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Abstract: Feedback control problems involving autonomous polynomial systems are prevalent,
yet there are limited algorithms and software for approximating their solution. This paper
represents a step forward by considering the special case of the regulator problem where the
state equation has polynomial nonlinearity, control costs are quadratic, and the feedback control
is approximated by low-degree polynomials. As this represents the natural extension of the
linear-quadratic regulator (LQR) and quadratic-quadratic requlator (QQR) problems, we denote
this class as polynomial-quadratic regulator (PQR) problems. The present approach is amenable
to feedback approximations with low degree polynomials and to problems of modest model
dimension. This setting can be achieved in many problems using modern model reduction
methods. The AI'Brekht algorithm, when applied to polynomial nonlinearities represented as
Kronecker products leads to an elegant formulation. The terms of the feedback control lead to
large linear systems that can be effectively solved with an N-way generalization of the Bartels-
Stewart algorithm. We demonstrate our algorithm with numerical examples that include the
Lorenz equations, a ring of van der Pol oscillators, and a discretized version of the Burgers
equation. The software described here is available on Github.
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1. MOTIVATION

Linear feedback control of autonomous nonlinear systems,
such as those describing the behavior of fluids, can be suffi-
cient to achieve stabilization—even for an unstable steady-
state solution. For example, this has been demonstrated
through the rotational stabilization of the wake behind a
circular cylinder, cf. Bergmann et al. (2005), Benner and
Heiland (2016), Borggaard et al. (2010), and Borggaard
and Gugercin (2014).

There is a shortage of software tools for nonlinear prob-
lems in control and systems theory. The general Matlab
Nonlinear Systems Toolbox (NST) by Krener (2015) took
a broad step toward delivering useful tools for a number
of important problems. Since we inherently encounter the
curse of dimensionality in these problems, there is also a
need to develop specialized tools for important classes of
problems. This paper addresses this by specifically solving
the polynomial-quadratic regulator problem: minimizing a
quadratic cost subject to a state equation with a polyno-
mial nonlinearity.

For example, linear feedback laws found by solving the
linear-quadratic regulator (LQR) problem compute the
linear feedback law as the solution to a single algebraic
Riccati equation and have the property that the linear
portion of the nonlinear system becomes stable (Barbu
et al., 2006, 2007; Barbu and Sritharan, 2001; Raymond,
2006). Unfortunately, for nonlinear systems, this only
guarantees local stability. The ability of linear feedback
to stabilize the steady-state solution depends on the ini-
tial condition, which must be sufficiently close to the
steady-state. An alternative would be to develop nonlin-

ear feedback control laws that could offer the ability to
expand the radius of convergence (shown with a simple
example in Borggaard and Zietsman (2018)). However,
these require us to approximate solutions to the Hamilton-
Jacobi-Bellman (HJB) equations, e.g. Breiten et al. (2019);
Kunisch et al. (2004). The HJB equations are notoriously
complex in the general case. Nevertheless, if one considers
the polynomial-quadratic regulator (PQR) problem, hav-
ing autonomous state equations with polynomial nonlin-
earities and a quadratic control objective, there is sufficient
structure in polynomial approximations to approximate
solutions. One strategy is to use state-dependent Riccati
equations (SDRE), cf. Banks et al. (2007); Cimen (2012);
Cloutier (1997), which requires a proper factorization of
the problem (Banks et al., 2007). SDREs have recently
been applied to incompressible flows in Benner and Hei-
land (2017). Another strategy, that we pursue here, is to
use polynomial approximations to the HJB equation and
associated feedback operator based on Al’Brekht’s method
(Navasca and Krener, 2000). As described in this paper,
recasting AI’'Brekht’s method for autonomous polynomial
systems using Kronecker products leads to computable
polynomial feedback laws for modest problem sizes. ! The
PQR problem also happens to be exactly what is needed to
solve discretized versions of distributed parameter control
problems where the nonlinearity is quadratic (such as the
Navier-Stokes equations used as our motivation above).
This is particularly true when linear feedback laws are
being based on LQR problems. As in the LQR case,
suitable model reduction methods (Ahmad et al., 2015;
Aubry et al., 1988; Holmes et al., 1996) are essential to
forming a solution methodology for distributed parameter

1 This was recently used for bilinear systems in Breiten et al. (2017).
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control problems with quadratic nonlinearities. First of all,
the Riccati equation must be solved to compute the linear
term, e.g. Benner et al. (2013); Singler (2008); Singler
and Kramer (2016) and the curse-of-dimensionality still
appears with higher-order polynomial approximations of
the feedback law.

In this paper, we briefly outline the HJB equations, the
PQR problem, and polynomial approximations to the
value function and the feedback control operators. Our for-
mulation leads to a sequence of linear systems in Kronecker
product form after an initial solution to the algebraic
Riccati equation. A naive construction of these matrices
and other terms would quickly become prohibitive. How-
ever, the structure lends itself to newly developed recursive
tensor linear algebra that avoids assembly and other taxing
of computer memory. We present a numerical study with
a set of control problems with quadratic and cubic state
equations to investigate the advantages of using higher
degree approximations of the optimal feedback control.

2. PROBLEM FORMULATION

For any ¢t > 0, let x(t) € R™ be the state variables,
u(t) € R™ the control inputs, and Q € R™*" and
R € R™*™ be weighting matrices satisfying properties
Q" = Q > 0and RT = R > 0. The running cost is
defined as the quadratic /(x,u) = x7Qx + u’Ru. The
polynomial-quadratic regulator problem then is to find a
control u(-) € Ly(0, 00; R™) that solves

min J(x, u) = /0 " Ux(t), u(t)) dt, 1)

subject to the system dynamics

x(t) = Ax(t) + Bu(t) + f(x(t)), x(0)=xq, (2)
where A € R"*" and B € R" ™ are constant matrices
and f : R — R"™ is a p-degree polynomial in the states.

We define the value function v(xg) = J(x*(;x%0), u*(+))
to be the value of (1) when the optimal control u* and
corresponding state x* are found from the initial point xq.
The optimal control is given by the feedback relation

u(t) = K(x(t)), 3)

which satisfies the HJB partial differential equations

0= g—i(x) (Ax + BK(x) + f(x)) + ((x,K(x)), (4)
v ol
0= 8—X(X)B + %(x, K(x)). (5)

Ideally, we could solve the HJB equations simultaneously
for v and K, but this is not computationally feasible due
to the curse of dimensionality. Therefore, it is natural to
consider series solutions. As suggested in Krener et al.
(2014) the algorithm proposed by Al'Brekht is effective
and has mathematical justification. We will show that
this can be solved effectively when the polynomials are
expressed in Kronecker product form. We first review some
useful features of Kronecker products.

3. NOTATION AND PROPERTIES

Kronecker products have a rich history in the control
literature, cf. Brewer (1978) and Simoncini (2016). The
Kronecker product of two matrices X € R**J= and Y €

Riv*Jv with entries z;; and y;;, is defined as the block
matrix X ® Y € Rié=%>J=Jv with entries
qu ZL’1QY ﬂflij
£U21Y $22Y te .%'ijY
X®RY = . .

l‘ile xing J,‘Z'mij
The vec operation on any matrix Y, produces the vector y
of length i, j, with the (¢4 (j —1)i,)-st entry being y;; (for
i = 11, and j = 1:j,) and is written y = vec(Y). We will
repeatedly utilize the following properties of Kronecker
products: (C ® D)(E® F) = (CE) ® (DF) and (C ®
D)T = CT @ DT. We will also take advantage of the
Kronecker-vec relationship
K =XVYT leadsto vec(K)= (Y ® X)vec(V)
and the derivative of ¢(x) = ¢ (x ® x) in direction f as
Oc

af:cg(f@uﬂ-x@f).

4. THE POLYNOMIAL-QUADRATIC REGULATOR

We present the Kronecker product description of the
polynomial-quadratic regulator (PQR) problem. We specif-
ically express the polynomial nonlinearity as

f(x) =No(x®@x)+- -+ N,(x® - ®x).

where Ny € R for k = 2,...,p. By defining q3 =
vec(Q) and ry = vec(R), we can rewrite

((x,u) =q; (x®x) +1; (u@u).
Following Al’'Brekht’s approach, we now expand the value
function and feedback operator as polynomials, then gen-
erate equations by substitution of all of these polynomial

expressions into (4)-(5) and matching equal degree terms
up to a desired approximation order. Thus, we define

v(x):vg(x®X)+v3T(x®x®x)+-~

v[2](x) vl3l(x)
and
Kx)= kix +ke(x@x)+ks(x@x®@%x)+---,
~N —— —-—-W,
k(%) k(2] (x) ki3l (x)

where vy € R™ %1 and ky € R™*"* are to be determined.

Substituting the expansions for the value function v and
the feedback operator K into (4), then collecting O(x?)
terms and factoring, we have
vs (A+Bk;)®1,)+I, ® (A + Bk;)) (x ® x)
+qz (x@x) +13 (ki @ ki) (x®x) = 0. (6)
Similarly, gathering O(x) terms from (5) and using our
assumptions on R leads to

viBoL,) +ri(l, 2k =0. (7)
As we would expect, this is the LQR solution for the
linear problem (ignoring f in (1)-(2)), where we have
vy = vec(Vs) and V5 solves the algebraic Riccati equation
(ARE)
ATV, + VA -V,BR'BTV,+Q=0.
With Vs in hand, we can set k; = —R™'BTV,.

Gathering O(x?) and O(x) terms from (4)-(5) produces
vy and k. The AI'Brekht algorithm repeats this for suc-
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cessively higher degree terms with the following simplifica-
tion. Note that gathering O(x%*1) terms in (4) to obtain
an equation for vy 1 will produce the term
v3 ((Bkg) @ 1,) + 15 (ka @ k).
Factoring out (kg ® I,,) from the right and using (7),
we clearly show the known result that this term always
vanishes. This effectively decouples the calculation of the
terms v441 and kg for all values of d > 1. We now describe
each of these calculations separately below.

4.1 Coefficients of vgi1

The degree three terms in (4) can then be written using
the definition A, = A + Bk; as

A 0L,®L+1,0A,01,+1,8L, ©A.)" vs

= (No®I, + I, ® No)" vo.
As noted above, this is independent of ks.

To write the equations from matching higher degree terms
in a more compact way, we define the N-way Lyapunov
matriz or a special Kronecker sum matrix, cf. Benzi and
Simoncini (2017),

LX) =X0L,® L, +1,8X®1,® - @L,+---.
d terms
)

Then the calculation of v in equation (8) follows from
solving an equation of the form

Eg(AZ)Vg = 7E2(N§)V2. (10)
Once we have v3, we can readily compute ko as shown in
Section 4.2 below. The other terms in the series expan-
sion of the value function lead to equations that have a
similar form. All of the left-hand-sides are generically the
same Lg41(AT)v 1. However, the right-hand-sides of the
equations gather more terms due to the ro term in (4)
and the interactions of the previously computed nonlinear
feedback terms with previously computed terms of the
value function (that are known and moved to the right-
hand-side). This process is clarified by explicitly collecting
the next two sets of terms for v(x) below. For O(x*), we
have

£4(AZ)V4 = —,Cg((BkQ + NQ)T)V:), — (kg1 X kg)rg, (11)
which can be solved for v4 once ks is computed using the
solution v3 from (10), and

L5(AL)vs = —L4((Bka + No)")vy — L3((Bks + N3)")vsy
—(ky @ k3 +kj @k )ra. (12)

Again, once we compute k3 from v4, we have everything
we need to compute vs.

d terms

In general, while calculation of the coefficients vy is
described by large linear systems (L4(AL) € Rn*xn),
there is a great deal of structure and sparsity that can be
exploited. This will be discussed in Section 4.4. It is also
immediately obvious that without the nonlinear terms N,
in our state equation, the right-hand-side in (10) would
vanish leading to vz = 0. The remaining equations for
vg+1 would have homogeneous right-hand-sides and thus
vg+1 = 0 for d = 2 and higher. This is consistent with
the LQR theory. We also see that even if f is quadratic,
all terms in the series for v and K could be non-zero.
Therefore, we are only computing approximations to the
nonlinear feedback laws for non-trivial f.

4.2 Coefficients of kq

We now turn our attention to using (5) to calculate kg from
vg+1. This is again straight-forward using the specialized
Kronecker sum operator (9),

1. T
k, = —§R Y (Lag1(BT)var) (13)

4.8 Computing Right-Hand-Side Vectors

The assembly and solution of linear systems with the form

£d+1(Ac)Vd+1 =C (14)
is only feasible for small values of d and n. The advantage
of the Kronecker product structure is that we can perform
operations with Kronecker product matrices without actu-
ally forming the large block matrix. The main issue that
we deal with in this section is calculating c, the terms on
the right-hand-sides of e.g. (10)—(12) or (13). Solution of
the system (14) is described in the next section.

To calculate ¢ for (10)—(13) involves two types of terms.
The first involves the multiplication of a Kronecker form
with a vector ry. Recall, e.g. Brewer (1978), that

(X ®Y)ry = vec(Y'RX), (15)
where R has the appropriate dimensions and ro = vec(R).
Therefore, the terms involving re only require matrix

multiplications and no assembly of the Kronecker product
is required.

The second type of term are products of the Kronecker
sum with a vgy1: Lgg41(X)vayr. Using the definition of
(9), we have to calculate d + 1 different multiplications of
the Kronecker products with v4. This is simplified using
the associativity of the Kronecker product and writing

L, =1,  -®I1,.
—_——
¢ terms
The multiplications can be reduced to three different cases
(X®I,,Ld)vd+1, (Ind—z ®X®I”£)Vd+1, and (Ind ®X)Vd+1.
Here the relation (15) and the associative law for Kro-
necker products are useful. The first and last terms above
can be handled by the appropriate reshaping of vg441 and
multiplying with X (the multiplication by I,,a is trivial).
The associative law allows us to handle all of the interme-
diate terms recursively as

(Ind*E @X® Iné)vd+1 - ((Ind*Z ® X) ® Ing)vd-O-l
= (Ind*Z & (X & Ine))vd-‘rl‘

The grouping can be done to maximize the size of the free
identity matrix.

4.4 Linear System Solutions

The Kronecker structure leads to larger systems (14),
but are now ameneble to modern high performance algo-
rithms (Chen and Kressner, 2019; Kolda and Bader, 2009;
Simoncini, 2016). Many of these algorithms, e.g. Chen and
Kressner (2019), utilize a real Schur factorization of the
matrix A.. For this study, we used the recursive algorithms
in Chen and Kressner (2019) for Laplace-like equations.
Their software was trivially modified to take advantage of
the fact that the same term A, appears in every block and
gave the system exactly the form (9).
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As an alternative, we have also developed a solver that
generalizes the Bartels-Stewart algorithm to systems of
the form £4(AT)v = b. As a preprocessing step, a Schur
decomposition is performed on AL If AT = UTU*, then
we can apply this using the factorization property of the
Kronecker product
LAY = (U ---0U)Ly(T)(U®---@U)*.

As with the Bartels-Stewart algorithm, we can work with
upper triangular systems and also find the familiar solv-
ability condition in terms of not having eigenvalues of
T (namely A.) reflected across the imaginary axis. This
cannot happen in our application as A is a stable matrix.
Note that instead of solving the upper triangular system
directly, a block backward substitution algorithm allows
us to take advantage of the sparsity pattern that arises
with L£4(T) as well as fast matrix multiplications using
the Kronecker-vec property.

5. NUMERICAL RESULTS

We present three sets of results. The first is a controlled
Lorenz system, the second is a ring of van der Pol oscilla-
tors, and the final example is a discretized control problem
involving the one-dimensional Burgers equation.

5.1 Controlled Lorenz Equations

As a first test example, we consider the feedback control
of the Lorenz equations where

—10 10 0 1
A:[28—1 o], B= 01,
0 0-8/3 0
and the nonzero entries of Ny € R3*9 are
1 1
N2(2,3):N2(2,7):7§ and N2(3,2):N2(3,4):§,

accounting for the —zjx3 term in the second equation
and the +z;2z2 term in the third, respectively. We choose
Q = I3 and R = I; as control weights. The solution
of the open- and closed-loop systems were computed for
varying degrees of polynomial feedback from the initial
state xo = [10; 10; 10] and simulated to time T" = 50. The
series approximation to the value function and the integral
of the running cost are reported in Table 1.

Table 1. Lorenz: Value Function Approx.

d || S8 o) | [ e(xe(t), u(t))dt
1 7533.49 6999.37
2 7062.15 6911.03
3 6957.19 6906.45
4 6924.27 6906.21
5 6913.68 6906.18
6 6910.45 6906.17
7 6909.30 6906.17

5.2 Ring of van der Pol Oscillators

As a second test case, we consider controlling a ring of van
der Pol oscillators.

i+ (W7 = Vi +yi = Yic1 — 2yi + yir1 + biwa(t),
fori=1,...,g with y;(0) = y° and 9;(0) = 0 (we identify
Yg+1 = Y1 and y,; = Yo to close the ring). The stability of

this system was studied in Nana and Woafo (2006) and
a related control problem considered in Barron (2016).
Choosing different values of g and rewriting as a first-
order system of differential equations allows us to study
the cubic-quadratic regulator problem for problems of size
n = 2g. We set b; as 0 or 1 with m = ||b||.

In our first experiment, we chose g = 4, set by = by = 1
and computed feedback laws up to septic (7th degree)
polynomial terms. The problem parameters are thus, n =
8 m=2p=3,andd="7 Wealsoset ¥°=0.3 and T =
50 for this study. The approximations to the value function
are presented in Table 2. Two points are immediately
obvious. One is that the even degree feedback coefficients
are calculated to exactly zero (the state equation only has
odd terms). The second is that the benefit of the control
is quickly under the integration threshold by the cubic
feedback terms. The polynomial estimate of the value
function slowly continues to improve, but is sufficient by
the septic terms.

Table 2. van der Pol: Value Function Approx.

d | S olilxe) | [ e(x(t), u(e))dt
T || 4.6380 1.4253
2 || 4.6380 4.4253
3 4.4125 4.4208
4 4.4125 4.4208
5 4.4246 4.4208
6 4.4246 4.4208
7 || 4.4242 4.4208

In a second experiment, we used 8 oscillators with 2
controls at nodes 1 and 2. This led to a control problem
where vy and k; were well defined, A. was stable, yet
the origin was only locally stable for the nonlinear system.
Implementing the cubic and quintic controls lead to finite-
time blowup. However, for this same scenario, choosing
yo = 0.03 lead to the expected improvements (about 2%)
with higher degree feedback laws and approximations to
the value function that verified the results, see Table 3.

Table 3. van der Pol: Value Function Approx.

d | S olilxo) | [ e(x(t), u(e))de
1 16.8514 16.4579
3 || 16.0162 16.0622
5 || 16.0830 16.0566

As a final experiment, we increase the number of controls
to 4, but consider different locations for the actuators. We
note that locations at nodes (1,3,5,7) and, by rotational
symmetry, (2,4,6,8) lead to uncontrollable (A, B) pairs.
The ARE must have a solution before any higher degree
feedback approximations are defined. At other locations,
we found success from the original yo = 0.3 value. In
Table 4, we list the actuated nodes along with values for
the integrated running cost for linear, cubic, and quintic
feedback laws. In every case except the first, there was
improvement in the actual performance for higher degree
feedback laws. Some cases showed a 3% improvement
while others were not significant (0.08%). Most of the
performance gain was achieved with the addition of the
k3 term, although there was one example where the cubic
feedback lead to finite-time blowup of the solution and the
full quintic feedback was required to see the performance
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gains. The approximation of the value function wasn’t
as insightful in deciding when the approximation of the
nonlinear feedback gains were of a high enough degree.
A closed-loop simulation was required to evaluate the
performance.

Table 4. van der Pol: Value Function Approx.

nodes linear cubic quintic
(1,2,3,4) 77.9977 | blow-up | 75.7120
(1,2,3,5) 29.9355 | 29.1139 | 29.0181
(1,2,3,6) 8.3986 8.3910 8.3910
(1,2,4,5) 29.4803 | 28.6854 | 28.5952
(1,2,4,6) 7.7364 7.7293 7.7292
(1,2,4,7) 6.9549 6.9489 6.9489
(1,2,5,6) 8.8505 8.8417 8.8417

5.8 Burgers Equation With Reaction Term

As a more structured test problem, we consider the PQR
problem with a discretization of the Burgers equation. This
test problem has a long history in the study of control
for distributed parameter systems, e.g. Thevenet et al.
(2009), including the development of effective computa-
tional methods, e.g. Burns and Kang (1990).

We consider the specific problem found in Borggaard and
Zietsman (2018) but with three control inputs (m = 3)
that consist of uniformly distributed sources over disjoint
patches. Thus, we have a bounded input operator. The
formal description of the problem is

min J(z,u) = /000 (/01 22(€,1) d§+uT(t)u(t)> dt

u

subject to

2(x,t) = €zgg(x,t) — % (22(;5,15))95 + az(z,t)
m
+ D X[k 1)/m. /] (@) (t),
k=1
2(+,0) = 2(-) € H}.,(0,1),

where X[q.4)(7) is the characteristic function over [a,b].
We discretized the state equations with n linear finite
elements, set m = 3, and chose ¢ = 0.005 to make the
nonlinearity significant and o = 0.3 to accentuate the need
for control in this problem.

The discretized system fits within the PQR framework (1)-
(2). The matrices A, B and Ny come from the finite ele-
ment approximation. The matrix Qs is the finite element
mass matrix and the matrix Ry = 10 I,,,. For this test, we
started with the smooth initial condition
0.5sin(272)? x € (0,0.5
2(7) = { (g ) othegwise) ’

Our discretization was performed with 16 linear finite
elements. Approximations to the value function by poly-
nomial expansion and closed-loop numerical simulation to
T = 200 are shown in Table 5 (results from a 20 linear
element computation are in parenthesis). We should note
that the n = 20, m = 3, p = 5 study reported here,
took less that 160 seconds on a 2017 MacBook Pro with
16GB of RAM. Therefore, the available Matlab software is
sufficiently efficient to study nonlinear feedback on modest
sized problems with enough available RAM.

Table 5. Burgers: Value Function Approx.

d ST ol (xo) [ ex(t), u(t))dt

1 |[ 0.0162721 (0.0175278) | 0.0190134 (0.0190637)
2 || 0.0216261 (0.0226721) | 0.0188797 (0.0189653)
3 || 0.0200150 (0.0194921) | 0.0187951 (0.0188268)
4 || 0.0178709 (0.0172666) | 0.0187623 (0.0188218)
5 || 0.0183326 (0.0184925) | 0.0187435 (0.0187726)
6. CONCLUSIONS AND FUTURE WORK

We presented a special formulation of the AI’'Brekht poly-
nomial approximation for polynomial-quadratic regulator
problems. Writing the system and expansions in terms
of Kronecker products leads to a series of progressively
larger linear systems for the next terms in the expansion.
While easy to write down and implement, efficiency is only
achieved by exploiting new numerical linear algebra tools
that avoid the assembly of the large, dense systems (Chen
and Kressner, 2019; Kolda and Bader, 2009). In our previ-
ous work (Borggaard and Zietsman, 2020), we performed
a comparison with a general, well-developed software tool,
the Nonlinear Systems Toolbox (Krener, 2015), to verify
our implementation in the quadratic-quadratic case. Our
solution method was competitive with NST in terms of
CPU time even if we neglect the overhead in using Mat-
lab’s symbolic toolbox (we described an effective means to
compute the derivatives of the system that are required
by NST using automatic differentiation in a previous pa-
per Borggaard and Zietsman (2018)).

A natural path forward will be to include useful general-
izations within our software framework. This includes the
investigation of more general control costs, general mixed
state and control terms, addition of descriptor systems (Xu
and Mizukami, 1993), and the related observer problem.

Finally, we will apply this to more significant applications
than the one-dimensional Burgers equation. In particular,
study how this work could be used in conjunction with
reduced models of complex flows that result in quadratic-
in-state systems.

This software is available for download at

https://github.com/jborggaard/QQR
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