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imations)? (2) What is the quality of explanations

in similarity methods compared to gradient-based

ones (clarifying the necessity of adopting more

complex methods)?

We evaluate instance-based attribution methods

on two datasets: binarized version of the Stan-

ford Sentiment Treebank (SST-2; Socher et al.

2013) and the Multi-Genre NLI (MNLI) dataset

(Williams et al., 2018). We investigate the correla-

tion of more complex attribution methods with sim-

pler approximations and variants (with and without

use of the Hessian). Comparing explanation quality

of gradient-based methods against simple similar-

ity retrieval using leave-one-out (Basu et al., 2020)

and randomized-test (Hanawa et al., 2021) analy-

ses, we show that simpler methods are fairly com-

petitive. Finally, using the HANS dataset (McCoy

et al., 2019), we show the ability of similarity-based

methods to surface artifacts in training data.

2 Attribution Methods

Similarity Based Attribution Consider a text

classification task in which we aim to map inputs

xi to labels yi ∈ Y . We will denote learned repre-

sentations of xi by fi (i.e., the representation from

the penultimate network layer). To quantify the

importance of training point xi on the prediction

for target sample xt, we calculate the similarity

in embedding space induced by the model.1 To

measure similarity we consider three measures: Eu-

clidean distance, Dot product, and Cosine similar-

ity. Specifically, we define similarity-based attribu-

tion scores as: NN EUC = −‖ft − fi‖
2, NN COS

= cos(ft, fi), and NN DOT = 〈ft, fi〉.

To investigate the effect of fine-tuning on these

similarity measures, we also derive rankings based

on similarities between untuned sentence-BERT

(Reimers et al., 2019) representations.

Gradient Based Attribution Influence Func-

tions (IFs) were proposed in the context of neural

models by Koh and Liang (2017) to quantify the

contribution made by individual training points on

specific test predictions. Denoting model parameter

estimates by θ̂, the IF approximates the effect that

upweighting instance i by a small amount—ǫi—

would have on the parameter estimates (here H is

1To be clear, there is no guarantee that similarity reflects
‘influence’ at all, but we are interested in the degree to which
this simple strategy identifies ‘useful’ training points, and
whether the ranking implied by this method over train points
agrees with rankings according to more complex methods.

the Hessian of the loss function with respect to our

parameters): dθ̂
dǫi

= −H−1

θ̂
∇θL(xi, yi, θ̂). This es-

timate can in turn be used to derive the effect on a

specific test point xtest: ∇θL(xtest, ytest, θ̂)
T · dθ̂

dǫi
.

Aside from IFs, we consider three other similar

gradient-based variations:

(1) RIF = cos(H−
1

2∇θL(xtest), H
−

1

2∇θL(xi)).

(2) GD = 〈∇θL(xtest),∇θL(xi)〉, and

(3) GC = cos(∇θL(xtest),∇θL(xi)).

RIF was proposed by Barshan et al. (2020),

while GD and GC by Charpiat et al. (2019).

Representer Points (REP; Yeh et al. 2018) in-

troduced to approximate the influence of train-

ing points on a test sample by defining a classi-

fier as a combination of a feature extractor and

a (L2 regularized) linear layer: φ(xi, θ). Yeh

et al. (2018) showed that for such models the out-

put for any target instance xt can be expressed as

a linear decomposition of “data importance” of

training instances: φ(xt, θ
∗) =

∑n
i αif

⊤
i ft =

∑n
i k(xt, xi, αi), where αi =

1
−2λn

∂L(xi,yi,θ)
∂φ(xi,θ)

.

3 Experimental Setup

Datasets To evaluate different attribution meth-

ods, we conduct several experiments on sentiment

analysis and NLI tasks, following prior work in-

vestigating the use of IF specifically for NLP (Han

et al., 2020). We adopt a binarized version of the

Stanford Sentiment Treebank (SST-2; Socher et al.

2013), and the Multi-Genre NLI (MNLI) dataset

(Williams et al., 2018). For fine-tuning on MNLI,

we randomly sample 10k training instances. Fi-

nally, to evaluate the ability of instance attribution

methods to reveal annotation artifacts in NLI, we

randomly sampled 1000 instances from the HANS

dataset (more details in the Appendix).

Models We define models for both tasks on top

of BERT (Devlin et al., 2019), tuning hyperparame-

ters on validation data via grid search. Our models

achieve 90.6% accuracy on SST and 71.2% accu-

racy on MNLI (more details in the Appendix).

Computing the IF for BERT Deriving the IF

for all parameters θ of a BERT-based model re-

quires deriving the corresponding Inverse Hessian.

We compute the Inverse Hessian Vector Product

(IHVP) H−1∇θL(x, y, θ) directly because storing

the entire matrix of |θ|2 elements is practically im-

possible (requiring ∼12 PB of storage). We ap-

proximate the IHVP using the LiSSa algorithm
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Method
avg(∆)-SST avg(∆)-MNLI Spearman

Remove-50 Remove-500 Remove-50 Remove-500 SST MNLI

Random (50 runs) -0.028 -0.021 -0.039 -0.029 - -

Similarity
NN EUC -0.028 -0.540 -0.102 -0.266 0.056 0.023
NN COS -0.072 -0.430 -0.088 -0.306 0.045 0.018
NN DOT -0.059 -0.513 -0.106 -0.273 0.005 -0.002

Gradient

IF -0.054 -0.526 -0.042 -0.407 -0.296 0.018
REP -0.114 -0.490 -0.002 -0.230 -0.217 0.053
RIF -0.071 -0.537 -0.068 -0.347 -0.021 0.013
GD -0.058 -0.516 -0.022 -0.446 -0.290 0.017
GC -0.082 -0.528 -0.030 -0.279 -0.021 0.012

Table 1: Average difference (∆) between predictions made after training on (i) all data and (ii) a subset in which

we remove the top-50/top-500 most important training points, according to different methods (Random on both of

the benchmarks has standard deviation around 0.02). We also report the Spearman correlation between the ranking

induced by each approach using a trained model and the same ranking when a randomly initialized model is used.

Method
Lexical Overlap Rate

top-1 top-10

Random 0.40 0.40

Sen-Bert
NN EUC 0.39 0.41
NN COS 0.38 0.39
NN DOT 0.39 0.40

Sim
NN EUC 0.56 0.57
NN COS 0.56 0.56
NN DOT 0.44 0.44

Gradient

IF 0.43 0.44
REP 0.43 0.35
RIF 0.55 0.56
GD 0.43 0.44
GC 0.55 0.56

Table 2: Average lexical overlap rate between premise

and hypothesis in top-k most influential samples for

test instances mispredicted as entailment.

most important training samples for 50 random

test samples using different attribution methods.

We only consider the linear version of methods in

the remainder of the paper. All methods seem ef-

fective, compared to random sampling. Perhaps

surprisingly, for both tasks at least one of the

similarity-based approaches performs comparably

or better than gradient-based methods, in the sense

that removing the top examples according to simi-

larity yields reductions in the predicted probability

(which is what one would intuitively hope). Fi-

nally, it seems that the models applying some form

of normalization to the gradient (i.e., RIF and GC)

perform more consistently. This is consistent with

contemporaneous work of Hanawa et al. (2021)

which argues that this is a consequence of large

gradient magnitudes for some samples dominating

when normalization is not used. Upon investigating

high influential training samples, we observed that

similarity-based approaches seem to yield more di-

verse “top” instances compared to gradient-based

ones. We also found that normalization in gradient-

based methods made a large difference. Generic IF-

based ranking tends to be dominated by high loss

training examples across test examples, whereas

normalization provides more diverse top training

examples. Further, proportions of shared top exam-

ples between methods is provided in the Appendix,

clarifying their similar performance.

Randomized-Test We report the Spearman cor-

relation between trained and random models for

SST and MNLI data in Table 1. This would ideally

be small in magnitude (non-zero values indicate

correlation). Curiously, gradient-based methods

(IF, REP, GD) exhibit negative correlations on the

SST dataset. Overall, these results suggest that

gradient-based approaches without gradient nor-

malization may be inferior to alternative methods.

The simple NN-DOT method provides the ‘best’

performance according to this metric.

Artifacts and Attribution Methods To investi-

gate whether attribution methods can correctly iden-

tify training samples with specific artifacts respon-

sible for model predictions we follow Han et al.

(2020): This entails randomly choosing 10k sam-

ples from MNLI and treating neutral and contra-

diction as a single non-entailment label for model

fine-tuning. More specifically, we are interested in

target samples that the model mispredicts as entail-

ment because of the lexical overlap artifact (lexical

overlap is an artifactual indicator of entailment;

McCoy et al. 2019).

The average lexical overlap rate for 1000 ran-

dom samples from the HANS dataset is provided

in Table 2. As a baseline, we also apply similarity-

based methods on top of sentence-BERT embed-

dings, which as expected appear very similar to ran-
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dom correlation. One can observe that similarity-

based approaches tend to surface instances with

higher lexical overlap, compared to gradient-based

instance attribution methods. Moreover, gradient-

based methods without normalization (IF, GD, and

REP) perform similar to selecting samples ran-

domly and based on sentence-BERT representa-

tions, suggesting an inability to usefully identify

lexical overlap.

Computational Complexity The computational

complexity of IF-based instance attribution meth-

ods constitutes an important practical barrier to

their use. This complexity depends on the num-

ber of model parameters taken into consideration.

As a result, computing IF is effectively infeasible

if we consider all model parameters for modern,

medium-to-large models such as BERT.

If we only consider the parameters of the last

linear layer—comprising O(p) parameters—to ap-

proximate the IF, the computational bottleneck will

be the inverse Hessian which can be approximated

with high accuracy in O(p2). There are ways to

approximate the inverse Hessian more efficiently

(Pearlmutter, 1994), though this results in worse

performance. Similarity-based measures, on the

other hand, can be calculated in O(p).

With respect to wall-clock running time, calcu-

lating the influence of a single test sample with

respect to the parameters comprising the top-5 lay-

ers of a BERT-based model for SST classification

running on a reasonably modern GPU2 requires

∼5 minutes. If we consider the linear variant, this

falls to < 0.01 seconds. Finally, similarity-based

approaches require < 0.0001 seconds. Extrapo-

lating these numbers, it requires about 6 days to

calculate IF (top-5 Layer) for all 1821 test samples

in SST, while it takes only around 0.2 seconds for

similarity-based methods.

5 Conclusions

Instance attribution methods constitute a promising

approach to better understanding how modern NLP

models come to make the predictions that they do

(Han et al., 2020; Koh and Liang, 2017). However,

approximating IF to quantify the importance of

train samples is prohibitively expensive. In this

work, we investigated whether alternative, simpler

and more efficient methods provide similar instance

attribution scores.

2Maxwell Titan GPU (2015).

We demonstrated high correlation between

(1) gradient-based methods that consider more

parameters [IF and GD (top-5)] and their simpler

counterparts [IF and GD (linear)], and (2) methods

without Hessian information, i.e., IF vs GD

and RIF vs GC. We considered even simpler,

similarity-based approaches and compared the im-

portance rankings over training instances induced

by these to rankings under gradient-based methods.

Through leave-some-out, randomized-test, and

artifact detection experiments, we demonstrated

that these simple similarity-based methods are

surprisingly competitive. This suggests future

directions for work on fast and useful instance

attribution methods. All code necessary to repro-

duce the results reported in this paper is available

at: https://github.com/successar/

instance_attributions_NLP.

6 Ethical Considerations

Deep neural models have come to dominate re-

search in NLP, and increasingly are deployed in

the real world. A problem with such techniques is

that they are opaque; it is not easy to know why

models make specific predictions. Consequently,

modern models may make predictions on the basis

of attributes we would rather they not (e.g., demo-

graphic categories or ‘artifacts’ in data).

Instance attribution—identifying training sam-

ples that influenced a given prediction—provides

a mechanism that might be used to counter these

issues. However, the computational expense of ex-

isting techniques hinders their adoption in practice.

By contrasting these complex approaches against

simpler alternative methods for instance attribution,

we contribute to a better understanding and char-

acterization of the tradeoffs in instance attribution

techniques. This may, in turn, improve the robust-

ness of models in practice, and potentially reduce

implicit biases in their predictions.
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A Experimental Details

Datasets To evaluate different attribution meth-

ods, we conduct several experiments on sentiment

analysis and NLI tasks, following prior work inves-

tigating the use of influence functions specifically

for NLP (Han et al., 2020). We adopt a binarized

version of the Stanford Sentiment Treebank (SST-

2) (Socher et al., 2013), consisting of 6920 training

samples and 1821 test samples. As our NLI bench-

mark, we use the Multi-Genre NLI (MNLI) dataset

(Williams et al., 2018), which contains 393k pairs

of premise and hypothesis from 10 different gen-

res. For model fine-tuning, we randomly sample

10k training instances. To evaluate the utility of

different instance attribution methods in helping

to unearth annotation artifacts in NLI, we use the

HANS dataset (McCoy et al., 2019), which com-

prises examples exhibiting previously identified

NLI artifacts such as lexical overlap between hy-

potheses and premises.We randomly sampled 1000

instances from this benchmark as test data to ana-

lyze the behavior of different attribution methods.

Models As discussed in the paper, we define

models for both tasks on top of BERT, tuning hy-

perparameters on validation data via grid search.

These hyperparameters include the regularization

parameter λ = [10−1, 10−2, 10−3]; learning rate

α = [2 × 10−3, 2 × 10−4, 2 × 10−5, 2 × 10−6];
number of epochs ∈ {3, 7, 10, 15}; and the batch

size ∈ {8, 16}. Our final models achieve 90.6%
accuracy on SST and 71.2% accuracy on MNLI

B Attribution Methods’ Correlation

The complete version of Spearman correlation be-

tween attribution methods (containing the sentence-

BERT) is provided in Figure 3. As expected,

similarity-based approaches based on sentence-

BERT show a very small correlation with other

methods.

We also provide the proportion of shared exam-

ples in the top samples retrieved by IF (top-5) and

IF (linear) in Figure 4. One can see that there is a

very high correlation between these methods in top

samples, validating the high quality of simpler ver-

sion of IF (IF (linear)) in comparison to the more

complex method (IF (top-5)).

C Removing ‘Important’ Samples

In this experiment, we first select 50 random test

samples (for both MNLI and SST). Then, for each

one of these instances, we separately remove top-k

(we consider k = 50 and 500) training instances

for that test sample, retrain the model, and calcu-

late the change in the model’s prediction for that

sample. We report the average changed over the

prediction of the selected 50 random test samples in

Table 1. Moreover, the proportion of common ex-

amples in top samples between pairs of attribution

methods is depicted in Figures 5 and 6. The very

high rate between IF vs GD, RIF vs GC, and NN-

EUC vs NN-COS pairs, clarify the reason behind

the similar performance of these pairs of methods

in leave-some-out experiments.

D Near Training Samples Explanations

To further investigate the quality of the most influ-

ential sample based on different attribution meth-

ods, we conjecture that a data point very similar

to a training sample should recover that sample

as the most influential instance. We consider four

scenarios to create target points similar to training

data: (1) using training samples themselves as the

target instances for attribution methods; (2) adding

a random token to a random place in each training

samples; (3) randomly removing a token from each

training samples, and; (4) replacing a random token

in each training samples with a random token from

the dictionary of tokens. In the MNLI dataset, we

apply each modification to both the premise and

hypothesis in each training sample.

The result of this analysis is provided in Tables

3 and 4. We observe that similarity-based methods

demonstrate a greater ability to recover the origi-

nal training samples corresponding to the different

targets. Moreover, the very low performance of IF,

GC, and REP methods is due to the fact that there

are training points with high magnitude gradient,

which these methods choose as top instances for

any target sample.






