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Purpose: Nucleic acid-based therapies are a promising therapeutic tool. The major obstacle
in their clinical translation is their efficient delivery to the desired tissue. We developed
a novel nanosized delivery system composed of conjugates of a-tocopherol, polyethylenei-
mine, and polyethylene glycol (TPP) to deliver nucleic acids.

Methods: We synthesized a panel of TPP molecules using different molecular weights of
PEG and PEI and analyzed with various analytical approaches. The optimized version of
TPP (TPPy;; - the 1:1:1 molecular ratio) was self-assembled in water to produce
nanostructures and then evaluated in diversified in vitro and in vivo studies.

Results: Through a panel of synthesized molecules, TPP;;; conjugate components self-
assembled in water, forming globular shaped nanostructures of ~90 nm, with high nucleic
acid entrapment efficiency. The polymer had low cytotoxicity in vitro and protected nucleic
acids from nucleases. Using a luciferase-expressing plasmid, TPP;;;-plasmid nano-
complexes were rapidly up-taken by cancer cells in vitro and induced strong transfection,
comparable to PEI. Colocalization of the nano-complexes and endosomes/lysosomes sug-
gested an endosome-mediated uptake. Using a subcutaneous tumor model, intravenously
injected nano-complexes preferentially accumulated to the tumor area over 24 h.
Conclusion: These results indicate that we successfully synthesized the TPP;;; nanocarrier
system, which can deliver nucleic acids in vitro and in vivo and merits further evaluation.
Keywords: nanoparticles, gene delivery, plasmid, tocopherol, polyethyleneimine,
transfection

Introduction

Advances in our understanding of nucleic acid constructs and their respective
activities have allowed for the identification, development, and utilization of an
entire novel group of therapeutic moieties.' Nucleic acid delivery poses significant
challenges. Briefly, nucleic acids are high-molecular-weight molecules, hydrophilic
and negatively charged, which are unable to cross the negatively charged, lipophi-
lic-bilayered cell membrane. Furthermore, unprotected nucleic acids are rapidly
degraded by nucleases in the circulation in vivo.

Not surprisingly, intensive work takes place on the development of polymer-based
systems for the cellular delivery of nucleic acids, such as plasmids, siRNAs, and
miRNAs. Efficient in vitro transfection and favorable in vivo biodistribution to the
tumor area remains an elusive goal for nucleic acid delivery. In fact, in recent years,

there has been an increasing complexity on the molecular structures of the potential
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nucleic acid delivery carriers, which may not necessarily
translate to improved therapeutic benefits.

a-Tocopherol is the predominant form of the Vitamin
E family of molecules, which consists of four tocopherols
and four tocotrienols.” Early on since its discovery, this
highly hydrophobic molecule was established as an antiox-
idant, free radical scavenger, protecting organisms against
oxidative damage.” Due to its biocompatibility and apparent
lack of toxicity, a-tocopherol has been widely used success-
fully in drug formulations. A prominent example is the a-
tocopherol-Polyethylene glycol molecule, also referred to as
TPGS (D-a-tocopheryl polyethylene glycol succinate). Its
amphiphilic structure has been widely used in wetting,
solubilizing, and emulsifying hydrophobic molecules, as
well as an alternative source of the fat-soluble Vitamin E.*
In addition, this simple Vitamin E derivative can signifi-
cantly improve the pharmacokinetics, biodistribution, and
efficacy of active compounds following intravenous admin-
istration, such as paclitaxel,5 curcumin, gemcitabine,6 and
other.

PEI has consistently demonstrated a strong capacity to
transfect cells in vitro and in vivo. This positive-charged
polymer complexes with the negatively charged nucleic
acids, forming polyplexes.” The PEI-nucleic acid com-
plexes enter the cells through endocytosis and release the
nucleic acids through the “proton-sponge” mechanism.®

In this study, we developed Vitamin E derivatives con-
jugated with polyethyleneimine (PEI) and polyethylene gly-
col (PEG) for the delivery of nucleic acids (Figure 1). We
capitalize on the promising simplicity and behavior of the
TPGS molecule, to develop a simple Vitamin E derivative
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capable of harboring both hydrophobic compounds and
nucleic acids while protecting against DNA/RNA-se degra-
dation and with improved pharmacokinetics. The entrapment
of nucleic acids inside the PEI corona will accommodate
their protection from degradation and their endosomal
escape through the proton-sponge effect,” while the hydro-
philic neutral PEG corona will facilitate the carrier’s pro-
longed systemic circulation, and accumulation to the tumor
area through the enhanced permeability and retention effect.”
In this part of our work, we describe the synthesis and
characterization of the Vitamin E derivatives, annotated at
TPP polymers, aiming for the development of nanocarriers
for intravenous administration of nucleic acids with the
smallest nano-sized dimensions, and with excellent nucleic
acid complexation and protection from enzymatic degra-
dation. In our study, we used the plasmid pGL-3
(Promega, Madison, WI) as a model nucleic acid.

Materials and Methods

Materials

Cell culture reagents were purchased from GibcoTM (Life
technologies, Carlsbad, CA) and VWR. Opti-MEM, and
2000
Bovine Serum Albumin (BSA) was

Lipofectamine reagent were purchased from
ThermoFisher.
obtained by Atlanta Biologicals. Luciferin, solvents and
other chemicals and kits were all of analytical grade,

obtained from Fisher or Sigma.

Cell Cultures
A549 cell line was cultured in DMEM/F12K media and

supplemented with 10% fetal bovine serum and 1%
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Figure | Schematic representation of TPP synthesis process. a-tocopherol succinate was synthesized by reacting succinic anhydride and () a-tocopherol. mPEG and PEI
were conjugated using a diisocyanate crosslinker. Following purification, a-tocopherol succinate was activated using EDC/NHS and reacted with PEI-PEG, followed by

purification through dialysis.
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penicillin/streptomycin, whereas, H358 cell line was cul-
tured in RPMI media supplemented with 10% fetal bovine
serum and 1% penicillin/streptomycin. Both cell lines
were maintained at 37 °C with 5% CO, supply in humidi-
fied conditions. The cell lines were purchased from ATCC.

Plasmid DNA

Plasmid pGL-3 is a luciferase reporter vector that contains
the modified coding region for firefly luciferase, which we
obtained from Promega (Madison, WI). The plasmids
were amplified in competent Escherichia coli K strain
(JM109-Promega) and purified using a plasmid extraction
kit (QIAGEN-Chatsworth, Calif).

Synthesis of a-Tocopherol-
Polyethyleneimine-Polyethylene Glycol
(TPP) Polymers

We synthesized (+)-o-tocopherol succinate by reacting suc-
cinic anhydride with (+)-o-tocopherol, as previously
described.'® Briefly, 4.3 g (10.0 mmol) of (%) a-tocopherol
reacted with 1.50 g (15.0 mmol) of succinate anhydride in
20 mL of Toluene. 0.35 mL (2.5 mmol) of Triethylamine
was added in the reaction with continuous stirring at 22°C.
Then, the reaction was continued for 5 h at 60°C, under
reflux. We extracted the reaction mixture with CH,Cl,, and
washed with water, | N HCI and again with water, finally
dried with Na,SO,. We obtained a yellow viscous liquid
after concentrating in a rotary evaporator. The reaction mix-
ture was further purified with flash chromatography using
10-30% of EtOAc/Hexane. We obtained ~5 g of a white
solid, (£) a-tocopherol succinate, after drying.

We conjugated mPEG and PEI of varying molecular
weights with diisocyanate linker, as previously
described.!" Briefly, we dissolved 4 mmol of mPEG in
10 mL of dichloromethane (DCM), and added 12 mmol
of HMDI, under stirring. The reaction was continued for 8
h at 50 °C under reflux, followed by dropwise precipitation
in ice-cold petroleum ether (3x in 250 mL). We collected
the precipitate and dried it under reduced pressure.

We dissolved the HMDI-modified mPEG in a large
volume of DCM, and, in a separate flask, we dissolved an
equimolar amount of PEI in a large volume of chloroform.
The PEG solution was then added dropwise to the PEI solu-
tion, and the reaction was continued for 12 h at 50°C, under
stirring and reflux. We precipitated the reaction mixture
dropwise in ice-cold petroleum ether (3x in 250 mL) and
dried under vacuum. Finally, we activated the (+)-a-

tocopherol succinate with EDC, NHS, and reacted it with
PEG-PEI at different molar ratios. Briefly, we dissolved
(¥)-a-tocopherol succinate in DMSO and 2x molar ratio of
EDC and 1.4x molar ratio NHS, and allowed the mixture to
react for 30 min at room temperature. In a separate flask, we
dissolved PEG-PEI in DMSO. The (£) a-tocopherol succi-
nate solution was added dropwise, and the solution of the
PEG-PEI and the mixtures was allowed to react for 18 h at
room temperature. We utilized different molecular ratios
between (£)-a-tocopherol succinate and PEG-PEI to achieve
the different ratios in the final conjugate products. The reac-
tion mixture was purified by dialysis in water and freeze-
dried until further use.

Nuclear Magnetic Resonance

Spectroscopy (NMR)

The NMR spectra of the TPP were recorded in JEOL
Eclipse ECS-400 after dissolving in deuterated chloroform
(CDCI13) (Acros Organics).

Fourier Transformed Infrared
Spectroscopy (FTIR)

We performed the FTIR spectroscopy using a Spectrum
Two FTIR spectrometer (PerkinElmer, Waltham, MA).
Briefly, all samples were prepared without the use of
solvents. Individual components of TPP, like, activated
PEG, PEI, Toc, and TPP analyzed by directly compressing
on the ATR crystal and scanned from 400 to 4000 cm-1.
Data were analyzed with PerkinElmer Spectrum Quant
software.

Differential Scanning Calorimetry (DSC)
DSC measurements were conducted using a TA instru-
ment-waters LLC (New Castle, DE). Scans took place
under a nitrogen atmosphere with temperature ranging
from 0 to 150 °C, with a 2 °C/minute increment.
Individual components of TPP, such as PEG, Toc-
succinate, and PEI-PEG, were analyzed along with TPP.
We also analyzed a physical mixture of Toc-succinate and
PEG-2000-PEI-1800. Approximately 10 mg of the differ-
ent samples were analyzed, and the melting temperatures
(Tm) were derived from the heating curve.

Differential Light Scattering (DLS) and

Transmission Electron Microscopy (TEM)
We identified the particle size, size distribution, and zeta
potential of TPP micelles using Nanobrook 90plus PALS
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(Brookhaven, Holtsville, NY) at 25 °C. We analyzed the
nanoparticles using TEM, where 3 pL of the suspension
were placed on a 300-mesh carbon filmed TEM grid (EMS
#CF300-CU) and dried at room temperature. Then, the
in a JEOL JEM-1400, 120kV
Transmission electron microscope (Tokyo, Japan), and

grid was inserted

imaged with gatan digital camera.

Preparation of Nano-Complexes

We prepared nano-complexes of the TPP polymers.
Briefly, 5 mg of each TPP polymer was placed in 1 mL
of water or 50 mM HEPES buffer (pH 7.2). The samples
were subsequently bath sonicated for 1 min at room tem-
perature. Where plasmid was used, we subsequently phy-
sically mixed the plasmid in HEPES solution with the
polymer, vortexed, and incubated for 20 min at room
temperature, before further use.

Critical Micellar Concentration (CMC)

We determined the CMC as a function of the TPP,;
concentration in an aqueous solution at room temperature,
as previously described.'? Briefly, we prepared serial dilu-
tions of the TPP at different concentrations and plotted the
concentration against kCPS value, as detected using DLS.

Buffering Capacity Analysis

We dissolved 10 mg of TPP or PEI in 0.1 M NacCl solu-
tion. We decreased the pH to 3, using 1 N HCI, and then
we performed pH titration with the gradual addition of a 3
pL 1 N NaOH solution. Following each addition, we
measured the pH using a Mettler Toledo pH meter
(Columbus, OH). The titration was stopped upon reaching
pH 9.

Cell Viability Assay by MTT

We determined the cytotoxicity of the polymer with or
without the plasmid, using a standard MTT assay.
Briefly, we seeded 1074 A549 cells in a 96-well tissue
culture plate and allowed the cells to attach overnight. TPP
or TPP complexes with pGPL-3 plasmid were prepared in
HEPES buffer, as described above, then diluted into media
and added into their respective wells. The cells were then
incubated for 24, 48, or 72 h. For TPP+pGL-3, cells were
treated for 6 h, to mimic with transfection conditions, as
described in the Methods, and then replaced with fresh
DMEM/F12K complete media, and incubated for 24, 48,
or 72 h. After the respective incubation period, we added
10 pL of sterile MTT solution (5 mg/mL) into each well

and incubated for 3 h at 37 °C. We determined the cell
survival using 10% acidified SDS solution and detected
the color at 570/630 nm using a plate reader (Biotek
synergyH1 plate reader-Winooski, VT). The cell viability
(%) was calculated as a percentile ratio of sample optical
density (OD) over control OD using the following
equation.

Abs of treated cells

100
Abs of untreated cells %

% of cell viability =

Gel Retardation and DNase | Stability
Assay

Electrostatic interaction between the positively charged
TPP;;; and the negatively charged plasmid was evaluated
by the agarose gel electrophoresis method. TPP,,;/pGL-3
complexes were prepared using different N/P ratios from
0.5 to 60. N/P ratio corresponds to the atomic ratio of
nitrogen (originating from the polymer) to phosphates
(originating from the nucleic acids). The complexes were
prepared and loaded into 1% agarose gel with a loading
dye. For the gel retardation assay, 0.1 pg/mL of Ethidium
Bromide was added in the gel, as well as in 1X TBE
running buffer. The gel electrophoresis was performed
for 1 h at 100 V. After the run, the gel was visualized
using an imaging system (Chemidoc Touch Imaging sys-
tem-Biorad, Hercules, CA).

We also evaluated the protecting effect of the TPP;; to
the nucleic acids against enzymatic degradation, as pre-
viously described.'®> We prepared nano-complexes of TPP
and pGL-3 plasmid at different N/P ratios. Naked and TPP
conjugated plasmids were incubated with 2.2 pLL of DNase
I (2 U of DNase/600 ng of plasmid) for 30 min at 37 °C.
The reaction was stopped by adding 4.2 pL. 50 mM of
EDTA. Samples were run in 1% agarose gel, as described
above.

Plasmid Transfection with TPP and PEI

We performed transfections of the luciferase-expressing
pGL-3 plasmid in two cell lines, A549 and H358, using
TPP;;; and PEI-1800. Complexation of TPP;;; or PEI
with pGL-3 was achieved, as described above. We seeded
10* cells in 96-Well Optical-Bottom Plates (Fisher,
Hampton, NH) and incubated overnight for attachment.
The following day, we washed each well with 1X PBS
and treated the cells with 20 pg of pGL-3 plasmid com-
plexed with TPPy;; or PEI at different N/P ratios. Each
sample was replicated 5 times, and the plates were
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subsequently incubated in 37 °C for 6 h. Following the
incubation period, we replaced the media in each well with
fresh complete media. After 24 or 48 h, we detected the
luciferase activity and cell survival according to the man-
(ONE-GLO + Tox Luciferase
Reporter and cell viability Assay kit-Promega, Madison,

ufacturer’s protocol
WI). Where applicable, we obtained the ratio of lumines-
cence over survival for each well.

Cellular Uptake Study of TPP

Nano-Complexes

We conjugated the Cy-5.5-NHS fluorophore (Lumiprobe,
Cockeysville, MD) onto TPP;;;, following the manufac-
ture’s protocol. We investigated the cellular uptake using
confocal laser scanning microscopy (CLSM), as pre-
viously described.'* Briefly, we prepared TPP;;;-Cy5.5
(TPPc) nano-complexes with pGL-3 plasmid, as described
above. We seeded 5x10* of A549 or H358 cells in cham-
bered cell culture slides (Falcon, Corning, NY). We added
the TPPc-pGL-3 complexes at the concentration of 1 mg/
mL and incubated the cells. Following the incubation
period, all wells were washed with 1x PBS and fixed
with 4% formaldehyde for 10 minutes at room tempera-
ture. Each well was washed with PBS and incubated with
Lysotracker (Red DND-99 Invitrogen, Eugene, OR) to
detect lysosomes and Cell Light Early Endosomes GFP
(Invitrogen, Eugene, OR) to detect endosomes, respec-
tively, according to the manufacturer’s protocol. After
washing with PBS, we used DAPI-containing mountain
media to stain the nuclei before analyzing under CLSM.

Biodistribution Analysis of TPP

Biodistribution analysis was performed in anthemic female
nude mice (4-6 wks old; Envigo, Indianapolis, IN). The
experimental protocol was approved by the Institutional
Animal Care and Use Committee (IACUC) of the
University of Louisiana Monroe, based on Office of
Laboratory Animal Welfare (OLAW), National Institute
of Health (NIH) guidelines and the Guide for the Care
and Use of Laboratory Animals, 8th ed. We conjugated the
TPPy;; with Cy-5.5 dye, as described above. We injected
4x10° A549 cells in each flank of female nude mice for
developing tumors. Two weeks post-injection, when tumor
volume was approximately 250 mm®, as determined using
caliper measurements, we treated each mouse with 1 mg/
kg of pGL-3 plasmid complexed with 1:30 N/P ratio of
TPP;;;. The formulations were injected intravenously in

the tail vein of each mouse, at a volume ~50 pL/mouse. At
predetermined time points (0 h-no injection, 1 h, 2 h, 4 h, 8
h and 24 h), we sacrificed 3 mice per time point, and
using IVIS.
Subsequently, tumors, heart, liver, kidneys, lung, spleen,

obtained full-body fluorescent images
and brain were harvested from each animal and imaged for
fluorescence.

Results

Synthesis and Characterization of TPP
We prepared a panel of TPP polymers, by changing the
ratio between Toc-succinate and PEG-PEI, as well as the
molecular weights of either PEG or PEI. Our objective
was to identify a conjugate with the minimum size (<150
nm'’) and strong complexation with nucleic acids. First,
we modified the hydroxyl group of Toc with succinic
anhydride to obtain a carboxyl group available for further
derivatization, following established protocols.'® The Toc-
succinate was characterized by 1H-NMR (Figure 2A) to
confirm appropriate conjugation, with the characteristic
peaks of Toc at 1.24 ppm (H-CH-C-H and H-CH-CH-H)
and succinate peaks at 2.92 and 2.81 ppm (H-CH-CH-H).
Activation of the PEG polymers and attachment to PEI
was performed using the HMDI crosslinker reaction, as
previously described.'® During this reaction, we main-
tained an approximate 1:1 molar ratio for any of the PEG-
PEI products. The molecular weights of PEG spanned
between 550 and 2000 and for PEI we studied the mole-
cular weights 1800 and 10,000 (Table 1). Subsequently, we
reacted the Toc-succinate with the different PEG-PEI
molecules, at several ratios (Table 1). Increasing the Toc-
succinate ratio indicated a rapid increase in particle size.
Although the change in the molecular weight of PEI or
PEG maintained the nanosized dimensions of the produced
carriers in several of the cases, only in the case of the
PEG2000-PEI1800 conjugated with a-tocopherol towards
TPP produced self-assembled nanostructures less than half
of any other studied polymer and below the established
cut-off limit of <150 nm," with an average diameter of
~90 nm. Thus, for any further analysis, we chose this
polymer, which we annotate as TPP;;;. Additional con-
siderations towards this selection were that the molar con-
tent of PEI per polymer structure in all of the constructs
remained constant, and TPP based on PEI 10,000 caused
significantly larger particles, while PEI10,000 is known to
have higher systemic toxicity vs PEI1,800 but comparable

transfection capacities.'”'®
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Figure 2 NMR, FTIR and DSC characterization of TPP. (A) Representative NMR spectroscopic analysis of PEG-2000-PEI- 1800, tocopherol succinate, and TPP. TPP presents
the characteristic peaks of tocopherol at 1.24 ppm (H-CH-C-H and H-CH-CH-H) and succinate peaks at 2.92 and 2.81 ppm (H-CH-CH-H). PEG-PEI peaks are at 3.6 ppm (-
CH,CH,0- of PEG) and at 2.5-3.8 ppm (-CH,CH,NH- of PEl). (B) FTIR analysis of TPP and its components. (C) DSC analysis of the melting curves, indicating the

exothermic peaks of TPP and its individual components.

We analyzed the three-step synthesis process of the
TPP polymers with various spectroscopic methods. For
PEG-PEI, the 1H NMR indicated for PEG a single peak
at 3.6 ppm (-CH,CH,O-) and for PEI multiple peaks at
2.2-2.8 ppm (-CH,CH,NH-, Figure 2A). Additionally, we
evaluated the final polymeric product using FTIR spectro-
scopy (Figure 2B). We found (I) Amine stretching of
N-H peak at 3298 cm ', (II) C-H stretching 2888 cm ™',
(IIT) O=C=N isocyanate stretching 2272 cm ™" which is not
present in PEG-PEI conjugate, (IV) C=0 urethane stretch-
ing 1693 cm ', (V) C=0 urea stretching 1566 cm ', (VI)
C-O ether stretching 1111 cm™' (VII) C=0 stretching of -
COOH 1746 cm™' which disappeared in TPP. We further
analyzed the products using differential scanning calori-
metry (Figure 2C). We identified the PEG-2000 indicated

Table | Size and Zeta Potential of TPP Polymers in HEPES Buffer

a maximum of heat flow at ~54°C, indicating the melting
point for the material, while PEI-1800 did not produce
a definite melting point at the scanned temperatures. The
PEG-2000-PEI-1800 produced a heat flow maximum at
~40°C. The drop of the melting point of the material
compared to PEG2000 alone confirmed the reaction and
conjugation of the materials. Toc-succinate analysis indi-
cated a heat flow maximum at ~60°C. The final TPP;;
product indicated a heat flow maximum at ~44°C, con-
firming the reaction between PEG-PEI and Toc-succinate.
Finally, we analyzed the physical mixture between
PEG2000-PEI1800 with Toc-succinate at an approximate
molar ratio between the two molecules at 1:1, and it
indicated the peak of PEG2000-PEI1800 only approxi-

mately at the same temperature, while the heat flow was

Molecular Weight of PEl | Molecular Weight of Molar Ratio Between Size (nm) PDI Zeta
(Daltons) PEG (Daltons) Toc:PEG-PEI Potential
(mV)
1800 2000 H 90 £ 35 0.290 + 0.02 40.45 + [.31
1800 2000 2:1 2582 £ 21.9 0.205 + 0.02 61.03 £ 0.57
1800 750 H 202.6 + 48 0.274 £+ 0.01 55.02 £ 0.62
1800 750 2:1 158.3 + 8.6% 0.286 + 0.02 76.22 £+ 3.85
1800 550 H 2375 % 155 0.305 + 0.03 7595 % .11
1800 550 2:1 173.5 + |.6* 0.255 £ 0.00 56.07 £ 0.49
10,000 2000 H 2595 £ 23 0.339 £ 0.02 54.48 + 2.34
1800 N/A N/A 4344 + 375 0.121 £ 0.00 2937 £ 1.18

Note: *Significant aggregates were observed, which are not included on the average size measurement.
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sustained above the baseline until the Toc-succinate melt-
ing point. These confirm the successful synthesis of the
molecules.

Formation and Characterization of TPP/
DNA Complexes

The prerequisite of the negatively charged nucleic acid
delivery with cationic molecules is to have strong and
stable electrostatic interactions.'® We observed the self-
assembling capacity of the TPPy; to produce nanoparti-
cles in aqueous solution through DLS and TEM. The
TPP;;; produced nanoparticles with a diameter of 90 +
3.5 nm, where the polydispersity index (PDI) was at 0.29
+ 0.02 (Supplementary Figure 1). The Zeta potential of the

polymer in water was 40.45 £ 1.3 mV. Transmission
electron microscopy (TEM) analysis indicated nano-sized
globular-shaped nanostructures of approximately similar
dimensions, as detected by the DLS (Figure 3A). The
TPP,;, complexed with plasmid DNA increased the struc-
tures’ size, as detected by TEM analysis (Figure 3B). For
comparison, DLS indicated that TPP,;;-pGL3 complexes
had an average size of 160 + 4.2 nm, with a PDI of 0.210
+ 0.01.

We analyzed the minimum concentration of TPP;;
polymer required to generate nanostructures in water,
using a standard critical micellar concentration (CMC)
analysis. The kilo counts/second (kCPS) values generated
by the light scattering of DLS were recorded from serially
diluted samples of TPP,;,, starting at 1 mg/mL. The log;o
of the polymer concentration vs the kCPS was plotted to
identify the sharp inflection point. We found that at ~17
pg/mL is the CMC for the TPP;q; (Figure 4A).

We evaluated the complexation of TPP;; with nucleic
acids using gel retardation assay at different N/P (nitrogen/
phosphate) ratios. As shown in Figure 3C, at N/P ratio of
7, TPPy;, completely prevented the migration of plasmids
through the agarose gel, indicating complete complexation
between the polymer and the plasmid. This was confirmed
by treating complexes with polyacrylic acid (PAA), which
is highly anionic in charge and can cause the dissociation
of the plasmid from the TPP;;;. We identified the release
of the intact plasmids after the addition of the PAA, which
confirms the plasmids’ complexation with TPP;;;. Finally,
we evaluated the DNase-mediated degradation of naked
and the protection provided by TPP;;; to the plasmids
from nucleases. After incubation with DNase for 30 min-
utes at 37°C, we observed that the TPP;; prevents the

degradation of plasmids in the presence of DNases, as
shown in Figure 3D. In contrast, we found DNases com-
pletely degraded the naked plasmid (lack of any band
signal). Indicatively, the presence of plasmid band after
PAA addition, followed by DNase treatment, confirms the
protection of the plasmids by TPP;.

Buffering Capacity of TPP,,

We evaluated the buffering capacity of TPP;;;. 1 M HCI
was used to reduce the pH to 3 of TPP;;; or PEI solutions
in a 0.1 M NaCl solution. The TPP;;; concentration used
here was above the CMC. Subsequently, the continuous
addition of 1 N of NaOH solution was used to titrate, and
we determined the quantity of NaOH required to change
the pH of the solutions/suspensions to 9. For our analysis
of the TPPy;;’s and PEI’s buffering capacity, we only used
the required volume of NaOH required to adjust the pH
from 5 to 7, as previously described.?’ For the pH change,
30 uL of 1 N NaOH for TPP,;; vs 26 uL of 1 N NaOH for
PEI were required, indicating that the TPP;;; maintains
similar or slightly improved buffering capacity as its par-
ent material, the PEIL. As a negative control, we used NaCl
saline solution and found no buffering resistance on pH
change (Figure 4B).

In vitro Cytotoxicity and Transfection of

TPP,

We evaluated the cell viability of TPP,,; with (Figure 5A)
or without (Figure 5B) complexation with the pGL-3 plas-
mid. In both cases, TPP;;; exhibited modest cytotoxicity
for all studied time points, with ICs5y >200 pg/mL in A549
cells, in the majority of the studied cases (Table 2). PEI’s
cytotoxicity is presented in Supplementary Figure 2.

The transfection activity of TPP;;; was analyzed using
different cell lines. We cultured A549 and H358 cells,
according to the techniques described above. The transfec-
tion activity of the polymer was determined and compared to
PEIL using different N/P ratios. We maintained a constant
amount of plasmid in all of the studied cases, only changing
the polymer content. For N/P ratios below 1:15, we measured
the luminescence intensity only. For ratios above this value,
we also included the measurement of cell viability, to com-
pensate for any potential cytotoxic effect from either TPPy,
or PEIL even though we were below the ICs, value. Thus, the
luminescence intensity from the luciferase activity, as
detected by a plate reader, was divided by the cell viability
(%) for each of the respective 96 wells in each plate, which
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Figure 3 TEM analysis of the self-assembled nanoparticles of TPP, |, and its complexes with plasmid in HEPES buffer. (A) The size of TPP, nanoparticles without the
presence of nucleic acid was approximately similar to the DLS measured size. (B) The size of TPP, |, complexed with plasmid DNA. (C) Gel retardation was performed to
determine the complexation of TPP, ;| with plasmid DNA, as different N/P ratios. The analysis indicated complete plasmid complexation with the TPP polymer, at N/P ratio
as low as 7. We used PAA as a positive control to confirm the complexation, as PAA dissociates the plasmids from the polymer. (D) We evaluated the protective properties
of the TPP, polymer on the complexed plasmids against DNase-mediated degradation. The TPP,,, protected the plasmids from degradation, following incubation with

DNases for 30 min.

indicates luciferase activity over survived cells. The result
corresponds to the luminescence per number of cells. The
TPP;; induced an overall strongest transfection compared to
PEI, when compared for the same N/P ratios and time points
(p<0.05 is presented in the figure). In Figure 6, we performed
statistical analysis between the TPP;;; vs PEI for each
respective N/P ratio and time point only, since all of the
polymer groups were significantly higher than the untreated
cells (no plasmid). Similar results were obtained for both cell
lines (please see Supplementary Figure 3 for H358 cell line).

Cellular Uptake of TPP,,, in vitro and
Biodistribution in vivo

We evaluated the cellular uptake of the TPP,; and PGL-3
plasmid complexes by incubating them with A549 and
H358 for different time periods (0, 0.5, 1, 2, 4 and 6 h).
We conjugated the Cy-5.5 fluorescent dye with TPP;;; to
track the micellar complexes inside the cells. We found the
TPP;;; complexes enter cells within 30 min (Figure 7 and

Supplementary Figure 4). We observed a steady increase
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Figure 4 CMC and buffering analysis of the TPP| |, polymer indicated a CMC at ~17 ug/mL and buffering capacity comparable to its parent compound, PEl. (A) Plot of log)o
concentration (ug/mL) of TPP,, in water vs kilo count per second (kCPS), as measured by DLS. (B) Buffering capacity of TPP,,, PEl and normal saline (NaCl) was measured
using acid-base titration. | N HCI was used to reach the starting point at pH 3. Titration was performed by gradually adding | N NaOH to reach pH at 9.
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Figure 5 Survival study indicated low cytotoxicity of the TPP| |, in A549 cells with or without the presence of nucleic acids. (A) % Cell viability TPP|,, alone was evaluated
with different concertation and plotted as logarithmic form to determine the ICs at 24, 48 and 72 h time points. (B) ICs, calculation was performed with TPP |, -PGL-3

complex for 24, 48 and 72 h time points.

in the cellular uptake, as indicated by a continuous
increase of fluorescence intensity by the Cy-5.5 over
time, and reached its maximum at the 4 h sample, which
was maintained up to our last time point (6 h). To study
the uptake pathway for the nanoparticles, we labeled lyso-
somes and early endosomes with Red DND-99 and GFP,
respectively. We observed a strong overlap in the merged
figures for TPP;;;-Cy5.5 complexes with the GFP-labeled

Table 2 IC50 Values of TPP,, in A549 Cells

endosomes in all time points, with the strongest colocali-
zation taking place at the 4 and 6 h samples (Figure 7,
white arrows indicate the colocalization). Thus, this indi-
cates that the uptake of the TPP;;;-plasmid complexes
takes place through the endosomes. The limited presence
of TPP,; fluorescence outside the endosomal structures
indicates that endosomal-mediated cellular uptake is the
primary mechanism. We also observed TPP;;; entrapment
in lysosomes at the 4 h time points, which indicates some
TPP;, complexes still remain within the endosomal struc-
ture post their maturation to lysosomes. The same beha-

Time IC50 of TPP,, I1C50 of TPP,;,-pGL3 vior was also observed in H358 cell line (Supplementary
Points (ug/mL) Complex (pg/mL) Figure 4)

24 h 2442 737.7 We evaluated the biodistribution of TPP;;;-pGL-3
48 h 2194 492.9 complexes in vivo. We injected intravenously
72h 2597 1130 CyS5.5-conjugated TPP,;; complexed with pGL-3 plasmids
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Figure 6 Transfection efficiency of TPP, || was evaluated to determine the delivery of pGL-3 luciferase-expressing plasmid in A549 cells for 24, 48 and 72 h time points. (A)
Transfection was performed using N/P ratios spanning between 0.1 to 15 for TPP, or PEIl. (B) Transfection was performed using N/P ratios spanning between |5 to 45 of
TPP or PEI. “Luminescence/% cells” indicates luminescence intensity over number of live cells. *: p<0.05, ***:p<0.001 for comparison between TPP and PEl respective groups;
#: p< 0.05, ##: p<0.0l, ###:p<0.001 for comparison to pGL-3 alone group. All statistical analyses are two-tailed t-tests.

in A549 tumor-bearing athymic nude mice. As shown in
Figure 8 and Supplementary Figure 5, up to 1 h following

the injection of the complexes, the complexes were dis-
tributed throughout the body, including the liver, lung,
kidneys, and tumors. Subsequently, there was a steady
decrease of the TPP;;; complexes’ fluorescence in the
major organs, such as liver, kidneys, and spleens, while
the levels of fluorescence intensity in the tumors were
maintained. Specifically, at the 8 and 24 h time points, the
TPP,;; complexes were barely detected in the liver and
kidneys, and complete absence of fluorescence was
observed in the other organs, while significant fluores-
cence was maintained in the tumor area. This represents
the prolonged residence of TPP;;; complexes in the
tumors, most likely due to the EPR effect and the small
size of the complexes.’

Discussion

Nucleic acids have emerged as powerful tools for dis-
ease treatment and studying molecular mechanisms.?'
Their inherent instability in circulation has prompted
strong research on their delivery applications, with
innovative approaches constantly being developed.

Nucleic acids have to transverse in vivo harsh condi-
tions, whether they are administered orally, intraperito-
neally, intravenously or by any other route of
administration.>® The ubiquitous presence of DNA/
RNA-ses in our bodies limit their prolonged presence
in the circulation in vivo. Furthermore, the large size of
the nucleic acid constructs, their hydrophilicity, and
negative charge hinders their ability to enter into
cells.®*%%3

Nanotechnology approaches present the potential to
overcome most of these limitations. We capitalized on
the success of an existing FDA-approved, Generally-
Regarded-As-Safe (GRAS) Vitamin E derivative, called
TPGS, which repeatedly and consistently has proven
efficient in protecting, delivering and prolonging the
systemic circulation of a plethora of compounds.®*?>
In our study, as presented in this paper, we developed,
characterized and evaluated a Vitamin E derivative,
composed of a-Tocopherol, PEI, and PEG, for deliver-
ing nucleic acids in vitro and in vivo. PEGylation of
cations-nucleic acid complexes enhances their solubi-
and can

lity, decreased plasma protein binding,

improve their biodistribution profile.*®
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Figure 7 Strong cellular uptake analysis of Cy-5.5-conjugated TPP,;; complexed with pGL-3 plasmid was detected using Confocal Laser Scanning Microscopy (CLSM),
potentiated through endosomal uptake. Lysosomes and endosomes were stained with Red DND-99 (sudo color green) and GFP (green), respectively. Nuclei (blue) were
stained with DAPI. A549 cells were incubated with TPP1 | |-plasmid complexes for different incubation periods. The scale bar is at 40 ym. Colocalization of TPP complex and

endosomes/lysosomes is indicated with white arrows.

We prepared a panel of Vitamin E derivatives and
selected the most promising to analyze its ability to pro-
duce nanostructures, capable of complexing and protecting
nucleic acids, while being able to enter cells and release
their load. We also analyzed the in vivo biodistribution
profile using a subcutaneous lung cancer mouse model.

From the different prepared polymer compositions, we
identified that the Tocopherol:PEI:PEG 1:1:1, annotated as
TPPy;,, demonstrated self-assembling properties, develop-
ing nanostructures of approximately 90 nm, with spherical
size, as determined by DLS and TEM analysis. The other
formulations did not produce sizes of similar small dimen-
sions, in many cases with significantly larger diameters
and aggregates. The TPPy;; polymer synthesis was

analyzed by NMR, FTIR, and DSC, confirming the suc-
cessful synthesis of the product. More importantly, the
TPP;;; in water maintained its cationic nature, necessary
for nucleic acid complexation and endosomal escape.
Finally, we determined the CMC of the TPP;;; polymer,
through serial dilutions of the polymer, while being ana-
lyzed by DLS. The TPP;,; presented a low CMC, at 17
pg/mL, which is far below any in vitro or in vivo analysis
described in this paper.

The ability to induce endosomal escape is one of the
most important actions for carriers to release nucleic
acids into the cytoplasm.?’ PEI is capable of inducing
endosomal escape through the proton-sponge -effect,
where negatively charged ions like CI' influx into
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Figure 8 In vivo biodistribution of Cy5.5 conjugated TPP, |, complexed with pGL3 plasmid was performed in female athymic nude mice carrying subcutaneous lung cancer
tumors, and visualized using IVIS imaging system. Representative ex vivo fluorescence images of different organs (liver, heart, lung, spleen, kidney, tumor and brain) at 0, 1, 2,
4, 8 and 24 h after injection indicated a favorable accumulation of the TPP,,; complexes in the tumor area.

endosomes until their rupture, due to higher presence of
the positive charges originating from the cationic polymer
inside the endosomes.”® The cationic behavior of PEI
stems from the presence of secondary or tertiary
amines.”” For these reasons, PEI possesses a strong capa-
city for endosomal escape in vitro.>® To evaluate whether
the TPP;; maintains the cationic and buffering charac-
teristics of the PEI, we dissolved the TPP;; polymer in
saline water, while adjusting its pH by the stable addition
of NaOH. We measured the total required volume for the
transition from pH 5 to 7, which was used as a measure
for its buffering capacity. We compared this to the PEI,
analyzed under the same conditions, and we detected no
significant differences in the buffering capacity for the
TPP,;; polymer compared to its PEI parent material. The
comparable activity of the TPP;;; to PEI indicates that
the addition of the lipophilic a-tocopherol and the rela-
tively large molecule of PEG did not interfere with the
buffering capacity of the parent polymer.

We evaluated the capacity of the TPP;;; to complex
with and protect nucleic acids from degradation. Nucleic
acid stability is instrumental during in vivo application,
and strong complexation between the polymer/carrier and
the nucleic acids, while shielding the latter from the envir-
onment, is important.® PEI and PEI constructs have been
reported to not only complex with nucleic acids but also
protect them from nuclease degradation.®’ We determined
through a standard gel retardation assay that the TPP;y,
polymer strongly complexed with the pGL-3 plasmid, at
N/P ratios as low as 7. For perspective, this ratio corre-
sponds to a weight ratio of 1:2 for plasmid:polymer.
Subsequently, using the same analysis, we incubated the

TPP;;;-complexes in the presence of DNase I, to deter-
mine the ability of the polymer to protect the nucleic acids
from degradation. Following incubation of the TPPyi;-
complexes with DNases, we released the plasmids from
the complexes and analyzed them through the gel electro-
phoresis. TPP;; protected the nucleic acids from DNases,
whereas the plasmid alone in the presence of the nucleases
wascompletely degraded.

Successful cellular uptake is critical of any drug deliv-
ery carrier to deliver their load. We complexed TPP;
polymer labeled with Cy-5.5 with plasmid and incubated
cells in the presence of the complexes. Confocal micro-
scopy indicated that the complexes rapidly enter into the
cells, as early as 30 min post-incubation initiation. Using
the Red DND-99 lysosomal tracker and the GFP-early
endosome tracker kits, we identified strong colocalization
of the Cy-5.5 fluorescence signal with the green GFP
fluorescence signal, primarily at the earlier time points
(<4 h). This indicates that the TPP;;;-plasmid complexes
are primarily up-taken through the endosomal pathway. At
later time points, colocalization of the Cy-5.5 fluorescence
signal and the Red DND-99 takes place (>4 h). We believe
this is the result of the natural progression and develop-
ment of the endosomes to late endosomes and potential
fusion with lysosomes. This analysis confirms that the
complexes are up-taken by the cells through the endo-
somes, but does not ensure the endosomal escape.

To this end, we evaluated the transfection capacity of
the TPPy;; polymer using the luciferase-expressing plas-
mid. We transfected A549 and H358 cells using the TPPyy;
-plasmid complexes for 6 h, and detected the expression of
the firefly luciferase protein through a luciferase assay kit.
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We used several N/P ratios between TPP;;; and the plas-
mid, and compared our results to the parent PEI. We
confirmed that there is endosomal escape, as there are
strong transfection and production of the luciferase pro-
tein, which can only take place if the plasmid escapes the
endosomes to be transcribed. Furthermore, the TPP;;
polymer demonstrated comparable and, in some cases,
improved transfection compared to PEI (p<0.05), while
in some other cases, the opposite took place. For example,
in A549 cells, TPP;;;’s strongest transfection compared to
PEI was a 7-fold increase to luciferase activity at 72 h and
N/P ratio of 1:15 (p<0.05), while PEI’s strongest transfec-
tion compared to TPP;;; was a 4-fold increase in lucifer-
ase activity compared to TPP;;; at 24 h and N/P ratio of
1:0.5 (no significance). In H358, we did not observe sig-
nificant differences between the two polymers. From our
analysis, we identified the optimal N/P ratio for TPP;;; to
nucleic acids to be 30, which we used for our in vivo
biodistribution studies. We need to point out that the
TPP;;; appeared to have a stronger transfection at the 48
and 72 h compared to PEI, while PEI was frequently
giving the strongest signal at 24 and 48 h. This is not an
exhaustively consistent behavior, but an overall
observation.

PEI is highly cationic, which is detrimental for its in vivo
biodistribution, following intravenous injection.** In fact, it
has been reported that the PEI rapidly accumulated to the

liver, spleen and kidneys,**>*

presenting challenges for pro-
longed tumor accumulation. We developed a subcutaneous
mouse model of lung cancer, by injecting A549 cells into
both flanks of female athymic nude mice. Once the tumors
reached an average volume of ~250 mm®, we intravenously
injected the Cy-5.5 modified TPP;;-plasmid complexes, and
at predetermined time points, we sacrificed the animals and
harvested their major organs. Through fluorescent imaging,
we detected how the fluorescently labeled nano-complexes
distributed throughout the animals’ bodies as a function of
time. Our analysis indicated a strong accumulation of the
nano-complexes into the tumor area. More importantly, this
accumulation was maintained throughout the 24 h study, with
minimal reduction at the later time points. For comparison,
the Cy5.5 alone has previously been shown to have limited
accumulation to the tumor area.”> >’ We also detected liver
and kidney accumulation of the nano-complexes in the early
time points, which diminished over time. At the 24 h time
point, the fluorescence signal from the liver had greatly
diminished compared to the tumors, while the kidneys

maintained a strong signal, as potentially the nano-
complexes were excreted through this organ.

Our analysis indicates that the TPP;; polymer consti-
tutes a propitious solution for delivery of nucleic acids
in vivo, due to its strong tumor-accumulating properties.
The lipophilic core at the center of the micelles will allow
for the encapsulation of lipophilic compounds, similar to
the TPGS molecule. This will find applicability in combi-
natorial treatments, which include drug and nucleic acid
delivery. Compared to PEI, which accumulates in the liver,

spleen or kidneys,**~*

our polymer demonstrated strong
tumor-accumulating properties. Furthermore, the derivati-
zation of PEI did not impact its transfection capacity, with
the TPP;;; polymer presenting comparable and frequently
improved transfection in vitro. Finally, the moderate cost
of the tocopherol, PEI and PEG materials, as well as their
use in FDA-approved applications, establishes the pro-
posed nanocarrier as a promising approach in drug and

nucleic acid delivery that merits further evaluation.

Conclusion

In this study, we successfully synthesized different TPP
conjugates and identified their optimal structure (1:1:1
molar ratio conjugate). This formulation demonstrated
low cytotoxicity, strong buffering capacity, and strong
protective capability of nucleic acids from enzymatic
degradation, which are the key parameters of a safe and
efficient nucleic acid delivery carrier. Moreover, enhanced
cellular uptake in vitro and favorable accumulation in
tumors in vivo make this carrier a promising choice for
nucleic acid delivery for cancer therapeutics.

Statistical Analysis

The statistical analysis was performed with a Student two-
tailed #-test to determine any significant differences among
groups. We compared the mean values =+ standard errors

and p values<0.05 were considered statistically
significant.
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