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ABSTRACT

A methodology for designing robust, low-order observers for a class of spectral infinite-dimensional
nonlinear systems is presented. This approach uses the low-dimensional subspace explicitly in the observer
design. Then, robustness to bounded model uncertainties is incorporated using the Lyapunov reconstruc-
tion method from robust control theory. Furthermore, the proposed design includes a data-driven learning
algorithm that auto-tunes the observer gains to optimise the performance of the state estimation. A numer-
ical study using a model from fluid dynamics -Burgers equation- demonstrates the effectiveness of the

proposed observer.

1. Introduction

The problem of designing robust observers for systems mod-
elled by ordinary differential equations (ODEs) with paramet-
ric uncertainties and measurement noise, has been extensively
studied, see e.g. Witczak, Buciakowski, Puig, Rotondo, and Nej-
jari (2016), Battilotti (2017) and the references therein. The
extension of these results to systems modelled by PDEs (dis-
tributed parameter systems) remains a very active and chal-
lenging problem. Indeed, there are many works that utilise
adaptive control to design observers for PDE systems, where
both system states and parametric uncertainties are estimated,
see e.g. Smyshlyaev and Krstic (2010) and references therein.
However, due to the complexity of simultaneously estimating
both the states and model parameters, the results are often
limited to linear or semi-linear PDEs with linear parametric
uncertainty. Fewer works consider passive robust control (in
contrast to adaptive control) to design observers for PDEs in
the presence of parametric model uncertainties and/or mea-
surement noise. However, in the recent work (Schaum, Moreno,
& Meurer, 2016), one-dimensional, semi-linear PDEs are con-
sidered and the assumption of a sector nonlinearity allows the
use of dissipativity to design observers that are robust to spill-
over effects. In Borggaard, Gugercin, and Zietsman (2014), the
authors consider the case of a PDE with a quadratic non-
linearity where the states and measurements are subject to
time-varying disturbances. A MinMax approach was used to
design a stabilising robust observer/controller, based on the
tangent linearisation of the PDE along a steady-state solu-
tion. Then model reduction was carried out following two
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approaches. In one approach, an H,-model reduction was used
for the linearised system. In the second, a proper orthogonal
decomposition (POD) model reduction method for nonlin-
ear systems was used to reduce the extended Kalman filter as
in Atwell, Borggaard, and King (2001). In Kharkovskaya, Efi-
mov, Polyakov, and Richard (2018), the authors propose an
interval state estimator for a class of uncertain parabolic PDE
systems, under homogeneous Dirichlet boundary conditions,
based on a finite-element approximation of a PDE. In Miranda,
Moreno, Chairez, and Fridman (2012), a robust observer based
on a super twisting algorithm, which ensures finite-time con-
vergence, is introduced for a class of hyperbolic PDEs with
bounded additive perturbations. In Feng and Guo (2017),
the authors study the problem of stabilisation and observer
design for the heat equation under uncertain boundary con-
ditions. They propose a two-stage unknown input observer
to estimate the uncertainty term and then observe the sys-
tem states. The problem of designing a robust observer for
the Boussinesq equations has been studied in Koga, Benos-
man, and Borggaard (2019), where the authors first used POD
for model reduction, followed by a Luenberger-like observer
design, based on the notion of input-state stability with respect
to parameter uncertainties. These uncertainties were then esti-
mated online using a data-driven optimisation algorithm.

In this paper, we build upon the nominal observer pro-
posed in Balas (1981), and propose a methodology to design
a robust observer for a class of spectral infinite-dimensional
nonlinear systems that use a low-dimensional subspace, such as
POD in the observer design. The observer is based on Lyapunov
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reconstruction theory to ‘dominate’ the influence of structured
model uncertainties. Furthermore, we extend this methodol-
ogy so that it will auto-tune the observer gains online, using
data-driven optimisation methods.

Indeed, the problem of auto-tuning feedback controllers
has received much attention in the control community. It is
often referred to as Iterative Feedback Tuning (IFT), and has
been well-studied for the case of systems modelled by ODEs,
e.g. Hjalmarsson (2002), Lequin, Gevers, Mossberg, Bosmans,
and Triest (2003), Killingsworth and Krstic (2006), and Benos-
man (2016). However, to the best of our knowledge, IFT has
not been applied in the PDE setting. In this paper, we propose
the use of IFT to auto-tune the gain of a robust observer in
an online setting. We follow Killingsworth and Krstic (2006),
Benosman (2016), and use an extremum seeking algorithm for
the tuning of the gain. This leads to the optimisation of a desired
estimation performance cost function.

In the sequel, we begin by introducing some basic definitions
and notation in Section 2. Section 3 is dedicated to introducing
the class of nonlinear PDEs studied here, and presents the first
result of the paper, namely, the nominal observer design. We use
Section 4 to introduce the second result of the paper, which is
the robustification of the observer under bounded model uncer-
tainties. The third result of the paper is presented in Section 5,
where we introduce the IFT version of the robust observer.
Section 6 is used to present an application of the proposed
robust observer and its IFT extension to a one-dimensional
PDE with a quadratic nonlinearity often associated with fluid
dynamics, known as Burgers equation. We conclude the paper
commenting on potential future developments of this work in
Section 7.

2. Basic notation and definitions

For a vector g € R”, its transpose is denoted by g7, for a matrix
C € R™™, the transpose is denoted by C*. The Euclidean
vector norm for g € R” is denoted by || - || so that ||g||grs =
gl = \/ﬁ The Frobenius norm of a matrix A € R"*™, with
SEL S lagl. The
Kronecker delta function is defined as: §;; = 0, for i # j and
8ii = 1. We shall abbreviate the time derivative by f(t,x) =
% £(t,x), and consider the following Hilbert space H = L?(£2).
We define the inner product (-, )7y and the associated norm
Il on H as (f,g)n = [of(0g(x)dx, for f,g € H, and
If1I3; = Jo f®)|* dx. A function z(t,x) is in L*([0, tr]; H) if
foreach 0 <t <7, 2(t,-) € H, and fotf lz(t, -)||%{ dt < 0o. We
will use the standard notation from distributed parameter con-
trol theory and drop the *” when it is understood, e.g. z(t) =
z(t,-) € H. A pseudo-inverse of an operator 7 on H will be
denoted as 7T, and its adjoint operator on 7 is denoted by 7°*.
In the sequel when we discuss the boundedness of a solution for
an impulsive dynamical system, we mean uniform boundedness
as defined in Haddad, Chellaboind, and Nersesov (2006, p. 67,
Definition 2.12). Finally, an impulsive dynamical system is said
to be well-posed, if it has well-defined distinct resetting times,
admits a unique solution over a finite forward time interval, and
does not exhibit any Zeno solutions, i.e. does not have an infinite

elements ajj, is defined as ||AllF =

number of resettings in the system over any finite time interval
(Haddad et al., 2006).

3. Problem statement and observer design
We consider the state estimation problem for nonlinear systems

of the form

z(t) = Az(t) + Bu(t) + h(z(t), u(t)),
(1) = Cz(t),

z(0) = zo,

(1)

where zgp € D(A) C H, A is a linear operator that generates a
Co-semigroup on the Hilbert space H, B : R” — H is an input
operator, C: D(A) — R? is the bounded linear operator for
measurements, and s contains higher-order terms. For the well-
posedness of the estimation problem, we assume that system (1)
satisfies the following assumption.

Assumption 3.1: The Cauchy problem for equation (1) has a
solution with bounded norm ||z(t)|| for any initial condition
zo € D(A), and t > 0.

Furthermore, for analysis purposes we assume that & satisfies
the Lipschitz-like assumption:

Assumption 3.2: The function h : D(A) x R™ — [D(A)] sat-
isfies h(0,0) = 0 and the local Lipschitz plus constant assumption:
there is a nonnegative constant B and for every pair (z,u) €
D(A) x R™, there exist positive constants €, €, L, and L, such
that

Ih(z,u) — h(z, W)l < Lellz — 2l + Lullu — llgm + B,
for all (z,u) € D(A) x R™ satisfying

lz—zllny <€, and |u—u|gm < €.

We define a low-dimensional subspace H C 'H that inherits
the norm of H, ie. || - ll; = || - I, and follow the framework
in Balas (1981) to design the nominal observer, while chang-
ing the roles for some operators. Consider an observer with the
following structure

2= AE() + Bau(t) + Fy(H) + GE (), u(®)), )

with 2(0) = %) € D(A,), and where A. : H — H, B : R" —
H, F:RP — H,and G:'H x R™ — H are to be determined.
Possible choices for H may be the space spanned by a set of
dominant eigenfunctions of A (modal approximation) or a set
of basis functions obtained by performing a proper orthogonal
decomposition (POD) of a collection of simulations of (1) and
truncating (POD approximation), see Section 3.1.

Let 7 : H — H be the orthogonal projector from H to H
(hence, || 7|7 = 1) and 7" be the injection from H into H:



T3 =z for all 2 € £ C H. Then we define the reduced esti-
mation error as

e(t) = 2(t) — Tz(t) € H. (3)
This can be used as a proxy for the state estimation error
ee=T'2—z€MN, (4)

when 7 produces a small projection error (z — 7 7 z), since
ee(®) = The(t) = (20 = T'T2()) (5)

In fact, when 7{ is the span of r dominant POD basis func-
tions and Zpop is the corresponding projection for a specific
trajectory z, then 7pop minimises the projection error

tr 1/2
P(T,z) = ( f lz(t) — TTTz(D113, dt) , (6)
0

over all projections 7 into subspaces of H with dimension , and
where #; denotes the finite time support over which the projec-
tion error is evaluated, cf. Holmes, Lumley, and Berkooz (1998).

Remark 3.1: In practice, we can control the projection error
P(T, z) by suitable selection of the trajectory data and choosing
enough basis functions r. However, we want to underline here
the fact that the existence of such a basis function with clear
dominant modes is only ensured for some PDEs that we denote
here as spectral PDEs. In the case where such basis functions do
not exist, e.g. hyperbolic PDEs, one could use recent results that
propose more appropriate basis functions, e.g. Balajewicz, Dow-
ell, and Noack (2013), Borggaard, Hay, and Pelletier (2007), and
Rim and Mandli (2018).

Although we are free to choose B and G in the observer (2),
to guarantee convergence we shall make the following assump-
tions for the remainder of this paper

B,=T7B and GGZu) =Th(T 2 u) (7)

forall 2 € H and u € R™.
‘We can now state our first result.

Theorem 3.1: Consider the system described by (1) under
Assumptions 3.1, 3.2, for which we associate the state observer
defined by (2) and (7). We assume that F, A., and T satisfy the
conditions

[AT —TA+FClz=0, forallz e D(A), (DO)
| exp(ACt)||ﬂ < Mexp(—4t), forallt >0 (D1)

and,
8§ > ML, (D2)

where M > 1 and § > 0. Then we can guarantee the exponential
stability of the estimation error, e(t) in (3). Namely, there exists a
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constant ¢, depending on 8, M, the initial error | e(0) Il and the
P(T,z) in (6) such that

el = ¢ exp((MLz — 8)1)[le(0) [l (8)
where,

exp(28t) — 1

1/2
C=M{||€(0)II7;[+LZ< ) H(P(T,Z),ﬂ)},

26
)
and
t ﬁ 2 1/2
(P(7,2), ) = (/0 (IIZ(t) ~TI Tzt 19 + L_) dt
(10)

Proof: 1f we differentiate (3) with respect to time and use (1)
and (2), we find

e(t) = 2(t) — Tz(b)
= A2(t) + Bu(t) 4 Fy(t) + G(E(), u(t))
— T [Az(t) + Bu(t) + h(z(t), u(t))]
= Ace(t) + [A:T — TA + FC) z(t)
+ [B. — TBlu(t) + N(e(t), z(t), u(t)), (1)

where N(e,z,u) = G(e + 7 z,u) — Th(z,u). The second term
on the right hand side vanishes if we require condition (D0) and
the third vanishes using our choice of B, in (7). Thus, we are left
with

e(f) = Ace(t) + N(e(t), z(1), u(?)), (12)

or
t
e(t) = exp(Act)e(0) + / exp(Ac(t — s))N(e(s),z(s), u(s)) ds.
0
(13)
The matrix A, is stable from (D1). Thus, we will exploit our
choice of G in (7) and the local Lipschitz plus bounded condi-
tion (Assumption 3.2) on & to bound the integral term. First of
all,
IN(e:z ) 3¢ = ITh(T (e + T2),u) — Thiz,u)l
<L|T'e+T'Tz -zl + 8
1T T — B
<L <||e||H 1T T2 — 2y + Lz). (14)
Therefore, (13) leads to
lle()llyy = Mexp(=5t)[le(0)]l 4

t
+ / Mexp(—=d(t — s))LZ||e(s)||ﬁ ds
0
t
+ ML, exp(—51) / exp(8s) (||T*Tz(s)
0

—z($) ||y + Lﬁ;) ds.
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By applying the Cauchy-Schwarz inequality to the last term
above and using the Gronwall-Reid inequality, we obtain
lle@®)lly = cexp((ML; — 8)1)[[e(0)[l (15)

where ¢ is given in (9). Finally, using assumption (D2) in
equation (8) gives us exponential stability of the error. |

Remark 3.2: Condition (D0) can be exactly satisfied for a class
of bounded linear operators 7, as proven in (Theorem 3.2,
Balas, 1981). However, in the more practical context of POD-
based realisation of the observer, presented here in Section 3.1,
we will approximate condition (D0), such that the residual effect
of its approximation does not change the exponential conver-
gence result of Theorem 3.1, see Remark 3.6.

Remark 3.3: The influence of the projection error P(7,z)
on the reduced estimation error e(t) appears explicitly in the
calculation of the constant ¢ above. Indeed, this is one advan-
tage of the estimator derived above and explicitly links the
ROM-based estimation error and the projection error. Many
reduce-then-design approaches to design observers for PDE
systems, e.g. Koga et al. (2019), first build a reduced-order
model (ROM) by projection, then separately build an observer
for the ROM. The separation of the projection subspaces H
from the observer design in the reduce-then-design approaches
miss the explicit connection that we have included by using 7
in assumption (DO0) as well as in the reduced nonlinear oper-
ator (7), which ultimately leads to the definition of ¢ in (9).
Another point that further differentiates our approach from the
reduce-then-design methods, is that the later methods when
applied to some type of PDEs can lead to an unstable reduced
order model (ROM). This ROM then needs to be stabilised
first before designing a ROM-based observer, e.g. Benosman,
Borgaard, San, and Kramer (2017) and Koga et al. (2019). In
this work, we do not have to impose any stability constraints
on the projection 7 A, we only require that it satisfies condi-
tion (DO). Finally, we can also underline that contrary to the
classical ROM-based Luenberger-like observer design, e.g. Koga
et al. (2019), the proposed observer (2) does not explicitly use
an output-error injection term in its design.

Remark 3.4: The upper bound in (15) shows an exponential
decrease of the estimation error norm, however, this bound can
be large in the case of large values of 8, since c in (9) is directly
proportional to 8. We will see in Section 4 that this upper-bound
estimate can be improved by a robustification of the observer, in
the case of bounded additive model uncertainties.

3.1 Observer design based on the proper orthogonal
decomposition

We first compute the proper orthogonal decomposition (POD)
from solutions to (1) then use this as a basis for H. Since
POD with Galerkin projection is a well-known model reduction
method for nonlinear problems, we will keep this discussion
brief and refer the interested reader to Holmes et al. (1998) and
Kunisch and Volkwein (2007).

Given a trajectory (or snapshots) of (1)

= {z(t,) e H|t € [0, ]}, (16)

the spatial autocorrelation function K is defined as K(x, x) =
#fotf z(t,x)z*(t,x) dt, and is well defined when z(t,x) is in
LZ([O,tf];H). The function K is used as the kernel of the
Fredholm problem fQ K(x,x)¢ (x) dx = L (x). Using Fred-
holm theory, there exist solution pairs {(X,,qb,-)}?il, where the
POD eigenvalues {A;}°, satisfy A1 > X > - - - > 0 with the only
accumulation point at 0, and the POD basis functzons {@i}32, are
orthonormal functions, (¢;, ¢j)3 = ;. We now cons1der the
reduced basis of the first r terms based on a desired projection
error (6): H, = span{g1(-), $2(-), ..., ¢,(-)}, and approximate
solutions to (1) in ’}:lr using

2, = ai0gi() € R,

i=1

(17)

where g;, i = 1,...,r are the POD projection coeflicients.
We then define the (orthogonal) projection operator 7 =

Teop : H — ’/‘%r as follows

[Toonz] () = ) ¢i(-) (i 2)n1.

i=1

(18)

The pseudo-inverse of 7 is the injection of H, into . Thus
T1%2 = zforall z € H, and since 7 is a projection operator, we
have 771 =

Next, we define A, : ﬂr — 7:(r as

(19)

With this selection, we can show that for any Zz e 7:[r
with ||2||ﬂ = 1, the following holds: (A2, 2) = (AT 12, 772) <
matzHH:l(Az,z).

Remark 3.5: If A is self-adjoint and exponentially stable, the
suggested choice for A; in (19), ensures that (D1) is satisfied, e.g.
see (Definition 7, Jacobson & Nett, 1988). Condition (D2) may
naturally be enforced with our choice of the projection operator
7T and the local Lipschitz constant associated with the solution
we are estimating. However, one may need to modify the con-
struction of A, to simultaneously ensure exponential stability, as
well as, impose a sufficient decay constant for A, cf. Benosman
etal. (2017), Noack et al. (2008), and Wang, Akhtar, Borggaard
and Iliescu (2012) For example, by substituting A, = A, + A,

for A, where A, is used to tune the decay rate of the new A,
matrix.

Condition (D0) is the most challenging to satisfy. We define

F as
= (TA—AT)CT, (20)

where C' is a left pseudo-inverse of the bounded linear operator
C, e.g. Beutler (1965).



Remark 3.6: We want to underline here that in applications,
and due to the finite number of sensors (even sparse in most
real-life applications), it is clear that equation (20), which
stems from our POD formulation of the observer, constitutes
an approximation in a least-squares sense of the exact condi-
tion (D0) This is due to the fact that the pseudo-inverse cf
is only an approximation of the exact left-inverse of C, e.g.
Beutler (1965, pp. 451-452). This approximation could also be
obtained by directly minimising the term [A.7 — TA 4 FClz
for z € span{¢;}, i.e. along a simulated solution of the system.
Another solution would be to use the matrices decomposition
used in Witczak et al. (2016) for solving a similar Sylvester
equation (in the ODE setting). However, such solution will also
be an approximation in our case of a non-square measurement
operator C, i.e. less sensors than the large state variables num-
ber obtained from discretisation. In essence, what we need is
for the term [A.7 — T A + FC]z(t) to be as small as achievable,
under the constraint of finite number of sensors. Indeed, the
fact that condition (DO0) is not exactly satisfied does not change
the exponential convergence of the error shown in Theorem 3.1,
since if we denote by resgeter the residual error in solving the
Sylvester equation A;7 — 7A + FC = 0, using (20), then due
to Assumption 3.1, one can bound the norm of the residual term
resgyiyester?» Which can then be included in the constant term 8
when computing the upper-bound of N in (14). Additionally,
the effect of this bounded residual term can be compensated for
by the robustification of the observer, as presented in the next
section.

4. Robustification of the observer

In this section we use tools from robust control theory, i.e. Lya-
punov redesign techniques, e.g. Khalil (1996) and Benosman
and Lum (2010), to robustify the nominal observer developed
in the previous section. Let us consider the case where the
system (1) contains an uncertainty on h, as follows

z(t) = Az(t) + Bu(t) + h(z(1), u(t)) + Ah(z(?)),  (21a)

y(t) = Cz(b), (21b)
from z(0) = zp, where the uncertainty Ah : H — H, satisfies
the following assumption.

Assumption 4.1: The uncertainty Ah:H — H, is uniformly
bounded: there exists a constant Ahmyax > 0 such that || Ah(2) ||
< Ahpmax, Vz € H.

Now, if we examine the dynamics of the observer (2), we see
that the observer convergence relies on the design of the nonlin-
ear function G, in (7). To robustify the nominal design presented
in Section 3, and account for the additional uncertainty term
Ah, we use a Lyapunov redesign approach and add an additional
term to G. The robust observer is now written as

z(t) = Acz(t) + Beu(t) + Fy(t) + G(Z,u) + AG(Z), (22)

with A, B, F, G satisfying conditions (7), (D0), (D1), (D2), and
where AG : H — H, must be designed to compensate for any
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negative impact that the uncertainty Ah might have on the
exponential stability of e obtained in (8). Carrying out a sim-
ilar analysis for the robust observer (22), under (7), and (D0),
the associated error dynamics satisfy

e(t) = Ace(t) + G (e(t) + Tz(1), u(t))

— Th(z(t),u(t)) + AG(Z) — T Ah(z). (23)

In the remainder of this section, we will try to recover at least the
convergence of e to a positively invariant set with a radius that
we can control, regardless of the form of the bounded uncer-
tainty Ah. We summarise the first result of this section in the
following theorem.

Theorem 4.1: Consider the error dynamics (23) for the observer
(22) and (7), tracking the uncertain system (21). Let h and Ah
satisfy Assumptions 3.2 and 4.1, respectively. Define the compen-
sation term AG as
AG(Z) = kAhpaxC*Ce, (24)
fork < 0, and C satisfying
CT =C. (25)

Then under Assumption 3.1, and conditions (DO0), (D1), and
(D2), the solution of the error dynamics equation (23) converges
to the invariant set

S = {e e W, satisfying, Klle|l 5 Amin(C*C) +1 > 0},

and the estimation error upper-bound is given by

-1 1
A —_— 0)ll; T ()
”e(t)”H = k)»min(C*C) * <“e( )”H * k)\-min(C*C)>

eXP(kAhmax)&min (é* C) t). (26)
Proof: We define the Lyapunov function as
Vie) = 3ee)y (27)

then show that our design for AG in (24) compensates for the
uncertainty Ah in (21), by providing an asymptotic decrease in
V as the system evolves.

Taking the derivative along solutions leads to:

V(e(t)) = (e(t), Ace(t) + G (2(1), u(t)) — Th(z(t), u(1)))
+ (e(t), AGE(®) — T Ah(z(1))).
Note that, due to the exponential stability of e in the nominal
case (when AG = 0, Ah = 0), the fact that G is given by (7), gnd
using the conditions (D0), (D1), and (D2), we know that V is
negative along the solution to the nominal error dynamics (12).
Thus, the first term of the right-hand-side is negative, and we
can write
V(e(t)) < (e(t), AG(Z(1)) — T Ah(z(1))),
=< (e(t), AG(z(1))) + lle(®) |l Ahmax.

Now to compensate for the effect of the Ah term, and preserve
the decrease of V along the new error dynamics (23), we define
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the term AG as

AG(2) = kAhmaxC*Ce,  k < 0. (28)

This allows us to bound V as
V < kllell %, Ahmaxhmin(C*C) + llell 3 Ahmax
< (Kllell yAmin (C*C) + 1) Abmaxllell -

This proves convergence of the error to the invariant set, e.g.
see Khalil (1996): S = {e € T, satisfying Klle]|;;Amin(C*C) +
1> 0}

Finally, to establish the upper-bound for llell, we use
the following classical argument: We define Y = llell > which
leads to

V=YY, (29)
we can then write the inequalities
Y = Ahmax(Yk)\min(é*C) + 1)- (30)

Thus, Y is bounded by the solution of the ordinary differential
equation

$ = Ahmax (PkAmin (C*C) + 1), y(0) = Y(0), (31)

which finally allows us to write the inequality (26). |

Remark 4.1: The introduction of the operator C in the
definition of AG in (24) is not required to show stabilisation of
the estimation error to the invariant set S. Indeed, the upper-
bound on V can be made negative without the need of C.
However, to make the observer implementable, one cannot con-
sider cases where the full state z is available for feedback. Hence
the need to project z into the space of measurements through the
use of the mapping C. By further defining C to satisfy CT = C,
we can implement the robust portion of the observer as follows:

AG = kAhma C*Ce,
= kAhpmaxC*C( — T72),
= kAhpax C*(C2 — C2),

= kAhmax C*(C2 — ), (32)
which only requires the observer states z, and the measured
output y.

Remark 4.2: The robustification of the observer allows us to
obtain a tighter upper-bound of the estimation error norm given
by (26), since it is inversely proportional to the observer gain k,
which can be selected high enough to tighten this upper-bound.

The passive robustification presented above guarantees
asymptotic convergence of the observer. However, this robust-
ness might lead to poor transient performance in practice. Thus,
one is also interested in improving the transient performance
of the observer. For this reason, we want to improve the pas-
sive robust observer presented in this section by complementing
it with an active learning step. This step learns the best (in an
optimal sense that we define later) observer feedback gain k.

5. Learning-based tuning of the observer

In this section we want to merge together the passive robust
observer given by (22), and (24), with an active learning
algorithm, to improve the performance of the observer. Indeed,
one parameter that could benefit from online tuning is the
robust observer gain k defined in (24). If we examine the results
of Theorem 4.1, we see that the estimation error upper-bound
(invariant set radius) decreases with the decrease of the neg-
ative feedback gain. However, if we are concerned with more
than asymptotic convergence to an invariant set, we need to tune
the feedback gain k to achieve other objectives. For instance, if
one is interested in optimising the transient behaviour of the
observer, the gain k needs to be tuned to optimise a transient
estimation cost performance. To find the optimal value of the
observer gain, we propose to use a data-driven optimisation
algorithm to auto-tune the gain online, while the observer is
estimating the system states. This problem is strongly related
to iterative feedback tuning (IFT), e.g. Hjalmarsson (1998),
Lequin etal. (2003), Hjalmarsson (2002), Benosman (2016), and
Killingsworth and Krstic (2006). We will follow Killingsworth
and Krstic (2006), Benosman (2016), and use an extremum
seeking (ES)-based auto-tuning approach. We first write the
feedback gain as

k = knom + 8k,  knom < 0, (33)
where knpom represents the nominal value of the observer gain,
and 8k is the necessary adjustment of the gain to improve
the transient performance of the observer. We then define the
learning cost function

T
_ 2
Q(8k) = /0 ||ey||7:{ dt,

e,(8k) = 5(t5k) — (1),
5=cs,

(34)

where T > 0, Z is solution of the observer (22), (24), and y is the
measured output. Furthermore, for analysis purposes, we will
need the following assumptions on Q.

Assumption 5.1: The cost function Q(5k) in (34) has a local
minimum at 8k = Sk,.

We propose to use the following time-varying amplitude-
based ES algorithm, introduced in Tan, Nesic, Mareels,
and Astolfi (2009), to tune 8k

X = —8rwy sin(wit) Q(8k),
Sk(t) = xx(t) + ag sin(wgt),

ay = —Orwkekar, (35)

where 8; > 0,w; > 0,6, > 0. We summarise the gain auto-
tuning algorithm in the following theorem.

Theorem 5.1: Consider the observer (7), (22), and (24), where
the gain k is tuned iteratively, with each iteration being of finite
time T, such that the state is reset over the tuning iteration



i=12,..., as zGT) = 2o, j={1,2,...}, and the gain-over
iterations—is defined as
k() = knom + Ak(t), knom >0
Ak(t) = 8k((— DT), (G- DT <t<jT,j=123...

(36)
where Sk is defined by the forward first order Euler discretisation
of (34), (35), with a time step equal to T. Then, the impulsive
dynamic (22), (24), (34), (35), and (36), is well-posed, the state
vector z is uniformly bounded, and under Assumption 5.1, the
gain k converges to a neighbourhood of its local optimum value
knom =+ k..

Proof: The proof follows similar arguments as the one used
in proving Theorem 2 of Benosman (2016). Indeed, we first
observe that the closed-loop system (7), (22), (24), (36), (34),
and (35) can be viewed as an impulsive time-dependent dynam-
ical system, Haddad et al. (2006, pp. 18-19), with the trivial
resetting law AZ(t) = 2y, for t = jT, j € {1,2,...}. In this case
the resetting times given by jT, T > 0j € {1,2,...}, are well
defined and distinct. Furthermore, due to Assumption 3.2 and
the smoothness of (7), (22), and (24) (within each learning
iteration), this impulsive dynamic system admits a unique solu-
tion in forward time, for any initial condition 2y € H (Haddad
et al., 2006, p. 12). Finally, the fact that T # 0 excludes a Zeno
behaviour over a finite time interval (only a finite number of
resets are possible over a finite time interval). Next, if we con-
sider the error dynamic (23) with the initial error ey = 2(0) —
7 z(0), then under the conditions of Theorem 4.1, there exists,
for any given time-interval (j — 1)T <t < jT, for any given
j €1{1,2,...},aLyapunov function V; = %(e, e), such that, V] <
(Killell 5,2 min (C*C) + 1) Ahmax|lell, where k; is the gain for iter-
ationj € {1,2,...}. This shows that e, starting from e (for all the
iterations j € {1,2,...}) is steered Vt € [(j — 1)T, jT|, towards
the invariant set §; = {e € H, s.t., kille|l;;Amin(C*C) + 1 > 0}.
Furthermore, since at each switching point, i.e. each new iter-
ation j, we reset the system from the same bounded initial
condition ey, we can conclude uniform boundedness of the
tracking error e. Next, since we restart each learning iteration
from the same inial condition eg, then the cost function (34)
is well defined as a function of the optimisation parameter §k.
Finally, by Theorem 1, in Tan et al. (2009) and accounting for
the global o(T) error of a first-order forward Euler discretisa-
tion, we can conclude, under Assumption 5.1, the convergence
of the extremum seeker (35) to a neighbourhood o(T) of the
local optimal value 5k,. [ |

Remark 5.1: We decided to use the ES algorithm of Tan
etal. (2009) for two reasons: (1) Under stronger assumptions, i.e.
existence and uniqueness of a global minimum of Q (Assump-
tion 3, in Tan et al,, 2009), and another technical assumption
on the equilibrium solutions of the averaged system of the ES
dynamics (Assumption 4, in Tan et al., 2009), one can claim
semi-global convergence to a neighbourhood of the global min-
imum, i.e. semi-global practical stability of the global minimum
(Theorem 1, in Tan et al., 2009), even in the case of existence
of minima. (2) Due to the asymptotic decrease of the dither
amplitude, ax(t), which is a solution of the stable dynamics
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given by the third equation in (35), the ES algorithm converges
to a tight neighbourhood of the minimum (local or global),
with less residual dither oscillations compared to other classical
dither-based ES algorithms with constant dither signal ampli-
tude, e.g. Tan, Nesic, and Mareels (2006) and Krstic (2000). The
latter point can be easily seen from the second equation in (35),
where one observes that the oscillations in §k introduced by the
dither signal, vanishes with a(t). However, we want to empha-
sise that in the absence of these assumptions, the algorithm still
ensures local convergence to a local extremum, which means
the auto-tuning will still have a beneficial effect on the observer
performance.

Remark 5.2: Theorem 5.1 does not directly deal with the
convergence of the observer, but it deals with the optimi-
sation of the transient solution of the observer. Indeed, in
Theorem 5.1, we analyse the convergence of the auto-tuning
algorithm ((35), (34), and (35)) that is introduced to auto-tune
the gain k < 0 of the observer. In other words, instead of tuning
the negative gain k manually, where each optimal value would
depend on the new initial conditions and optimises its own tran-
sient tracking performance defined by the cost Q in (34), we use
an auto-tuning optimisation algorithm that will tune the gain
online, and automatically find an optimal gain from the set of
all stabilising gains. This idea is usually used in gain tuning of
feedback controls, and is referred to as iterative feedback tuning
(IFT), e.g. Benosman (2016). We use it here as gain tuning for
our observer.

6. An application example from fluid dynamics: the
1D Burgers equation

We consider estimating solutions to the 1D damped Burgers
equation, e.g. Burns and Kang (1990)

2
d0z(t, x) + 2t %) 0z(t, x) _ Ma z(t, x)

37
ot dx 9x? (37)

— vzt x),
where z represents the state, u > 0 the viscosity coefficient,
y > 0 is a dissipation coefficient, x € [0, 1], and t > 0. We con-
sider this problem in D(A) = ngr(O, 1), the completion of
C*-periodic functions in H?(0,1). The initial conditions are
unknown and we seek to estimate the solution by performing
state measurements

) = (/ z(t,x)dx,...,/
Q1 Q

in RP. To write (37) in the form of equation (1), we define

T
z(t,x)dx) =:Cz(t) (38)

P

A 8z (39)
z = — — VZ,
Hos =Y
and
9
h(z,u) = —z-2., (40)
0x

We consider u = 0 for this nominal experiment, so we can also
ignore the B operator. In the sections below, we show the prob-
lem of building a low-dimensional observer for the damped
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Burgers equation (37) fits within our robust estimation frame-
work. After some preliminary results describing the solutions
to (37), we show that A generates a Cy-semigroup on H and that
h satisfies the local Lipschitz-like condition of Assumption 3.2.
This will be followed by numerical tests that demonstrate the
performance of the nominal observer; the observer under the
presence of a bounded uncertainty satisfying Assumption 4.1;
and the auto-tuning implementation of the observer.

6.1 Theoretical justification

We first show that solutions to (37) are bounded in H.

Lemma 6.1 (Solutions to (37) are bounded): Let z(t,-) be
a solution to the damped Burgers equation (37) with z(0,-) =
z0(+) € lDer(O 1). Then ||z(t,-)|l3¢ remains bounded on any
fixed time interval (0, tf).

Proof: Multiplying equation (37) by z(t, -) and integrating over
the periodic domain (0, 1) leads to

d (11, !
— —z(t,x)dx:—/z(tx) (t,x) dx
0

dt Jo 2
14 2
—/L/ (—Z(t,x)> dx
0 0x
1
—y/ zz(t,x)dx.
0

The first term on the right-hand-side above can be integrated
and vanishes by periodicity. The second term results from
integration-by-parts with the boundary terms vanishing by
periodicity. Multiplying the remainder by an integrating factor
leads to the following

1 1
/ 2(t,x)dx = exp(—2yt) / z(z](x) dx
0 0

t 1
— 2/1] exp(2y (s — 1)) z)zc(s, x) dx ds.
0 0

Since the last term above is always non-positive, we have shown
that ||z(¢, -) ||y decreases over time. |

Theorem 6.2: Let D(A) = Héer(O, 1) CH and A:DA) —
‘H be defined as in (39) with w,y > 0. Then A generates a
Co-semigroup on H.

Proof: The operator A is dissipative as integration-by-parts
leads to (Az,z) = —(zy,2x) — ¥ (2,2) < 0. Since A is densely
defined, it generates a Cp-semigroup. [ |

Corollary 6.3 (Stability of A.): If we compute the operator A,
H—>H using (19), then A, generates an exponentially stable
semigroup.

Proof: If we consider A,z = jizy,, the arguments made in
Section 8.2 in Pazy (1983) for this periodic case show that A, is
the infinitesimal generator of an analytic semigroup T'(¢) satis-
fying || T(t)|| < M for some M > 1 depending on the parameter

. The semigroup S(t) = exp(—yt)T(t) is generated by A =
A, — vz, and is an analytic semigroup of solutions satisfying
the bound ||S(#)|| < M exp(—yt).

Using (19), we have A, = TT™ AT and can show that for
any z € H, with ||2||7;[ =1, the following holds: (A.z,2) =
(ATT2,TT2) < max|z|,,=1(Az, z) since 72| < 1. The oper-
ator A is self-adjoint, this implies the A, generates a semigroup
Sc(t) satisfying the bound ||S.(¢) || < M exp(—yt). [ |

For functions that are piecewise differentiable, we can dif-
ferentiate (37) with respect to x. By following the arguments
of Lemma 1, multiplying the differentiated equation by %
instead, leads to the complex result that the spatial derivative,
also known as the enstrophy || dfc(t -)||#¢> remains bounded on
any fixed time interval (0, ff), cf. Pelinovsky (2012). Indeed, the
additional —yu term limits the rate of growth over the usual
estimates. The result is that ||z(, -) ||t remains bounded. This
allows us to consider a local Lipschitz condition plus constant
for (40) since

Ih(z1) — h(@)llH < (21l + l22llm) 21 — 22|l
< L(llz1 — z2llx + |z1 — 221)
< L,||lz1 — 22|y + Ah,

where L, = (||z1]lg + |z2]lg1) and Ah = L;|z; — z;| where
|z1 — 2| is the H'-seminorm, e.g. Brezis (1999, p. 121). We
then use Lemma 1 together with the fact that the enstrophy is
bounded (Pelinovsky, 2012).

6.2 Numerical tests

We consider here the case of the Burgers equation (37), with
w=5x10"3 y =5 x 1072, boundary conditions z(0,t) =
z(1, 1), and the initial condition:

0.5sin(2rx), x € [0,.5],
zp(x) = {
0, x €].5,1].

6.2.1 Nominal case

We first test the nominal case where there are no uncer-
tainties explicitly added to the model (21), i.e. Ah=0. We
report in Figure 1 the exact solution. We assume that we have
access to 5 measurements centred at the following sensors loca-
tions: [0.15 0.35 0.55 0.75 0.95] with |2;| = 0.1, ie. Q1 =
[0.15 —0.05, 0.15+ 0.05], €2, = [0.35—0.05, 0.35+ 0.05],
Q5 = [0.55 — 0.05, 0.55+ 0.05], Q4 = [0.75 — 0.05, 0.75 +
0.05], and Q5 = [0.95 — 0.05, 0.95 + 0.05]. The correspond-
ing measurements are plotted in Figure 2. We first imple-
ment the nominal observer (2), with the POD-based design (in
Section 3.1). We use a POD basis of dimension 5, and discretise
the PDE with linear finite elements resulting in an approxi-
mate state of dimension 64. Note that this number of sensors
and discretisation dimension leads to the residual computation
error [[resgypyester ||[F = 0.0258, which together with the maxi-
mum norm of z, max ||z|| = 0.0625, leads to the upper-bound
lIressymvesterzll < 0.0016, this small error does not change the
exponential convergence results of the observer, as discussed in
Remark 3.6. We also introduce an initial condition error of 50%.



Full-Order State Simulation

0.5+

0.4+

Figure 1. Exact state evolution.

The estimate 7 ' of the PDE solution z is shown in Figure 3. The
estimated solution from only 5 measurements tracks toward the
exact flow. The error between the estimate and the exact solu-
tion is reported in Figure 4, where we can see that the maximum
error happens in the transient phase, due to the initial condition
mismatch.

6.2.2 The case with parametric uncertainty

Next, to test the robustification term (24), we introduce an
uncertainty in the viscosity coefficient §u = —45 x 1074, We
run again the nominal observer (2), without the robustification
term. The corresponding estimated solution, and estimation
error are given in Figures 5 and 6, respectively. We can see that
the observer converges but the estimation error is larger than in
the nominal case, due to the parametric uncertainty. Now, we
test the robust observer (2), (7), and (24), where we select the
gaintobek = —10%. We see the clear effect of the robustification
term in Figures 7 and 8. The estimation error rapidly decreases
to zero, due to the robustification term that compensates for the
model uncertainty.

6.2.3 An uncertain case with gain auto-tuning

We now present a test case with uncertainty in the viscosity coef-
ficient. However, we do not ‘settle’ with our initial ‘guess’ of the
observer gain k. Instead, we use the auto-tuning algorithm pro-
posed in Section 5: implementing the auto-tuning ES algorithm
presented in Theorem 5.1 with the learning cost function (34).
We consider a simulation time T = 30 sec, to include the tran-
sient as well as the steady-state part of the estimation error. To
motivate the need for auto-tuning, we first show the evolution of
the learning cost function (34) as function of the observer again
k. We report in Figure 9, the cost vs. gain plot, where we see
that the constant value k = —1 x 103 used in our first test, is not
the optimal gain value. Indeed, the estimation performance, as
defined by the learning cost, is optimal for a gain in the interval
[—300, —200]. To ensure that the optimal gain for output error-
based cost (34) is also optimal for the full state estimation error
(i.e. Equation (34) where C is replaced with the identity matrix)
we plot the full-state cost as function of the gain k in Figure 10.
One clearly observes that the optimal gain for the output-based
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Measurements: y = Cz
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Figure 2. Output measurements: nominal case.
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Figure 3. Estimated velocity: nominal case.
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Figure 4. Estimation error: nominal case.



10 M. BENOSMAN AND J. BORGGAARD
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0.5 30
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20
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Figure 5. Estimated velocity: uncertain case with non-robust observer.

Tt% — z Errors

Figure 6. Estimation error: uncertain case with non-robust observer.

cost is also optimal for the full state-based cost. Thus, the gain k
obtained through auto-tuning of the output-based learning cost
will also have improvement in the overall estimation error for
the entire state.

Next, we run the ES-based auto-tuning algorithm with the
following constants: a,(0) = 10, wy = 100 [rad/sec], §x = 40,
and €, = 5 x 107*. The results of the auto-tuning are shown
in Figures 11 and 12. We can see that the learning cost func-
tion decreases over the iterations and, as expected, the gains
that provide the lowest estimation error are not necessarily the
highest gains (in absolute value): the gain starts at —1 x 10°
and converges to the neighbourhood of the optimal gain (within
[—300, —200]).

We underline here that a classical extended Kalman filter
approach has been applied to the same 1D Burgers problem
in Borggaard et al. (2014). However, the extended Kalman
filter does not handle parametric uncertainties. Furthermore,
the Kalman filter would not be a good candidate for an

0.8

0.6

0.4

0.2

30

10
t

Figure 7. Estimated velocity: uncertain case with robust observer.

Tt% — z Errors

Figure 8. Estimation error: uncertain case with robust observer.
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Figure 9. Learning (output-based) cost vs. gain.
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Figure 10. Learning (full state-based) cost vs. gain.
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Figure 11. Gain vs. learning iterations: Uncertain case with robust observer.
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Figure 12. Learning cost vs. learning iterations: uncertain case with robust
observer.

auto-tuning implementation, since its feedback gains have to
satisfy algebraic Riccati equations, and cannot be easily learned
online.
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7. Conclusions

The problem of robust observer design for nonlinear infinite
dimension systems is challenging. The results proposed in this
paper are: (1) a robust reduced-order observer for nonlinear
PDEs with bounded model uncertainties; (2) an IFT approach
for online tuning of the observer gain; (3) an application to a
non-trivial nonlinear PDE, namely the 1D Burgers equation.

For the large-scale discretisations required for complex non-
linear PDEs, it is infeasible to implement a full-order observer
that can be reduced. Yet implementing an observer for a
reduced-order model generally lacks theoretical justification.
We have narrowed this gap in the current work by directly incor-
porating the model reduction subspaces within the observer
design. Further studies will concern the case of model as well as
measurement uncertainties. We intend to demonstrate the effec-
tiveness of our approach on models where full-order observers
are not feasible. For example, models that involve the 2D and
3D Boussinesq equations.
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