
Egocentric abstractions for modeling and safety verification of distributed

cyber-physical systems

Sung Woo Jeon
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Champaign, USA

sjeon12@illinois.edu

Sayan Mitra
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign
Champaign, USA
mitras@illinois.edu

Abstract—Modeling is a significant piece of the puzzle in
achieving safety certificates for distributed IoT and cyber-
physical systems. From smart home devices to connected and
autonomous vehicles, several modeling challenges like dynamic
membership of participants and complex interaction patterns,
span across application domains. Modeling multiple interact-
ing vehicles can become unwieldy and impractical as vehicles
change relative positions and lanes. In this paper, we present an
egocentric abstraction for succinctly modeling local interactions
among an arbitrary number of agents around an ego agent. These
models abstract away the detailed behavior of the other agents
and ignore present but physically distant agents. We show that
this approach can capture interesting scenarios considered in the
responsibility sensitive safety (RSS) framework for autonomous
vehicles. As an illustration of how the framework can be useful
for analysis, we prove safety of several highway driving scenarios
using egocentric models. The proof technique also brings to the
forefront the power of a classical verification approach, namely,
inductive invariant assertions. We discuss possible generalizations
of the analysis to other scenarios and applications.

I. INTRODUCTION

Creating solutions for the development of safe and secure
IoT and cyber-physical systems (CPS) will require research
endeavors spanning disciplinary boundaries and styles of en-
quiry. Mathematical models have a role in this enterprise.
Models are not only necessary for rigorous guarantees, but also
for precise communication, intelligibility, and abstraction [34].
However, models for distributed IoT and CPS systems are
not without complications. Interactions among agents (e.g.,
cars or devices) have to be captured without compromising
compositionality and dynamic membership has to be main-
tained even as participating agents move in and out. In this
paper, we present egocentric abstractions for modeling local
interactions among an arbitrary number of agents. Egocentric
abstractions remove detailed information about behavior of
distant or irrelevant agents while preserving the semantics
of the ego agent. As a result, egocentric models are smaller
and also require less-bookkeeping than full-blown interaction
models. The price is that the rules for interaction are absorbed
in the ego agent model, and this potentially leads to more
complexity.

This work was supported in part by the National Science Foundation
through research grants NSF FMITF: 1918531 and NSF CCF 2008883.

We believe that the egocentric view will be useful for
applications where each agent interacts with many agents over
a lifetime, but only with a handful over a short time span. Ex-
amples domain include urban air-traffic management [2, 15],
microgrids [32], and [28, 13]. Here we show that this approach
can capture interesting scenarios considered in the responsi-
bility sensitive safety (RSS) framework for autonomous vehi-
cles [29]. Safety analyses of autonomous vehicles, and even
simpler driver assistance systems, remain challenging [14, 29]
and test driving alone is inadequate for providing acceptable
levels of confidence. RSS formalizes simple traffic rules by
which agents can avoid being responsible for accidents. This
way RSS suggests a scalable “inductive” method of making
safe decisions under different multi-agent settings. RSS has
been adopted as a safety framework at Mobileye and then
Intel, it has been used to formulate temporal logic-based
monitors [9], its safety conditions have been generalized [20],
and a C++ library has been built to integrate it with the
Baidu Apollo driving stack [8]. With the exception of the
short paper [23], neither the original article [29] nor any of the
follow-up works aim to provide a model of vehicle interactions
that can be used for verification.

The challenge of modeling highway traffic, and for that
matter any distributed system, is to properly keep track of the
agent information. There can be hundreds of cars on the high-
way which can affect each other. Managing the information of
every agent and the relation between different agents can be
complex and costly, as we will explain further in Section II.
To resolve the problem, egocentric abstraction happens in two
different directions. First, we reduce the number of variables in
the model by focusing on the neighboring agents and trimming
away the agents that are not directly related to the safety of
the ego car. Here, ‘neighboring agents’ are simply the cars
that are in front, front-left, rear-left, etc., of the ego car. In
general, this notion of neighborhood could be defined to suite
the application. Since this neighborhood relation can change
as agents move and pass, it can be challenging to define
this relation precisely. Therefore, instead of keeping track
of the entities bound to each specific neighborhood relation,
the model relies on the information that the ego agent can
collect from the neighbors at any given time. Second, we
make the model permissive to the behaviors of the neighboring



agents, giving more freedom to the neighboring agent than
they have in the real world. The neighboring agent are allowed
to perform any behaviors as long as they follow minimal
rules that prevent from endangering the ego agent. With the
extended freedom of the neighbors, the safety analysis of the
model becomes simpler.

As an illustration of how the modeling framework can
be useful for safety analysis, we prove safety of several
highway driving scenarios using egocentric models. The proof
technique also brings to the forefront the power of a classical
verification approach, namely, inductive invariant assertions.
We discuss possible generalizations of the analysis to other
scenarios and applications.

Related works: Modeling of “smart” vehicles and pla-
toons have received the attention of researchers for many
decades [4, 31, 33]. Recent advances cover verification of
controllers for individual vehicles [11, 35, 30], all the way
up to design of optimal strategies for large-scale traffic
measurement [10] and flow control in mixed-autonomy net-
works [17, 3]. Within these different levels of abstractions,
we study safety analysis problems concerning interactions of
a small neighborhood of vehicles, while abstracting away the
details of the control of an individual vehicle.

II. INTERACTION MODELING APPROACHES FOR CPS

We focus on models for formal analysis, however, the
discussion is relevant for simulations as well. For the sake of
concreteness, consider the instantaneous snapshot of a three-
lane scenario (Figure 1): Three cars c1, c2, c3 are moving
along their respective lanes; c1 is longitudinally behind c2
and c3. In the course of time, other vehicles may enter
and leave the neighborhoods of each of these vehicles. The
following paragraphs illustrates different possible approaches
in modeling the scenario.

Flat models: A quick and naı̈ve approach for modeling
dynamic scenarios is to create a flat array of agents where all
the information about each agent is available to every other
agent. This is lightweight, but lacks data encapsulation. and
leads to usage errors like one agents accessing state of a
distant agent. The approach also lacks support for dynamic
membership. All vehicle states have to be maintained all the
time.

Interacting automata: An alternative is to consider each
car as an independent automaton that makes decisions based
only on the information available to it from neighbors [16].
For instance, for scenario above, an automaton could represent
each of the agents; a single world automaton would collect
all the observable data from all the agents, maintain the
neighborhood relationship, and only make those information
available to agent c1 that are from its neighbors. The flow
of information is shown in Figure 1. This approach does
not suffer from the the data encapsulation problem, but the
size of the model still grows with the number agents and
the world automaton has to maintain complex state dependent
neighborhood relations.

Fig. 1. Interacting automata approach. The world automaton has a
table that keeps track of the relation between different car automata.
The world automaton collects position, velocity, acceleration from
every car automaton and gives neighbors’ information to each car.

Egocentric automaton: This approach allows dynamic
changes in the neighborhood and provides better data encapsu-
lation, at the expense of requiring more complex coordination
logic. This type of approach is also used in [18, 26], however,
our work is the first egocentric highway model. Unlike the
above approaches where all the cars were treated equally,
here we have an ego car, say c1, and the model is from
the ego car’s perspective (Figure 2) and it keeps track of
the information of its finitely many neighbors. The ego car
accesses the information of the neighbors using pointers that
were assigned to the neighbors based on their relative position
to the ego car. As the cars are moving and the relative positions
are changing, the entity that a specific pointer refers to can
change over time. For example, the front car in Figure 2
can move to lane 3 and become the front-right car, or it
can even disappear from the table by moving to lane 1. The
egocentric model does not keep track of which specific agent
it is referring to. Any such changes on the neighboring relation
appears as a discrete update of the information. The egocentric
model naturally provides better data encapsulation. Since the
number of neighbors is finite at any given time, the model
tracks a constant number of variables, regardless of the total
number of member cars in the system.

Fig. 2. Egocentric three-lane scenario.

III. BACKGROUND: AUTOMATA AND INVARIANTS

Egocentric models are automata or state machines. For the
purpose of defining a model for interactive vehicle systems, the
state variables need to evolve both continuously and discretely
with time. Here we provide backgrounds that are required to
specify a hybrid model.



A variable is an named quantity that is associated with a
type such as integer, float, enumeration, etc. A valuation for a
set of variables V maps each variable name v ∈ V to a value
in its type. val(V ) is the set of all possible valuations of the
variables in V . As usual, a transition over a set of variables
V is a relation R ⊆ val(V )× val(V ) that specifies a discrete
state change relation. For T ∈ R+ and a set of variables V ,
a trajectory τ of duration T for V is a mapping from each
point in the interval [0, T ] to val(V ) and it models continuous
change.

A hybrid automaton (HA) A is a state machine whose vari-
ables can change through transitions or trajectories. Formally,
it is a tuple (V , Θ, A, D, T ) where (a) V is a set of variables
or state variables. val(V )is the set of states; (b) Θ ⊆ val(V )
is a nonempty set of start states; (c) A is a set of actions or
transition labels; (d) D ⊆ val(V )× A× val(V ) is the set of
transitions. A transition (v, a, v′) is written as v a−→ v′. Finally,
(e) T is a set of trajectories for V . For a closed trajectory
τ ∈ T , we write τ.fstate and τ.lstate the first and the last
state of τ .

An execution fragment of an automaton A is an alter-
nating, possibly infinite, sequence of actions and trajecto-
ries α = τ0a1τ1a2..., where each τi is a trajectory in T
and if τi is not the last trajectory in the sequence then
τi.lstate

ai+1−−−→ τi+1.fstate. An execution fragment is an
execution if τ0.fstate ∈ Θ. A state v ∈ val(V ) is reachable
if it is the last state of some execution of A. An invariant
is a set of states S that contains all reachable states. Proving
an invariant I of A that is disjoint from the unsafe states,
therefore, proves safety. We will use the following classical
inductive method for proving invariants.

Theorem 1. Given an HA A, if a set of states I ⊆ val(V )
satisfies the following:
(a) (Start condition) For any starting state x ∈ Θ, x ∈ I ,
(b) (Transition closure) For any action a ∈ A, if x a−→ x′ and

x ∈ I then x′ ∈ I ,
(c) (Trajectory closure) For any trajectory τ ∈ T , if

τ.fstate ∈ I then τ.lstate ∈ I .
then I is an invariant of A.

IV. MODELING OF A THREE-LANE SCENARIO

We will demonstrate the egocentric abstraction on a model
of a three-lane, one-way scenario. For simplicity, we measure
the longitudinal distance between the center of two cars to
obtain the relative longitudinal distance. We assume that the
ego car has access to the velocity and acceleration of the
cars surrounding it. The safety requirement of the ego car is
to proceed without colliding. The model uses 6 parameters:
amax : maximum acceleration of every car
bmin : minimum braking of the ego car
bmax : maximum braking of every car
ρ : reaction delay of the ego car
ddetect : maximum sensing distance of the ego car
vmax : maximum velocity of every car
lmax : maximum length of every car(center to an end)

The ego car has the maximum reaction delay ρ, which
would be further described in the following section. The
ego car has limited sensory capability so it cannot detect
neighboring cars that are farther than ddetect . Also, we
assume that the length of any cars from the center to the
front or rear end does not exceed lmax.

A. Safe distance and reaction delay

In our model, the ego car avoids collision to the front car
by braking once the relative distance to the front car becomes
less than a certain threshold. However, sensors and actuators
in real world are noisy and has finite frequency, meaning that
even if the distance between the two cars is less than the
threshold, the ego car might not react for a certain period.
To reflect such limitations, we assume that once the actual
distance between the ego car and the front car becomes less
than a certain threshold, the ego car realizes it within time at
most the maximum reaction delay ρ.

One of the key concepts used in the model is the notion of
minimum safe distance defined below.

Definition 1. Given the rear car’s velocity vr, the front car’s
velocity vf , and the rear car’s maximum reaction delay ρ, the
minimum safe distance between the two is

dsafe(vr, vf , ρ) = max
(
vr · ρ+

1

2
amaxρ

2 − (vr + amaxρ)2

2bmin
+

v2f
2bmax

+ lmax, lmax

)
The minimum safe distance dsafe has a property that is

useful for safety. If di is the initial value of drf and is no
less than dsafe(vr, vf , ρ), then drf ≥ lmax until cr stops if the
rear car applies maximum brake even with reaction delay. For
any two cars cr behind cf , we say the distance drf between
cr and cf is safe if drf ≥ dsafe(vr, vf , ρ). Otherwise, drf is
unsafe.

B. Identifying key Assumptions

One of the benefits of modeling is that it can help identify
key assumptions for safety. We present our assumptions here
as an illustration of what is sufficient for this particular
analysis to go through, rather than to claim that they are
necessary for a real system.

Assumption 1. The cars change lane only if after changing
lane the relative distances to its front and rear cars are safe.

This constrains the behavior of both the ego car and the
neighbors. The ego car controls its acceleration to avoid
colliding with the front car. However, if a car cuts in front
of the ego car when it is too close to the ego car, then it
might not be possible for the ego car to avoid collision.

Assumption 2. Neighboring cars do not collide with the ego
car from behind.

Throughout RSS, it is the rear car’s responsibility to keep
enough distance to the ego car.



Assumption 3. Lane changes occur instantaneously.

This is a simplification, and more realistic lane change
models can be approximated by this with additional safety
buffers around vehicles.

C. Egocentric lane change model

We now describe the details of the egocentric model of
the three-lane scenario. Figures 3, 4, 5 give the full details
of the parameters, types, actions and variables defining the
hybrid automaton. We note that with additional effort and
some simplifications it is possible to create these models in
existing verification tools [22, 27, 7, 6].

1 automaton Egocentric(bmax, bmin,
amax, ρ, ddetect , vmax , lmax)

3 type Modes: enum [freeDriving,
dangerous, braking, stopped ]

5 type Lanes: enum [0,1,2 ]
type Nbrs: enum [FL, F, FR, BL, BR ]

7 type Dir : enum [L, R ]
type Dist : [0, ddetect ] ∪ {∞, ∅}

9 type Vel : [0, vmax ] ∪ {∞, ∅}
type Acc : [bmax, amax] ∪ {∞, ∅}

11 actions
internal

13 freeDrive(acc′ : Acc)
danger

15 brake(acc′ : Acc)
stop

17 depart(acc′ : Acc)
chLane(j : Dir , d1, d2, d3 : Dist, v1, v2, v3 : Vel)

maxSense(n : Nbrs)
20appear(n : Nbrs, v1 : Vel)

updateNbr(n : Nbrs, x : Dist,
22y : Vel)

24variables
internal

26mode : Modes
Lane : Lanes

28v : Vel
v : Nbrs → Vel

30d : Nbrs → Dist
acc : Acc

32acc : Nbrs → Acc
tρ : Real

Fig. 3. Actions and variables of the three lane model

As appears in Figure 3 the model has variables v , d , acc
to store the information of the ego car and its neighboring
cars. It also has variables that represents the discrete mode,
lane of the ego car, and the reaction delay. The discrete
mode switches between four different values, freeDriving,
dangerous, braking, stopped, depending on the distance to
the front car. In each mode, the ego car has different range
of acceleration. The reaction delay is used in dangerous
mode to assure that the ego car starts decelerating within a
certain time period once the distance to the front car becomes
unsafe. The number of neighbors is fixed as 5 regardless of
the number of cars on the road. This shows that the egocentric
implementation is more scalable compared to the full-blown
model.

Figure 4 describes discrete transitions of the model. The
transitions freeDrive, danger, brake captures the discrete
changes of the mode, determined by the distance to the front
car. The transition stop and depart keeps the velocity of the
ego car non-negative, and prevents the ego car from departing
when it is too close to the front car. Lane change of the
ego car is captured by chLane. the precondition checks the
distance to the front and the rear car after changing lane, and
also assures that the parameters passed to the transition are
valid, using the Lane variable. For example, when the ego car
moves to the left lane, there can be no neighbor on the left
lane, so the corresponding data must be set to ∅. The effects
updates the lane information of the ego car and also updates

1 transitions
freeDrive(acc′)

3 pre d[F ] > dsafe(v , v [F ], ρ)
mode = dangerous or braking

5 bmax ≤ acc′ ≤ amax
eff mode = freeDriving

7 acc = acc′

tρ = 0
9

danger
11 pre d[F ] ≤ dsafe(v , v [F ], ρ)

mode = freeDriving
13 eff mode = dangerous

tρ = 0
15

brake(acc′)
17 pre d[F ] ≤ dsafe(v , v [F ], ρ)

mode = dangerous
19 bmax ≤ acc′ ≤ bmin

eff mode = braking
21 acc = acc′

tρ = ρ
23

stop
25 pre v = 0

eff mode = stopped
27 acc = 0

tρ = 0
29

depart(acc′)
31 pre mode = stopped

d[F ] > dsafe(v , v [F ], ρ)
33 acc′ > 0

eff mode = freeDriving
35 acc = acc′

tρ = 0

38chLane(j, d1, d2, d3, v1, v2, v3)
pre d[Fj] ≥ dsafe(v , v [Fj], ρ)∧

40d[Bj] ≥ dsafe(v [Bj], v , ρ)∧
((Lane = 1 ∧ d1 = d2 = ∅)∨

42(Lane 6= 1 ∧ d[Fj] 6= ∅∧
d1 6= ∅ ∧ d2 6= ∅))

44eff update Lane
mode = freeDriving

46tρ = 0
d[Fj∗] = d[F ]

48d[F ] = d[Fj]
d[Fj] = d1

50v[Fj∗] = v[F ]
v[F ] = v[Fj]

52v[Fj] = v1
d[Bj] = d2; v[Bj] = v2

54d[Bj∗] = d3; v[Bj∗] = v3;

56maxSense(n)
pre d[n] 6= ∅ ∧ d[n] > ddetect

58eff d[n] =∞

60appear(n, v1)
pre d[n] =∞

62v1 ∈ Vel
eff d[n] = ddetect

64v [n] = v1

66updateNbr(n, d1, v1)
pre d[n] 6= ∅∧

68(n 6= f ∨ d1 ≥ dsafe(v , v1, ρ))
eff d[n] = d1

70v [n] = v1

Fig. 4. Transitions of the three lane model.

the information of the neighbors, by changing the mapping
between the neighbors and updating information of any newly
observed neighbors. Discrete updates that can occur due to
the neighbors’ behaviors are abstracted down to the remaining
three transitions, maxSense, appear, and updateNbr. The
actions maxSense, appear handles a neighbor disappearing
beyond the sensor distance and appearing at the maximum
sensor distance. Any other discrete updates are captured by
updateNbr. The model allows any discrete changes of the
neighboring cars as long as they do not make d [F ] unsafe.
This adds flexibility to the model so it can simulate various
scenarios that can occur in real environment using only the
three transitions.

Figure 5 describes the continuous changes of the model.
The dynamics that applies regardless of the mode appears at
the beginning of Figure 5, without a label. The rest of the
dynamics applies to each discrete mode. Depending on the
mode, the ego car takes different range of acceleration.

The price of egocentric abstraction is the additional work
needed to keep track of the relation between the ego car
and the neighboring cars. As an example, a single chLane
action not only needs to update the ego car’s lane information
but also the information of all its neighbors. This makes the
precondition and the effect complex, while in the full-blown
model the same action can be modeled simply.



trajectories
2 evolve

d(v) = acc
4 ∀n ∈ Nbrs,

if v [n] ≥ vmax

6 acc[n] = [bmax, 0]
else if v [n] ≥ 0

8 acc[n] = [0, amax]
else

10 acc[n] = [bmax, amax]
d(v [n]) = acc[n]

12 if d[n] 6=∞
d(d[n]) = v [n]

14 stop when
neighbor leaves ddetect∨

16 neighbor appears

18 freeDriving
evolve

20 acc ∈ [bmax, amax]
stop when

22 (d[F ] ≤ dsafe(v , v [F ], ρ))∨
(v ≤ 0 ∧ acc ≤ 0)

dangerous
26evolve

acc ∈ [accb,max, accmax]
28d(tρ) = 1

stop when
30(d[F ] > dsafe(v , v [F ], ρ))∨

(v ≤ 0 ∧ acc ≤ 0)∨
32(tρ ≥ ρ)

34braking
evolve

36acc ∈ [accb,max, accb,min]
stop when

38(d[F ] > dsafe(v , v [F ], ρ))∨
(v ≤ 0 ∧ acc ≤ 0)

40

stopped
42evolve

acc = 0

Fig. 5. Trajectories of the three lane model.

V. SAFETY ANALYSIS VIA INVARIANT ASSERTIONS

Egocentric abstractions together with standard invariant
assertions can be used for establishing safety of distributed
cyber-physical systems. Here we state the key invariants we
have proved for the model presented in Section IV. Due to
limited space we omit most of the proofs. It is worth noting
that this proof approach can be and has been used earlier to
partially automate verification using theorem provers [1, 19,
27].

Invariant 1 states that the velocity of any car in the model
meets the velocity constraints described in Section IV in
any mode. Invariant 2 states that the reaction delay tρ does
not exceed ρ under any mode. We show the proof of this
invariant to illustrate how these proofs typically proceed by
an application of Theorem 1 followed by a case analysis on
the actions.

Invariant 1. For any reachable state s, and for any n ∈ Nbrs ,
0 ≤ s.v ≤ vmax and 0 ≤ s.v [n] ≤ vmax .

Invariant 2. For any reachable state s,
• If s.mode = freeDriving, s.tρ = 0.
• If s.mode = dangerous, s.tρ ∈ [0, ρ].
• If s.mode = braking, s.tρ = ρ.
• If s.mode = stopped, s.tρ = 0.

Proof. Let I2 be the set of states that satisfies Invariant 2.
Initially the automaton has mode = freeDriving and tρ = 0,
so for any s ∈ Θ, s ∈ I2.

Consider any action a and states s, s′ such that s a−→ s′.
Case a = freeDrive, depart : s′.mode = freeDriving
and s′.tρ = 0, so s′ ∈ I2.
Case a = danger : s′.mode = dangerous and s′.tρ =
0, so s′ ∈ I2.
Case a = brake : s′.mode = braking and s′.tρ = ρ, so
s′ ∈ I2.

Case a = stop : s′.mode = stopped and s′.tρ = 0, so
s′ ∈ I2.
Case a = maxSense, appear, updateNbr : These ac-
tions set s′.tρ to 0 only when the parameter n = f . In
this case, s′.mode = freeDriving. Otherwise, tρ remains
the same. Therefore, if s ∈ I2, then s′ ∈ I2.

Consider any trajectory τ such that τ(0) ∈ I2. tρ increases
only while in the mode dangerous, and by the stopping
condition of dangerous, tρ ≤ ρ. Therefore if τ(0) ∈ I2 then
for any t, τ(t) ∈ I2.

The freeDriving mode captures the states where the ego car
is safe and therefore can drive with acceleration no greater than
amax. Invariant 3 states that the distance to the front car is no
less than dsafe(s.v , s.v [F ], ρ) while in freeDriving mode.

Invariant 3. In any reachable state s, if s.mode =
freeDriving then

s.d [F ] ≥ dsafe(s.v , s.v [F ], ρ).

The dangerous mode captures the states where d [F ] is
unsafe but the ego car has not yet reacted. We assume that
the ego car reacts to unsafe d [F ] within time ρ, so if at some
point d [F ] has been unsafe for time t ≤ ρ and the ego car
has not yet reacted, it would start braking within time ρ − t
since then. The variable tρ serves as a timer that keeps track
of the time elapsed while in dangerous mode. Therefore, by
Definition 1, if d [F ] ≥ dsafe(v , v [F ], ρ− tρ), then the ego car
would not collide with the front car. Invariant 4 states that this
condition indeed holds while in dangerous mode.

Invariant 4. In any reachable state s, if s.mode =
dangerous then

s.d [F ] ≥ dsafe(s.v , s.v [F ], ρ− s.tρ)

Proof. Let I4 ⊂ val(X) be the set of states that satisfies
Invariant 4. By Assumption 3, the automaton initially has
mode = freeDriving and it can reach mode = dangerous
only by the discrete transition danger. Therefore, ∀s ∈ Θ,
s ∈ I4.

Consider any action a ∈ A and states s, s′ ∈ val(X) such
that s a−→ s′ and s′.mode = dangerous.

Case a = danger : The action does not affect the
velocities or the relative distances. By the precondition,
s.mode = freeDriving and s.tρ = s′.tρ = 0. By
Invariant 3, s.d [F ] ≥ dsafe(s.v, s.v[F ], ρ) so it follows
that s′.d [F ] ≥ dsafe(s′.v , s′.v [F ], ρ− s′.tρ).
Case a = maxSense, appear, updateNbr : From the
proof of Invariant 3 and the definition of safe dis-
tance, it follows that s′.d [n] ≥ dsafe(s′.v , s′.v [n], ρ) ≥
dsafe(s′.v , s′.v [n], ρ− s′.tρ). Therefore, s′ ∈ I4.

Now consider any trajectory τ such that τ(0).d [F ] ≥
dsafe(τ(0).v , τ(0).v [F ], ρ − τ(0).tρ), and τ(0).mode =
dangerous. By Invariant 2, t ≤ ρ. The minimum of τ(t).d [F ]
can be obtained when the ego car accelerates with amax during



the t period and the front car decelerates with bmax. Therefore,
for t ≤ − τ(0).v [F ]

bmax
,

τ(t).d [F ] ≥τ(0).d [F ]− (τ(0).v · t+
1

2
amaxt

2)

+ (τ(0).v [F ] · t+
1

2
bmaxt

2)

By the inductive hypothesis, if we let C = ρ− τ(0).tρ,

τ(0).d [F ] ≥τ(0).v · C +
1

2
amax · C2

−τ(0).v + amax · C
2bmin

+
τ(0).v [F ]2

2bmax
+ lmax.

Also, due to the acceleration constraints,

τ(t).v ≤ τ(0).v + amaxt

τ(t).v [F ] ≥ τ(0).v [F ] + bmaxt

and therefore,

dsafe(τ(0).v+amaxt, τ(0).v [F ] + bmaxt, C − t))
≥ dsafe(τ(t).v , τ(t).v [F ], ρ− τ(t).tρ)

Combining the above we get

τ(t).d [F ] ≥dsafe(τ(0).v + amaxt, τ(0).v [F ] + bmaxt, C − t))
≥dsafe(τ(t).v , τ(t).v [F ]ρ− τ(t).tρ)

Now for t > − τ(0).v [F ]
bmax

, since τ(t).v [F ] ≥ 0 by Invariant 1,

τ(t).d [F ] ≥ τ(0).d [F ]− (τ(0).v · t+
1

2
amaxt

2)− τ(0).v [F ]2

2bmax
and by the acceleration constraints,

dsafe(τ(0).v + amaxt, 0, C − t))
≥dsafe(τ(t).v , τ(t).v [F ], ρ− τ(t).tρ)

Therefore we get

τ(t).d[F ] ≥dsafe(τ(0).v + amaxt, 0, C − t))
≥dsafe(τ(t).v , τ(t).v [F ], ρ− τ(t).tρ)

The braking mode captures the states where the ego car is
slowing down to avoid collision. Note that when the ego car
is decelerating it can be considered as the ego car reacting to
unsafe state with 0 response time. Therefore, by Definition 1,
the ego car can avoid collision if d [F ] ≥ dsafe(v , v [F ], 0).
Invariant 5 states that the model satisfies this condition while
in braking mode.

Invariant 5. In any reachable state s, if s.mode=braking then

s.d [F ] ≥ dsafe(s.v , s.v [F ], 0)

Proof. The proof is similar to that of Invariant 4, and therefore
is omitted due to the limited space.

stopped mode captures the states where the ego car is
stopped. Invariant 6 that whenever the ego car is not moving,
d[F ] ≥ lmax.

Invariant 6. In any reachable state s, if s.mode = stopped
then s.d [F ] ≥ lmax.

A. Safety invariant

We have proven mode-specific invariants for the four dis-
crete modes. Combining the four invariants gives a safety
invariant for the model.

Invariant 7. For any reachable state s,
• If s.mode = freeDriving, s.d [F ] ≥ dsafe(s.v, s.v[F ], ρ).
• If s.mode = dangerous, s.d [F ] ≥ dsafe(s.v, s.v[F ], ρ−
s.tρ).

• If s.mode = braking, s.d [F ] ≥ dsafe(s.v, s.v[F ], 0).
• If s.mode = stopped, s.d [F ] ≥ lmax.

Since by definition the minimum safe distance is no less
than lmax, Invariant 7 shows that for any mode in the model,
s.d ≥ lmax. With the constraint on the maximum longitudinal
length of the cars, it is guaranteed that the ego car would not
collide with its front car. Given Assumption 1 and 2 which
assures that there is no collision from side or behind of the
ego car, we have shown that the ego car drives without any
collision.

VI. GENERALIZATION

In this section, we suggest how the egocentric three-lane
model could easily be applied on scenarios with more than
three lanes. We also provide ideas for simulating merging
lanes without significantly modifying the three-lane model. We
then discuss the discrete lane change, which is our assumption
for simplification, and briefly describe how the model with
discrete lane changes can be extended to capture continuous
lane changes.

A. Extending the number of lanes

Suppose we wish to extend the model so that it has more
than 3 lanes. Since the number of neighbors of the ego car does
not change as the number of lanes increases, it is trivial to add
lanes to the egocentric three-lane model. The type Lanes must
be modified so that it has the desired number of lanes. The
precondition for the action chLane must be modified to allow
the ego car to move to the extended lanes. The same analysis
of invariants applies to the extended model.

B. Merging

Consider a merging scenario illustrated by figure 6. Lane
1 disappears at a certain location so the ego car must switch
lane to proceed. This maneuver of the ego car required for
a safe merge can be simulated using the three-lane model.
Consider the scenario described in figure 7. The front car
is at the location where the merging happens with velocity
v[F ] = 0. If the front car stays in that location then the ego
car must switch lane to proceed, which is the same as its
desired behavior in the merging scenario. Therefore, to model
the merging scenario, we only need to introduce variables that
indicate the availability of each lane and allow the ego car to
detect the distance to the merging at least ddetect ahead. The
ego car can simply treat the merging as a front car with 0
velocity. This way, the same analysis of invariant applies on
the merging scenario.



Fig. 6. Merging scenario

Fig. 7. Simulation of merging scenario

C. Continuous lane change

Suppose we wish to extend the model so the change of lane
occurs continuously over time. One way to achieve this is to
allow the cars that are changing lane to occupy two lanes, as
appears in figure 8.

Fig. 8. Intermediate state while changing lane

We can set a parameter φ which is the maximum time that
a single lane change can take. The model must have another
discrete mode M that captures the states where the ego car
is changing lane. There must be a timer that counts the time
spent in M to guarantee that the change of lane occurs within
φ. While in M, the ego car would be considered as occupying
two lanes, lane 1 and lane 2 in the specific case of figure
8. Both car1 and car2 are considered as the front car, so
the ego car must keep enough distance from them. In this
model, the relative distance to the neighboring cars can change
while the ego car is changing lane. Thus, there might be a
case where d [FL] was greater than dsafe(v, v[FL], ρ) before
the ego car started changing lane, but it becomes less than
dsafe(v, v[FL], ρ) while the ego car was changing lane to the
left. To avoid such situations, we can modify the precondition
of chLane so the ego car won’t change lane to the left unless
d [FL] is greater than dsafe(v, v[FL], ρ) + δ. The constant δ
must be chosen in accordance with the constant φ and the
acceleration constraints so that it guarantees enough distance
margin.

VII. DISCUSSIONS AND CONCLUSION

We presented an abstraction for modeling complex, dis-
tributed, cyber-physical systems that reduces information and
bookkeeping details about distant and irrelevant agents from
the point of view of an ego agent. This egocentric abstraction
can be useful for modeling and safety analysis of distributed
systems in which agents dynamically join, leave, fail, and
interact with continuously changing neighbors.

We presented a detailed formal model of highway driving
based on the popular responsibility sensitive safety (RSS)
framework [29]. We see that the egocentric abstraction dra-
matically reduces the size of the model—instead of an arbi-
trary number of vehicles it only tracks a small number of
neighbors at any given time. At the same time, the price
of this reduction is slightly more complex transition rules
that track the neighbors. We proved safety of the ego car by
showing a safe inductive invariant of the egocentric model.
This case study also shows that the classical proof technique
of inductive invariant assertions can help prove safety in
this dynamic setting. In the process, we also identify the
key assumptions needed for the safety proof. These types
of assumptions will ultimately define what are called the
Operational Design Domains (ODD) or the conditions under
which the autonomous system is assured to be safe.

There are several limitations in the current work. For
example, lane changes are modeled as instantaneous events
rather than a continuous process. This semantic simplification
can approximate more realistic lateral dynamics. The straight
line lanes can be naturally generalized to more complex lane
geometries.

Another application of the egocentric abstraction could be
in the urban traffic management (UTM) and the integration
of unmanned aerial systems (UAS) in the national airspace.
Collision avoidance of airborne traffic has been widely stud-
ied, with many results on safety analysis (see, for example,
[21, 12, 25, 5]). However, analysis of distributed and dynamic
scenarios remains a major challenge. Egocentric abstraction
can be a step toward a scalable analysis of collision avoidance
system. Relatively simple problems such as waypoint tracking
could be modeled with an egocentric approach. The goal
of the vehicles would be to maintain distance between each
other while following predefined waypoints, which is similar
to the highway scenario as the ego aircraft (ownship) makes
evading maneuvers based only on the neighboring aircraft. The
challenge here is to properly define the notion of neighbors
and the decision making process.

Another practical research direction is to integrate traffic
simulators like SUMO [24] with this model. The lightweight
nature of the egocentric model makes it appropriate for use as
a real-time monitor for the ego agent. The ego agent equipped
with such a monitor based on the egocentric model and could
predicatively evaluate safety and raise alarms. Finally, it would
be interesting to see whether variants of egocentric models
can be used for analyzing other types of requirements such as
noninterference, anonymity, and intrusion detection.



REFERENCES

[1] M. Archer, H. Lim, N. A. Lynch, S. Mitra, and S. Umeno.
Specifying and proving properties of timed I/O automata
in the TIOA toolkit. In In 4th ACM-IEEE International
Conference on Formal Methods and Models for Codesign
(MEMOCODE’06). IEEE, 2006.

[2] S. Bharadwaj, S. Carr, N. Neogi, H. Poonawala, A. B.
Chueca, and U. Topcu. Traffic management for urban air
mobility. In NASA Formal Methods Symposium, pages
71–87. Springer, 2019.

[3] S. Coogan and M. Arcak. A compartmental model for
traffic networks and its dynamical behavior. IEEE Trans.
Autom. Control., 60(10):2698–2703, 2015.

[4] E. Dolginova and N. A. Lynch. Safety verification
for automated platoon maneuvers: A case study. In
HART’97 (International Workshop on Hybrid and Real-
Time Systems), volume 1201 of LNCS. Springer Verlag,
March 1997.

[5] P. S. Duggirala, L. Wang, S. Mitra, M. Viswanathan,
and C. A. Muñoz. Temporal precedence checking for
switched models and its application to a parallel landing
protocol. In FM’14: Proceedings of the 19th Interna-
tional Symposium on Formal Methods, pages 215–229.
Springer, 2014.

[6] C. Fan, B. Qi, S. Mitra, M. Viswanathan, and P. S.
Duggirala. Automatic reachability analysis for nonlinear
hybrid models with C2E2. In CAV’16: Proceedings of
the 28th International Conference on Computer Aided
Verification, Part I, pages 531–538. Springer, 2016.

[7] G. Frehse, C. L. Guernic, A. Donzé, S. Cotton, R. Ray,
O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler.
SpaceEx: Scalable verification of hybrid systems. In
CAV’11: Proceedings of the 23rd International Con-
ference on Computer Aided Verification, volume 6806
of Lecture Notes in Computer Science, pages 379–395.
Springer, 2011.

[8] B. Gassmann, F. Oboril, C. Buerkle, S. Liu, S. Yan, M. S.
Elli, I. Alvarez, N. Aerrabotu, S. Jaber, P. van Beek,
D. Iyer, and J. Weast. Towards standardization of av
safety: C++ library for responsibility sensitive safety. In
2019 IEEE Intelligent Vehicles Symposium (IV), pages
2265–2271, 2019.

[9] M. Hekmatnejad, S. Yaghoubi, A. Dokhanchi, H. B.
Amor, A. Shrivastava, L. Karam, and G. Fainekos.
Encoding and monitoring responsibility sensitive safety
rules for automated vehicles in signal temporal logic.
In Proceedings of the 17th ACM-IEEE International
Conference on Formal Methods and Models for System
Design, MEMOCODE ’19, New York, NY, USA, 2019.
Association for Computing Machinery.

[10] T. Hunter, T. Moldovan, M. Zaharia, S. Merzgui, J. Ma,
M. J. Franklin, P. Abbeel, and A. M. Bayen. Scaling the
mobile millennium system in the cloud. In SOCC’11:
Proceedings of the 2nd ACM Symposium on Cloud
Computing, pages 28:1–28:8, New York, NY, USA, 2011.

ACM.
[11] R. Ivanov, T. J. Carpenter, J. Weimer, R. Alur, G. J.

Pappas, and I. Lee. Case study: verifying the safety of
an autonomous racing car with a neural network con-
troller. In A. D. Ames, S. A. Seshia, and J. Deshmukh,
editors, HSCC ’20: 23rd ACM International Conference
on Hybrid Systems: Computation and Control, Sydney,
New South Wales, Australia, April 21-24, 2020, pages
28:1–28:7. ACM, 2020.

[12] J. Jeannin, K. Ghorbal, Y. Kouskoulas, A. Schmidt, R. W.
Gardner, S. Mitsch, and A. Platzer. A formally verified
hybrid system for safe advisories in the next-generation
airborne collision avoidance system. Int. J. Softw. Tools
Technol. Transf., 19(6):717–741, 2017.

[13] H. S. Kang, J. Y. Lee, S. Choi, H. Kim, J. H. Park,
J. Y. Son, B. H. Kim, and S. Do Noh. Smart manufac-
turing: Past research, present findings, and future direc-
tions. International journal of precision engineering and
manufacturing-green technology, 3(1):111–128, 2016.

[14] P. Koopman, H. Choset, R. Gandhi, B. Krogh,
D. Marculescu, P. Narasimhan, J. Paul, R. Rajkumar,
D. Siewiorek, A. Smailagic, et al. Undergraduate em-
bedded system education at Carnegie Mellon. ACM
Transactions on Embedded Computing Systems (TECS),
4(3):500–528, 2005.

[15] P. Kopardekar, J. Rios, T. Prevot, M. Johnson, J. Jung,
and J. E. Robinson. Unmanned aircraft system traffic
management (utm) concept of operations. In AIAA
aviation forum, 2016.

[16] L. Lamport. Real-time model checking is really simple.
In Correct Hardware Design and Verification Methods,
13th IFIP WG (CHARME), volume 3725 of Lecture
Notes in Computer Science, pages 162–175. Springer,
2005.

[17] D. A. Lazar, S. Coogan, and R. Pedarsani. Optimal
tolling for heterogeneous traffic networks with mixed
autonomy. In 58th IEEE Conference on Decision and
Control, CDC 2019, Nice, France, December 11-13,
2019, pages 4103–4108. IEEE, 2019.

[18] S. M. Loos, A. Platzer, and L. Nistor. Adaptive cruise
control: Hybrid, distributed, and now formally verified.
In M. J. Butler and W. Schulte, editors, FM 2011:
Formal Methods - 17th International Symposium on
Formal Methods, Limerick, Ireland, June 20-24, 2011.
Proceedings, volume 6664 of Lecture Notes in Computer
Science, pages 42–56. Springer, 2011.

[19] S. Mitra. A Verification Framework for Hybrid Sys-
tems. PhD thesis, Massachusetts Institute of Technology,
September 2007.

[20] P. F. Orzechowski, K. Li, and M. Lauer. Towards
responsibility-sensitive safety of automated vehicles with
reachable set analysis. 2019 IEEE International Confer-
ence on Connected Vehicles and Expo (ICCVE), pages
1–6, 2019.

[21] M. P. Owen, A. Panken, R. Moss, L. Alvarez, and
C. Leeper. Acas xu: Integrated collision avoidance and



detect and avoid capability for uas. In 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC), pages
1–10, 2019.

[22] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Sri-
vas. PVS: Combining specification, proof checking, and
model checking. In R. Alur and T. A. Henzinger, editors,
CAV’96: Proceedings of the International Conference on
Computer Aided Verification, volume 1102 of Lecture
Notes in Computer Science, pages 411–414. Springer-
Verlag, July/August 1996.

[23] N. Ozay. Inter-triggering hybrid automata: a formalism
for responsibility-sensitive safety. In A. D. Ames, S. A.
Seshia, and J. Deshmukh, editors, HSCC ’20: 23rd ACM
International Conference on Hybrid Systems: Computa-
tion and Control, Sydney, New South Wales, Australia,
April 21-24, 2020, pages 32:1–32:2. ACM, 2020.

[24] H. Paulino. Sumo: A framework for prototyping dis-
tributed and mobile software. In A. G. Bourgeois and
S. Zheng, editors, Algorithms and Architectures for Par-
allel Processing, 8th International Conference, ICA3PP
2008, Cyprus, June 9-11, 2008, Proceedings, volume
5022 of Lecture Notes in Computer Science, pages 269–
281. Springer, 2008.

[25] R. B. Perry, M. M. Madden, W. Torres-Pomales, and
R. W. Butler. The simplified aircraft-based paired ap-
proach with the ALAS alerting algorithm. Technical Re-
port NASA/TM-2013-217804, NASA, Langley Research
Center, 2013.

[26] A. Platzer. Quantified differential dynamic logic for
distributed hybrid systems. In A. Dawar and H. Veith, ed-
itors, Computer Science Logic, 24th International Work-
shop, CSL 2010, 19th Annual Conference of the EACSL,
Brno, Czech Republic, August 23-27, 2010. Proceedings,
volume 6247 of Lecture Notes in Computer Science,
pages 469–483. Springer, 2010.

[27] A. Platzer and J.-D. Quesel. KeYmaera: A hybrid
theorem prover for hybrid systems (system description).
In A. Armando, P. Baumgartner, and G. Dowek, editors,
Automated Reasoning, pages 171–178. Springer Berlin
Heidelberg, 2008.

[28] M. Potok, C.-Y. Chen, S. Mitra, and S. Mohan. Sdc-
works: a formal framework for software defined control
of smart manufacturing systems. In 2018 ACM/IEEE
9th International Conference on Cyber-Physical Systems
(ICCPS), pages 88–97. IEEE, 2018.

[29] S. Shalev-Shwartz, S. Shammah, and A. Shashua. On a
formal model of safe and scalable self-driving cars. arXiv
preprint:1708.06374, 2017.

[30] X. Sun, H. Khedr, and Y. Shoukry. Formal verification
of neural network controlled autonomous systems. In
N. Ozay and P. Prabhakar, editors, Proceedings of the
22nd ACM International Conference on Hybrid Systems:
Computation and Control, HSCC 2019, Montreal, QC,
Canada, April 16-18, 2019, pages 147–156. ACM, 2019.

[31] P. Varaiya. Smart cars on smart roads: problems of con-
trol. IEEE Transactions on automatic control, 38(2):195–

207, 1993.
[32] V. Venkataramanan, A. K. Srivastava, A. Hahn, and

S. Zonouz. Measuring and enhancing microgrid re-
siliency against cyber threats. IEEE Transactions on
Industry Applications, 55(6):6303–6312, 2019.

[33] H. B. Weinberg and N. A. Lynch. Correctness of vehicle
control systems—a case study. In RTSS’96: Proceedings
of the 17th IEEE Real-Time Systems Symposium, pages
62–72. IEEE, December 1996.

[34] J. M. Wing. A symbiotic relationship between formal
methods and security. In Proceedings Computer Security,
Dependability, and Assurance: From Needs to Solutions
(Cat. No. 98EX358), pages 26–38. IEEE, 1998.

[35] T. Wongpiromsarn, S. Mitra, R. M. Murray, and A. Lam-
perski. Periodically controlled hybrid systems: Verifying
a controller for an autonomous vehicle. In R. Majumdar
and P. Tabuada, editors, HSCC’09: Proceedings of the
International Workshop on Hybrid Systems: Computation
and Control, volume 5469 of Lecture Notes in Computer
Science, pages 396–410. Springer, 2009.


