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Oxygen minimum zones (OMZs) are unique marine regions where broad redox gradients stimulate biogeochemical cycles. Despite
the important and unique role of OMZ microbes in these cycles, they are less characterized than microbes from the oxic ocean.
Here we recovered 39 high- and medium-quality metagenome-assembled genomes (MAGs) from the Eastern Tropical South Pacific
OMZ. More than half of these MAGs were not represented at the species level among 2631 MAGs from global marine datasets. OMZ
MAGs were dominated by denitrifiers catalyzing nitrogen loss and especially MAGs with partial denitrification metabolism. A novel
bacterial genome with nitrate-reducing potential could only be assigned to the phylum level. A Marine-Group II archaeon was
found to be a versatile denitrifier, with the potential capability to respire multiple nitrogen compounds including N2O. The newly
discovered denitrifying MAGs will improve our understanding of microbial adaptation strategies and the evolution of denitrification
in the tree of life.
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MAIN
Oxygen minimum zones (OMZs) are unique oceanic regions
with strong redox gradients. Anoxic zones in OMZs are
hotspots for fixed nitrogen loss and production of the
greenhouse gas N2O [1, 2]. Microbes in OMZs make important
contributions to biogeochemistry, which motivates us to
reconstruct metagenome-assembled genomes (MAGs) from
the Eastern Tropical South Pacific (ETSP) OMZ (Fig. 1a, b).
Among 147 recovered MAGs, we present 39 high- and
medium-quality MAGs with completeness >50% and contam-
ination <10% [3], including 8 archaeal and 31 bacterial MAGs
(Fig. S1 and Table S1) representing 11 phyla (Fig. 1c). Methods
of MAG construction and analysis are available in the
supplement. We compared these new OMZ MAGs to 2631
MAGs recovered from the most comprehensive marine micro-
bial metagenomic datasets (Tara Oceans) [4], which included
OMZ and non-OMZ sites. More than half of these ETSP OMZ
MAGs were not represented at the species level in the Tara
Oceans dataset (Fig. 2 and Supplementary Methods). These 39
ETSP MAGs only represented up to 24% of the total microbial
population (Fig. 1c), thus many more novel species in OMZs
remain to be discovered. Seventeen ETSP OMZ MAGs were
identified as the same species in regions, where OMZ sites
were included in the Tara Oceans dataset (Fig. 2), indicating
adaptation to the unique OMZ environment and the necessity
to explore these OMZ MAGs for novel taxa and functional
potentials.
Taxonomy-resolved MAGs recovered here will allow linking

previously measured biogeochemical cycling rates on the same
cruise [5–10] to their microbial drivers. The most abundant fixed

nitrogen in the ocean, nitrate, is produced via nitrification. The
first step of nitrification, ammonia oxidation, is mainly
performed by marine ammonia-oxidizing archaea (AOA) [11],
and then nitrite-oxidizing bacteria (NOB) oxidize nitrite into
nitrate. Novel niches of NOB were discovered by analyzing
the two NOB MAGs from this dataset [12]. Kinetics experiments
at other OMZ stations suggested distinct oxygen affinities of
AOA and NOB [13–15]. In anoxic waters, ammonia oxidation
rates were undetectable, but nitrite oxidation rates were high
(>100 nM d−1) at the same station [6], where MAGs were
recovered. Consistently, Thaumarchaeota MAGs (AOAs) were
nearly absent (only AOA-2 had a relative abundance higher than
0.01%) and NOB MAGs (NOB-1 and NOB-2) were much more
abundant than AOA in the anoxic core (Fig. 1d). MAGs in this
study will provide opportunities to discover novel processes and
adaptation strategies.
Most MAGs had their highest relative abundances in the

anoxic zone (Fig. 1c). Many of them contribute to the loss of
fixed nitrogen, which occurs by denitrification (the sequential
reduction of nitrate to nitrite, NO, N2O, and finally N2) and
anammox (anaerobic oxidation of ammonium to N2). Measured
nitrate reduction rates at this [5, 8] and other [16, 17] nearby
stations were much larger than rates of any subsequent
denitrification steps (e.g., nitrite reduction to N2O or to N2).
Consistently, preliminary prediction of metabolisms shows that
more than half of the MAGs found here contained nar, which
encodes nitrate reduction, and one-third of those contained
only nar and none of the other denitrification genes (i.e., they
are nitrate-reducing specialists) (Fig. 2). Consistently, a previous
study found that nar dramatically outnumbered the other
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denitrification genes in contigs from the Eastern Tropical North
Pacific (ETNP) OMZ [18]. Indeed, four of the five most abundant
MAGs in the anoxic core were nitrate-reducing specialists (Fig. 2).
The fifth was an anammox MAG, which was only assigned to the
genus level (Candidatus Scalindua) in GTDB and was not
represented at the species level in the Tara Oceans dataset
(Table S1). However, this anammox MAG was highly related to
20 anammox single-cell amplified genomes (SAGs) from the
ETNP OMZ [19]. The anammox MAG had at least 90% average
nucleotide identity (ANI) to the SAGs, with the highest ANI
(98.8%) to SAG K21. Consistent with the previous work [19], the
anammox MAG also encoded cyanase, indicating its potential of
using organic nitrogen substrates. The most abundant nitrate
reducer MAG here is Marinimicrobia-1 (Fig. 1), which belongs to
the newly proposed phylum Candidatus Marinimicrobia [20].
Notably, one nitrate reducer can only be assigned to phylum

level (Candidatus Wallbacteria) and was not present in the Tara
Oceans MAGs (Table S1).
We also identified a novel archaeal MAG possessing multiple

denitrification genes. MG-II MAG-2 encoded Nar alpha and beta
subunits, nitrate/nitrite transporters, copper-containing nitrite reduc-
tase, and N2O reductase (Fig. 2). Two MAGs from the Tara Oceans
metagenomes (Table S1) were identified as the same species as MG-
II MAG-2. TOBG_NP-110 (ANI to MG-II MAG-2= 99.8%) from the
North Pacific encoded Nar and nitrate/nitrite transporters, and
TOBG_SP-208 (ANI to MG-II MAG-2= 99.6%) from the South Pacific
also contained the same denitrification genes as MG-II MAG-2
(Table S2). In addition, two MG-II SAGs (AD-615-F09 and AD-613-
O09) were found at a different station of the ETSP OMZ sampled on
the same cruise as this study [21]. Partial 16S rRNA genes of both
SAGs are 100% identical to that of MG-II MAG-2 (alignment length
= 200 bp for AD-615-F09 and 183 bp for AD-613-O09), but only AD-

Fig. 1 Sampling station information and relative abundances of MAGs. a Sampling station (yellow circle) in the ETSP OMZ and the
minimum oxygen concentration at the time of the cruise. b Depth profiles of oxygen, nitrate, and nitrite reported previously [7] at
the sampling station and the four sample depths indicated by red dashed lines (45, 80, 200, and 300m). c Relative abundances of MAGs in the
ETSP OMZ grouped by phylum. d–f The distribution of individual MAGs in four phyla discussed in the text. The relative abundance of NOB-1
and NOB-2 was reported previously [12].
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Fig. 2 Preliminary prediction of nitrogen cycling metabolisms and representation of MAGs in global ocean. Presence (red) and absence
(white) of genes involved in the denitrification pathway (Nar or Nap nitrate reductase, Nir nitrite reductase, Nor nitric oxide reductase, Nos N2O
reductase) for each MAG. Relative abundance (RA) of MAGs in the anoxic core of the ETSP OMZ (averaged between 200 and 300m). MAGs
from this study are ordered by their relative abundance in the anoxic core. Presence (blue) and absence (white) of MAGs from Tara Oceans
datasets, which were identified as the same species with MAGs from this study. Tara Oceans regions, where Tara Oceans MAGs were originally
found, include four regions with OMZ sites: NP North Pacific region, SP South Pacific region, ARS Arabian Sea region, CPC Chile-Peru Coastal
region, and non-OMZ regions including North Atlantic, South Atlantic, East Africa Coastal, Mediterranean, Red Sea, and Indian Ocean regions.

X. Sun and B.B. Ward

3

ISME Communications (2021)1:26



615-F09 might be the same species as MG-II MAG-2 based on ANI
analyses (MG-II MAG-2 had 99.5% ANI to AD-615-F09, and 80.9% to
AD-613-O09). Both SAGs also encoded Nar and nitrate/nitrite
transporters [21]. The absence of other denitrification genes may
be due to the low completeness of the two SAGs (completeness=
5.61% for both SAGs) [21]. Nitrite reductase and N2O reductase
genes were located on the same contig in both MG-II MAG-2 and
TOBG_SP-208 (Table S2). MG-II MAG-2 and TOBG_SP-208 had low
contamination (1.9% and 0.8%, respectively), and their contigs with
nitrite reductase and N2O reductase genes contained single-copy
marker genes present only once in each MAG (Supplementary
Methods). Although these results suggest a nearly complete
denitrification metabolism in MG-II archaea, especially N2O con-
sumption metabolism, methods besides metagenomics (e.g. recon-
structing SAGs with high completeness) are highly recommended to
rule out possible artifacts introduced by metagenomic binning and
confirm the presence of these genes and their denitrification
activity. Nonetheless, MG-II MAG-2 was present (Fig. 1e) and
transcriptionally active in both Pacific OMZs (Fig. S2), indicating its
adaptation to low oxygen environments. The MG-III MAG did not
have any denitrification genes but was abundant in the anoxic zone
(Figs. 1e and 2). It had a GC value (43.2%) distinct from all other
known MG-III MAGs [22] and is the most complete (86.0%) and the
least contaminated (0%) (Table S1) among all reported MG-III MAGs,
indicating that MG-III is a novel archaeon in this group. Bacterial and
archaeal MAGs recovered here implied that nitrogen metabolisms
were present in more microbial lineages than previously thought.
Further analyses of these MAGs will shed light on adaptation
strategies in the unique OMZ environment and novel functions
related to important element cycles.

DATA AVAILABILITY
Raw metagenomic reads used to construct MAGs in this paper were submitted to
NCBI with the accession numbers SRR14610252, SRR14610253, SRR14610254, and
SRR14610255. MAGs analyzed in this paper were deposited at https://figshare.com/
articles/MAGs_from_ETSP_OMZ/12291281.
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Methods 14 
Sample collection, DNA extraction, and metagenomic sequencing were described in a previous 15 
study exploring two MAGs from this dataset [1]. Briefly, four particulate material samples were 16 
collected by filtering (0.2 µm pore size) seawater from the ETSP OMZ (20.50°S, 70.70°W, Fig. 17 
1a) aboard the R/V Nathaniel B. Palmer (NBP 1305) in 2013. The four samples captured distinct 18 
features of the OMZ: the oxycline where oxygen is decreasing sharply (45 m), the oxic-anoxic 19 
interface (80 m), and the core of the anoxic zone with high nitrite concentrations (200 m and 300 20 
m, Fig. 1b). All environmental variables such as temperature, oxygen and nutrient concentrations 21 
from this cruise are available at BCO-DMO (https://www.bco-dmo.org/dataset/744679). DNA 22 
was extracted from four filters and raw reads were generated from Illumina MiSeq sequencing. 23 
Quality control, co-assembly of four metagenomes, and binning processes were also described in 24 
detail in the previous study[1]. Briefly, raw reads were trimmed and filtered using BBDuk from 25 
BBTools package (available at: https://jgi.doe.gov/data-and-tools/bbtools/). Reads from four 26 
metagenomes were co-assembled into contigs using metaSPAdes [2]. Coverage information of 27 
contigs was obtained by mapping reads from four samples to contigs using Burrows-Wheeler 28 
Aligner [3] and SAMtools [4]. Contigs equal to or longer than 1500 bp were binned into MAGs 29 
using BinSanity [5], COCACOLA [6], CONCOCT [7], MaxBin [8], and MetaBAT [9]. Finally, 30 
DAS Tool was used to combine results from different binning methods to obtain final MAGs [10]. 31 

The quality of OMZ MAGs reconstructed in this study was assessed using checkM [11]. High- 32 
and Medium-quality (HQMQ) MAGs (39 MAGs) with completeness >50% and contamination 33 
<10% [12] were included in further assessments. The taxonomy of 39 OMZ MAGs was predicted 34 
using GTDB-tk v1.0.2 with database r89 [13]. Taxonomy of published MAGs from Tara Ocean 35 
datasets [14] was also predicted using GTDB-tk [13] to assess the taxonomy coverage of OMZ 36 
MAGs in the global ocean. Most OMZ MAGs were named based on GTDB taxonomy 37 
classification, except for AOA, NOB, and anammox. MAGs from Tara Ocean identified as the 38 
same species as the new ETSP OMZ MAGs were recognized mainly based on GTDB taxonomy, 39 
i.e., being assigned to the same species. When OMZ MAGs and Tara Ocean MAGs were found to 40 
be the same genus but could not be further assigned to the species level due to the lack of reference 41 
genomes in GTDB, average nucleotide identity (ANI) values were calculated using OrthoANI v1.2 42 
[15] with the parameter ‘-fmt matrix’ to assess whether these MAGs belong to the same species 43 
(species ANI ≥ 95%). Taxonomy classification based on OrthoANI and GTDB is presented in 44 



 2 

Online-only Table 1. ANI values were also calculated for anammox MAG and 20 anammox SAGs 45 
from the ETNP OMZ [16], and for MG-II MAG-II and two SAGs from the ETSP OMZ [17]. 46 

Selected metabolic potentials of MAGs were predicted to identify MAGs with significant 47 
biogeochemical implications for future studies. First, protein-coding sequences were predicted 48 
using Prodigal v2.6.3 [18] with ‘-p meta’ mode. Then, BLASTp (v2.2.29) searches (e-value cutoff: 49 
10-10) were performed against the NCBI nr database with parameters ‘-max_target_seqs 1, -outfmt 50 
11’ and Blast_formatter (-outfmt "6 qseqid qlen sseqid slen qstart qend sstart send length pident 51 
nident mismatch evalue bitscore staxids saccver stitle"). In particular, single-copy marker genes 52 
present once and multiple times in MG-II MAG-2 and TOBG_SP-208 were located using checkM 53 
[11]. Contigs with nitrite reductase and N2O reductase genes in MG-II MAG-2 and TOBG_SP-54 
208 contained one and four marker genes, respectively, and all these marker genes were present 55 
only once in each MAG, implying that the denitrification gene containing contigs might not be 56 
contaminants. However, further metabolic potential predictions and validation of these preliminary 57 
predictions are strongly recommended for future studies on these MAGs. Relative abundances of 58 
MAGs at the four different depths of the ETSP OMZ station were estimated by mapping reads 59 
from each depth using Bowtie2 v2.2.5 [19] with the parameter ‘--very-sensitive’, and only reads 60 
with a mapping quality above 20 were included as mapped reads using SAMtools v1.5 view [4] 61 
with the parameter ‘-q 20’. The relative abundance of a MAG = (reads mapped to the MAG from 62 
a depth)/(total reads from this depth). Relative abundances of selected MAGs are visualized in Fig. 63 
1, and relative abundances of all 39 MAGs are presented in Online-only Table 1. Using similar 64 
approaches, metagenomes on different particle fractions from ETSP OMZ collected on other 65 
cruises [20] could be mapped to OMZ MAGs reconstructed here to link microbial taxonomy, 66 
functional potentials, and habitats. 67 

 68 

 69 
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 70 
Fig. S1 Completeness and contamination of 147 MAGs from the ETSP OMZ, including 39 HQMQ 71 
MAGs. 72 
 73 

 74 
Fig. S2 Transcriptional activity of MG-II MAG-2 in ETNP and ETSP OMZs. Previously published 75 
metatranscriptomic reads from ETNP [21] and ETSP [22] were mapped to MG-II MAG-2. Anoxic 76 
zones are indicated by grey shaded areas. 77 
 78 
Table S1 Genome characteristics and relative abundance of MAGs (additional excel file 79 
attached). 80 
 81 
Table S2 Annotation of contigs containing denitrification genes in selected MAGs (additional 82 
excel file attached). 83 
 84 
 85 
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