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Abstract—A new timeliness metric, called Age-of-Information
(AoI), has recently attracted a lot of research interests for real-
time applications with information updates. It has been exten-
sively studied for various queueing models based on the prob-
abilistic approaches, where the analyses heavily depend on the
properties of specific distributions (e.g., the memoryless property
of the exponential distribution or the i.i.d. assumption). In this
work, we take an alternative new approach, the robust queueing
approach, to analyze the Peak Age-of-Information (PAoI). Specif-
ically, we first model the uncertainty in the stochastic arrival
and service processes using uncertainty sets. This enables us to
approximate the expected PAoI performance for very general
arrival and service processes, including those exhibiting heavy-
tailed behaviors or correlations, where traditional probabilistic
approaches cannot be applied. We then derive a new bound on
the PAoI in the single-source single-server setting. Furthermore,
we generalize our analysis to two-source single-server systems
with symmetric arrivals, which involves new challenges (e.g., the
service times of the updates from two sources are coupled in one
single uncertainty set). Finally, through numerical experiments,
we show that our new bounds provide a good approximation for
the expected PAoI. Compared to some well-known bounds in the
literature (e.g., one based on Kingman’s bound under the i.i.d.
assumption) that tends to be inaccurate under light load, our
new approximation is accurate under both light and high loads,
both of which are critical scenarios for the AoI performance.

I. INTRODUCTION

The last decades have witnessed significant advances in
the computing capabilities of mobile and sensing devices.
The communication capacity of networks has also increased
by orders of magnitude. These developments have spawned
a wide variety of real-time applications that require timely
information updates. A practically important example of such
emerging applications is autonomous vehicular systems, where
real-time vehicular status information (location, velocity, ac-
celeration, etc.) needs to be shared with nearby vehicles to
enable full self-driving capability [1], [2]. Other examples in-
clude sensor networks for environmental monitoring, weather
or news update applications, and live streaming services.

For such real-time services that require timely information
updates, a major concern is about the freshness of the data
delivered to the receiver. Those commonly used metrics, such
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as throughput and delay, cannot precisely measure this timeli-
ness related feature [3]. To that end, in the seminal work [1], a
timeliness metric called Age-of-Information (AoI) is proposed
to measure the freshness of the received data. It is defined as
the time elapsed since the most recently received update was
generated (see Eq. (2) for a formal definition). In this work,
we focus on the metric of Peak Age-of-Information (PAoI) [4],
which is defined as the maximum value of the AoI before it
drops due to a newly delivered fresh update. The PAoI is a
critical metric for certain time-sensitive applications that have
very stringent timeliness requirements. Consider autonomous
vehicular systems, where the status information must be shared
with nearby vehicles. The PAoI has to be strictly lower than a
certain threshold at all times so that the autonomous vehicular
controller makes correct decisions and thus ensures safety and
efficiency. Clearly, in such applications, it is insufficient to
guarantee a certain level of average AoI only.

Most prior work takes a probabilistic approach to analyze
and optimize the AoI and PAoI, which is based on the assump-
tion that the interarrival time and service time follow certain
distributions. For example, the exponential distribution has
played a privileged role in modeling stochastic systems [3]–
[12]. In order to make the analysis tractable, the service times
are often assumed to be identically and independently dis-
tributed (i.i.d.). Although these assumptions lead to tractable
performance analysis and optimization, such assumptions may
not hold in many practical scenarios. On the other hand, gen-
eral distributions introduce significant challenges to near-exact
analysis of the system performance. It becomes even more
challenging if the interarrival times and service times have
heavy-tailed distributions and are potentially interdependent.

To that end, we take an alternative approach to model
queueing systems based on robust optimization [13] and
robust queueing theory [14], which is originally developed
for approximating the system time. Using this new analytical
framework, we model the uncertainty in the stochastic arrival
and service processes using uncertainty sets and approach the
problem using a robust optimization formulation. Note that
the robust optimization theory can be used to model both
light-tailed and heavy-tailed systems. Therefore, our analysis
no longer relies on the assumption of specific distributions
with attractive properties (e.g., the memoryless property or
even i.i.d. arrival and service processes). Instead, only the
first and second order statistical information (i.e., mean inter-
arrival/service time and variance) is required for the analysis.
For the single-source single-server system, we derive an upper
bound on the worst-case system time under the assumption



of uncertainty sets, which will be used to approximate the
expected PAoI performance. While Kingman’s bound [15],
[16] is also a well-known approximation of the system time,
it requires i.i.d. interarrival and/or service times. Also, both
Kingman’s bound and the original robust queueing analysis
in [14] are accurate only when the traffic load is high. In
contrast, our approach does not have such limitations. Fur-
thermore, we generalize the analysis to the two-source single-
server setting with symmetric traffic arrivals. In this scenario,
the updates from two different sources will be processed by
a single server in a shared manner, which makes the PAoI
analysis more challenging.

We summarize our main contributions as follows.

• To the best of our knowledge, this is the first work that
applies the robust-queueing approach to analyzing the
PAoI performance in information-update systems. This
new analytical framework can be applied to a wide range
of queueing models without any assumption of specific
distributions. In particular, it works well for the systems
with non-i.i.d. interarrival times and service times.

• We consider a single-source system and derive an upper
bound on the PAoI. The upper bound can be used to
develop approximations that are very close to the ex-
pected PAoI under both light and high traffic loads. This
is particularly important to the AoI analysis, as both long
service times (when the load is high) and long interarrival
times (when the load is light) would result in a large AoI.

• We further generalize the analysis to the two-source set-
ting with symmetric arrivals. The generalization is non-
trivial and involves new challenges. One key challenge
is that the service times of the updates from two sources
are coupled in one single uncertainty set. Therefore, the
property of uncertainty set cannot be directly used for
analyzing the PAoI performance of each source.

• Finally, we perform extensive numerical experiments and
evaluate the PAoI performance under different traffic
loads as well as for different stochastic processes. The
simulation results show that our new bound with properly
chosen parameters of uncertainty sets provides accurate
approximations for the PAoI performance.

The remainder of this paper is organized as follows. We
discuss the related work on AoI and robust queueing theory
in Section II. Then, we describe our model and provide
our analysis for a single-source system in Section III. In
Section IV, we generalize our results to the two-source case.
Finally, we present the numerical results in Section V and
make concluding remarks in Section VI.

II. RELATED WORK

The AoI, a recently proposed metric, has inspired a series
of studies on the analysis and optimization of the timeliness
performance (see [17]–[19] for a survey). The notion of AoI is
formally introduced in [3], where the authors analyze the time-
average AoI in M/M/1, M/D/1, and D/M/1 systems under the
First-Come-First-Served (FCFS) policy. In [5], the average AoI

is analyzed for the M/M/1 system under the Last-Come-First-
Served (LCFS) policy with and without preemption. In [4],
the AoI performance of the FCFS policy in the M/M/1/1 and
M/M/1/2 queues is studied, where new arrivals are discarded
if the buffer is full. More sophisticated models have also
been considered in the literature, such as two-source systems
[8]–[10] and multi-server systems [7], [20], [21]. However,
most of the previous studies adopt the traditional probabilistic
analytical framework and assume that the interarrival time and
service time follow certain distributions.

In order to overcome the limitations of the probabilistic
framework, recent work also considers other approaches to
calculate the average AoI. For example, the authors in [22]
derive the stationary distribution of the AoI, which is in terms
of the stationary distribution of the delay and the PAoI. With
the AoI distribution, one can analyze the mean or higher
moments of the AoI in GI/GI/1, M/GI/1, and GI/M/1 queues
under several scheduling policies (e.g., FCFS and LCFS). The
authors in [23] characterize the violation probability of AoI
and use it to obtain upper bounds of AoI for GI/GI/1/1 and
GI/GI/1/2∗ systems. However, these studies are still based
on the assumption of i.i.d. random variables, which is not
required in our approach. In [24], the stochastic hybrid system
(SHS) is introduced as an analytical technique for studying the
AoI. The SHS method provides a way to derive closed-form
AoI results for simple queues described as finite-state Markov
chains. However, the SHS-based technique is limited to finite-
state systems only (e.g., finite-buffer queueing systems) and is
inapplicable to our problem.

In this paper, we propose an alternative approach based
on the robust queueing framework to analyze the AoI. In
what follows, we briefly discuss recent developments of robust
optimization and robust queueing theory. Robust optimization
has been proven to be an efficient approach for complex
optimization problems with significant uncertainties [13], [25].
This approach is later adopted in the development of robust
queueing theory [14], which can be used to provide fairly
accurate predictions of the performance of complex queue-
ing systems without making any probabilistic assumptions.
Note that in the traditional probabilistic approaches, it is
often assumed that the underlying queueing system has the
Markovian property (i.e., exponentially distributed interarrival
times and service times) and that the interarrival times and
the service times are both i.i.d. In contrast, using the robust-
queueing approach, we no longer make such probabilistic
assumptions. Motivated by the Central Limit Theorem (CLT)
and its generalized version, the randomness is modeled as
uncertainty sets rather than specific probabilistic distributions.
Moreover, the interarrival times and service times do not have
to be i.i.d. over time [14]. This enables us to characterize
the queueing performance for very general arrival and service
processes, including those exhibiting heavy-tailed behaviors or
correlations. In this paper, we will adopt this framework for
the PAoI analysis in information-update systems.
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Fig. 1: A single-source information-update system.

III. SINGLE-SOURCE SYSTEM

In this section, we discuss a simple case with one source,
one server and one monitor. We then generalize the analysis to
the setting with two pairs of source and monitor in Section IV.

A. System Model

In a single-source information-update system, there is only
one pair of source and monitor as illustrated in Fig. 1. Each
update is stamped with the time when it is generated. Let
an denote the generation time of the n-th update. Then the
interarrival time between the n-th update and the (n − 1)-st
update can be denoted by Tn , an−an−1. We assume that the
interarrival time follows a general distribution with mean 1/λ.
After an update is generated, it needs to be processed by the
server before it is delivered to the monitor. The server has a
FCFS queue of infinite buffer size. We assume that the update
arrives to the queue immediately after being generated. Hence,
the n-th update arrives to the queue at time an as well. Let
Wn denote the waiting time of the n-th update. The service
time of the n-th update is denoted by Xn, which also follows
a general distribution with mean 1/µ. Let fn denote the time
when the service of the n-th update at the server is finished.
After the update completes its service, it will be immediately
delivered to the monitor. Therefore, the update arrives at the
monitor also at time fn. Let Sn denote the total system time
experienced by the n-th update, which is also equal to the sum
of its waiting time in the queue and the service time,

Sn , fn − an = Wn +Xn. (1)

For such a time-sensitive information-update system, we are
interested in the freshness of data at the monitor. The freshness
of data is measured by the metric Age-of-Information (AoI).
It is defined as the time elapsed since the freshest update
received by the monitor was generated. Assume that the latest
update received by the monitor at time t is stamped with the
generation time a(t), then the AoI at the monitor is

∆(t) , t− a(t). (2)

An example of the evolution of the AoI at the monitor is shown
in Fig. 2. The AoI would increase linearly when no update is
transmitted to the monitor, and it reaches a local maximum
value immediately before a new update is delivered. Such a
maximum value is called the Peak Age-of-Information (PAoI).
There is a PAoI corresponding to each update in our example.
Let Pn denote the n-th PAoI. From Fig. 2, it is easy to see
Pn = fn − an−1. This can be rewritten as the sum of the
interarrival time between the n-th and (n− 1)-st updates (i.e.,
Tn = an−an−1) and the system time of the n-th update (i.e.,
Sn = fn − an). Then, the expected PAoI can be expressed as

E [Pn] = E [Tn] + E [Sn] . (3)
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Fig. 2: An illustration of the AoI evolution at the monitor in
the single-source system.

It is important to study the PAoI performance since it
represents the locally largest values of the AoI at the monitor
and captures more stringent timeliness requirements. Most of
the previous work takes a probabilistic approach to analyze
the PAoI, which assumes specific types of distribution of the
service and interarrival times. Taking a different path, we adopt
a worst-case approximation approach based on the robust
queueing theory, which only requires the knowledge of the first
and second order statistical information of the distributions.

B. The Worst-Case Approach

In this subsection, we will analyze the expected PAoI (see
Eq. (3)). Since we trivially have E [Tn] = 1/λ, it remains to
analyze the expected system time E [Sn].

Similar to [14], we consider a sample path of n updates.
The generation and service process of the updates can be
characterized by the interarrival times Tn , (T1, T2, . . . , Tn)
and the service times Xn , (X1, X2, . . . , Xn), respectively.
Applying the robust queueing theory proposed in [14], we
adopt a worst-case analysis to obtain an upper bound on the
system time Sn, which will be leveraged to approximate the
expected system E [Sn]. Different from [14] that neglects the
accuracy of Sn under light load, we characterize Sn under
both light and high loads in the single-source system and the
two-source system (see more discussions in Section III-C and
Section IV, respectively). To begin with, we express the system
time of the n-th update Sn as follows [26]:

Sn = Wn +Xn

= max
1≤k≤n

(
n∑
i=k

Xi −
n∑

i=k+1

Ti

)
, (4)

where we recall that Wn (Xn, resp.) is the waiting time (the
service time, resp.) of the n-th update. Note that Sn involves
interarrival times Tn and service times Xn.

From Eq. (4), we can see that the analysis of the system
time involves the sum of system time and interarrival time
of previous updates, which often makes the probabilistic ap-
proach intractable. On the other hand, the Generalized Central
Limit Theorem (GCLT) indicates that the distribution of the
sum of multiple i.i.d. random variables converges to a stable



distribution. Motivated by GCLT, we assume that the partial
sum of service times satisfies the following:∑n

i=kXi − (n− k + 1)/µ

(n− k + 1)1/α
≤ Γs, (5)

where 1/µ is the expected service time, α ∈ (1, 2] is the
tail coefficient that models possibly heavy-tailed probability
distributions1 (the closer to 1, the heavier the tail), and Γs > 0
is the variability parameter chosen to ensure that Eq. (5) is
satisfied with high probability. For instance, the normalized
sum of a large number of positive Pareto random variables
can be approximated by a random variable Y following
a standard stable distribution with a tail coefficient α and
Cα = [G(1− α) cos(πα/2)]1/α, where G(·) represents the
gamma function. For a tail coefficient of α = 1.5, we obtain
P (Y ≤ 6.5) ≈ 0.975 and P (Y ≤ 19) ≈ 0.995 [14]. Thus,
choosing Γs = 6.5 is one good option in this instance. Note
that there is a tradeoff between robustness and accuracy when
choosing Γs. That is, when choosing a larger enough Γs, we
can ensure that Eq. (5) is satisfied with a higher probability
(i.e., stronger robustness), but this may result in a loose bound
on the system time (i.e., lower accuracy). On the other hand,
when choosing a smaller Γs, we can obtain tight bounds on
the system time, but Eq. (5) may be violated with a higher
probability. In Section V-A, we discuss one way of choosing
Γs that attempts to balance the tradeoff. With a properly
chosen Γs, we further assume that the service times Xn belong
to the following parameterized uncertainty set [14]:

Us ,

{
Xn |

∑n
i=kXi − (n− k + 1)/µ

(n− k + 1)1/α
≤ Γs,

∀ 1 ≤ k ≤ n

}
. (6)

Although the uncertainty set is motivated by the i.i.d. as-
sumption, Xn ∈ Us does not necessarily require that
X1, X2, . . . , Xn be i.i.d.

Similarly, we assume that the interarrival times Tn belong
to the following uncertainty set:

Ua ,

{
Tn |

∑n
i=k+1 Ti − (n− k)/λ

(n− k)1/α
≥ −Γa,

∀ 0 ≤ k ≤ n− 1

}
, (7)

where 1/λ is the mean interarrival time, α ∈ (1, 2] is the
tail coefficient that models possibly heavy-tailed probability
distributions, and Γa > 0 is the variability parameter chosen
to ensure that Eq. (7) is satisfied with high probability. We
consider the lower bound on the partial sums of the interarrival
times as that leads to the worst-case system time. We assume
that the distributions of the service time and interarrival time
have the same tail coefficient α. However, we assume no
dependence between Tn and Xn and will discuss the case
with dependence towards the end of this paper.

1The heavy-tailed distributions (like the Pareto or the Weibull) have heavier
tails than the exponential distribution. Roughly speaking, there is a larger
probability of getting very large values.

C. Performance Analysis
Let Ŝn denote the worst-case system time of the n-th update.

From Eq. (4), we have the following:

Ŝn , max
Tn∈Ua

max
Xn∈Us

max
1≤k≤n

(
n∑
i=k

Xi −
n∑

i=k+1

Ti

)

≤ max
1≤k≤n

(
max

Xn∈Us

n∑
i=k

Xi − min
Tn∈Ua

n∑
i=k+1

Ti

)
. (8)

It is shown in [14] that we can find the sample path of
X̂n ∈ Us and T̂n ∈ Ua that achieve the worst-case system
time (i.e.,

∑n
i=k X̂i = max

Xn∈Us

∑n
i=kXi and

∑n
i=k+1 T̂i =

min
Tn∈Ua

∑n
i=k+1 Ti). Plugging such T̂n and X̂n into Eq. (8)

gives the exact expression of Ŝn:

Ŝn = max
1≤k≤n

{
n− k + 1

µ
− n− k

λ
+ Γs(n− k + 1)1/α

+Γa(n− k)1/α

}
. (9)

As we can see from Eq. (9), the worst-case system time Ŝn
is proportional to the mean service time 1/µ and inversely
proportional to the mean interarrival time 1/λ. Also, larger Γs
and Γa lead to a larger Ŝn, given that Γs and Γa are used to
bound the sum of service times Xn and the sum of interarrvial
times Tn in the uncertainty sets, respectively.

Based on Eq. (9) and some relaxations, one can derive an
upper bound on the worst-case system time Ŝn. We restate
this result in the following lemma.

Lemma 1 (Theorem 2 in [14]). In a single-source FCFS
queueing system with Tn ∈ Ua and Xn ∈ Us, we have

Ŝn ≤
α− 1

αα/(α−1)
· (Γs + Γa)α/(α−1)

(1/λ− 1/µ)1/(α−1)
+ 1/λ. (10)

It has been shown that the above upper bound is nearly tight
when the traffic load is high [14]. However, the relaxations
used in [14] renders the bound loose when the traffic load is
light, i.e., when λ is relatively small. This is acceptable in the
analysis of queueing system with respect to traditional metrics,
such as delay or throughput, which are typically pronounced
in the high-load regime. While for the metric of PAoI, a low
arrival rate means long interarrival times between consecutive
updates, which leads to a poor PAoI performance as well.
This indicates that both light and high loads affect the PAoI
performance significantly, and thus, focusing on the system
time in the high-load regime only is insufficient. Instead of
introducing relaxations, we propose an alternative method that
provides the exact characterization of the worst-case system
time. We derive a new upper bound of the worst-case system
time, which is nearly tight under both light and high loads.
The upper bound is presented in the following theorem.

Theorem 1. Define the following function f(m) , (m+1)/µ−
m/λ+ Γs(m+ 1)1/α + Γam

1/α and let

l =

(
α(1/λ− 1/µ)

Γa + Γs

)α/(1−α)
, (11)



where α ∈ (1, 2]. In a single-server FCFS queueing system
with Tn ∈ Ua and Xn ∈ Us, we have

Ŝn ≤
{

max{f(n− 1), 0}, if n− 1 ≤ blc − 1
max{f(m∗), 0}, otherwise

, (12)

where m∗ ∈ arg max
m∈{blc−1,blc,blc+1}∩[0,n−1]

f (m).

Proof. The derivation of the upper bound of the worst-case
system time Ŝn in Eq. (12) utilizes the convacity of Eq. (9).
Let m = n − k. According to Eq. (9), we can rewrite the
worst-case system time as

Ŝn = max
0≤m≤n−1

m+ 1

µ
− m

λ
+ Γs(m+ 1)1/α + Γam

1/α

= max
0≤m≤n−1

f(m). (13)

Let m∗ be the integral maximizer of f(m), i.e., Ŝn = f(m∗).
In order to find the bound of m∗, we extend the domain of
f(m) to the set of nonnegative real numbers (i.e., m ∈ R+).
The second order derivative of f(m) is

f
′′
(m) =

1− α
α2

(
Γs(m+1)(1−2α)/α+Γam

(1−2α)/α
)
, (14)

which is negative since α ∈ (1, 2]. This implies that f(m) is
concave. Let M ∈ R+ be the continuous maximizer of f(m),
i.e., M is the solution of the following equation:

f ′(m) =
1

α

(
Γs(m+ 1)

1−α
α + Γam

1−α
α

)
− 1

λ
+

1

µ
= 0. (15)

However, it is usually difficult to solve Eq. (15) to get the
expression of M . We then define function g (m) as

g (m) =
1

α
(Γsm

1−α
α + Γam

1−α
α )− 1

λ
+

1

µ
, (16)

and let l be the solution of g (m) = 0, which gives

g (l) =
1

α
(Γsl

1−α
α + Γal

1−α
α )− 1

λ
+

1

µ
= 0, (17)

and

l =

(
α(1/λ− 1/µ)

Γa + Γs

) α
1−α

. (18)

Note that the following is satisfied:

f ′ (l) =
1

α

(
Γs(l + 1)

1−α
α + Γal

1−α
α

)
− 1

λ
+

1

µ

=
Γs
α

(
(l + 1)

1−α
α − l

1−α
α

)
< 0, (19)

where the second equality follows from Eq. (17) and the last
inequality holds because x

1−α
α is a decreasing function for α ∈

(1, 2]. Similarly, we can show f ′ (l − 1) > 0. Therefore, we
have f ′ (l − 1) > f ′ (M) > f ′ (l), which implies l−1 < M <
l since f ′ (m) is a decreasing function due to the concavity
of f(m). Some thoughts give that the integral maximizer m∗

must satisfy the following: m∗ ∈ {blc−1, blc, blc+1}. Recall
that function f (m) is defined on [0, n−1]. If n− 1 ≤ blc − 1,
i.e., the integral maximizer m∗ is out of the domain, then we
have Ŝn ≤ f (n− 1) since f (m) is an increasing function
on [0, n − 1]; otherwise, if n − 1 > blc − 1, then m∗ must
be a value belonging to {blc − 1, blc , blc+ 1} that satisfies
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Fig. 3: A two-source information-update system.

m∗ ≤ n− 1 and achieves the maximum of f(m). Finally, we
take the maximum between f(m∗) and 0 because the system
time is nonnegative. This completes the proof.

Using the upper bound of the worst-case system time
derived in Theorem 1, we can approximate the expected
system time by choosing appropriate variability parameters
Γa and Γs (see Section V-A for detailed discussions). This
enables us to approximate the expected PAoI given that the
expected interarrival time is already known (i.e., 1/λ).

IV. TWO-SOURCE SYSTEM

In this section, we consider a more general system that
consists of two sources, one shared server, and two monitors.
Each monitor receives the update only from one source. An
illustration of the system is shown in Fig. 3. Our interest is
to analyze the expected PAoI performance at each monitor.
Note that this generalization is non-trivial and involves new
technical challenges (e.g., the service times of the updates
from two sources are coupled in one single uncertainty set).

A. System Model

There are a total number of n updates from both sources all
going through one single server to the corresponding monitor.
We assume that these two sources are symmetric, i.e., their
update interarrival time follows the same general distribution
with mean 1/λ and their update’s service time also follows
the same general distribution with mean 1/µ. We assume
2λ/µ < 1 in order to keep the system stable. We use a(s)n
(f (s)n , resp.) to denote the arrival time (service completion
time, resp.) of the n-th update from source s = 1, 2. The
service time of the n-th update from source s is denoted by
X

(s)
n , f

(s)
n − a

(s)
n . The interarrival time between the n-th

update and the (n− 1)-st update from source s is denoted by
T

(s)
n , a

(s)
n − a(s)n−1. Then, the AoI at monitor s is defined as

∆(s)(t) , t− a(s)(t), (20)

where a(s)(t) denotes the generation time of the most recently
received update at monitor s. Similarly, the n-th PAoI at mon-
itor s can be expressed as P (s)

n , f
(s)
n − a(s)n−1 = T

(s)
n +S

(s)
n ,

and the expected PAoI can be denoted as

E[P (s)
n ] = E[T (s)

n ] + E[S(s)
n ] = 1/λ+ E[S(s)

n ]. (21)

Similar to the single-source case, we utilize the robust queue-
ing theory to analyze the worst-case performance of Sn (the
system time of the n-th update, either from source 1 or 2) and
use it to approximate E[S

(s)
n ].



Since the updates from both sources will join the same
FCFS queue, we reorder all updates according to their arrival
time. Let an denote the arrival time of the n-th update that
arrives at the server2. Note that this update could be from
either source 1 or 2. Consider a sample path of n updates
that arrive at the server at time An = {a1, a2, . . . , an} such
that a1 ≤ a2 ≤ · · · ≤ an. The service time of the n-th
update is denoted by Xn, and corresponding service times
for the whole sample path are Xn = {X1, X2, . . . , Xn}. The
interarrival time between the n-th and (n − 1)-st updates is
denoted by Tn , an−an−1, and the corresponding interarrival
times for the whole sample path are Tn = {T1, T2, . . . , Tn}.
To distinguish the updates from source 1 and source 2, we
further define the following functions that map the update to
its source according to the arrival times:
bs(n) , arg min

k
a
(s)
k ≥ an, es(n) , arg max

k
a
(s)
k ≤ an,

s = 1, 2.

According to the mapping function, es(n) is the index of the
last update from source s and a(s)es(n) is the arrival time of this
last update. Therefore, the interarrival times of two sources can
be denoted as T(1)

e1(n)
= {T (1)

1 , T
(1)
2 , . . . , T

(1)
e1(n)
} and T

(2)
e2(n)

=

{T (2)
1 , T

(2)
2 , . . . , T

(2)
e2(n)
}, respectively.

Now, we consider the system time corresponding to the last
update that arrives at the server (i.e., the n-th update). Assume
that this update is from source 1. Recall that the system time
Sn (see Eq. (4)) can be written as

Sn = max
1≤k≤n

(

n∑
i=k

Xi −
n∑

i=k+1

Ti). (22)

In the rest of the paper, the analysis is based on the assumption
that the n-th update is from source 1. It is easy to apply the
same analysis to the case that the n-th update is from source 2.

For the two-source system, the AoI is determined by service
times Xn and the interarrival times of two sources, T(1)

e1(n)
and

T
(2)
e2(n)

. We need three uncertainty sets for them. First, for the
service times, we assume that two sources have the same type
of updates. Therefore, the same assumption as in the single-
source system still holds since we also have only one server,
i.e.,

Us =

{
(X1, X2, . . . , Xn)|

∑n
i=kXi − n−k+1

µ

(n− k + 1)1/α
≤ Γs,

∀ 1 ≤ k ≤ n

}
. (23)

For the interarrival time T
(1)
e1(n)

and T
(2)
e2(n)

, we assume that
the uncertainty set for source s is

Usa =

{
(T

(s)
1 , T

(s)
2 , . . . , T

(s)
es(n)

)|
∑l
i=k T

(s)
i − l−k+1

λ

(l − k + 1)1/α
≥ −Γa,

∀ 1 ≤ l ≤ es(n) and 1 ≤ k ≤ l

}
. (24)

2We use the same notations as those in the single-source case. If it has a
superscript, the superscript indicates which source this notation is related to.
If not, this notation corresponds to the server side.

Here the assumptions for α, Γs, and Γa are the same as that
in the single-source case. With the uncertainty sets for each
source, we further define the uncertainty set for the whole
sample path, Ua = U1

a ∪ U2
a .

B. Performance Analysis

In this subsection, we derive an upper bound on the worst-
case system time in the two-source system.

Theorem 2. Define the following function3 f(m) ,
2 (m+ 1) /µ−m/λ+ 2Γs(m+ 1)1/α + Γam

1/α, and let

l =
(α(1/λ− 2/µ)

Γa + 2Γs

) α
1−α

, (25)

where α ∈ (1, 2]. In a single-server FCFS queue with two
symmetric sources, such that T

(s)
es(n)

∈ Usa (s = 1, 2) and
Xn ∈ Us, we have

Ŝn ≤
{

max
{
f
(
− 1

2

)
, f
(
n
2 − 1

)
, 0
}
, if n

2 − 1 ≤ blc − 1
max

{
f
(
− 1

2

)
, f (m∗) , 0

}
, otherwise

,

(26)
where m∗ ∈ arg max

m∈D∩{m≤n/2−1}
f (m) and D , {blc − 1, blc −

1/2, blc , blc+ 1/2, blc+ 1}.

Proof. As shown in Eq. (26), the expression of the system time
is very similar to that in the single-source system. However, the
analysis is quite different since the interarrival times consist
of two sequences. Given T

(1)
e1(n)

and T
(2)
e2(n)

, the worst-case
system time is

Ŝn(T
(1)
e1(n)

,T
(2)
e2(n)

) ≤ max
1≤k≤n

( max
Xn∈Us

n∑
i=k

Xi −
n∑

i=k+1

Ti).

(27)

First, it is shown in [14] that there exists a sequence of service
times X̂n ∈ Us that achieves the upper bound in Eq. (27). We
restate the results here that the sequence X̂n satisfies:

n∑
i=k

X̂i = max
Xn∈Us

n∑
i=k

Xi =
n− k + 1

µ
+ Γs(n− k + 1)1/α,

∀ k = 1, 2, . . . , n. (28)

This implies that the service times that achieve the worst-
case system time are independent of the interarrival times.
Therefore, we can replace the partial sum of service times
with Eq. (28):

Ŝn = max
Tn∈Ua

max
1≤k≤n

(
n∑
i=k

X̂i −
n∑

i=k+1

Ti)

≤ max
1≤k≤n

( n∑
i=k

X̂i − min
Tn∈Ua

n∑
i=k+1

Ti

)
(29)

Different from the service times, the interarrival times are from
two different uncertainty sets and the number of updates from
each source depends on each other. There do not exist two
interarrival time sequences that achieve the maximum value
of the system time for all possible k’s as we show in the

3By slightly abusing the notation, we also use f(m) here.



single-source case. As such, we define function S(k) for all
k = 1, 2, . . . , n as

S(k) ,
n∑
i=k

X̂i − min
Tn∈Ua

n∑
i=k+1

Ti, (30)

and maximize the value of S(k) for every 1 ≤ k ≤ n.
Therefore, the worst-case system time can be rewriten as

Ŝn = max
1≤k≤n

S(k). (31)

Note that S(k) is completely determined by the term of
interarrival times’ partial sum T (k), which is defined as

T (k) , min
Tn∈Ua

n∑
i=k+1

Ti. (32)

Then, deriving an upper bound of S(k) is equivalent to
deriving a lower bound of T (k). The partial sum of the
interarrival times from source 1 and source 2 are both less
than T (k), i.e.,

T (k) ≥ min
T

(1)

e1(n)
∈U1

a

e1(n)∑
i=b1(k)+1

T
(1)
i and (33)

T (k) ≥ min
T

(2)

e2(n)
∈U2

a

e2(n)∑
i=b2(k)+1

T
(2)
i . (34)

As shown in uncertainty sets U1
a and U2

a , the lower bound of
the partial sum of interarrival times depends on the number of
updates. The total number of updates from the k-th update to
the n-th update is (n−k+1). Let h be the number of updates
from source 2, i.e., e2(n) − b2(k) + 1 = h. Correspondingly,
we have e1(n) − b1(k) + 1 = n − k + 1 − h updates from
source 1. According to the uncertainty sets Eq. (24), we have
the following two lower bounds:

e1(n)∑
i=b1(k)+1

T
(1)
i ≥ e1(n)− b1(k)

λ
− Γa (e1(n)− b1(k))

1/α

=
n− k − h

λ
− Γa(n− k − h)1/α, (35)

e2(n)∑
i=b2(k)+1

T
(2)
i ≥ e2(n)− b2(k)

λ
− Γa (e2(n)− b2(k))

1/α

=
h− 1

λ
− Γa(h− 1)1/α. (36)

We denote the lower bounds in Eq. (35) and Eq. (36) as
L1(h) = (n − k − h)/λ − Γa(n − k − h)1/α and L2(h) =
(h− 1)/λ− Γa(h− 1)1/α, respectively. Therefore, we have

T (k) ≥ min
0≤h≤n−k

max{L1(h), L2(h)}. (37)

Note that both L1(h) and L2(h) are convex functions and
they are symmetric along the line of h = (n − k + 1)/2,
which implies that the continuous minimizer of Eq. (37) is
h′ = (n− k + 1)/2. Therefore, the lower bound for T (k) is

T (k) ≥ (n− k − 1)/(2λ)− Γa((n− k − 1)/2)1/α. (38)

By replacing the partial sum T (k) with its lower bound in
Eq. (38), we define the upper bound of S(k) as Ŝ(k), i.e.,

Ŝ(k) =
n∑
i=k

X̂i −
n− k − 1

2λ
+ Γa(

n− k − 1

2λ
)1/α

=
n− k + 1

µ
+ Γs(n− k + 1)1/α

− n− k − 1

2λ
+ Γa(

n− k − 1

2
)1/α. (39)

Therefore, we have S(k) ≤ Ŝ(k) for all 1 ≤ k ≤ n. Then, we
can rewrite the upper bound of the system time as

Ŝn ≤ max
1≤k≤n

Ŝ(k). (40)

Similar to the proof of Theorem 1, let m = (n− k − 1)/2 ∈
{−1/2, 0, 1/2, . . . , n/2− 1}. Then, according to Eq.(39) and
the defined f(m), Eq.(40) can be rewritten as

Ŝn ≤ max
− 1

2≤m≤
n
2−1

f(m) = max

{
f

(
−1

2

)
, max
0≤m≤n2−1

f(m)

}
.

(41)
Next, we consider the second item in max function of Eq. (41).
Let m∗ be the maximizer, i.e., f(m∗) = max

0≤m≤n2−1
f(m).

We can also extend m ∈ {0, 1/2, . . . , n/2− 1} to the real
numbers, i.e., m ∈ R+. It is easy to check that f(m) is also
concave since we have

f
′′
(m) =

1− α
α2

(
2Γs(m+ 1)

1−2α
α + Γam

1−2α
α

)
< 0. (42)

Let M ∈ R+ be the continuous maximizer of f(m), i.e.,

f ′ (M) =
2

µ
− 1

λ
+

1

2

(
2Γs(M + 1)

1−α
α + ΓaM

1−α
α

)
= 0.

(43)
In order to obtain the range of M , let l be the solution of the
following equation,

2

µ
− 1

λ
+

1

α

(
2Γsm

1−α
α + Γam

1−α
α

)
= 0, (44)

which gives

l =

(
α(1/λ− 2/µ)

Γa + 2Γs

) α
1−α

. (45)

Similar to the single-source case, we have l − 1 < M < l.
Therefore, there must be m∗ ∈ {blc − 1, blc − 1/2, blc , blc+
1/2, blc + 1}. Recall that the concave function f(m) is
defined on [0, n/2 − 1]. If n/2− 1 ≤ blc − 1, then we
have Ŝn ≤ f (n/2− 1); otherwise, m∗ must be a value
among {blc − 1, blc − 1/2, blc , blc+ 1/2, blc+ 1} that sat-
isfies m∗ ≤ n/2− 1 and achieves the maximum of f(m).
Together with Eq. (41) and the fact that the system time is
nonnegative, we complete the proof.

By choosing appropriate variability parameters (Γa and Γs),
we can accurately approximate the expected system time and
thus the expected PAoI at each monitor, given that the expected
interarrival time is already known (i.e., 1/λ).

V. NUMERICAL RESULTS

In this section, we perform extensive simulations to evaluate
the accuracy of our theoretical results. We first introduce



(θ0, θ1, θ2) Single-Source Two-Source
θ0 -0.376 -1.302
θ1 3.978 6.021
θ2 0.5 0.7

TABLE I: Service adaptation regimes.

Methods Exponential Normal Uniform

Single-
Source

Kingman’s bound 33.86% 22.58% 14.89%
Robust Approx. 1 32.01% 34.90% 36.49%
Robust Approx. 2 8.32% 8.47% 9.28%

Two-
Source Robust Approx. 3 12.68% 10.05% 9.79%

TABLE II: Error percent of different approximation methods.

how to approximate the expected system time of the steady-
state queueing networks with the worst-case system times
proposed in Theorem 1 or Theorem 2. Then, for the single-
source system, we show that our results in Theorem 1 can
approximate the expected PAoI much better than the bounds
in the literature (e.g., one bases on the Kingman’s bound),
especially in the light load case. In the end, we also show that
the bound in Theorem 2 can also approximate the expected
PAoI in two-source case very well.

A. Variability Parameters

Note that the bounds in Theorem 1 and Theorem 2 do
not depend on the specific distribution of the interarrival
time and service time. The update arrival process and service
process are fully characterized by the primitive data (λ, σ2

a)
and (µ, σ2

s), respectively, where σ2
a and σ2

s denote the vari-
ance of the interarrival time and service time, respectively.
Therefore, it remains to translate the stochastic primitive data
into uncertainty sets with appropriate variability parameters
(Γa,Γs) such that the bounds proposed in Theorem 1 and
Theorem 2 can approximate the expected system time of
steady-state queueing networks well.

Inspired by the Kingman’s bound4 [15], a mapping function
is provided in [14] that describes the variability parameters in
terms of the distributions’ first and second statistics,

Γa = σa,Γs = (θ0 + θ1σ
2
s + θ2σ

2
aρ

2)1/2 − σa, (46)

where ρ = λ/µ is the traffic density and (θ0, θ1, θ2) are con-
stants that can be derived from linear regression. Specifically,
in order to obtain appropriate values of (θ0, θ1, θ2), we first
simulate multiple instances of the queue for various parameters
of (ρ, σa, σs) and different arrival and service distributions.
Then we employ the linear regression to generate appropriate
values for (θ0, θ1, θ2) to adapt the value Ŝn obtained in
Theorem 1 (or Theorem 2) to the expected value of the
simulated system time. This allows us to build a dictionary
or a look-up table of variability parameters values for given
arrival and service distributions that makes the following
approximation E[S(T,X)] ≈ Ŝn(Γa,Γs). Table I provides
the resulting (θ0, θ1, θ2) for each adaption regimes.

4The Kingman’s bound shows that the expected system time can be bounded
by E [S] 6 λ

2
· σ2

a+σ2
s

1−ρ
+ 1

µ
.

B. Single-Source Systems

We first consider the single-source setting, where the source
generates updates with rate λ, and the service rate of the server
is fixed with µ = 1. We consider three different distributions
for the interarrival times and service times: i) exponential dis-
tribution, ii) normal distribution, and iii) uniform distribution.
For the normal distribution, we take the absolute value so that
only positive interarrival time and service time are used. We
consider the normal distribution and uniform distribution in
order to show that our bound does not rely on the properties
of specific distributions (e.g., the memoryless property of the
exponential distribution).

In Fig. 4, we plot the PAoI as the arrival rate λ increases
when the service rate µ = 1. We name the approximation
derived from [14] and Theorem 1 as Robust Approximation
1 and Robust Approximation 2, respectively. Note that the
variability parameters used in our Robust Approximation 2
are from Table I. Then, we compare the Kingman’s bound,
Robust Approximation 1 and Robust Approximation 2 against
the simulated PAoI. Though the Kingman’s bound and Ro-
bust Approximation 1 are originally defined for the expected
system time, they can also be used as the PAoI bounds by
simply adding the expected interarrival time 1/λ. In order to
demonstrate the detailed performance of different bounds, the
error percent (which is the sum of the difference between the
simulated PAoI and the bound normalized by the simulated
PAoI in each arrival rate, divided by the total number of arrival
rates) of each bound are also given in Table II. We run the
simulations with a large number of arrivals (n > 104) to ensure
that the steady state is reached. For each setting, we run the
simulation for 50 rounds and take the average.

First, we can see that the PAoI is large under both light and
high loads for all the considered distributions. This is because
under the light load, the update arrival rate is low and the
interarrival time between updates is large, which leads to a
large PAoI; while under the high load, lots of updates wait to
be served in the queue and the delay of those updates becomes
large, which also leads to a high PAoI. This implies that we
need to approximate PAoI well under both light and high loads.
Second, we observe that Robust Approximation 2 we proposed
can approximate the PAoI very well in all different settings.
From Fig. 4b and Fig. 4c, we can see that the robust queueing
approach is quite general and works well under normal and
uniform distributions as well.

Compared to Robust Approximation 1, Robust Approxima-
tion 2 is much closer to the simulation results when the traffic
load is light. This complies with our theoretical analysis, since
Robust Approximation 2 cares about both light load and high
load while Robust Approximation 1 is developed more towards
approximating the system time under the high load. For the
Kingman’s bound, it is known that the result is tight with light-
tailed distribution in high load. However, similar to Robust
Approximation 1, the approximation of Kingman’s bound is
also loose in the light load. Therefore, our proposed bound
provides a competitive alternative to approximating the PAoI
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Fig. 4: Peak AoI under different distributions in the single-source setting.
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Fig. 5: Peak AoI under different distributions in the two-source setting with symmetric arrivals.

performance in information-update systems.

C. Two-Source Systems
In this subsection, we consider the information-updating

system with two symmetric sources and one single server. Here
the two sources generate updates with the same interarrival
time distribution (also the same expected interarrival time
1/λ) and the same service time distribution (also the same
expected service time 1/µ), i.e., they are symmetric. Similar
to the single-source case, we also consider three different
distributions, where the interarrival times and service times are
both exponential distribution, normal distribution and uniform
distribution, respectively. We name the approximation derived
from Theorem 2 as Robust Approximation 3, which adopts the
variability parameters in Table I. With increasing arrival rate
λ and fixed service rate µ = 1, the PAoI performances of one
arbitrary source are shown in Fig. 5 and Table II.

Note that the Kingman’s bound and Robust Approxima-
tion 1 cannot be used to approximate the PAoI in the two-
source setting since they are only derived for the single-source
systems. Again, we observe that Robust Approximation 3 can
approximate the average PAoI well under both light and high
traffic loads.

VI. CONCLUSION

In this paper, we applied the robust queueing theory to
analyzing the AoI performance in the communication systems.

By modeling the uncertainty in the stochastic arrival and
service processes using uncertainty sets, we provided a robust
bound of the worse-case delay that can be used to approximate
the expected PAoI in the single-source single-server systems.
Furthermore, we generalized our bound to the two-source
single-server systems with symmetric arrivals. We showed that
our bounds work well under both light and high loads and
outperform prior bounds (e.g., the Kingman’s bound), which
could be quite inaccurate under the light load. Moreover, our
results do not rely on the property of specific distributions and
can thus be widely applied to more general settings.

There are several of interesting questions that are worth
future work. For example, we only show that the robust
queueing bound works well for the light-tailed systems in
the simulations. However, the robust queueing theory is also
capable of modeling the heavy-tailed behaviors. It would be
interesting to investigate the effectiveness of the proposed
bounds in the heavy-tailed systems. In addition, we assume
that the service time and interarrival time have the same tail
coefficient. It would be nice to generalize the results for the
case where the service time and interarrival time have different
tail coefficients. Finally, it is also worth studying the impact of
the dependence between the arrival and service process [27].
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