

1 **Photosynthesis and foliar vascular adjustments to growth light intensity in**
2 **summer annual species with symplastic and apoplastic phloem loading**

4 Stephanie K. Polutchko^a, Jared J. Stewart^a, William W. Adams III^{a,*}, Barbara Demmig-Adams^a

6 ^a Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado,
7 USA; stephanie.polutchko@colorado.edu (S.K.P.); jared.stewart@colorado.edu (J.J.S.);
8 barbara.demmig-adams@colorado.edu (B.D.-A.); william.adams@colorado.edu

10 *Corresponding author. Email: william.adams@colorado.edu, phone: +1-303-492-2880

12 **Highlights**

- 13 • Summer annuals exhibited variation in multiple features of minor foliar veins
- 14 • Photosynthetic capacity and leaf-level volume of all vascular cell types were correlated
- 15 • Relationship of loading-cell size and number varied by phloem-loading mechanism
- 16 • The proportion of vascular cell number to size was greater in apoplastic loaders

18 **Abstract**

19 Concomitant adjustments in photosynthetic capacity and size, composition, and/or density of
20 minor foliar veins in response to growth environment were previously described primarily for
21 winter annuals that load sugars into foliar phloem apoplastically. Here, common trends,
22 differences associated with phloem-loading mechanism, and species-dependent differences are
23 identified for summer annuals (loading sugars either symplastically [cucumber, pumpkin, and
24 basil] or apoplastically [tomato and sunflower]) that were grown in low and high light.
25 Photosynthetic capacity per leaf area was significantly positively correlated with leaf-level
26 volume of phloem-loading cells (LCs), sugar-export conduits (sieve elements), and water
27 conduits (tracheary elements) irrespective of phloem-loading mechanism. The relative
28 contribution to leaf-level volume of LC numbers versus individual LC size was greater in
29 apoplastic loaders than in symplastic loaders. Species-dependent differences included different
30 vein density within each loading group and either greater or lower numbers of cells per minor
31 vein (especially of tracheary elements in the symplastic loaders basil versus cucumber,

32 respectively), which may be due to genetic adaptation to different environmental conditions.
33 These results indicate considerable plasticity in foliar vascular features in summer annuals as
34 well as some loading-mechanism-dependent trends.

35

36 Keywords: light response, loading cells, phloem, photosynthesis, summer annuals, xylem

37

38 Abbreviations: Loading cell (LC), photon flux density (PFD), sieve elements (SE), tracheary
39 element (TE)

40

41 **Introduction**

42 Minor foliar veins can exhibit a strong response to growth environment (Sack et al., 2012).
43 During leaf development, the architecture of the foliar vasculature can acclimate in concert with
44 photosynthetic capacity in response to environmental conditions, including adjustment in vein
45 density, vascular cell size and numbers, and transfer cell wall/membrane ultrastructure (Cohu et
46 al., 2013a; Adams et al., 2014, 2016; Stewart et al., 2016, 2017b; for a review, see Adams et al.,
47 2018). This latter evidence was derived mainly from winter annual species that actively load
48 sugars into the phloem of minor foliar veins via an apoplastic mechanism (for details on loading
49 mechanisms, see below). Much less information of this kind is available for summer annuals and
50 species that load sugar symplastically. Available studies either compared several summer annual
51 species using different active phloem-loading mechanisms in plants grown under a single
52 environmental condition (Muller et al., 2014a) or made comparisons that involved only a single
53 species each of two active phloem-loading mechanisms tested under different growth
54 environments - different temperature and/or light intensity (Cohu et al., 2014; Muller et al.,
55 2014b). Moreover, Cohu et al. (2014) reported little difference in certain vascular parameters
56 assessed for two summer annual species using different active phloem-loading mechanisms,
57 whereas Muller et al. (2014b) did report differences in other vascular parameters in response to
58 growth temperature for a comparison of two biennial species (one an apoplastic loader and one a
59 symplastic loader).

60 The current paper addresses the effect of both phloem-loading mechanism and growth
61 environment (low versus high light intensity) on the foliar vascular features of five species of
62 summer annuals that actively load sugars into the phloem via two different mechanisms. Two of

63 the species (sunflower and tomato) were previously characterized as apoplastic phloem loaders
64 (Gamalei, 1989; Lalonde et al., 1999; Turgeon et al., 2001; Turgeon and Ayre, 2005) that
65 transport sugars through a H^+ -sucrose symporter embedded in the cell membranes of the loading
66 cells (LCs) (Ramsperger-Gleixner et al., 2004; Sondergaard et al., 2004; Klepek et al., 2005).
67 Three species (cucumber, pumpkin, and basil) were previously characterized as symplastic
68 phloem loaders (Volk et al., 1996; Büchi et al., 1998; Kang et al., 2007; Turgeon, 2016) that use
69 polymer trapping (converting sucrose/galactose into larger raffinose-family oligosaccharides) by
70 enzymes in the cytosol of the loading cells that prevents the larger sugars from flowing back into
71 the leaf (Rennie and Turgeon, 2009; Slewinski et al., 2013).

72 The choice to include the specific apoplastic loaders tomato and sunflower and the two
73 symplastic loading cucurbits is based on the previous work from Muller et al. (2014a) who
74 reported a significant positive correlation between photosynthetic capacity and either the number
75 or the individual size (cross-sectional area) of phloem-loading cells in apoplastic and symplastic
76 loaders, respectively, when grown under a single growth condition of high light. Larger loading
77 cells can presumably accommodate more of the enzymes that produce oligosaccharides in the
78 symplastic loaders. On the other hand, positive correlations between photosynthetic capacity and
79 loading-cell number in apoplastic loaders were suggested to provide benefit via enhanced
80 membrane area available for placement of membrane-bound transport proteins for protons and
81 sugars (Adams et al., 2013, 2018). Both the larger loading cells in symplastic loaders and the
82 more numerous cells in apoplastic loaders presumably increase export capacity for photosynthate
83 from the leaf. Use of a single growth condition (high light) likely limited the range of variation in
84 the numeric value of vascular parameters in the study by Muller et al. (2014a).

85 We selected those species from each phloem-loading type used by Muller et al. (2014a)
86 that exhibited the greatest differences in photosynthetic capacity and in foliar vein density for
87 additional testing for any robust differences that depend on loading mechanisms independent of
88 such other features (e.g., vein density differences). Use of species with very different vein
89 densities also facilitated assessment of scale-dependent differences that may reside at the single
90 vein level and/or the whole leaf level. Furthermore, to ascertain whether the relationships
91 reported by Muller et al. (2014a) apply beyond the four species from the cucurbit family that
92 represented symplastic loaders in the latter study, basil was added as another symplastic loader

93 (Büchi et al., 1998; Kang et al., 2007) from the well-characterized symplastic phloem-loading
94 family Lamiaceae (Davidson et al., 2011).

95 The present study involved growth under low versus high light that typically lead to
96 pronounced differences in photosynthetic capacity on a leaf area basis. This approach allows
97 further testing of which foliar vascular features correlate best with photosynthetic capacity, and
98 addresses whether the constitutive differences in features correlated with photosynthetic capacity
99 (loading-cell size in symplastic loaders and loading-cell numbers in apoplastic loaders) reported
100 by Muller et al. (2014a) extend to differences in foliar vascular features that may be adjusted in
101 response to growth light environment in concert with adjustments in photosynthetic capacity.

102 The present study tested the hypotheses that (i) either cross-sectional area or number of
103 phloem-loading cells in minor foliar veins will be adjusted in symplastic and apoplastic loaders,
104 respectively, in response to growth light intensity and (ii) additional adjustments in foliar
105 vascular anatomy may occur in response to growth light environment irrespective of phloem-
106 loading type that correlate with photosynthetic capacity in both groups.

107

108 **Materials and Methods**

109 *Plant material and growth conditions*

110 Symplastic phloem loaders included the cucurbits (Cucurbitaceae) pumpkin (*Cucurbita pepo* L.
111 cv. Autumn Gold) and cucumber (*Cucumis sativus* L. cv. Straight Eight) as well as basil
112 (*Ocimum basilicum* L. cv. large leaf Italian), a member of the Lamiaceae. Apoplastic phloem
113 loaders included sunflower (*Helianthus annuus* L. ANN 2199; Asteraceae) and tomato (*Solanum*
114 *lycopersicum* L. cv. Brandywine; Solanaceae). Sunflower seeds were obtained from USDA-ARS
115 Germplasm Resources Information Network, and all other seeds were obtained from Park Seed
116 Co. (Hodges, SC, USA).

117 Plants were grown in growth chambers (E15 and PGR15, Conviron, Winnipeg, Canada)
118 controlled for temperature and light environment including photoperiod (12 hour) and light
119 intensity of low light ($100 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$) or high light ($750 \mu\text{mol photons m}^{-2} \text{ s}^{-1}$). Air
120 temperatures during the light period were set to 28°C and 27°C in low and high light,
121 respectively, which resulted in similar leaf temperatures in both light environments for each
122 species (see Supplemental Table 1). Leaf temperature was measured with an infrared
123 thermometer (Fisher Scientific Traceable Infrared Thermometer, Fisher Scientific, Pittsburgh,

124 PA). During the dark period, air and leaf temperature was kept at 22°C. Plants were grown from
125 seed in soil (Fafard Canadian Growing Mix 2, Conrad Fafard Inc., Agawam, MA, USA) in 6.3 L
126 pots, receiving water daily with added nutrients every other day. Characterized leaf samples from
127 non-flowering plants were collected from portions of expanded leaves not subject to self-
128 shading. For plant age at harvest and leaf temperature, see Supplemental Table 1.

129

130 *Foliar vascular anatomy and photosynthesis*

131 Light- and CO₂-saturated capacity of photosynthetic oxygen evolution was determined with leaf-
132 disk oxygen electrode systems (Hansatech Instruments, King's Lynn, Norfolk, United Kingdom)
133 using leaf samples maintained at 25°C with circulating water baths (Fisher Scientific, Pittsburgh,
134 PA, United States). Light saturation of photosynthesis for plants grown under low and high light
135 conditions was reached at 1500 and 2000 $\mu\text{mol photons m}^{-2} \text{ s}^{-1}$, respectively.

136 Vein density (vein length per leaf area) was measured from leaves that were cleared of
137 pigments by soaking in 70% (v/v) ethanol followed by 5% (w/v) NaOH. Cross-sections for
138 characterization and measurements of minor foliar veins were prepared with an Ultracut E
139 microtome (Reichert-Jung, Wien, Austria) from leaf sections that had been fixed in a
140 glutaraldehyde and paraformaldehyde solution before they were dehydrated and embedded in
141 Spurr resin (Spurr, 1969).

142 Sieve elements (SEs) are the conduits through which sugars can be moved out of the leaf
143 to the rest of the plant. Loading cells (LCs) facilitate the movement of sugar into the SEs and
144 comprise the rest of the phloem tissue. The xylem is composed of water conduits (tracheary
145 elements, TEs) and xylem parenchyma cells that likely support water movement and facilitate
146 embolism reversal (Secchi et al., 2017; Brodersen et al., 2018; Cardoso et al., 2018; Klein et al.,
147 2018; Trifilò et al., 2019). For schematic representations of each cell type, see Supplemental
148 Figure 1.

149 Images of leaf sections used for vein anatomy and vein density were captured using a
150 light microscope (Axioskop 20, Carl Zeiss AG, Oberkochen, Germany) with a digital camera
151 (OptixCam Summit Series, Microscope.com, Roanoke, VA, USA). Vascular features were
152 quantified using the computer program ImageJ (Rasband WS, National Institute of Health,
153 Bethesda, MD, USA). Visual identification of cell type was conducted from light microscopic
154 images. For more information on how leaf segments for foliar vascular measurements (vein

155 density, cell cross-sectional area, and conduit volume) were prepared and quantified see Stewart
156 et al. (2019).

157

158 *Measured and derived vascular parameters*

159 Individual cross-sectional area was quantified for each vascular cell type (the average of all
160 individual cells from minor vein images) as was the cross-sectional area occupied by all cells of
161 that type per minor vein. In addition, the two-dimensional cross-sectional area per vein for each
162 cell type was multiplied by a third dimension of vein length. Multiplication by minor vein
163 density (length of minor veins per unit leaf area) provides an estimation of the total volume of a
164 given vascular cell type per unit leaf area (Stewart et al., 2019). Additionally, the product of cell
165 number per vein \times vein density provided a normalization across species to account for the
166 differing minor vein densities among species. These latter two calculations scale the vasculature
167 measurements to the level of a leaf from the level of an individual minor vein.

168

169 *Statistical analysis*

170 Mean values and standard errors were calculated from seven to ten cross sections from each of
171 three plants per species under each growth light regime. Differences in minor-vein vascular
172 features were assessed via one-way analysis of variance with post-hoc Tukey–Kramer HSD test
173 for comparison of means across species. Linear regressions and density ellipses ($P = 0.950$) were
174 used for comparisons in scatter plots. All statistical analysis was carried out using JMP Pro
175 15.0.0 (SAS Institute Inc., Cary, NC, USA).

176

177 **Results**

178 *General features of apoplastic and symplastic loaders*

179 Schematic images (based on light microscopy) of representative cross-sections of minor foliar
180 veins (Fig. S1) illustrate that basil exhibited intermediate features between those of the apoplastic
181 loaders and the two cucurbit symplastic loaders with respect to number of cells per vein. Total
182 cell number per minor vein showed no consistent effect of either loading mode or growth photon
183 flux density (PFD), except for a somewhat higher cell number in tomato grown under high
184 versus low light (Fig. 1A). Total cross-sectional area per minor vein was not significantly
185 different among the five species in plants grown in low light, was greater in all species except

186 basil when grown in high light (Fig. 1B), but again with no clear discernable effect of loading
187 mode. Maximal photosynthetic capacity per leaf area was considerably and significantly greater
188 in plants grown under high versus low PFD in all species (Fig. 1C). Basil had a significantly
189 lower photosynthetic capacity than any of the other species especially at high light intensity (Fig.
190 1C). Vein density was either similar (tomato) or modestly greater (sunflower, basil, cucumber,
191 pumpkin) in plants grown under high versus low PFD, again with no clear difference by loading
192 type (Fig. 1D).

193

194 *Relationship between photosynthetic capacity and foliar vascular infrastructure in summer
195 annual apoplastic and symplastic phloem loaders*

196 Leaf photosynthetic capacity (Fig. 1C) was significantly and positively correlated with leaf-level
197 volume of phloem-loading cells (LCs; Fig. 2A), sugar-export conduits (SEs; Fig. 2B), and water-
198 transport conduits (TEs; Fig. 2C) for both symplastic and apoplastic loaders. Both sugar and
199 water conduit volume of basil fell considerably below the general relationship between sieve and
200 tracheary volume and photosynthetic capacity, whereas both sugar and water conduit volume of
201 pumpkin fell considerably above this relationship (Fig. 2B,C).

202

203 *Analysis of loading cell-associated features in apoplastic and symplastic phloem loaders*

204 There was a positive relationship between LC volume and sugar conduit (SE) volume on a leaf
205 area basis regardless of phloem-loading mechanism (Fig. 3). Most data points for the symplastic
206 loaders from the cucurbit family fell to the left of that relationship for the apoplastic loaders,
207 with relatively greater LC versus SE volumes. However, the data points for LC versus SE
208 volume for the symplastic loader basil fell on the same relationship as those of the apoplastic
209 loaders. There was thus no consistent difference in this relationship between phloem-loading
210 mode with the inclusion of basil.

211 Further analysis showed that the relationship between LC number at the leaf level (LC
212 number per vein \times vein density) and individual LC size (average cross-sectional area per LC)
213 between the different phloem loading mechanisms reduced the overlap between the apoplastic
214 and symplastic phloem loaders (Fig. 4). There were fewer, larger LCs for the symplastic loaders
215 compared to smaller more numerous LCs in apoplastic loaders (Fig. 4)

216 This separation of apoplastic and symplastic loaders was driven predominantly by the
217 greater number of LCs on a leaf area basis in the apoplastic loaders (Fig. 5A). In addition, LC
218 number was significantly greater in high versus low growth PFD in all species except cucumber
219 (Fig. 5A). Individual LC cross-sectional area did not differ consistently between apoplastic and
220 symplastic loaders, with similarly small LCs in basil as in the two apoplastic loaders but larger
221 LCs in the cucurbits (Fig. 5B). Individual LC cross-sectional area was significantly greater in
222 plants grown in high versus low light only among the two cucurbit symplastic loaders (Fig. 5B).
223 Total LC cross-sectional area per vein (as the product of individual LC size and LC number per
224 vein) was also relatively similar across species (Fig. 5C), i.e., not significantly different in plants
225 grown in low light across all five species, but significantly greater in high light in tomato
226 compared to sunflower, basil, and pumpkin (but not compared to cucumber). Although LC cross-
227 sectional areas per minor vein were higher in high versus low PFD among all species (Fig. 5C),
228 this difference was thus not dependent on loading mechanism.

229 The relationship between the ratio of LCs to SEs number and the ratio of cross-sectional
230 LC to SE area in minor veins also led to separation of the data points for the two apoplastic
231 loaders versus all three symplastic loaders (Fig. 6). Apoplastic loaders fell above the symplastic
232 loaders with relatively more numerous LCs per SE in a minor vein. Basil exhibited a similarly
233 low ratio of LC to SE cross-sectional area as the apoplastic loaders, which contrasted with the
234 higher ratio of LC to SE cross-sectional area in the two cucurbits (Figs. 6 and 7A). While the
235 ratio of LC to SE number in minor veins was consistently higher in leaves that developed under
236 high versus low light (albeit not significantly so; Fig. 7A), the ratio of LC to SE cross-sectional
237 area in minor veins exhibited no consistent nor significant response to light intensity (Fig. 7B).
238

239 *Analysis of sugar and water conduit features in apoplastic and symplastic phloem loaders*
240 There was a significant and positive correlation between the leaf-level volume of sugar (SEs) and
241 water (TEs) conduits for all species as well as for each loading group when considered
242 independently (Fig. 8). In contrast to the differences between apoplastic and symplastic loaders
243 with respect to some features involving LCs, the relationships between TE number and TE size
244 (Fig. 9A) or SE number and SE size (Fig. 9B) overlapped among the apoplastic and symplastic
245 loaders. Likewise, none of the individual parameters for SEs or TEs exhibited significant
246 differences between apoplastic and symplastic loaders (Fig. 10).

247 In particular, basil exhibited similarly high TE and SE numbers per vein as the two
248 apoplastic loaders whereas the two cucurbits had significantly lower TE and SE numbers per
249 vein (Fig. 10A,B). Basil's high sugar and water conduit numbers per minor vein were associated
250 with a low vein density (Fig. 1D), which resulted in the overall cell volume per leaf area being
251 low (Fig. 2B,C). TE number per minor vein was significantly higher in high compared to low
252 growth PFD in only the apoplastic loaders (Fig. 10A) whereas SE number per minor vein did not
253 vary significantly in any species when compared between growth light intensities (Fig. 10B).
254 Cross-sectional areas of both TEs and SEs were larger in leaves that developed under high
255 compared to low light intensity, but only significantly so for the TEs of pumpkin (Fig. 10C) and
256 the SEs of both cucurbits (Fig. 10D).

257

258 **Discussion**

259 Leaf vasculature offers structural support to the leaf as a platform for photosynthesis, with larger
260 leaf veins scaling in size with leaf dimension (Sack et al., 2012). The minor foliar veins, on the
261 other hand, are adjustable in number per unit leaf area, composition, and size to meet the leaf's
262 needs for sugar loading/export and water transport in response to plant growth environment
263 (Sack et al., 2012; Adams et al., 2013; Cohu et al., 2013a,b; Stewart et al., 2017b, 2016;
264 Polutchko et al., 2018). Close positive correlations between foliar minor vein density, size,
265 composition, and/or ultrastructure of veins and maximal photosynthetic capacity (Cohu et al.,
266 2013b, 2014; Adams et al., 2014, 2016, 2018), transpiration rate (Cohu et al., 2013b; Muller et
267 al., 2014a; Adams et al., 2016, 2018), or foliar hydraulic conductance (Brodribb et al., 2005;
268 2007; 2010; Franks, 2006; McKown et al., 2010; Scoffoni et al., 2016) have been demonstrated.

269 Much of the work on links between foliar vasculature and photosynthetic capacity has
270 focused on apoplastically loading winter annuals (Cohu et al., 2013b; Adams et al., 2016;
271 Stewart et al., 2016, 2017a,b), with some evidence for differences between winter and summer
272 annuals (Cohu et al., 2014) as well as between symplastic and apoplastic loaders (Adams et al.,
273 2013; Muller et al., 2014a,b; Polutchko et al., 2018). For example, Muller and colleagues
274 reported constitutive differences in numbers and sizes of the sugar-loading cells in minor foliar
275 veins in summer annual apoplastic compared to symplastic phloem loaders (Muller et al., 2014a)
276 as well as between a biennial apoplastic loader and a biennial symplastic loader (Muller et al.,
277 2014b; see also Adams et al., 2013, 2018; Polutchko et al., 2018). Specifically, it was proposed

278 that numerous loading cells in foliar minor veins of apoplastic loaders may provide a large
279 membrane area for transport proteins (Adams et al., 2013, 2016, 2018; Cohu et al., 2013a) and
280 that large loading cells in symplastic loaders may provide ample volume for enzymes that
281 convert sucrose to raffinose-family oligosaccharides (Adams et al., 2013; Muller et al., 2014a).
282 However, Stewart et al. (2017a,b) also showed that the winter annual apoplastic loader
283 *Arabidopsis thaliana* responded to light intensity by featuring small phloem cells when grown
284 under low light and much larger cells when grown under high light.

285 These previous characterizations were extended in the present study by including the
286 additional symplastic loading species (basil) from an additional family (Lamiaceae) beyond
287 species from the Cucurbitaceae used by Muller et al. (2014a) and plant growth in low light in
288 addition to high light (summer annuals were only grown in high light in the latter study). Growth
289 under two very different light intensities in the present study broadened the range of variation in
290 some of the characterized parameters' numerical values. Furthermore, basil exhibited a
291 particularly high number of cells in minor veins (which differs from the low cell numbers in the
292 cucurbits) and a low photosynthetic capacity (which differed from all other species). The other
293 four species – beyond basil – included in the present comparison represented the two previously
294 characterized extremes in vascular features among the four apoplastically-loading species and
295 four symplastically-loading species examined by Muller et al. (2014a). Together, this variation in
296 multiple features enhanced the testing rigor of what vascular features, if any, vary consistently
297 with phloem-loading mechanism.

298 The resulting findings show that cell number per minor vein did not vary much (in
299 tomato) or at all (all other species) with acclimation to low versus high light intensity nor was
300 loading-cell number constitutively and consistently higher in apoplastic compared to symplastic
301 loaders. Furthermore, total cross-sectional area per minor vein was significantly greater
302 irrespective of loading mechanism in four of the five species (all except basil) despite no
303 significant differences in average vascular cell number per minor vein in four of the five species
304 (all except tomato) in high versus low light. Larger veins and larger individual vascular cell sizes
305 (cross-sectional areas) in high versus low light were observed, as had also been seen in *A.*
306 *thaliana* (Stewart et al., 2017a,b; Adams et al., 2018; Polutchko et al., 2018). These findings on
307 adjustments in individual vascular cell size are consistent with those of Muller et al. (2014b) who
308 reported on a comparison of a single apoplastically loading biennial (*Malva neglecta*) and a

309 single symplastically loading biennial (*Verbascum phoniceum*) grown under two temperatures,
310 where both species exhibited growth-environment-dependent differences in individual vascular
311 cell size as well as total cross-sectional area per vein. The latter two-species comparison also
312 showed a significant, albeit minor, difference in cell number per vein of sieve elements, loading
313 cells, and tracheary elements depending on growth temperature in the apoplastic loader but not in
314 the symplastic loader.

315 The absence of consistent loading-mechanism-dependent differences in vascular cell
316 number is consistent with the finding of Cohu et al. (2014) that a symplastically loading (squash)
317 and an apoplastically loading (sunflower) summer annual grown under two temperatures in
318 either moderate or high light intensity exhibited “little evidence for a different response” as
319 dependent on loading mechanism in total cross-sectional area of either sieve elements or loading
320 cells per vein. A dichotomy between individual cell size versus cell number as exclusive targets
321 of adjustment in symplastic versus apoplastic of adjustments is thus not consistent with the
322 evidence. Furthermore, larger cells can be expected to not only accommodate more enzymes for
323 the sucrose trapping mechanism of symplastic loaders but also contribute to greater membrane
324 area for placing of transporters (ATPases and sucrose-proton symporters in apoplastic loaders;
325 Vaughn et al., 2002; Amiard et al., 2005, 2007) as well as greater cell wall area for
326 plasmodesmata (between bundle sheath and intermediary cells of symplastic loaders and
327 between companion cells and sieve elements of species of either loading mechanism; Giaquinta
328 1983; Schulz 2015).

329 However, the above considerations do not exclude the possibility that the relative
330 contribution of modulation in vascular cell number versus individual size may differ dependent
331 on loading mechanism. A trend for different clusters of proportionally greater individual loading
332 cell size and lower loading cell number for the symplastic versus apoplastic summer annuals
333 used by Muller et al. (2014a) was suggested by principal component analysis (Polutchnko et al.,
334 2018). Likewise, the species examined here, that varied profoundly in vein density and
335 photosynthetic capacity within loading mechanism, exhibited distinct clusters by loading
336 mechanism for the relationship between individual loading cell size and either (i) loading cell
337 number at the scale of the whole leaf (features at the vein scale \times total vein length per leaf area,
338 which considers all cells per unit of leaf) or (ii) the ratio of loading cell to sieve element number
339 as a measure of loading capacity per sugar-conducting conduit (see Adams et al., 2007). Thus,

340 relative differences are important, and it is necessary to consider features at multiple scales
341 beyond a single vein, including at both the individual cell and whole leaf levels.

342 On the other hand, the relationship between photosynthetic capacity and the volume of
343 each type of vascular cell type at the scale of the whole leaf (total volume of cells per minor vein
344 \times total length of veins per leaf area) for all plants grown under low and high light intensity was
345 similar among all summer annual species examined in the current study, and largely independent
346 of phloem-loading mechanism. Such a relationship had only been apparent among symplastic
347 loaders, but not among apoplastic loaders, in previous analyses that utilized plants grown solely
348 under high light (Muller et al., 2014a,b; Polutchko et al., 2018), where loading cell volume did
349 not vary widely. The significant correlation was particularly strong for sugar-loading cells but
350 also present (albeit less strong) for sieve elements and tracheary elements. The assessment of cell
351 volume per leaf area (as the product of cell number per minor vein \times vein density) allows for an
352 estimation of the capacity of these different cell types per unit of leaf rather than for an
353 individual vein, which provides for an appropriate comparison with foliar photosynthetic
354 capacity that is also expressed on a leaf area basis. A similar relationship between photosynthetic
355 capacity (on a leaf area basis) and the capacity of vascular infrastructure at the scale of the whole
356 leaf is intuitive since both symplastic and apoplastic loaders presumably need to enhance
357 vascular capacity to support enhanced photosynthetic capacity – with the secondary effect that
358 the vascular capacity (volume of vascular cells at the leaf level) is adjusted with a greater
359 emphasis on loading-cell number (apoplastic loaders) versus loading-cell size (symplastic
360 loaders).

361 However, there were also notable deviations from the general relationships for
362 photosynthetic capacity versus vascular cell volume within the same loading-mode group, e.g.,
363 between basil and cucumber (both symplastic loaders). Data points fell above (cucumber) or
364 below (basil) the general relationships between maximal photosynthetic capacity and especially
365 tracheary element volume. The greater (in basil) or lesser (in cucumber) sieve element or
366 tracheary element volume can be traced to the high (basil) or low (cucumber) cell numbers per
367 vein and are evidently not related to loading mode but to some other driver. One may speculate
368 that these species-dependent differences could be driven by differences in evaporative demand in
369 an evolutionary context. For example, ecotypes of *Arabidopsis thaliana* from sites of origin with
370 different precipitation levels exhibited different ratios of tracheary to sieve elements as well as

371 different transpiration rates under common conditions (Adams et al., 2016, 2018). Beyond any
372 species-dependent differences, all species in the present study are summer annuals and likely
373 have some adaptations that support high rates of transpiration under high temperature and large
374 water potential gradient (Boyce et al., 2009). High vein density and relatively large volumes of
375 water-transport infrastructure for supporting photosynthesis under these conditions could
376 concomitantly aid in cooling the plant on a hot summer day (Nardini et al., 2005; Pagano and
377 Storchi, 2015; Lin et al., 2017). The results presented here support the need for further research
378 into constitutive differences in foliar vascular architecture of summer annuals, winter annuals,
379 and biennials with different loading mechanisms (see also Cohu et al., 2014; Polutchko et al.,
380 2018) as well as their acclimation of the foliar vasculature at different scales (subcellular,
381 cellular, vein, and leaf) to various environments. Such insight may aid in development of crops
382 for improved leaf vascular features and superior photosynthetic performance in specific climates.
383

384 **Author Contributions**

385 SKP: Investigation, Formal analysis, Visualization, Supervision, Writing - Original Draft; JJS:
386 Investigation, Formal analysis, Visualization, Supervision, Funding acquisition, Writing -
387 Review & Editing; BD-A: Conceptualization, Formal analysis, Visualization, Funding
388 acquisition, Resources, Supervision, Project administration, Writing - Original Draft. WWA:
389 Conceptualization, Methodology, Formal analysis, Visualization, Funding acquisition,
390 Resources, Supervision, Project administration, Writing - Original Draft.
391

392 **Funding**

393 This work was supported by the National Science Foundation [grant numbers DEB-1022236,
394 IOS-1907338]; and the University of Colorado.
395

396 **Conflict of Interest**

397 We declare no conflict of interest.
398

399 **Acknowledgements**

400 We thank Ms. Gabrielle Glime and Mr. Nicholas Ranelli for assistance with data collection and
401 Drs. Stacey Smith and Sean Gleason for valuable discussions.

402 **References**

- 403 Adams, W.W. III, Watson, A.M., Mueh, K.E., Amiard, V., Turgeon, R., Ebbert, V., Logan, B.A.,
404 Combs, A.F., Demmig-Adams, B., 2007. Photosynthetic acclimation in the context of
405 structural constraints to carbon export from leaves. *Photosynth. Res.* 94, 455–466.
406 <https://doi.org/10.1007/s11120-006-9123-3>
- 407 Adams, W.W. III, Cohu, C.M., Muller, O., Demmig-Adams, B., 2013. Foliar phloem
408 infrastructure in support of photosynthesis. *Front. Plant Sci.* 4, 194.
409 <https://doi.org/10.3389/fpls.2013.00194>
- 410 Adams, W.W. III, Cohu, C.M., Amiard, V., Demmig-Adams, B., 2014. Associations between the
411 acclimation of phloem-cell wall ingrowths in minor veins and maximal photosynthesis rate.
412 *Front. Plant Sci.* 5, 24. <https://doi.org/10.3389/fpls.2014.00024>
- 413 Adams, W.W. III, Stewart, J.J., Cohu, C.M., Muller, O., Demmig-Adams, B., 2016. Habitat
414 temperature and precipitation of *Arabidopsis thaliana* ecotypes determine the response of
415 foliar vasculature, photosynthesis, and transpiration to growth temperature. *Front. Plant Sci.*
416 7, 1026. <https://doi.org/10.3389/fpls.2016.01026>
- 417 Adams, W.W. III, Stewart, J.J., Polutchnko, S.K., Demmig-Adams, B., 2018. Leaf vasculature
418 and the upper limit of photosynthesis, in: Adams III, W.W., Terashima, I. (Eds.), *The Leaf: A
419 Platform for Performing Photosynthesis*. Springer International Publishing, Cham, pp.
420 27–54. https://doi.org/10.1007/978-3-319-93594-2_2
- 421 Amiard, V., Mueh, K.E., Demmig-Adams, B., Ebbert, V., Turgeon, R., Adams, W.W. III, 2005.
422 Anatomical and photosynthetic acclimation to the light environment in species with
423 differing mechanisms of phloem loading. *Proc. Natl. Acad. Sci. U.S.A.* 102, 12968–12973.
424 <https://doi.org/10.1073/pnas.0503784102>
- 425 Amiard, V., Demmig-Adams, B., Mueh, K.E., Turgeon, R., Combs, A.F., Adams, W.W. III,
426 2007. Role of light and jasmonic acid signaling in regulating foliar phloem cell wall
427 ingrowth development. *New Phytol.* 173, 722–731. <https://doi.org/10.1111/j.1469-8137.2006.01954.x>
- 429 Boyce, C.K., Brodribb, T.J., Feild, T.S., Zwieniecki, M.A., 2009. Angiosperm leaf vein
430 evolution was physiologically and environmentally transformative. *Proc. R. Soc. B Biol.*
431 Sci. 276, 1771–1776. <https://doi.org/10.1098/rspb.2008.1919>
- 432 Brodersen, C.R., Knipfer, T., McElrone, A.J., 2018. In vivo visualization of the final stages of
433 xylem vessel refilling in grapevine (*Vitis vinifera*) stems. *New Phytol.* 217, 117–126.
434 <https://doi.org/10.1111/nph.14811>
- 435 Brodribb, T.J., Holbrook, N.M., Zwieniecki, M.A., Palma, B., 2005. Leaf hydraulic capacity in
436 ferns, conifers and angiosperms: impacts on photosynthetic maxima. *New Phytol.* 165, 839–
437 846. <https://doi.org/10.1111/j.1469-8137.2004.01259.x>
- 438 Brodribb, T.J., Feild, T.S., Jordan, G.J., 2007. Leaf maximum photosynthetic rate and venation
439 are linked by hydraulics. *Plant Physiol.* 144, 1890–1898.
440 <https://doi.org/10.1104/pp.107.101352>
- 441 Brodribb, T.J., Feild, T.S., Sack, L., 2010. Viewing leaf structure and evolution from a hydraulic

- 442 perspective. *Funct. Plant Biol.* 37, 488–498. <https://doi.org/10.1071/FP10010>
- 443 Büchi, R., Bachmann, M., Keller, F., 1998. Carbohydrate metabolism in source leaves of sweet
444 basil (*Ocimum basilicum* L.), a starch-storing and stachyose-translocating labiate. *J. Plant
445 Physiol.* 153, 308–315. [https://doi.org/10.1016/S0176-1617\(98\)80156-9](https://doi.org/10.1016/S0176-1617(98)80156-9)
- 446 Cardoso, A.A., Brodribb, T.J., Lucani, C.J., DaMatta, F.M., McAdam, S.A.M., 2018.
447 Coordinated plasticity maintains hydraulic safety in sunflower leaves. *Plant Cell Environ.*
448 41, 2567–2576. <https://doi.org/10.1111/pce.13335>
- 449 Cohu, C.M., Muller, O., Demmig-Adams, B., Adams, W.W. III, 2013a. Minor loading vein
450 acclimation for three *Arabidopsis thaliana* ecotypes in response to growth under different
451 temperature and light regimes. *Front. Plant Sci.* 4, 240.
452 <https://doi.org/10.3389/fpls.2013.00240>
- 453 Cohu, C.M., Muller, O., Stewart, J.J., Demmig-Adams, B., Adams, W.W. III, 2013b.
454 Association between minor loading vein architecture and light- and CO₂-saturated rates of
455 photosynthetic oxygen evolution among *Arabidopsis thaliana* ecotypes from different
456 latitudes. *Front. Plant Sci.* 4, 264. <https://doi.org/10.3389/fpls.2013.00264>
- 457 Cohu, C.M., Muller, O., Adams, W.W. III, Demmig-Adams, B., 2014. Leaf anatomical and
458 photosynthetic acclimation to cool temperature and high light in two winter versus two
459 summer annuals. *Physiol. Plant.* 152, 164–173. <https://doi.org/10.1111/ppl.12154>
- 460 Davidson, A., Keller, F., Turgeon, R., 2011. Phloem loading, plant growth form, and climate.
461 *Protoplasma* 248, 153–163. <https://doi.org/10.1007/s00709-010-0240-7>
- 462 Franks, P.J., 2006. Higher rates of leaf gas exchange are associated with higher leaf
463 hydrodynamic pressure gradients. *Plant Cell Environ.* 29, 584–592.
464 <https://doi.org/10.1111/j.1365-3040.2005.01434.x>
- 465 Gamalei, Y., 1989. Structure and function of leaf minor veins in trees and herbs. *Trees* 3, 96–
466 110. <https://doi.org/10.1007/BF00191540>
- 467 Giaquinta, R.T., 1983. Phloem loading of sucrose. *Annu. Rev. Plant Physiol.* 34, 347–387.
468 <https://doi.org/10.1146/annurev.pp.34.060183.002023>
- 469 Kang, Y., Outlaw Jr, W.H., Fiore, G.B., Riddle, K.A., 2007. Guard cell apoplastic photosynthate
470 accumulation corresponds to a phloem-loading mechanism. *J. Exp. Bot.* 58, 4061–4070.
471 <https://doi.org/10.1093/jxb/erm262>
- 472 Klein, T., Zeppel, M.J.B., Anderegg, W.R.L., Bloemen, J., De Kauwe, M.G., Hudson, P., Ruehr,
473 N.K., Powell, T.L., von Arx, G., Nardini, A., 2018. Xylem embolism refilling and resilience
474 against drought-induced mortality in woody plants: processes and trade-offs. *Ecol. Res.* 33,
475 839–855. <https://doi.org/10.1007/s11284-018-1588-y>
- 476 Klepek, Y.-S., Geiger, D., Stadler, R., Klebl, F., Landouar-Arsivaud, L., Lemoine, R., Hedrich,
477 R., Sauer, N., 2005. *Arabidopsis* POLYOL TRANSPORTER5, a new member of the
478 monosaccharide transporter-like superfamily, mediates H⁺-symport of numerous substrates,
479 including myo-inositol, glycerol, and ribose. *Plant Cell* 17, 204–218.
480 <https://doi.org/10.1105/tpc.104.026641>
- 481 Lalonde, S., Boles, E., Hellmann, H., Barker, L., Patrick, J.W., Frommer, W.B., Ward, J.M.,

- 482 1999. The dual function of sugar Carriers: Transport and sugar sensing. *Plant Cell* 11, 707–
483 726. <https://doi.org/10.1105/tpc.11.4.707>
- 484 Lin, H., Chen, Y., Zhang, H., Fu, P., Fan, Z., 2017. Stronger cooling effects of transpiration and
485 leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. *Funct. Ecol.*
486 31, 2202–2211. <https://doi.org/10.1111/1365-2435.12923>
- 487 McKown, A.D., Cochard, H., Sack, L., 2010. Decoding leaf hydraulics with a spatially explicit
488 model: Principles of venation architecture and implications for its evolution. *Am. Nat.* 175,
489 447–460. <https://doi.org/10.1086/650721>
- 490 Muller, O., Cohu, C.M., Stewart, J.J., Protheroe, J.A., Demmig-Adams, B., Adams, W.W. III,
491 2014a. Association between photosynthesis and contrasting features of minor veins in
492 leaves of summer annuals loading phloem via symplastic versus apoplastic routes. *Physiol.*
493 *Plant.* 152, 174–183. <https://doi.org/10.1111/ppl.12155>
- 494 Muller, O., Stewart, J.J., Cohu, C.M., Polutchnko, S.K., Demmig-Adams, B., Adams, W.W. III,
495 2014b. Leaf architectural, vascular and photosynthetic acclimation to temperature in two
496 biennials. *Physiol. Plant.* 152, 763–772. <https://doi.org/10.1111/ppl.12226>
- 497 Nardini, A., Gortan, E., Salleo, S., 2005. Hydraulic efficiency of the leaf venation system in sun-
498 and shade-adapted species. *Funct. Plant Biol.* 32, 953–961. <https://doi.org/10.1071/FP05100>
- 499 Pagano, M., Storchi, P., 2015. Leaf vein density: A possible role as cooling system. *J. Life Sci.* 9,
500 299. <https://doi.org/10.17265/1934-7391/2015.07.001>
- 501 Polutchnko, S.K., Stewart, J.J., Demmig-Adams, B., Adams, W.W. III, 2018. Evaluating the link
502 between photosynthetic capacity and leaf vascular organization with principal component
503 analysis. *Photosynthetica* 56, 392–403. <https://doi.org/10.1007/s11099-017-0764-6>
- 504 Ramsperger-Gleixner, M., Geiger, D., Hedrich, R., Sauer, N., 2004. Differential expression of
505 sucrose transporter and polyol transporter genes during maturation of common plantain
506 companion cells. *Plant Physiol.* 134, 147–160. <https://doi.org/10.1104/pp.103.027136>
- 507 Rennie, E.A., Turgeon, R., 2009. A comprehensive picture of phloem loading strategies. *Proc.*
508 *Natl. Acad. Sci.* 106, 4162–4167. <https://doi.org/10.1073/pnas.0902279106>
- 509 Sack, L., Scoffoni, C., McKown, A.D., Froel, K., Rawls, M., Havran, J.C., Tran, H., Tran, T.,
510 2012. Developmentally based scaling of leaf venation architecture explains global
511 ecological patterns. *Nat. Commun.* 3, 837. <https://doi.org/10.1038/ncomms1835>
- 512 Schmitz, K., Cuypers, B., Moll, M., 1987. Pathway of assimilate transfer between mesophyll
513 cells and minor veins in leaves of *Cucumis melo* L. *Planta* 171, 19–29.
514 <https://doi.org/10.1007/BF00395064>
- 515 Schulz, A., 2015. Diffusion or bulk flow: How plasmodesmata facilitate pre-phloem transport of
516 assimilates. *J. Plant Res.* 128, 49–61. <https://doi.org/10.1007/s10265-014-0676-5>
- 517 Scoffoni, C., Chatelet, D.S., Pasquet-kok, J., Rawls, M., Donoghue, M.J., Edwards, E.J., Sack,
518 L., 2016. Hydraulic basis for the evolution of photosynthetic productivity. *Nat. Plants* 2,
519 16072. <https://doi.org/10.1038/nplants.2016.72>
- 520 Secchi, F., Pagliarani, C., Zwieniecki, M.A., 2017. The functional role of xylem parenchyma

- 521 cells and aquaporins during recovery from severe water stress. *Plant Cell Environ.* 40, 858–
522 871. <https://doi.org/10.1111/pce.12831>
- 523 Slewinski, T., Zhang, C., Turgeon, R., 2013. Structural and functional heterogeneity in phloem
524 loading and transport. *Front. Plant Sci.* 4, 244. <https://doi.org/10.3389/fpls.2013.00244>
- 525 Sondergaard, T.E., Schulz, A., Palmgren, M.G., 2004. Energization of transport processes in
526 plants. Roles of the plasma membrane H⁺-ATPase. *Plant Physiol.* 136, 2475–2482.
527 <https://doi.org/10.1104/pp.104.048231>
- 528 Spurr, A.R., 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. *J.*
529 *Ultrastruct. Res.* 26, 31–43. [https://doi.org/10.1016/S0022-5320\(69\)90033-1](https://doi.org/10.1016/S0022-5320(69)90033-1)
- 530 Stewart, J.J., Demmig-Adams, B., Cohu, C.M., Wenzl, C.A., Muller, O., Adams W.W. III, 2016.
531 Growth temperature impact on leaf form and function in *Arabidopsis thaliana* ecotypes
532 from northern and southern Europe. *Plant Cell Environ.* 39, 1549–1558.
533 <https://doi.org/10.1111/pce.12720>
- 534 Stewart, J.J., Polutchko, S.K., Adams, W.W. III, Cohu, C.M., Wenzl, C.A., Demmig-Adams, B.,
535 2017a. Light, temperature and tocopherol status influence foliar vascular anatomy and leaf
536 function in *Arabidopsis thaliana*. *Physiol. Plant.* 160, 98–110.
537 <https://doi.org/10.1111/ppl.12543>
- 538 Stewart, J.J., Polutchko, S.K., Adams, W.W. III, Demmig-Adams, B., 2017b. Acclimation of
539 Swedish and Italian ecotypes of *Arabidopsis thaliana* to light intensity. *Photosynth. Res.*
540 134, 215–229. <https://doi.org/10.1007/s11120-017-0436-1>
- 541 Stewart, J.J., Muller, O., Cohu, C.M., Demmig-Adams, B., Adams, W.W. III, 2019.
542 Quantification of leaf phloem anatomical features with microscopy, in: Liesche, J. (Ed.),
543 *Phloem: Methods and Protocols*. Springer New York, New York, NY, pp. 55–72.
544 https://doi.org/10.1007/978-1-4939-9562-2_5
- 545 Sui, X., Nie, J., Liu, H., Lin, T., Yao, X., Turgeon, R., 2021. Complexity untwined: The structure
546 and function of cucumber (*Cucumis sativus* L.) shoot phloem. *Plant J.* 106, 1163–1176.
547 <https://doi.org/10.1111/tpj.15229>
- 548 Trifilò, P., Kiorapostolou, N., Petruzzellis, F., Vitti, S., Petit, G., Lo Gullo, M.A., Nardini, A.,
549 Casolo, V., 2019. Hydraulic recovery from xylem embolism in excised branches of twelve
550 woody species: Relationships with parenchyma cells and non-structural carbohydrates.
551 *Plant Physiol. Biochem.* 139, 513–520. <https://doi.org/10.1016/j.plaphy.2019.04.013>
- 552 Turgeon, R., 2016. Phloem biology of the Cucurbitaceae, in: Grumet R., Katzir N., Garcia-Mas
553 J. (Eds.), *Genetics and Genomics of Cucurbitaceae*. Springer International Publishing, New
554 York, pp. 291–305. https://doi.org/10.1007/7397_2016_23
- 555 Turgeon, R., Ayre, B.G., 2005. Pathways and mechanisms of phloem loading, in: Holbrook,
556 N.M., Zwieniecki, M.A., (Eds.). *In Vascular Transport in Plants, Physiological Ecology*.
557 Academic Press, Burlington, pp. 45–67. <https://doi.org/10.1016/B978-012088457-5/50005-8>
- 559 Turgeon, R., Medville, R., Nixon, K.C., 2001. The evolution of minor vein phloem and phloem
560 loading. *Am. J. Bot.* 88, 1331–1339. <https://doi.org/10.2307/3558441>

561 Vaughn, M.W., Harrington, G.N., Bush, D.R., 2002. Sucrose-mediated transcriptional regulation
562 of sucrose symporter activity in the phloem. Proc. Natl. Acad. Sci. 99, 10876– 0880.
563 <https://doi.org/10.1073/pnas.172198599>

564 Volk, G.M., Turgeon, R., Beebe, D.U., 1996. Secondary plasmodesmata formation in the minor-
565 vein phloem of *Cucumis melo* L. and *Cucurbita pepo* L. Planta 199, 425–432.
566 <https://doi.org/10.1007/BF00195735>

567

568 **Figure Legends**

569

570 **Figure 1.** (A) Total number of cells per foliar minor vein, (B) average cross-sectional area of
571 foliar minor veins, (C) photosynthetic capacity (light- and CO₂-saturated rate of oxygen
572 evolution at 25°C), and (D) foliar minor vein density of two apoplastic and three symplastic
573 loaders grown under low light (light columns) and high light (dark columns). Mean values ±
574 standard errors. Mean values that differed significantly from one another, based on ANOVA
575 across all species and both growth light intensities, are indicated by different lower-case letters.

576

577 **Figure 2.** Relationship between photosynthetic capacity and volume (per unit leaf area) of (A)
578 loading cells, (B) sieve elements, and (C) tracheary elements of apoplastic (purple line and
579 symbols) and symplastic (blue line and symbols) loaders. Species are represented by different
580 symbols: tomato (circles), sunflower (triangles), basil (inverted triangles), pumpkin (squares),
581 and cucumber (diamonds). All linear regressions were statistically significant ($P < 0.05$).
582 The R² values for LCs (Fig 4A) are R²_{Apoplastic} = 0.84, R²_{Symplastic} = 0.79, and R²_{AllSpecies} = 0.81.
583 The R² values for SEs (Fig 4B) are R²_{Apoplastic} = 0.71, R²_{Symplastic} = 0.34, and R²_{AllSpecies} = 0.52.
584 The R² values for TEs (Fig 4C) are R²_{Apoplastic} = 0.79, R²_{Symplastic} = 0.32, and R²_{AllSpecies} = 0.56.

585

586 **Figure 3.** Relationship between loading-cell and sieve-element volume on a leaf area basis with
587 density ellipses ($P = 0.950$) among apoplastic loaders (purple ellipse and symbols) and
588 symplastic loaders (blue ellipse and symbols). Species are represented by different symbols:
589 tomato (circles), sunflower (triangles), basil (inverted triangles), pumpkin (squares), and
590 cucumber (diamonds).

591

592 **Figure 4.** Relationship between loading cell cross-sectional area and loading volume with
593 density ellipses ($P = 0.950$) of the apoplastic phloem loaders (purple ellipse and symbols) and the
594 symplastic phloem loaders (blue ellipse and symbols). Species are represented by different
595 symbols: tomato (circles), sunflower (triangles), basil (inverted triangles), pumpkin (squares),
596 and cucumber (diamonds).

597

598 **Figure 5.** (A) Number of loading cells (LC) per foliar minor vein normalized by vein density,
599 (B) average cross-sectional area of individual loading cells, and (C) average cross-sectional area
600 of foliar minor veins occupied by loading cells in two apoplastic and three symplastic loaders
601 grown under low light (light columns) and high light (dark columns). Mean values \pm standard
602 errors. Mean values that differed significantly from one another, based on ANOVA across all
603 species and both growth light intensities, are indicated by different lower-case letters.

604

605 **Figure 6.** Relationship between the ratio of loading cell (LC) to sieve element (SE) cross-
606 sectional area and the ratio of loading cell to sieve element number in minor veins, shown with
607 density ellipses ($P = 0.950$) for apoplastic loaders (purple ellipse and symbols) and symplastic
608 loaders (blue ellipse and symbols). Species are represented by different shapes: tomato (circles),
609 sunflower (triangles), basil (inverted triangles), pumpkin (squares), and cucumber (diamonds).

610

611 **Figure 7.** (A) Ratio of minor vein loading cell (LC) cross-sectional area to sieve element (SE)
612 cross-sectional area and (B) ratio of loading cell number to sieve elements per foliar minor vein
613 normalized by vein density of the two apoplastic and three symplastic species grown under low
614 light (light columns) and high light (dark columns). Mean values \pm standard errors. Mean values
615 that differed significantly from one and other, based on ANOVA across all species and both
616 growth light intensities, are indicated by different lower-case letters.

617

618 **Figure 8.** Relationship between minor vein tracheary element volume and sieve element volume
619 on a leaf area basis for the apoplastic (purple line and symbols; $R^2_{\text{Apoplastic}} = 0.82$) and symplastic
620 (blue line and symbols; $R^2_{\text{Symplastic}} = 0.86$) loaders. Species are represented by different symbols:
621 tomato (circles), sunflower (triangles), basil (inverted triangles), pumpkin (squares), and
622 cucumber (diamonds). All linear regressions were significant at $P < 0.001$; $R^2_{\text{AllSpecies}} = 0.82$.

623

624 **Figure 9.** Relationship between (A) average cross-sectional area of individual tracheary elements
625 and tracheary element number per minor vein and (B) average cross-sectional area of individual
626 sieve elements and sieve element number per minor vein, shown with density ellipses ($P =$
627 0.950) for apoplastic loaders (purple ellipse and symbols) and symplastic loaders (blue ellipse

628 and symbols). Species are represented by different symbols: tomato (circles), sunflower
629 (triangles), basil (inverted triangles), pumpkin (squares), and cucumber (diamonds).

630

631 **Figure 10.** Average number of (A) tracheary elements and (B) sieve elements per minor vein and
632 average cross-sectional area of (C) individual tracheary elements and (D) individual sieve
633 elements in two apoplastic and three symplastic loaders grown under low light (light columns)
634 and high light (dark columns). Mean values \pm standard errors. Mean values that differed
635 significantly from one another, based on ANOVA across all species and both growth light
636 intensities, are indicated by different lower-case letters.

637

638 **Supplemental Tables**

639

640 **Supplemental Table 1.** Leaf age at characterization and leaf temperature during growth. Plants
641 grown in high light (HL) grew more quickly compared to plants grown under low light (LL).
642 Leaves were characterized when fully expanded and of a similar size between light treatments.
643 Leaf temperature was assessed for each species and treatment, except for basil. Air temperatures
644 during the light period were set to 28°C and 27°C in low and high light, respectively, which
645 resulted in similar leaf temperatures in LL and HL for each species.

646

Species	Age at characterization (days)		Leaf temperature (°C)	
	LL	HL	LL	HL
Pumpkin	22	19	25.8 ± 1.1	26.6 ± 1.7
Cucumber	21	21	25.4 ± 0.7	25.8 ± 0.8
Basil	37	26		
Sunflower	43	27	27.0 ± 0.8	27.8 ± 0.3
Tomato	29	29	26.9 ± 0.8	27.9 ± 0.6

647

648

649 **Supplemental Figure Legends**

650

651 **Supplemental Figure 1.** Schematic depictions of representative cross-sectional images of foliar
652 minor veins from each species with different cell types given in blue (xylem tissue; tracheary
653 elements in dark blue and xylem parenchyma cells in light blue) or green (phloem tissue; sieve
654 elements in dark green and sugar-loading cells in light green). Species in Cucurbitaceae have
655 bicollateral phloem with some additional, adaxial phloem cells (shown in white since these cells
656 apparently do not transport photosynthate; Schmitz et al., 1987; Sui et al., 2021) above the xylem
657 cells.

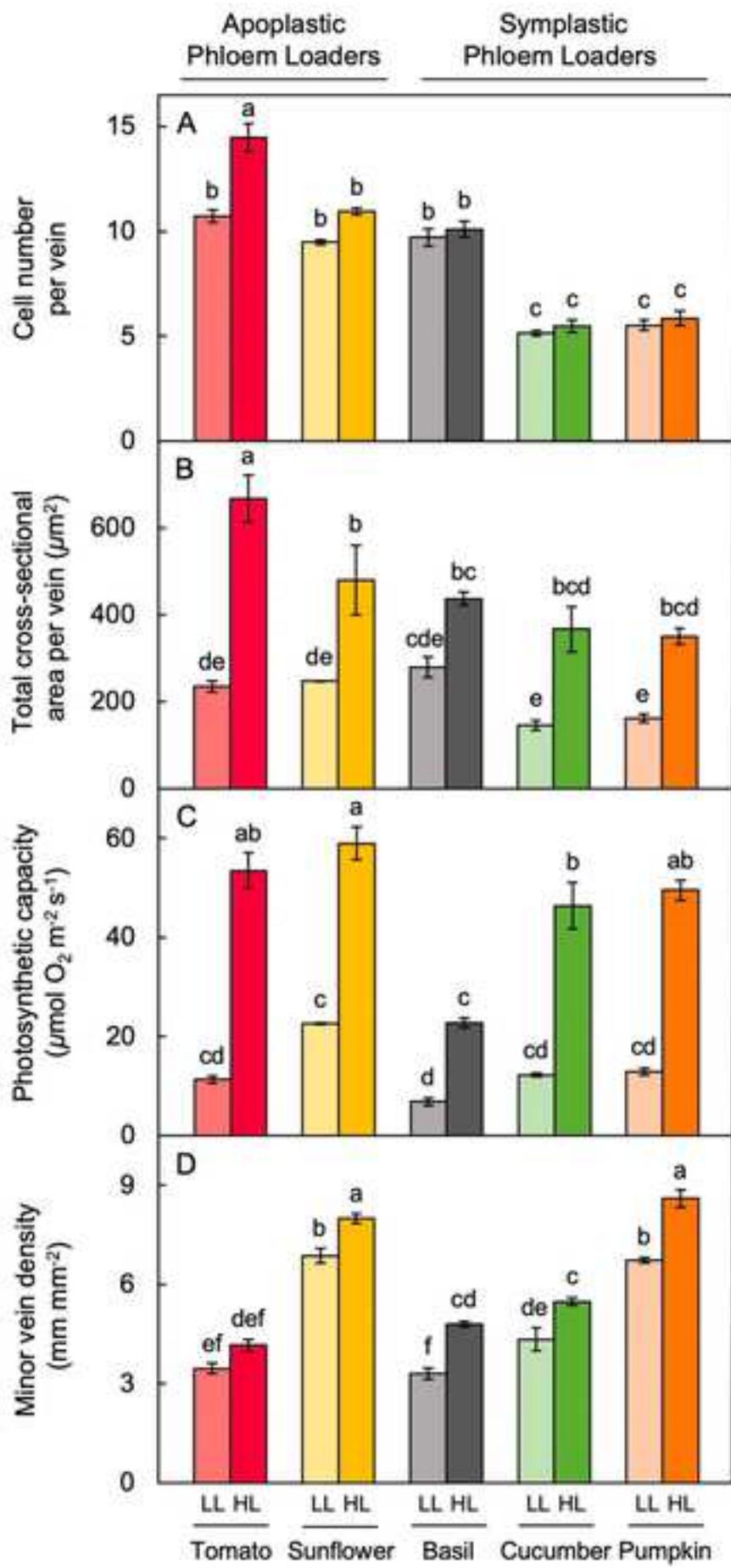


Figure 2

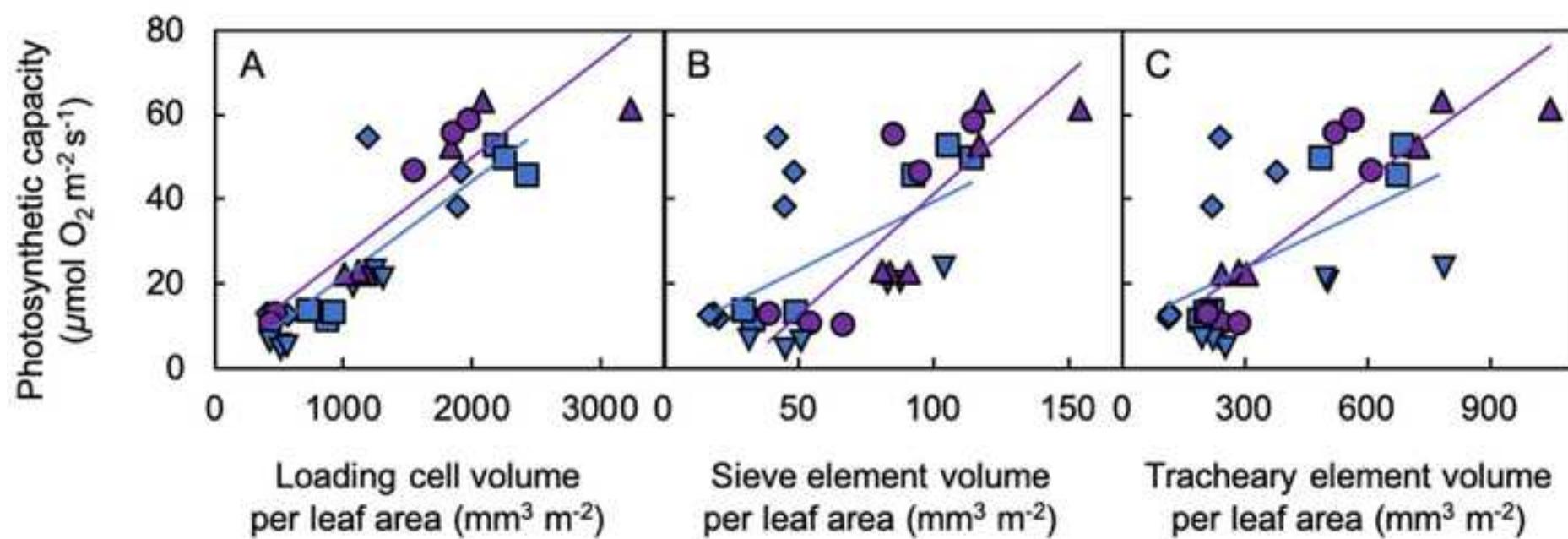


Figure 3

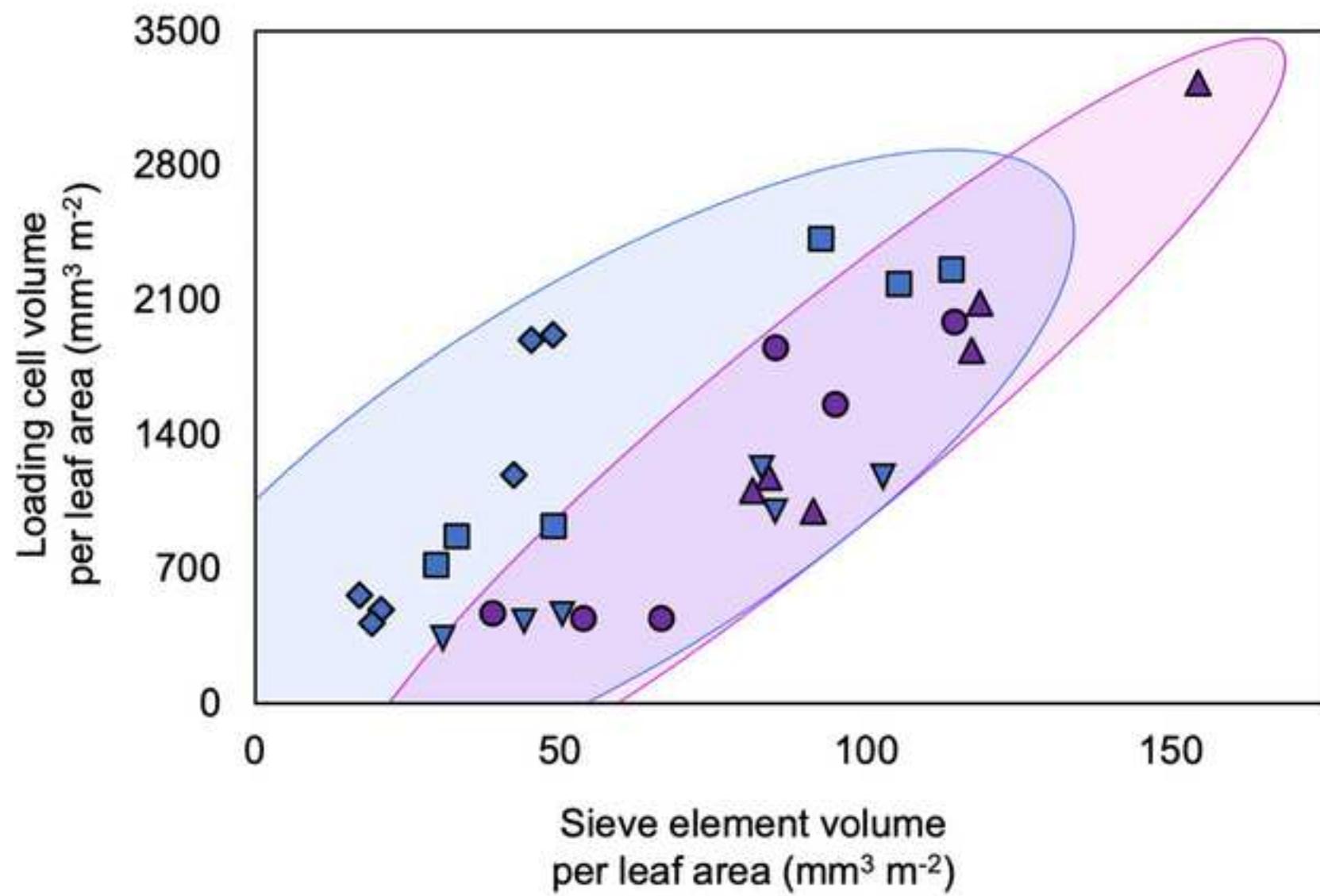
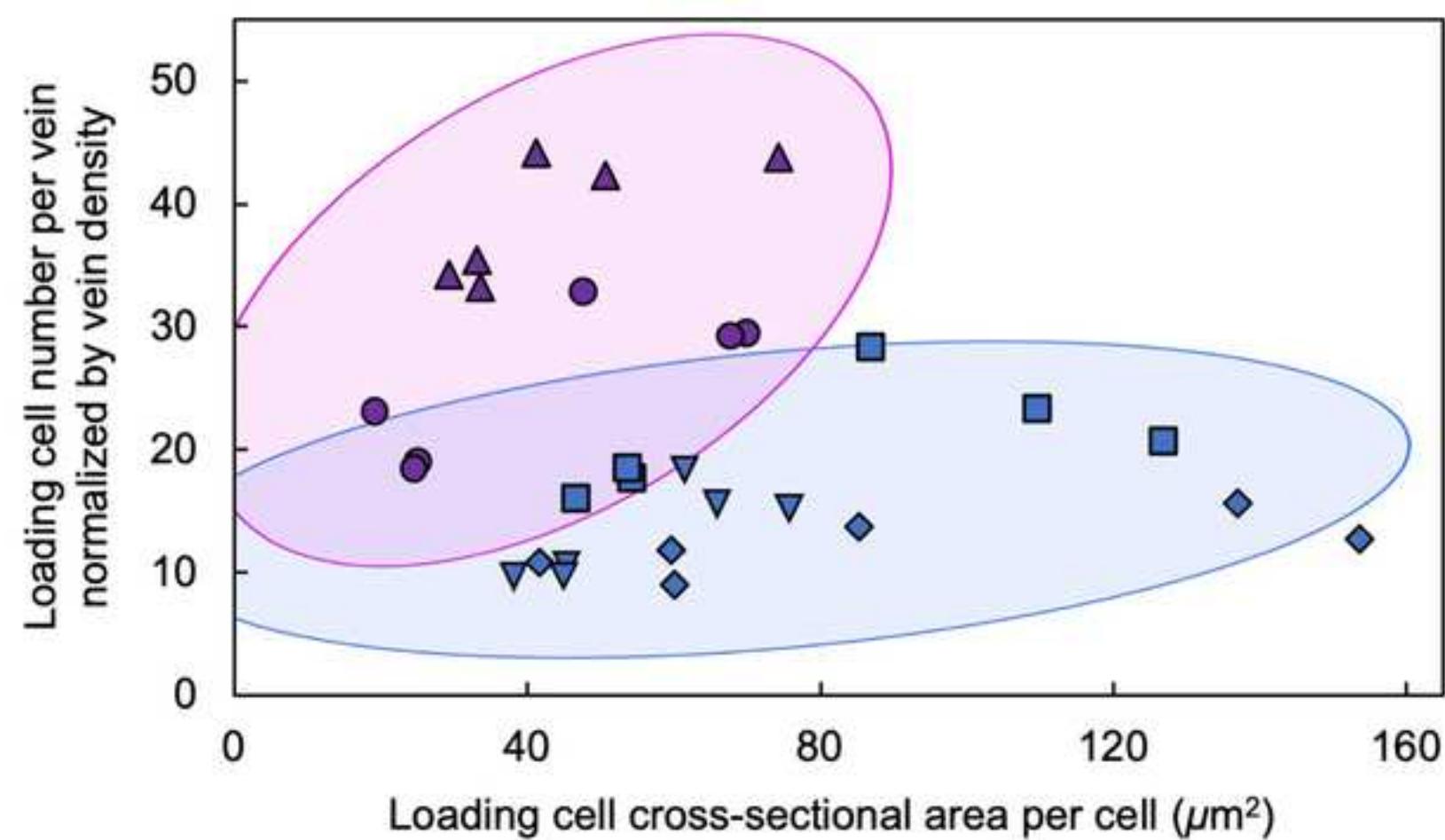



Figure 4

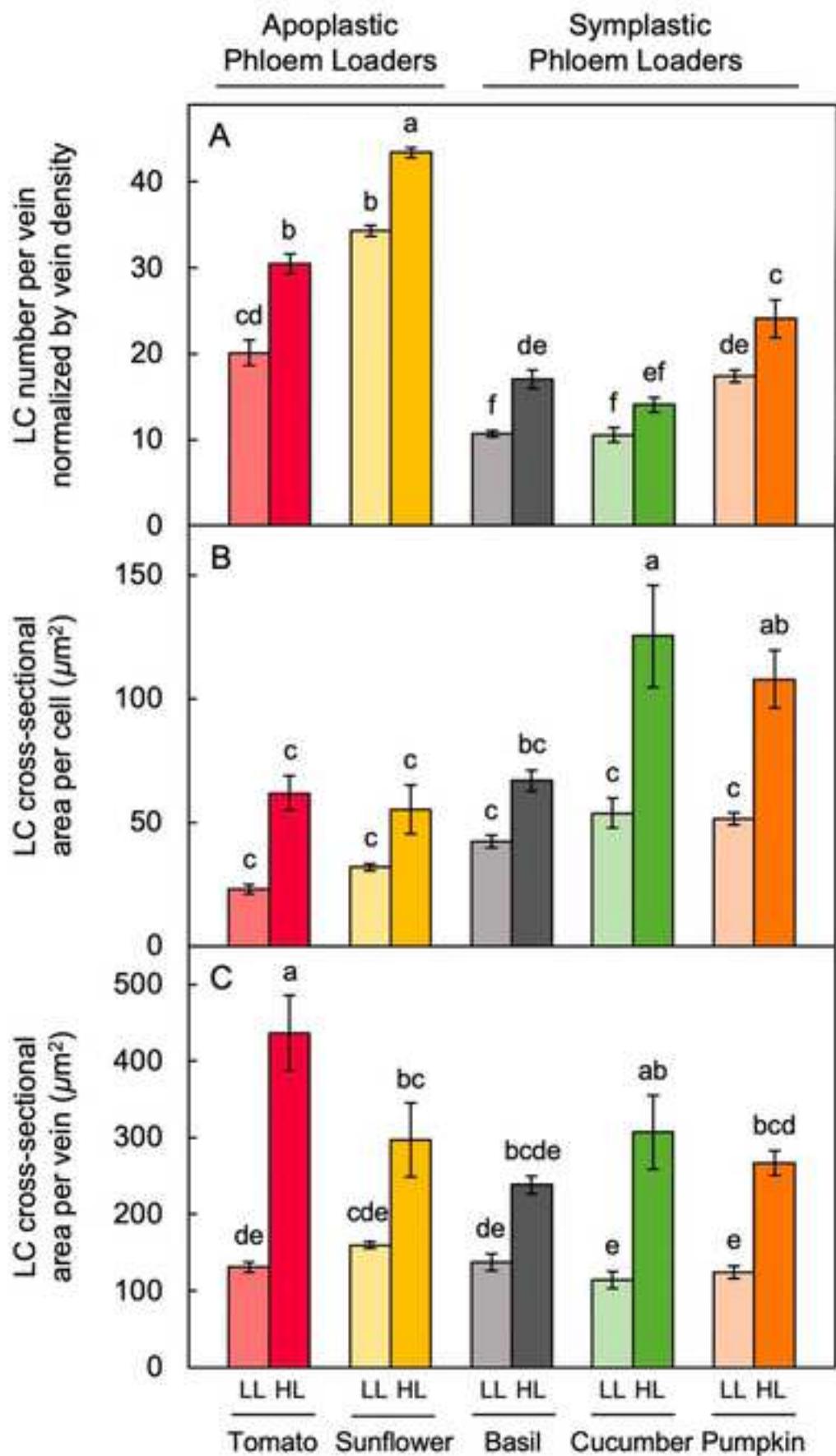


Figure 6

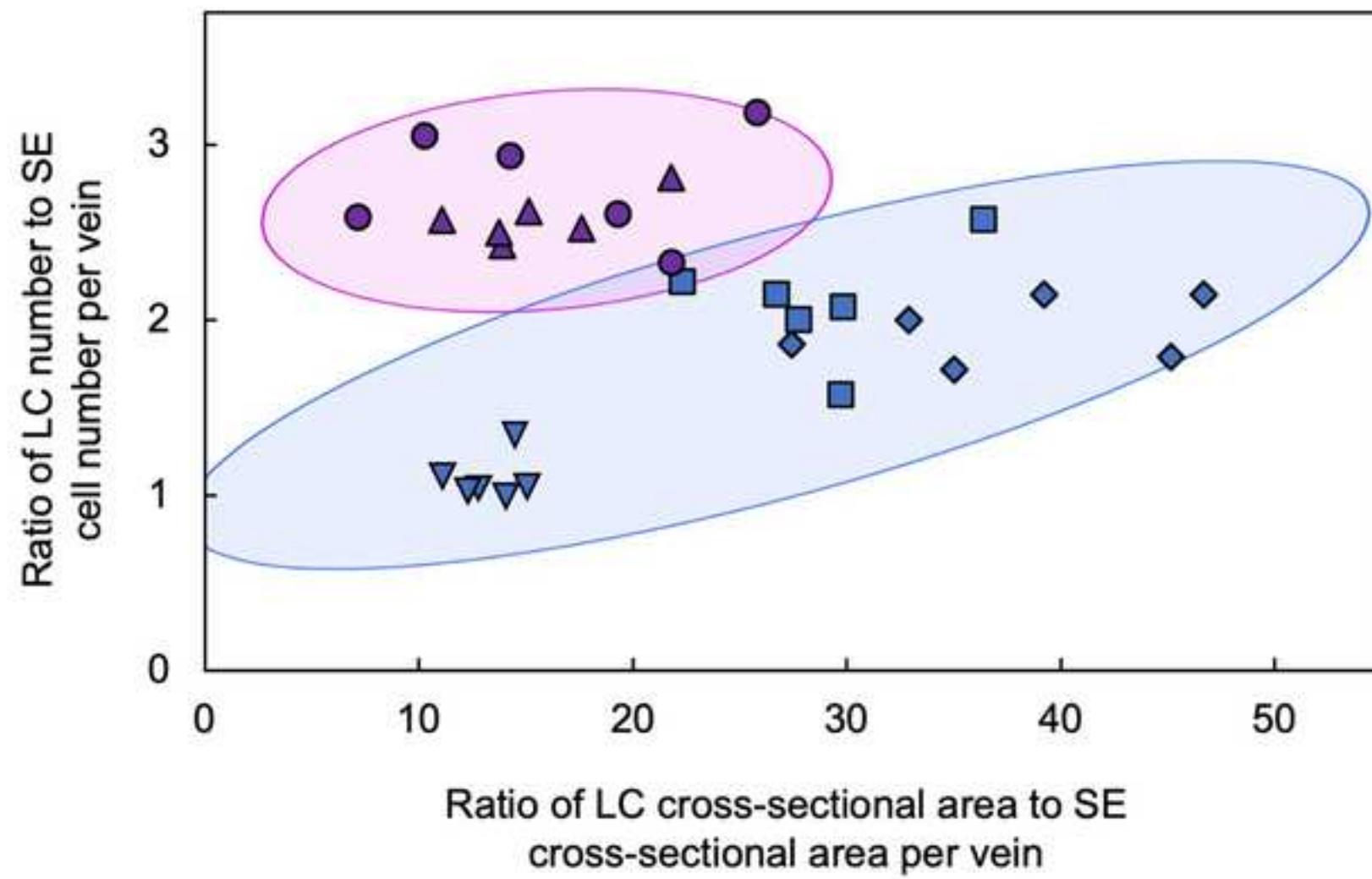


Figure 7

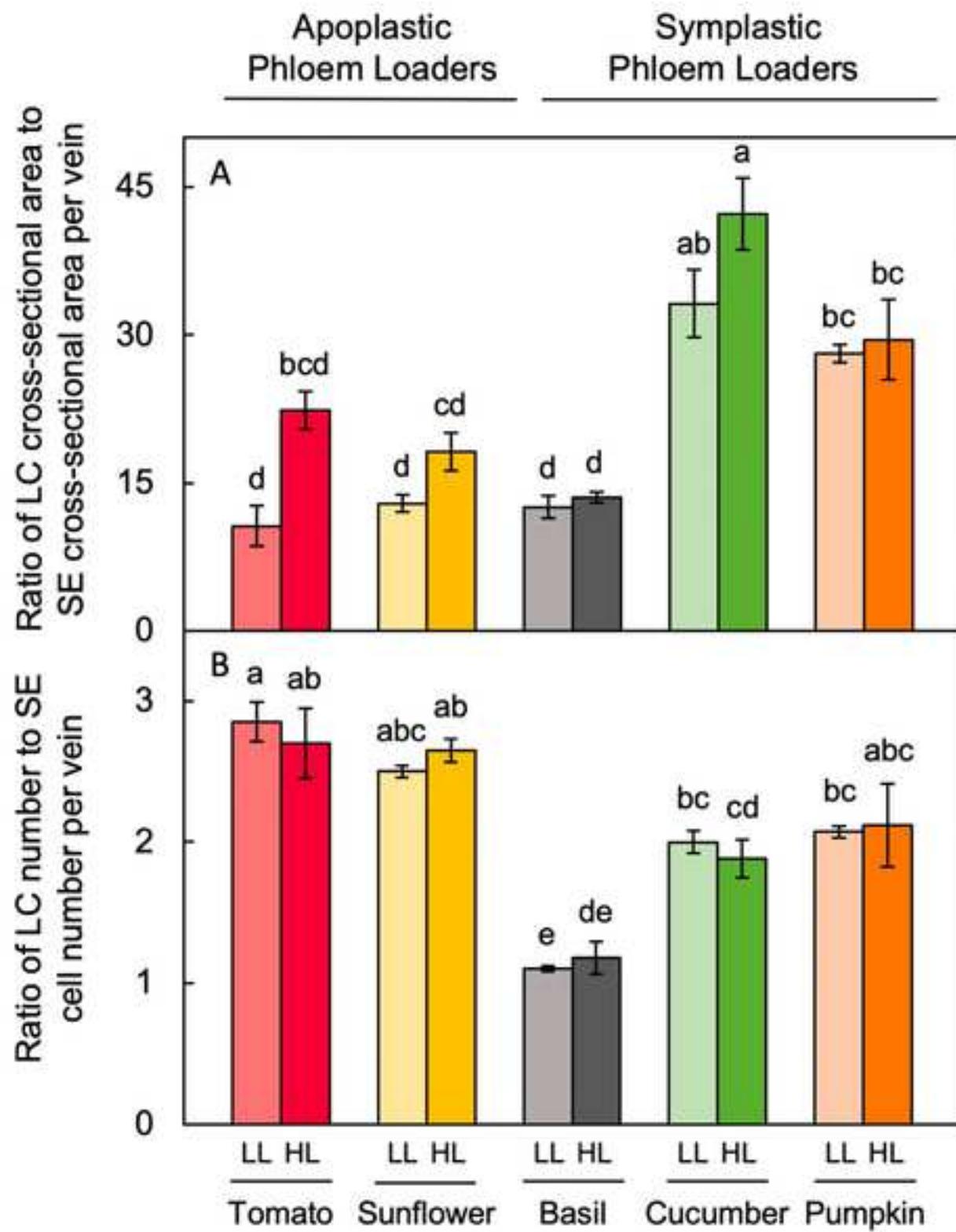


Figure 8

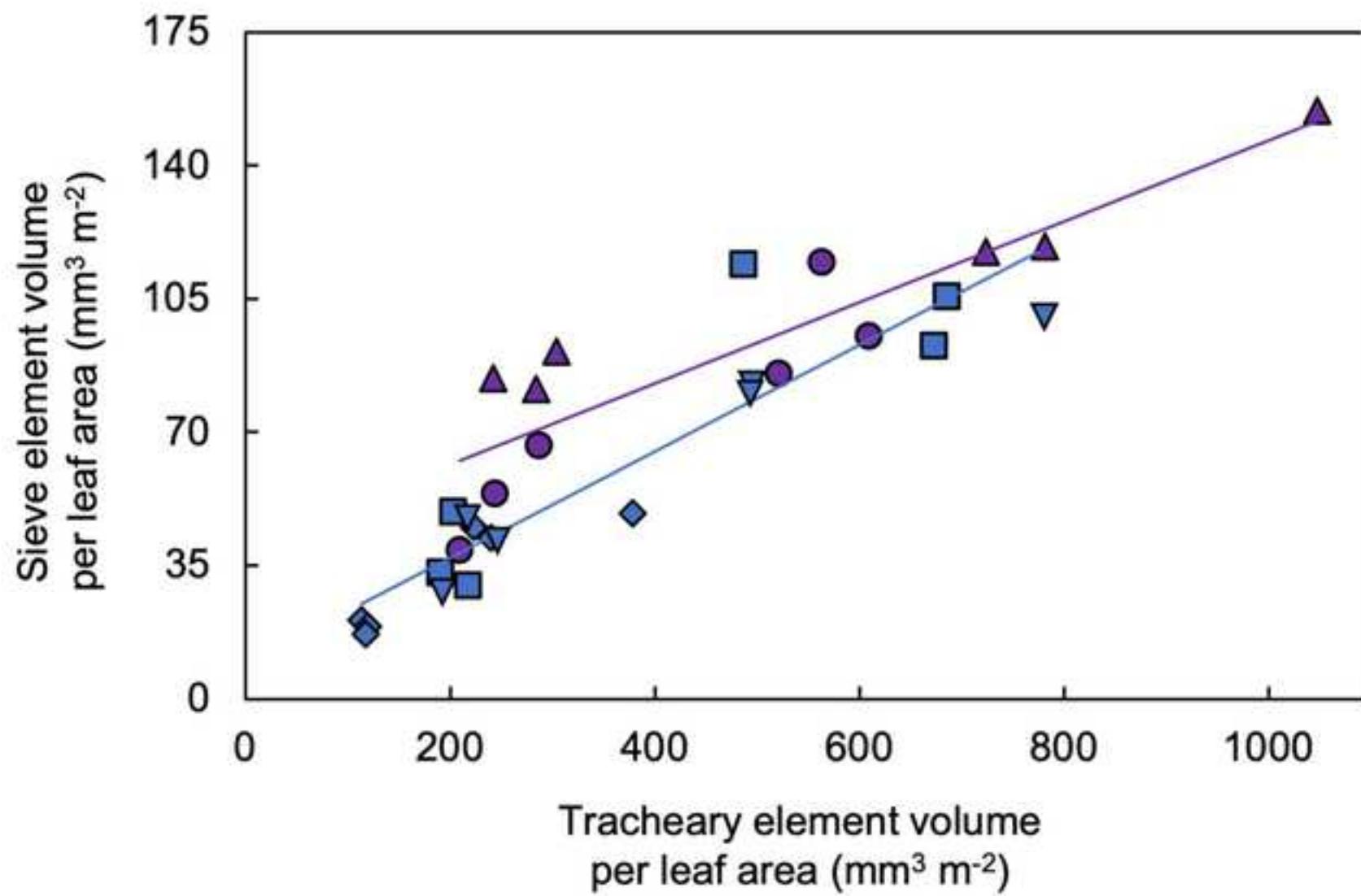
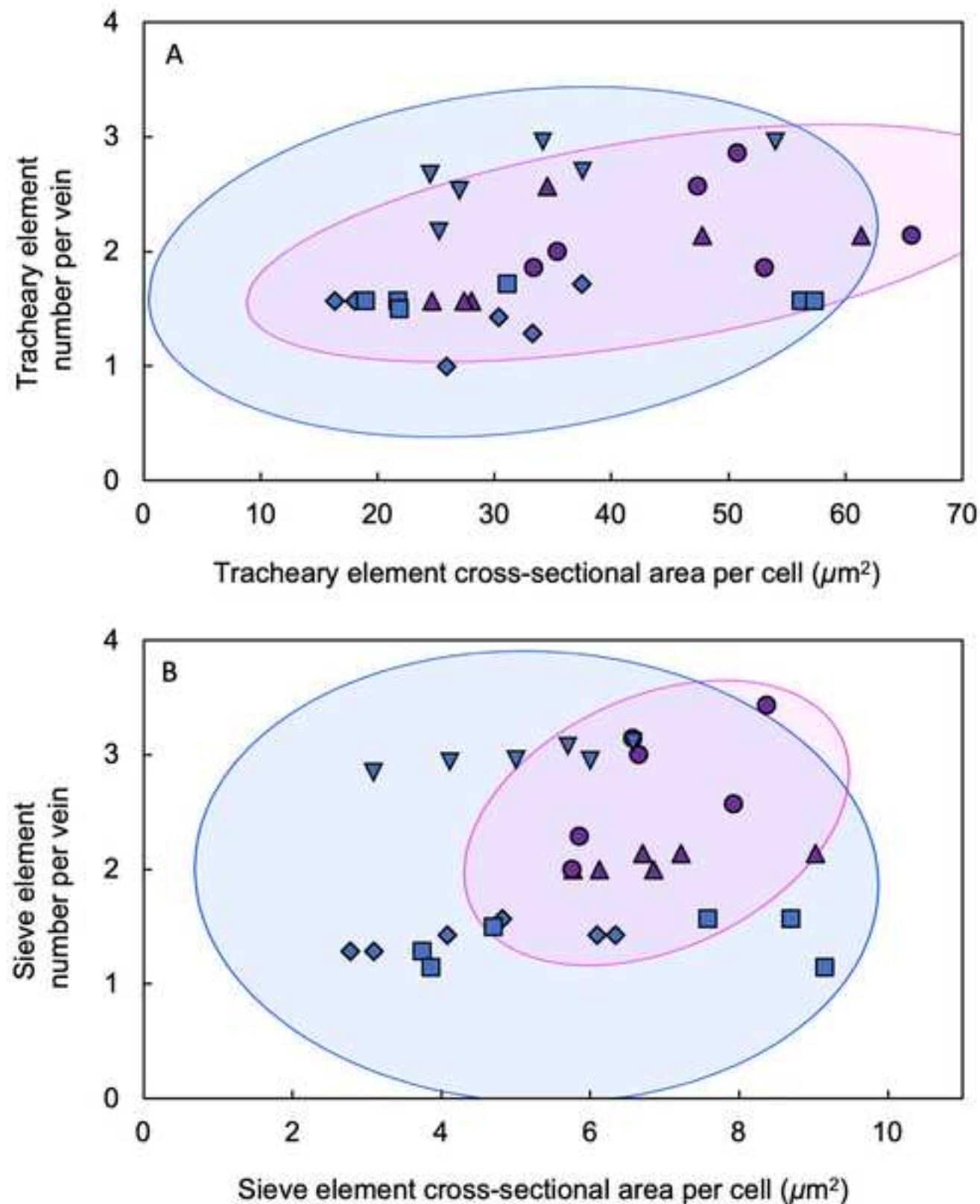
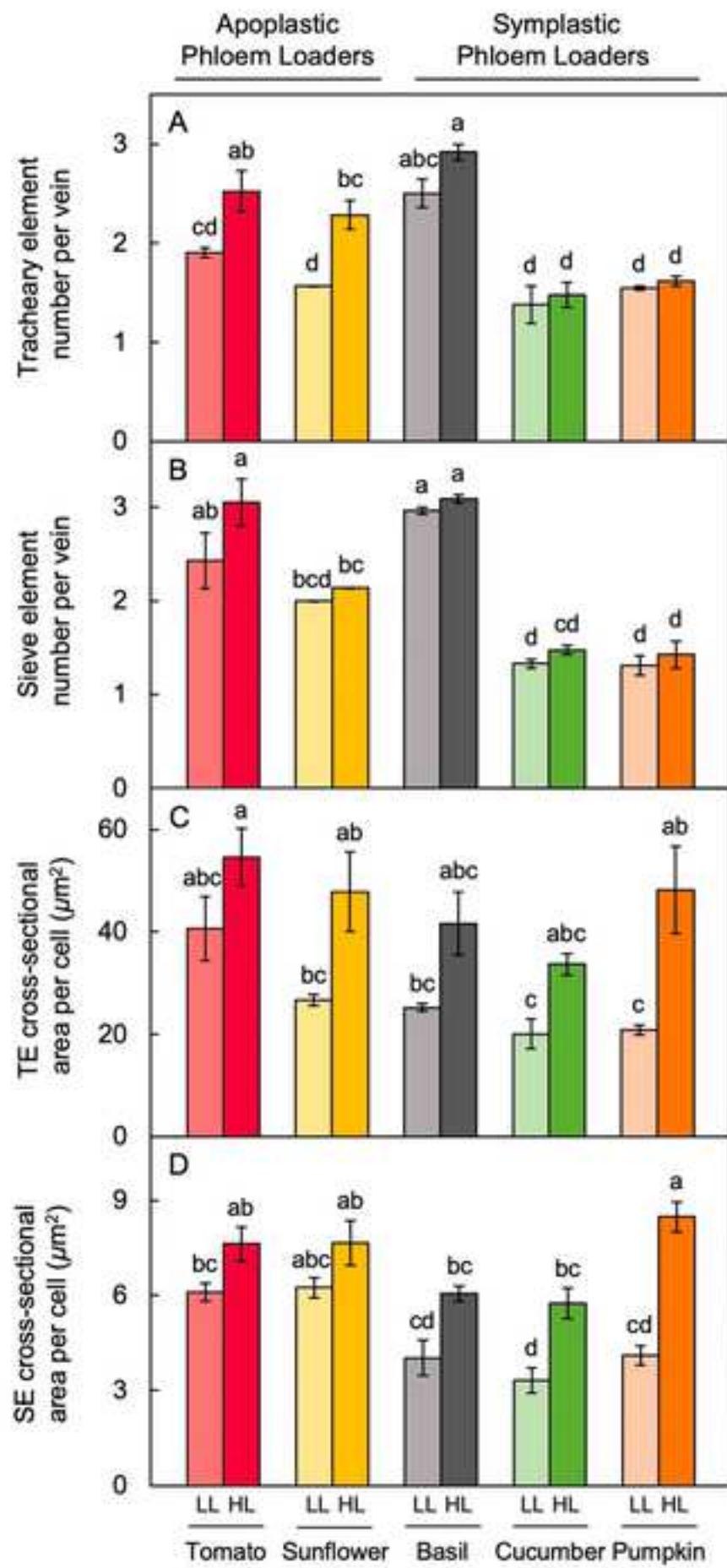
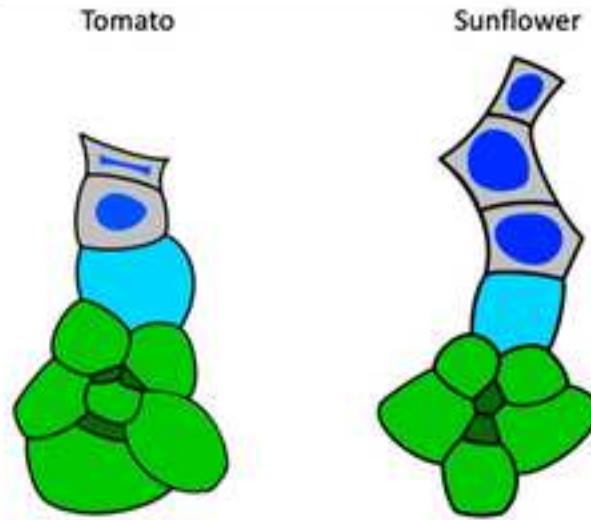
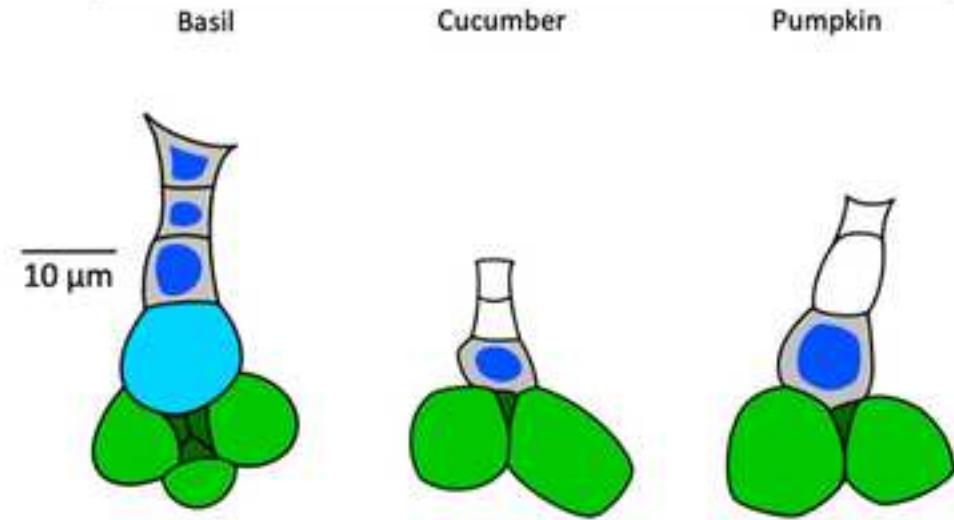


Figure 9


Figure 10

Summer annual apoplastic loaders

Summer annual symplastic loaders

Highlights

- Summer annuals exhibited variation in multiple features of minor foliar veins
- Photosynthetic capacity and leaf-level volume of all vascular cell types were correlated
- Relationship of loading-cell size and number varied by phloem-loading mechanism
- The proportion of vascular cell number to size was greater in apoplastic loaders

Photosynthetic capacity per leaf area was significantly positively correlated with leaf-level volume of phloem-loading cells, sugar-export conduits (sieve elements), and water conduits (tracheary elements) irrespective of phloem-loading mechanism. The relative contribution to leaf-level volume of loading cell numbers versus individual loading cell size was greater in apoplastic loaders than in symplastic loaders. Species-dependent differences included different vein density within each loading group and either greater or lower numbers of cells per minor vein (especially of tracheary elements in the symplastic loaders basil versus cucumber, respectively), which may be due to genetic adaptation to different environmental conditions. These results indicate considerable plasticity in foliar vascular features in summer annuals as well as some loading-mechanism-dependent trends. The results presented here support the need for further research into constitutive differences in foliar vascular architecture of summer annuals, winter annuals, and biennials with different loading mechanisms as well as their acclimation of the foliar vasculature at different scales (subcellular, cellular, vein, and leaf) to various environments. Such insight may aid in development of crops for improved leaf vascular features and superior photosynthetic performance in specific climates.