the tem- 

erature range of 800 – 1200 °C while Fedotov et al. [64] obtained 

he data in the range of 900 – 1500 °C but their data seem to be

roblematic since their datasets at 900 °C and 1000 °C overlap each 
ther and the data overlap again at 1350 °C and 1500 °C. Interdif- 
usion coefficients from 900 to 1200 °C was reported by Kale et al. 

126] but their data show the characteristic “bend-over” at high V 

oncentrations, leading to orders of magnitude disagreement with 

he reliable impurity diffusion coefficient of Ti in V, as shown in 

ig. S14 in the Supplementary Information. Thus, only the inter- 

iffusion coefficients at the Ti-rich side were fed to the diffusion 

odel. The results in Fig. S14 show that 0-parameter model does 

ot work, the model with 1 interaction parameter has comparable 

erformance with models with 2 or 4 fitting parameters. 

.20. The bcc phase of the Ti-Zr system 

Herzig et al. [127] measured the Ti and Zr tracer diffusion co- 

fficients in a Ti-49 at.% Zr alloy at various temperatures. Thibon 

t al. [128] determined the interdiffusion coefficients using diffu- 

ion couples over a wide temperature range from 830 to 1730 °C 
hile Bhanumurthy et al. [129] reported data at 900 °C. The tem- 

erature range investigated by Brunsch and Steeb [130] is 650 

1050 °C and Raghunathan et al. [131] conducted diffusion cou- 
le experiments from 901 to 1068 °C. Chen et al. [68] and Zhu 
t al. [67] employed diffusion multiples to obtain the interdiffu- 

ion coefficients in the temperature range of 800 – 1200 °C and 
12 
0 0 – 110 0 °C, respectively. Most of the collected interdiffusion co- 

fficients were used to fit the diffusion model, except for the data 

rom Bhanumurthy et al. [129] , which deviate from the composi- 

ion dependence of other datasets. The modeling results are shown 

n Fig. S15 in the Supplementary Information and are very similar 

o the other bcc systems: the 0-parameter model does not work, 

he 1-parameter model works well, and additional fitting parame- 

ers add no benefits. 

.21. Quantitative evaluation of the models 

The assessed self-diffusion and impurity diffusion coefficients 

f the pure elements and the computed thermodynamic factors 

re the foundation upon which diffusion models of the 18 binary 

ystems are built. The critically reviewed interdiffusion coefficients 

re then employed to optimize the 1, 2, and 4 interaction param- 

ters in the diffusion models; and the models are tested using 

he experimental tracer and intrinsic diffusion coefficients. Quali- 

ative comparisons between the modelled and experimental diffu- 

ion data as functions of composition and temperature are shown 

nd discussed system by system in the previous sections and in the 

upplementary Information. For a few systems such as the Ag-Au, 

o-Fe, Co-Ni, Cu-Ni, Cu-Pt, Fe-Ni, Ge-Si, and Nb-Ti systems, the 0- 

arameter “ideal”-behavior model can serve as the first-order ap- 

roximation. Generally, the 1-parameter model performs well in 

omparison with the 0-parameter model. Further increase of the 

umber of fitting parameters does not lead to better prediction of 

he tracer and intrinsic diffusion coefficients; and as a matter of 

act, has led to overfitting in a number of systems. 

This section provides a more quantitative evaluation of the 

uality of the models with 0, 1, 2 and 4 fitting parameters. Here, 

he mean absolute error ( MAE) is defined to quantify the model 

erformance on the test datasets (tracer and intrinsic diffusion co- 

fficients): 

AE = 

1 

n 

n ∑ 

i =1 

∣∣log 10 D 

exp 
i 

− log 10 D 

pred 

i 

∣∣ (10) 

here n is the number of data points, D 

exp 
i 

and D 

pred 
i 

are the 

xperimental diffusion coefficients and predicted diffusion coeffi- 

ients of the i th data point, respectively. 

Fig. 8 shows the D 
exp versus D 

pred calculated by the models 

ith 0, 1, 2 and 4 interaction parameters for the various binary 

ystems examined in this study. The diagonal black dashed line 

epresent a perfect agreement while the dotted lines represent a 

eviation with a factor of 3 or 1/3. The calculated MAE are also 

resented on the subfigures. The first row (subfigures (a) to (d)) 

n Fig. 8 shows that for the 11 fcc binary systems, the MAE drops 

rom 0.308 to 0.154 as the first fitting parameter is introduced. The 

-parameter and 4-parameters models have worse MAE, 0.335 and 

.276, respectively. For the 6 bcc binary systems, the 1-parameter 

nd 2-parameter models have a very similar MAE, 0.126 and 0.124, 

espectively; thus the 1-parameter model is highly preferred with- 

ut the burden of fitting the second parameter, as shown in the 

econd row (subfigures (f) to (i)) of Fig. 8 . For the diamond cubic 

hase of the Ge-Si binary system, the 1-parameter model has the 

owest MAE and thus the best performance, as shown in the third 

ow (subfigures (k) to (n)) in Fig. 8 . For the entire 18 binary sys-

ems, the 1-parameter model also has the lowest MAE, as shown in 

he bottom row (subfigures (p) to (s)) of Fig. 8 . It is clear that the

-parameter is the best and most robust model in consideration of 

ll the 18 binary systems. The extracted binary fitting parameters 

f the 18 systems coupled with Thermo-Calc Software databases 

re summarized in Table 3 . For the readers without access to the 

ALPHAD software, the interaction parameters coupled with the 

hermodynamic assessments in the open literature are also listed 
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Fig. 8. Comparison of the mean absolute error ( MAE ) between experimental and predicted tracer and intrinsic diffusion coefficients of the 18 binary systems modeled with 

0, 1, 2 and 4 fitting parameters as well as the mobility assessments in the literature. 

Table 3 

The assessed binary interaction parameter �A,B in ( m 
2 · J ) / ( mol · s ) of the 18 binary systems by fitting the most reliable tracer, intrinsic and interdiffusion 

data, coupled with the Thermo-Calc Software databases and thermodynamic assessments in the literature, respectively, and the number of interaction 

parameters used in the mobility assessments in the literature. 

System Interaction parameter �A , B obtained in this study and the coupled 

thermodynamic databases 

Number of interaction parameters used in 

the mobility assessments in the literature 

�A,B Thermodynamic 

database 

�A,B Thermodynamic 

assessment 

Ag-Au, fcc –15021 TCCU3 –15021 [132] 6 [18] 

Au-Cu, fcc 43282 TCCU3 43282 [133] 4 [23] 

Au-Ni, fcc 97519 TCSLD3 97519 [134] 5 [135] 

Co-Fe, fcc 7120 TCFE10 7120 [136] 4 [22] 

Co-Ni, fcc 15096 TCNI9 15096 [137] 2 [22] 

Co-Pd, fcc 146463 TCNI9 152325 [138] 6 [139] 

Cu-Ni, fcc 1083 TCNI9 1089 [140] 4 [25] 

Cu-Pt, fcc –39856 TCNI9 –39856 [141] 6 [23] 

Fe-Ni, fcc 49942 TCFE10 49942 [142] 8 [143] 

Fe-Pd, fcc 92766 TCNI9 92766 [138] 4 [21] 

Ge-Si, dia. cubic –29367 [38] –29367 [38] 7 [24] 

Nb-Ti, bcc 77831 TCTI2 82692 [144] 4 [27] 

Nb-V, bcc 132825 TCTI2 132825 [145] 6 [31] 

Nb-Zr, bcc 127691 TCTI2 127690 [146] 6 [30] 

Ni-Pd, fcc 115134 TCNI9 115134 [138] 4 [147] 

Ta-Ti, bcc 102859 TCTI2 102858 [148] 4 [26] 

Ti-V, bcc 79863 TCTI2 87171 [145] 6 [28] 

Ti-Zr, bcc 35125 TCTI2 45835 [149] 6 [29] 

13 
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n Table 3 . In addition, one can easily implement the 1-parameter 

odel without the use of a CALPHAD software by following the 

uide in the next section. 

The tracer and intrinsic diffusion coefficients calculated using 

he mobility parameters assessed in the literature (references listed 

n Table 3 ) are also compared in Fig. 8 as subfigures (e), (j), (o) and

t) – the right-hand side column. It is noted that the mobility as- 

essments in the literature employed all the diffusion data includ- 

ng the tracer and intrinsic diffusion coefficients. In contrast, only 

nterdiffusion coefficients were used to optimize the fitting param- 

ters in the model in the results reported in Figs. 4-8 while both 

he tracer and intrinsic diffusion coefficients served as test datasets 

nly. Consequently, the mobility assessments in the literature are 

upposed to give smaller error or MAE since both the tracer and 

ntrinsic diffusion coefficients were also used to optimize their mo- 

ility parameters. When the most reliable experimental tracer, in- 

rinsic and interdiffusion coefficients were employed together to 

ptimize the sole constant �A,B as reported in Table 3, the MAE for 

he 1-parameter model drops from 0.169 to 0.161 for the 18 bi- 

ary systems together, comparable to the MAE value of 0.160 of the 

iterature mobility assessments. Therefore, the 1-parameter model 

n current study shows comparable performance to the literature 

tomic mobility assessments in predicting the tracer and intrin- 

ic diffusion coefficients, as shown in Fig. 8 ; yet, the number of 

nteraction parameters used in the literature mobility assessments 

summarized in Table 3 ) is way more than the 1-parameter model: 

xcept for the Co-Ni binary system where 2 parameters were used, 

ll the other 17 binary systems used 4 to 8 parameters. To the au- 

hors’ knowledge, no literature assessments used a single param- 

ter model as emerged from the current study. This comparison 

uggests that too many parameters were used in most of the lit- 

rature atomic mobility assessments/databases (except for Co-Ni), 

eading to risk of overfitting. The 1-parameter model revealed in 

his study is very simple yet robust. 

. Further discussion 

It is straightforward to implement the 1-parameter diffusion 

odel for a binary A-B system. The first step is to collect the self-

iffusion coefficients of both pure A ( D 
A 
A 
) and pure B ( D 

B 
B 
) and the

mpurity diffusion coefficient of A in pure B ( D 
B 
A 
) and B in pure

 ( D 
A 
B 
) from the literature similar to those listed in Table 2 (and

hown in Fig. S1 in the Supplementary Information). 

The thermodynamic factor ϕ then needs to be computed using 

 CALPHAD software package or through the following process di- 

ectly from a thermodynamic assessment of the A-B binary system. 

he molar Gibbs free energy G of a simple solution phase (fcc, bcc, 

cp, diamond cubic, etc.) is usually modelled as the following in 

he CALPHAD approach: 

 = x A G 
0 
A + x B G 

0 
B + RT ( x A ln x A + x B ln x B ) + x A x B 

∑ 

k =0 , 1 , ···
L k ( x A − x B ) 

k 

(11) 

here G 
0 
A 

and G 
0 
B 

are the molar Gibbs energies of the pure el- 

ments or the so-called lattice stabilities, and thus the first two 

erms on the right hand side of Eq. (11) is the contribution from 

he Gibbs energy of the constituents of the phase based on the 

ule of mixture. The third term is the contribution of the ideal en- 

ropy of mixing. The last term is the excess Gibbs energy, which 

s expressed as the Redlich-Kister polynomial where the L k values 

re the related coefficients. 

It is straightforward to calculate the thermodynamic factors ac- 

ording to Eq. (5) . Combining Eq. (5) and the above Eq. (11) , the
14 
hermodynamic factor is computed as: 

 = 1 − 2 x A x B 
RT 

[ ∑ 

k =0 , 1 , ···
( 2 k + 1 ) L k ( x A − x B ) 

k 

− 2 x A x B 
∑ 

k =2 , 3 , ···
k ( k − 1 ) L k ( x A − x B ) 

k −2 

] 

(12) 

Only the parameters L k of the molar Gibbs free energy G are 

eeded while other terms disappear due to the derivatives (The 

deal mixing term becomes 1). The L k values can be directly read 

rom the published thermodynamic assessments in the literature 

It is noted that thermodynamic assessments are available in the 

pen literature for most binary systems). Generally, the order of k 

s up to 2 for most binary systems; and thus the thermodynamic 

actor is simplified to: 

 = 1 − 2 x A x B L 0 
RT 

for k = 0 (13.1) 

 = 1 − 2 x A x B 
RT 

[ L 0 + 3 L 1 ( x A − x B ) ] for k = 1 (13.2) 

 = 1 − 2 x A x B 
RT 

[
L 0 + 3 L 1 ( x A − x B ) + 5 L 2 ( x A − x B ) 

2 − 4 L 2 x A x B 
]

for k = 2 (13.3) 

For example, the thermodynamic factor of the Ge-Si system can 

e calculated with the parameters in the thermodynamic assess- 

ent by Berche et al. [38] who reported L 0 = 3500 J/mol and the 

igher order L k values were all zero. Therefore, the thermodynamic 

actor of the Ge-Si system is simply: 

 
Ge −Si = 1 − 2 x Ge x Si L 0 

RT 

It is noted that the magnetic contribution to the molar Gibbs 

ree energy is ignored in the above Eqs. (11–13 ), but its effect on 

he thermodynamic factor is usually negligible except for composi- 

ions very close to the Curie temperature or the Néel temperature. 

ne can also add the equation of the magnetic contribution, avail- 

ble from the pertinent binary thermodynamic assessments in the 

iterature, to Eq. (11) and take a second derivative against compo- 

ition ( x B ) to include the magnetic contribution directly. 

With the self-diffusion coefficients ( D 
A 
A 

and D 
B 
B 
) and the im- 

urity diffusion coefficients ( D 
B 
A 

and D 
A 
B ) of both pure elements 

nown and the thermodynamic factor ϕ computed as described 

bove, experimental composition-dependent interdiffusion coeffi- 

ient ˜ D values are then employed to fit/optimize a single unknown 

arameter �A,B which is a constant (not a + bT ) in Eq. (14) : 

˜ 
 = 

[
x B exp 

(
x A ln D 

A 
A + x B ln D 

B 
A 

)
+ x A exp 

(
x A ln D 

A 
B + x B ln D 

B 
B 

)]
·ϕ exp 

(
�A,B x A x B / RT 

)
(14) 

After the constant �A,B is obtained (such as the values in 

able 3 ), the interdiffusion coefficients at any composition and 

emperature can be computed from Eq. (14) . The tracer diffusion 

oefficient D 
∗
i 
( i = A or B ) of any composition at any temperature

an be computed via Eq. (15) : 

 
∗
i = exp 

(
x A ln D 

A 
i + x B ln D 

B 
i 

)
exp 

(
�A,B x A x B / RT 

)
(15) 

The intrinsic diffusion coefficient D 
I 
i 
= D 

∗
i 
ϕ is simply the tracer 

iffusion coefficient multiplied by the thermodynamic factor. In 

his way, all the diffusion coefficients in the binary A-B system can 

e computed. For the convenience of future reference to this 1- 

arameter model, it is hereby called Z-Z-Z binary diffusion model. 
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In practical assessments, all the experimental data for a binary 

olid solution, including tracer, intrinsic and interdiffusion coeffi- 

ients, should be used together to optimize the constant �A,B us- 

ng both Eq. (14) and (15) as well as D 
I 
i 
= D 

∗
i 
ϕ. In this way, the

ptimized �A,B value represents the best description of the diffu- 

ion behavior of the solid solution. It is noted that the �A,B values 

eported in Table 3 are obtained by fitting the most reliable ex- 

erimental tracer, intrinsic and interdiffusion coefficients for each 

inary system. 

For those who use a CALPHAD software package such as 

hermo-Calc for atomic mobility (diffusion coefficient) assess- 

ents, the implementation of the Z-Z-Z model is even simpler 

ince the thermodynamic factor can be computed within the soft- 

are. The mobility interaction parameters are usually set to be: 
A,B 
A 

= V 1 + V 2 ∗ T and �A,B 
B 

= V 3 + V 4 ∗ T , where V 1 , V 2 , V 3 and V 4 
re variables/constants to be optimized from experimental diffu- 

ion coefficients. To implement the Z-Z-Z model, one simply sets 

oth V 2 and V 4 to be zero, and V 1 and V 3 to be equal. In other 

ords, one can simply set �A,B 
A 

= V 1 and �
A,B 
B 

= V 1 , and optimize 

nly one parameter, V 1 . The optimized V 1 should be the same as 

he �A,B obtained without using a CALPHAD package. 

Our systematic test of the model parameters clearly shows that 

he temperature dependent terms V 2 ∗ T and V 4 ∗ T are completely 

nnecessary for all the 18 systems tested in this study. Even for 

he Nb-Ti binary system whose experimental diffusion coefficient 

ata cover ~9 orders of magnitude (~10 –11 to ~10 –20 m 
2 /s) and 

ver a temperature range spanning ~ 1200 °C (from ~800 °C to 
20 0 0 °C), the temperature-dependent fitting terms are not needed 

o model this system, Fig. 7 . In other words, the temperature de- 

endence of diffusion coefficients of alloys is well described by the 

emperature-dependence of the self-diffusion and impurity diffu- 

ion coefficients of the pure elements as well as the thermodynamic 

actor. One can see from Fig. 3 that the thermodynamic factor is 

emperature dependent. 

When the single constant �A,B in the Z-Z-Z model as repre- 

ented by Eqs. (14) and (15) is zero, the Z-Z-Z model becomes 

he zeroth-order zero-parameter (Z-Z) model of Eqs. (16) and (17) , 

hich represents a kinetically ideal-behaving system (it still in- 

ludes the thermodynamic factor, thus not a thermodynamically 

deal-behaving system). 

˜ 
 = 

[
x B exp 

(
x A ln D 

A 
A + x B ln D 

B 
A 

)
+ x A exp 

(
x A ln D 

A 
B + x B ln D 

B 
B 

)]
· ϕ 

(16) 

 
∗
i = exp 

(
x A ln D 

A 
i + x B ln D 

B 
i 

)
(17) 

As a matter of fact, the Z-Z model does a reasonable job in de- 

cribing the behavior of several systems as shown in the left-hand 

ide column of Fig. 4 (Ag-Au), Fig. 6 (Ge-Si), Fig. 7 (Nb-Ti), Fig. S4

Co-Fe), Fig. S5 (Co-Ni), Fig. S7 (Cu-Ni), Fig. S8 (Cu-Pt), Fig. S9 (Fe- 

i), Fig. S13 (Ta-Ti), Fig. S14 (Ti-V), and Fig. S15 (Ti-Zr) [The figures 

hose numbers have an “S” are in the Supplementary Informa- 

ion]. When no interdiffusion coefficient or other diffusion data are 

vailable for a particular binary system, it is recommended that the 

-Z model which contains only diffusion coefficients of the pure 

lements and the thermodynamic factor, be employed to estimate 

he diffusion coefficients of alloys in the binary system. The Z-Z 

odel estimate will be much better than no data at all or using 

ny of the single diffusion (either self-diffusion or impurity diffu- 

ion) coefficient of the pure elements as an estimate for the alloys . 

The surprisingly excellent performance of the Z-Z-Z model for 

ll 18 diverse binary systems implies that the “excess ” behavior 

i.e., deviation from the kinetically ideal behavior) for both ele- 

ents in a binary solid solution is similar. It is noted that the 

tomic mobility of each element can be orders of magnitude dif- 

erent, yet the deviation of each element from its ideal atomic mo- 
15 
ility behavior is similar. This in a sense is similar to the fact that 

he molar Gibbs free energy of the pure elements in a binary sys- 

em is very different, yet the thermodynamic factor for diffusion, 

hich describes the deviation from the ideal mixing behavior, of 

oth elements are the same based on the Gibbs-Duhem relation. Fu- 

ure theoretical analysis may reveal if an equivalent Gibbs-Duhem 

elation may hold to some extent for atomic mobilities of binary 

olid solutions. 

When more and more binary systems are assessed in the fu- 

ure using the Z-Z-Z model, the values of the single constant �A,B 

as those listed in Table 3 ) may be correlated with some other 

arameters of the binary systems, e.g., the degree of deviation of 

omposition-dependent lattice parameters or/and elastic constants 

rom the Vegard’s law. Such correlations may be revealed through 

ither simple data analyses or the use of machine learning tools; 

nd they will be very useful in estimating the diffusion coefficients 

f alloys using the Z-Z-Z model for binary systems whose experi- 

ental diffusion coefficients of alloys are unavailable. 

. Conclusions and Concluding Remarks 

Four fitting parameters are often employed to model the dif- 

usion coefficients (atomic mobilities) of a binary solid solution in 

he widely used framework established by Ågren and Andersson; 

.e., two parameters ( a + bT ) for each diffusing element for each 

hase [ 7 , 8 ]. Up to 6 and 8 fitting parameters are used for sev-

ral binary systems, as shown in Table 3 . Our study is the most 

omprehensive test to date aiming at defining the optimal number 

f fitting parameters for a reliable mathematical description of the 

iffusion behavior of a binary solid solution. 

After an exhaustive search of the literature, 18 completely sol- 

ble binary systems were identified that satisfy the following con- 

itions: (1) reliable self-diffusion coefficients and impurity dif- 

usion coefficients of both pure elements are available, (2) reli- 

ble composition-dependent interdiffusion coefficients are avail- 

ble, and (3) there are experimental measurements of tracer dif- 

usion and/or intrinsic diffusion coefficients to be used to check 

he predictions from the diffusion coefficient models with various 

umber of fitting parameters. These 18 binaries cover a very wide 

ange of thermodynamic behavior as shown by the diverse ther- 

odynamic factor in Fig. 3 , including very asymmetrical systems 

uch as Au-Cu, Au-Ni, Co-Pd, Cu-Pt, Fe-Ni, Fe-Pd, and Ni-Pd. The 

xperimental diffusion coefficients (self-diffusion, impurity diffu- 

ion, tracer diffusion, intrinsic diffusion and interdiffusion coeffi- 

ients) in these 18 binary systems were collected and reviewed. A 

ystematic test of the CALPHAD diffusion coefficient (atomic mo- 

ility) models with 0, 1, 2 and 4 fitting parameters was then per- 

ormed on these 18 binary systems. 

Our systematic testing of the 18 diverse binary systems has 

ielded a surprisingly simple model with only one fitting param- 

ter. The Z-Z-Z model is described by Eqs. (14) and (15) , and the

ingle constant �A,B in these equations can be evaluated from ex- 

erimental diffusion data. The rest of the quantities in these equa- 

ions are the properties (self-diffusion and impurity diffusion coef- 

cients) of the pure elements and the thermodynamic factor that 

an be computed from a CALPHAD thermodynamic assessment of 

he pertinent binary system. 

The 1-parameter Z-Z-Z model has been demonstrated to be 

ery reliable and robust since the 18 binary systems tested in our 

tudy include very asymmetrical systems such as Co-Pd and Fe-Pd 

 Fig. 3 ) as well as Nb-Ti whose experimental diffusion coefficient 

ata cover ~9 orders of magnitude (~10 –11 to ~10 –20 m 
2 /s) and over 

 temperature range spanning ~ 1200 °C (from ~800 °C to ~20 0 0 °C). 
or all of them, the Z-Z-Z model works well. Additional fitting pa- 

ameters do not lead to appreciable improvement of model perfor- 

ance and as a matter of fact sometimes lead to over-fitting. 
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The Z-Z-Z model allows both tracer and intrinsic diffusion co- 

fficients to be reliably computed for any composition at any tem- 

erature after the �A,B parameter/constant is evaluated/fitted from 

he interdiffusion data. This has been demonstrated for all 18 bi- 

ary systems tested in this study. This conclusion is already em- 

edded in the CALPHAD atomic mobility treatment/framework, but 

ight be less apparent to those who are not familiar with the 

tomic mobility notation. 

When no interdiffusion or other (tracer and intrinsic) diffusion 

oefficient data of alloys are available for a particular binary sys- 

em, it is recommended that the zeroth-order zero-parameter (Z- 

) model, as represented in Eqs. (16) and (17) that contain only 

iffusion coefficients of the pure elements and the thermodynamic 

actor, be employed to estimate the diffusion coefficients of alloys . 

Our next step is to extend the Z-Z-Z model into ternary sys- 

ems to help reduce the number of fitting parameters for ternary 

nd higher-order solid solutions. When the number of fitting pa- 

ameters in each binary is reduced from 4 to 1, the total number 

rom the three binaries is reduced from 12 to 3. Even when the 

umber for each binary is reduced from 2 to 1, the binary-related 

arameters are reduced from 6 to 3. A systematic test of ternary 

ystems will reveal how many additional ternary related interac- 

ion parameters will need to be introduced to reliably describe the 

iffusion behavior of ternary solid solutions. The reduction in the 

umber of fitting parameters for binary and ternary systems will 

ubstantially reduce the total number of parameters for multicom- 

onent systems and yet improve the robustness of the resultant 

iffusion (atomic mobility) databases. 
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Conversion between diffusion coefficients and atomic mobility: 

Atomic mobility 𝑀௜ is defined by Einstein’s relation  𝑀௜ ൌ 𝐷௜
∗/𝑅𝑇 ൌ  𝐷଴௜

∗ expሺെ𝑄௜/𝑅𝑇ሻ /𝑅𝑇  where 
𝐷଴௜
∗  and 𝑄௜ are the pre-factor and the activation energy of the Arrhenius equation of the tracer diffusion 

coefficient 𝐷௜∗ of element 𝑖. Thus,  

𝑀௜ ൌ
𝐷଴௜
∗

𝑅𝑇
exp ൬

െ𝑄௜
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൰ ൌ
1
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𝑅𝑇 ln𝐷଴௜
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ቇ ൌ
1
𝑅𝑇

exp ൬
Φ௜
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Where the atomic mobility parameter Φ௜  widely used by the CALPHAD community is: Φ௜ ൌ
𝑅𝑇 ln𝐷଴௜

∗ െ 𝑄௜ ൌ  𝑅𝑇 ln𝐷௜
∗. For a binary A-B solution where 𝑖 ൌ 𝐴 𝑜𝑟 𝐵, Φ௜ is further expressed as [1]: 

Φ௜ ൌ 𝑥஺Φ௜
஺ ൅ 𝑥஻Φ௜

஻ ൅ 𝑥஺𝑥஻ ൥ ෍ Φ௜
஺,஻

 
௥ ሺ𝑥஺ െ 𝑥஻ሻ௥

௥ୀ଴,ଵ,…

൩                                     ሺ𝑆2ሻ 

Where Φ௜
஺,஻

 
௥  values are the atomic mobility interaction parameters to be fitted. Since Φ௜ ൌ 𝑅𝑇 ln𝐷௜

∗ , 
Equation (S2) can be converted into Equation (S3) which is the same as Equation (6) in the article.   

ln𝐷௜
∗ ൌ 𝑥஺ ln𝐷௜

஺ ൅ 𝑥஻ ln𝐷௜
஻ ൅ 𝑥஺𝑥஻ ෍ Φ௜

஺,஻
 
௥ ሺ𝑥஺ െ 𝑥஻ሻ௥

௥ୀ଴,ଵ,⋯

/𝑅𝑇 ሺ𝑆3ሻ 

Therefore, one can convert back and forth between tracer diffusion coefficient 𝐷௜∗ and atomic mobility 
parameter 𝛷௜ via the simple relation: 𝛷௜ ൌ 𝑅𝑇 𝑙𝑛 𝐷௜

∗.  

Table S1. Summary of experimental interdiffusion, intrinsic and tracer diffusion coefficients in the 
literature for the 18 binary systems (: used for parameter optimization; : partially used; : not 
used). 

System Literature Diffusion data Method Note Ref 
 
 
Ag-Au 

Seith & Kottmann 𝐷෩ Diffusion couple  [2] 
Balluffi & Seigle 𝐷෩, 𝐷ூ Diffusion couple  [3] 
Mead & Birchenall 𝐷஺௚

∗  Tracer  [4] 
Mallard et al. 𝐷∗ Tracer  [5] 
Johnson 𝐷෩, 𝐷∗ Diffusion couple, Tracer  [6] 
Ebert & Trommsdorf 𝐷෩ Diffusion couple  [7] 

 
 
 

Badia & Vignes 𝐷෩ Diffusion couple  [8] 
Ziebold & Ogilvie 𝐷෩ Diffusion couple  [9] 
Pinnel & Bennett 𝐷෩ Diffusion couple  [10] 
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Au-Cu 

Heumann & Rottwinkel 𝐷෩, 𝐷∗, 𝐷ூ Diffusion couple, Tracer  [11] 
Ravi & Paul 𝐷෩ Diffusion couple  [12] 
Borovskii 𝐷෩ Diffusion couple  [13] 
Austin & Richard 𝐷෩ Electroplating  [14] 
Benci et al. 𝐷஺௨

∗  Tracer  [15] 
Alexander 𝐷஺௨

∗  Tracer  [16] 
 
Au-Ni 

Reynolds et al. 𝐷෩, 𝐷ே௜∗  Diffusion couple, Tracer  [17] 
van Dal et al. 𝐷෩, 𝐷ூ Diffusion couple  [18] 
Iijima & Yamazaki 𝐷෩ Diffusion couple  [19] 
Kurtz et al. 𝐷஺௨

∗  Tracer  [20] 
 
 
 
Co-Fe 

Badia & Vignes 𝐷෩ Diffusion couple  [8] 
Ustad & Sorum 𝐷෩ Diffusion couple  [21] 
Hirano et al. 𝐷෩ Diffusion couple  [22] 
Kohn et al. 𝐷∗ Tracer  [23] 
Ugaste et al. 𝐷∗ Tracer  [24] 
Hirano & Cohen 𝐷஼௢

∗  Tracer  [25] 
Fishman et al. 𝐷∗ Tracer  [26] 

 
 
 
 
 
Co-Ni 

Hirai et al. 𝐷෩ Diffusion couple  [27] 
Zhang & Zhao 𝐷෩ Diffusion multiple  [28] 
Heumann & Kottmann 𝐷෩ Diffusion couple  [29] 
Ugaste et al. 𝐷෩ Diffusion couple  [24] 
Borovskiy et al. 𝐷෩ Diffusion couple  [30] 
Ustad & Sorum 𝐷෩ Diffusion couple  [21] 
Kucera et al. 𝐷෩ Diffusion couple  [31] 
Iijima & Hirano 𝐷෩ Diffusion couple  [32] 
Hirano et al. 𝐷∗ Tracer  [33] 
Million & Kucera 𝐷஼௢

∗  Tracer  [34] 
Million & Kucera 𝐷ே௜

∗  Tracer  [35] 
Co-Pd Iijima & Hirano 𝐷෩, 𝐷ூ Diffusion couple  [36] 
 
 
 
 
Cu-Ni 

Levasseur & Philibert 𝐷෩, 𝐷ூ Diffusion couple  [37] 
Iijima et al.  𝐷෩, 𝐷ூ Diffusion couple  [38] 
Thomas & Birchenall 𝐷෩ Diffusion couple  [39] 
Heumann & Grundhoff 𝐷෩, 𝐷ூ Foil  [40] 
Marchukova & Miroshkina 𝐷෩ Diffusion couple  [41] 
Brunel et al. 𝐷෩ Diffusion couple  [42] 
Anusavice & DeHoff 𝐷∗ Tracer  [43] 
Monma et al. 𝐷∗ Tracer  [44] 
Damkohler & Heumann 𝐷∗, 𝐷ூ Tracer, Diffusion couple  [45] 

 
Cu-Pt 

Mishra et al. 𝐷෩ Diffusion couple  [46] 
Johnson & Faulkenberry 𝐷∗ Tracer  [47] 
Kubaschewski & Ebert 𝐷෩ Diffusion couple  [48] 

 
 
 
Fe-Ni 

Levasseur & Philibert 𝐷෩, 𝐷ூ Diffusion couple  [49] 
Ustad & Sorum 𝐷෩ Diffusion couple  [21] 
Borovskiy et al. 𝐷෩ Diffusion couple  [30] 
Million et al. 𝐷෩, 𝐷∗ Diffusion couple, Tracer  [50] 
Badia & Vignes 𝐷෩ Diffusion couple  [8] 
Kohn et al. 𝐷෩, 𝐷∗, 𝐷ூ Diffusion couple, Tracer  [23] 
Ganesan et al. 𝐷෩ Diffusion couple  [51] 

 
Fe-Pd 

van Dal et al. 𝐷෩, 𝐷ூ Diffusion couple  [52] 
Gomez et al. 𝐷෩ Diffusion couple  [53] 
Fillon & Calais 𝐷∗ Tracer  [54] 
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Ge-Si 

Xia et al. 𝐷෩ Diffusion couple  [55] 
Gavelle et al. 𝐷෩ Diffusion couple  [56] 
Aubertine & McIntyre 𝐷෩ Diffusion couple  [57] 
Ozguven & McIntyre 𝐷෩ Diffusion couple  [58] 
Kube et al. 𝐷∗ SIMS  [59] 
Strohm et al. 𝐷∗ Tracer  [60] 
Strohm et al. 𝐷∗ Tracer  [61] 
Zangenberg et al. 𝐷ீ௘

∗  SIMS  [62] 
Latinen et al. 𝐷∗ Tracer  [63] 

 
 
 
 
 
Nb-Ti 

Roux & Vignes 𝐷෩ Diffusion couple  [64] 
Ugaste & Zajkin 𝐷෩ Diffusion couple  [65] 
Polyanskii et al. 𝐷෩ Diffusion couple  [66] 
Gryzunov et al. 𝐷෩ Diffusion couple  [67] 
Fedotov et al. 𝐷෩ Diffusion couple  [68] 
Vergasova et al. 𝐷෩ Diffusion couple  [69] 
Chen et al. 𝐷෩ Diffusion multiple  [70] 
Zhu et al. 𝐷෩ Diffusion multiple  [71] 
Peart & Tomlin 𝐷ே௕

∗  Tracer  [72] 
Gibbs et al. 𝐷ே௕

∗  Tracer  [73] 
Pontau & Lazarus 𝐷∗ Tracer  [74] 

 
 
 
Nb-V 

Geiss et al. 𝐷෩, 𝐷ூ Diffusion couple  [75] 
Mokrov & Zharkov 𝐷෩, 𝐷ூ Diffusion couple  [76] 
Vergasova et al. 𝐷෩ Diffusion couple  [69] 
Babkin et al. 𝐷෩ Diffusion couple  [77] 
Ugaste et al. 𝐷෩ Diffusion couple  [78] 
Roux & Vignes 𝐷෩ Diffusion couple  [64] 

 
 
 
 
Nb-Zr 

Patil et al. 𝐷෩ Diffusion couple  [79] 
Chen et al. 𝐷෩ Diffusion multiple  [70] 
Vergasova et al. 𝐷෩ Diffusion couple  [69] 
Balakir et al. 𝐷෩ Diffusion couple  [80] 
Prasad & Paul 𝐷෩ Diffusion couple  [81] 
Herzig et al. 𝐷∗ Tracer  [82] 
Tiwari et al. 𝐷∗ Tracer  [83] 
Zou et al. 𝐷ே௕

∗  Tracer  [84] 
Ni-Pd van Dal et al. 𝐷෩, 𝐷ூ Diffusion couple  [52] 
 
Ta-Ti 

Fedetov et al. 𝐷෩ Diffusion couple  [68] 
Chen et al. 𝐷෩ Diffusion couple  [70] 
Ansel et al. 𝐷෩, 𝐷ூ Diffusion couple  [85] 

 
 
Ti-V 

Ugaste & Zajkin 𝐷෩ Diffusion couple  [65] 
Zhu et al. 𝐷෩ Diffusion multiple  [71] 
Fedotov et al. 𝐷෩ Diffusion couple  [68] 
Carlson 𝐷෩, 𝐷ூ Diffusion couple  [86] 
Kale et al. 𝐷෩ Diffusion couple  [87] 
Murdock et al. 𝐷∗ Tracer  [88] 

 
 
 
Ti-Zr 

Thibon et al. 𝐷෩ Diffusion couple  [89] 
Bhanumurthy et al. 𝐷෩ Diffusion couple  [90] 
Chen et al. 𝐷෩ Diffusion couple  [70] 
Brunsch & Steeb 𝐷෩ Diffusion couple  [91] 
Zhu et al. 𝐷෩ Diffusion couple  [71] 
Raghunathan et al. 𝐷෩ Diffusion couple  [92] 
Herzig et al. 𝐷∗ Tracer  [93] 
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Fig. S1 (Part 1 of 3). Self-diffusion and impurity diffusion coefficients of the pure elements in the 18 binary 
systems from the literature and the current assessment (See Table 2 in the main text for reference details).  
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Fig. S1 (Part 2 of 3). Self-diffusion and impurity diffusion coefficients of the pure elements in the 18 binary 
systems from the literature and the current assessment (See Table 2 in the main text for reference details).  
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Fig. S1 (Part 3 of 3). Self-diffusion and impurity diffusion coefficients of the pure elements in the 18 binary 
systems from the literature and the current assessment (See Table 2 in the main text for reference details).  
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Fig. S2. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Au-Cu binary system. 
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Fig. S3. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Au-Ni binary system. 

   



S9 
 

 

Fig. S4. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Co-Fe binary system.  
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Fig. S5. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Co-Ni binary system. 
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Fig. S6. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Co-Pd binary system. 
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Fig. S7. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Cu-Ni binary system. 
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Fig. S8. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Cu-Pt binary system. The lines in subfigures (k) and (l) are mostly below/outside the bottom 
of these sub-figures and thus are substantially below the experimental results, showing substantial 
deviation.   
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Fig. S9. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc solid 
solution of the Fe-Ni binary system. 
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Fig. S10. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the fcc 
solid solution of the Ni-Pd binary system. 
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Fig. S11. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the bcc solid 
solution of the Nb-V binary system. 
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Fig. S12. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the bcc solid 
solution of the Nb-Zr binary system.  
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Fig. S13. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the bcc solid 
solution of the Ta-Ti binary system. 
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Fig. S14. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the bcc 
solid solution of the Ti-V binary system. 
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Fig. S15. Comparison of the performance of diffusion models with 0, 1, 2 or 4 parameters for the bcc solid 
solution of the Ti-Zr binary system.  
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