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Abstract
Strategies are an important component of self-regulated learning frameworks. How-
ever, the characterization of strategies in these frameworks is often incomplete: (1)
they lack an operational definition of strategies; (2) there is limited understanding
of how students develop and apply strategies; and (3) there is a dearth of system-
atic and generalizable approaches to measure and evaluate strategies when students’
work in open-ended learning environments (OELEs). This paper develops system-
atic methods for detecting, interpreting, and analyzing students’ use of strategies in
OELEs, and demonstrates how students’ strategies evolve across tasks. We apply this
framework in the context of tasks that students perform as they learn science topics
by building conceptual and computational models in an OELE. Data from a class-
room study, where sixth-grade students (N = 52) worked on science model-building
activities in our Computational Thinking using Simulation and Modeling (CTSiM)
environment demonstrates how we interpret students’ strategy use, and how strat-
egy use relates to their learning performance. We also demonstrate how students’
strategies evolve as they work on multiple model-building tasks. The results demon-
strate the effectiveness of our strategy framework in analyzing students’ behaviors
and performance in CTSiM.
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Introduction

The term strategy comes from ancient Greek and refers to plans for winning a war.
In the context of educational research, strategies generally represent systematic plans
or sub-plans students develop for achieving goals (Oxford, 2011; Vermunt, 2020).
In their simplest form, strategies are conditional constructs that can be represented
as if-then-else rules (Winne et al., 2002). Strategies have been receiving attention
in the teaching-and-learning literature since the mid-1980s as metacognitive pro-
cesses (Alexander et al., 1998; Flavell, 1979; Nisbet & Shucksmith, 2017) that foster
successful learning (Weinstein et al., 2011; Panadero & Alonso Tapia, 2014).

More broadly, the research literature in educational psychology and the learning
sciences discuss different types of strategies, such as (1) cognitive strategies (Donker
et al., 2014; Pressley et al., 1989); (2) metacognitive strategies (Schraw et al., 2006);
(3) affect regulation strategies (Parkinson & Totterdell, 1999), and (4) management
strategies (Donker et al., 2014) The literature also discusses methods used for instruc-
tion on strategies (Donker et al., 2014; Weinstein et al., 2011), and evaluating the
effectiveness of strategies (Garner, 1988) in multiple subject domains that include
the language arts (Oxford, 2011), writing (Roscoe et al., 2019), mathematics (Donker
et al., 2014; Liu et al., 2016), science (Alesandrini, 1981; Tsai & Tsai, 2003), and
massive open online courses (MOOCs) (Matcha et al., 2019).

Despite its broad applications to learning, it is hard to glean an operational def-
inition of strategies and methods for evaluating strategies from existing literature,
especially with respect to their application in computer-based learning environ-
ments (Wang & Hannafin, 2005). We will address these issues by developing a
framework for modeling, measuring, and assessing learners’ strategies from their
learning and problem-solving activity data collected in log files, while students work
on building conceptual and computational models of scientific processes in an open-
ended learning environment (OELEs) (Basu et al., 2014; Roscoe et al., 2013). This
paper makes two primary contributions:

1. Developing an operational definition of learning strategies in the context of
students’ activities in OELEs, and more specifically learning-by-modeling envi-
ronments, where students learn their science content by building conceptual and
computational models of scientific processes. “A Strategy Framework for the
CTSiM OELE” presents our precise definition of strategies and some key con-
siderations for analyzing learning strategies in our OELE environments. Our
definition is compatible with well-established strategy frameworks reported in
the literature; and

2. Extending and applying our previous work on (1) an exploratory task-based
methodology to infer and analyze students’ learning strategies from their activ-
ity sequences when students worked on causal modeling tasks (Kinnebrew et al.,
2017), and (2) an adaptive scaffolding approach to help students develop and
apply specific strategies as they worked on computational modeling tasks (Basu
et al., 2017) in OELEs. We discuss this in greater detail in “Problem Statement”.
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We apply the framework to detect and analyze students’ learning strategies
when they work on conceptual and computational model-building and problem-
solving tasks in Computational Thinking using Simulation and Modeling (CTSiM),
a learning-by-modeling environment that fosters synergistic learning of science
and computational thinking (CT; (Sengupta et al., 2013)). Learning-by-modeling
environments represent a specific class of OELEs that provide learners with rich
opportunities to develop and practice using strategies. We describe the components
of the CTSiM system and explain how students go about building their computa-
tional models in this environment. We then discuss the student activity data collected
in the form of system logs, and the analyses we conduct with the data to answer three
primary research questions:

– RQ 1: Can we detect and characterize students’ use of learning strategies in the
CTSiM OELE?

– RQ 2 Can we track how students’ use of learning strategies evolve as they build
computational models for different scientific processes?

– RQ 3 How do we evaluate the effectiveness of strategies that students employ
when working with CTSiM?

The rest of the paper is organized as follows. “Background and Related Work”
reviews learning strategies discussed in the literature, summarizes the role of strate-
gies in self-regulated learning (SRL) frameworks and illustrates strategy use in some
representative OELEs. The section also presents our problem statement and outlines
how we extend past work on strategy detection and analysis. “Learning by Modeling:
The CTSiM System” discusses learning-by-modeling environments and describes the
CTSiM system as a computational modeling environment. “A Strategy Framework
for the CTSiM OELE” synthesizes our definition of cognitive and metacognitive
strategies and presents systematic approaches for detecting and interpreting students’
strategy use during model-building and problem-solving tasks in CTSiM. We also
outline the methods and measures we have developed for analyzing students’ learn-
ing behaviors and their performance using formative and summative assessments.
“Results” presents the results of an experimental study conducted with the CTSiM
system in a middle school classroom. We analyze the data collected from the study to
answer the three RQ’s stated above. Finally, “Discussion and Conclusions” presents
our conclusions from the study and discusses the generalizability of our framework
and the directions for future work.

Background and RelatedWork

Strategies are ubiquitous and essential for effective learning at all levels. The cog-
nitive and learning sciences literature describes strategies as an essential component
of critical thinking and learning (Boekaerts, 1996; Zimmerman, 2000). Better-
performing students are known to be more strategic in their approach to learning
than less competent learners (Derry, 1990), and the use of strategies helps learners
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become more self-reliant and fosters life-long learning (Cornford, 2002; Weinstein
& Meyer, 1994). Furthermore, explicit instruction of cognitive and metacognitive
strategies improves overall learning performance (Weinstein & Meyer, 1994; Zhang
et al., 2014). In this section, we briefly review two related topics: (1) the scope
of learning strategies and strategy frameworks, and (2) strategy use in OELEs.
“Problem Statement” presents our problem statement and how our approach extends
past work on strategy detection and analysis.

Strategies and Strategy Frameworks

Strategies capture procedural knowledge for accomplishing tasks and goals and
are typically represented by sequences of activities as opposed to single events or
actions (Mayer, 1988; Pressley et al., 1989). They are known to positively influence
information processing and the development of new skills in support of learn-
ing (Mayer, 1988; Pressley et al., 1989; Oxford, 2011; Obergriesser & Stoeger, 2020).
Just as learning strategies influence how students process information and learn,
the effective use of learning strategies also requires proper and prompt control and
regulation of the learning process (Garner, 1988; Alexander et al., 1998).

More specifically, to become effective strategy users, learners need to have ade-
quate descriptive, procedural, and conditional knowledge of the strategies they
apply (Weinstein et al., 2011; Winne & Hadwin, 1998). This implies that learners
need to acquire the processes associated with strategy execution along with method-
ologies for organizing, retrieving, and applying these processes. As stated by Garner
(1988, p. 64), “knowing when to use a strategy is as important as knowing how to use
it.”

Two closely related constructs, namely cognitive and metacognitive strategies,
form an important part of the learning process. Both constructs are associated with
orchestrating cognitive resources and skills, but they differ in their generality and
purpose (Weinstein & Meyer, 1994; Cornford, 2002). Typically, cognitive strate-
gies are goal-directed, intentionally invoked, situation-specific, and not universally
applicable (Weinstein & Meyer, 1994). On the other hand, metacognitive strate-
gies involve more generally applicable processes, such as planning, monitoring, and
evaluating (Donker et al., 2014; Cornford, 2002). Operationally, cognitive strategies
include the knowledge of objects and operate on objects (Winne, 1995). The term
objects in Winne’s framework loosely refers to information, which can be interpreted
as knowledge and skills. Metacognition is conveniently defined as thinking about
one’s own thinking (Flavell, 1979). However, this generic description of metacogni-
tion is “variable and ambiguous,” especially in the context of learning strategies (p.
24 Nisbet & Shucksmith 2017). More generally, metacognition can be described as
deliberating on the use of particular cognitive processes and how to combine them to
accomplish larger tasks (Winne, 1995).

Metacognitive monitoring serves as the bridge connecting cognition and metacog-
nition, as it describes the processes of observing and evaluating one’s own execution
of cognitive processes to exercise control and improve cognition (Kinnebrew et al.,
2017). As we discuss in more detail later, such complex monitoring processes involve
learners’ explicit use of strategies. In addition, management strategies, such as
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controlling for time and making adjustments to the environment to manage distrac-
tions, are also defined and discussed in the literature. In this paper, we focus on
cognitive and metacognitive strategies.

The study of strategies is often contextualized within the broader framework of
self-regulated learning (SRL) (Schunk & Greene, 2018). Strategies are an important
component of SRL frameworks. For example, Boekaerts’ structural model of SRL
includes cognitive strategies, cognitive self-regulatory strategies, motivation strate-
gies, and motivational self-regulatory strategies among its six major components of
self-regulation (1996). This model focuses on students’ purposeful use of motiva-
tional strategies (especially emotional strategies) to achieve their learning goals (Smit
et al., 2017).

The Cyclical Phases Model of Zimmerman emphasizes strategic planning as a
component of task analysis in a learner’s forethought phase. In this phase, the learner
analyzes the task, assesses the expected outcome, and then evaluates the value of
the task, before activating appropriate learning strategies. The model defines task
strategies as a mechanism for self-control, with the learner dividing a task into “its
essential parts and reorganizing the parts meaningfully” (2000, p. 19). During this
phase, the learner needs to apply appropriate learning strategies (e.g., self-recording,
time-management, and help-seeking) to maintain a high level of motivation and track
progress towards the learning goal (Panadero & Alonso Tapia, 2014; Zimmerman,
2000).

The COPES model (conditions, operations, products, evaluations, and standards)
of Winne and Hadwin (1998) describes self-regulated students as those who actively
manage their learning via enacting and monitoring their own cognitive and metacog-
nitive strategies as their learning progresses. It demonstrates that learning is enabled
by self-regulation across four linked and looping phases of task definition, goal set-
ting and planning, enactment of tactics, and adaptations to metacognition (Winne &
Hadwin, 1998; Winne et al., 2002). In the COPES model, a strategy is defined as a
collection of if-then rules (each individual rule is a tactic) that create larger patterns
and extend to if-then-else rules over time (Winne et al., 2002). Therefore, strategies
are more complex than tactics in their structure, and they also have a larger scope that
yields more information that can be used for feedback during learning (Winne et al.,
2002).

In the recursive loop defined by the COPES model, a learner first activates the
memory of previous strategy use in the task definition phase, and then the strategy
is linked to specific learning goals in the goal setting and planning phase. Following
that, in the enactment phase, the learner uses linked strategies to address the learning
goals. Finally, in the adaptations to metacognition phase, the learner evaluates the
effect of the strategies used, and then tunes or restructures some of the strategies to
make them more effective for the goals and plans of the learning task (Winne et al.,
2002).

Strategies and Open-Ended Learning Environments (OELEs)

OELEs are a class of computer-based learning environments that adopt a construc-
tivist epistemology to support the acquisition of knowledge and skills (Land, 2000).
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They provide learners with opportunities to practice problem-solving skills in real-
world contexts (Wang & Hannafin, 2005). A learning environment is open-ended if
the student working in that environment has the freedom to choose “the learning
goal, the means to support learning, or both” (Hannafin et al., 2014, p. 641). Fur-
thermore, OELEs may provide tools and resources that engage students in activities,
such as generating hypotheses, constructing solutions, verifying the hypotheses with
tests, and revising hypotheses in different phases of learning (Land, 2000).

The exploration of learners’ strategy use in OELEs is linked to understanding the
“dynamic and cyclical nature of self-regulation” processes they employ (Schmeck,
2013, p. 5). Wittgenstein stated that “An ‘inner process’ stands in need of outward
criteria” (Section 530 ; Wittgenstein, 1968). As a form of outward criteria, the traces
of students’ actions, i.e., students’ observable behaviors as they engage in learn-
ing tasks in an OELE, provide information about their strategy use. These methods,
based on students’ activity sequences, enrich the measurements of strategy use using
self-reports, think-aloud utterances, and interviews (Schmeck, 2013; Vermunt, 2020;
Whitelock-Wainwright et al., 2020).

Deployment of OELEs has made it possible to collect detailed traces of
students’ interactions within the learning environment and linking them to out-
comes (Schmeck, 2013). A series of methods have been designed to infer students’
use of strategies by distilling contextualized and operationalized information from
the traces recorded in log files (Azevedo et al., 2013; Bannert et al., 2014; Had-
win et al., 2007; Kinnebrew et al., 2017; Segedy et al., 2015b). These analytical
frameworks and methods lay the foundation for tracking and evaluating how stu-
dents’ use of strategies evolves with time. As a result, OELEs have become a popular
medium to conduct strategy-related research (Panadero et al., 2016). Examples of
OELEs that incorporate trace analysis for understanding students’ learning strate-
gies include Ecolab (Luckin & du Boulay, 2016), nStudy (Winne & Hadwin, 2013),
MetaTutor (Azevedo et al., 2010), and Betty’s Brain (Biswas et al., 2016).

OELEs make provisions for learners to choose their own learning goals and/or
the methods to achieve their goals (Hannafin et al., 1999; Hannafin et al., 2014). For
example, in MetaTutor, students must strategically select the focal concepts to read
and comprehend due to the limited amount of time and the complexity of the tasks.
In the nStudy environment, students learn and comprehend digital inscriptions (de
Vries et al., 2009) in a web application. Students’ learning goals and the means they
employ to accomplish these learning goals are not predetermined. In the rest of this
subsection, we review the four OELEs with an emphasis on how they support stu-
dents’ developing and applying strategies as they learn by performing tasks in these
environments.

The Ecolab family of constructivist learning environments (e.g., Ecolab, M-
Ecolab, and Ecolab II) focus on middle school’s science topics, such as food chains
and food webs (Luckin & du Boulay, 2016). Learners using Ecolab can select dif-
ferent organisms on the food chain, and explore the relationships between these
organisms without needing to deal with the complexity of the entire food web
(Luckin & du Boulay, 2016). Ecolab presents learning tasks to the students, utilizing
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the learner’s Zone of Proximal Development (ZPD) (Vygotsky, 1978) to facili-
tate the learning. The environment supports the development of metacognitive and
goal-orientation strategy constructs, such as help-seeking and self-monitoring.

A variation of the environment, M-Ecolab, adapts to learners’ motivational state
to select the form of metacognitive strategy scaffolding to provide to them (Luckin
& du Boulay, 2016; Mendez et al., 2005; Luckin & Hammerton, 2002). For example,
help-seeking, an indispensable metacognitive strategy, helps students develop mas-
tery and comprehension skills (Newman, 1990). Studies with Ecolab II have shown
that this strategy supports students learning of domain content, and helps them to
improve their task selection and self-monitoring processes. This is especially true for
low-ability students who may lack prior metacognitive skills (Luckin & Hammerton,
2002; Harris et al., 2009).

nStudy, a web-based application, provides learners with opportunities to practice
important learning skills and SRL processes while studying with digital content in
the form of multimedia web pages, PDF files, and video clips (Winne & Hadwin,
2013). Learners are provided with tools for highlighting and annotation to create
learning artifacts, such as bookmarks, notes, and concept maps (de Vries et al., 2009).
The system helps students develop learning strategies related to setting goals, seek-
ing information, and creating, modifying, and deleting learning objects (Beaudoin &
Winne, 2009).

In nStudy, a cognitive strategy (e.g., note-taking, writing, and test preparation and
review) is represented as a learning object that contains the following information:
(1) why the strategy helps, (2) when and how to use it, and (3) examples of its
use (Beaudoin & Winne, 2009). Learners can define their learning strategies and link
them to their own learning artifacts (e.g., bookmarks and notes). nStudy also pro-
vides learners with opportunities to self-evaluate the effectiveness of a strategy or to
create criteria for evaluating a strategy (Beaudoin & Winne, 2009). Students’ read-
ing and annotating behaviors in different learning phases (e.g., task understanding,
planning, monitoring, evaluating) are captured as authentic learning traces (Hadwin
et al., 2007). These collected traces reflect the students’ cognitive and metacognitive
events in the learning environment (Hadwin et al., 2007).

The MetaTutor OELE promotes the use of strategies to foster students’ learning
of complex topics in biology, for example, the human circulatory system (Azevedo
et al., 2010; Taub et al., 2018). The system provides students with a large number
of content pages from which they can collect information to write a summary on
the topic of study. Learners have a limited amount of time for reading the complex
content and extracting the relevant material to generate the summary on the specified
topic. Therefore, they need to be strategic and selective in their reading and other
learning activities in MetaTutor.

In addition to the hypermedia resources, the system includes a team of four virtual
pedagogical agents who help students develop cognitive and metacognitive strate-
gies: (1) Gavin the Guide, (2) Pam the Planner, (3) Mary the Monitor, and (4) Sam the
Strategizer. Students can query the four agents at any time. Depending on their area
of expertise, particular agents then provide scaffolding and feedback to the learners
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on developing and using strategies. For example, Pam the Planner helps students acti-
vate prior knowledge and manage their learning goals, while Mary the Monitor may
remind students to invoke key strategies linked to evaluating their understanding of
the content (Azevedo et al., 2010; Taub et al., 2018).

MetaTutor assesses students’ strategy use and provides relevant feedback. For
example, students may indicate that they would like to know how to activate prior
knowledge or to evaluate their learning of the biology content (Taub et al., 2019).
MetaTutor uses the task the student has explicated as the context for providing
feedback. MetaTutor also links students’ learning to their emotions and affect. For
example, Taub et al. (2019) used correlations to establish links between students’ pos-
itive and negative emotions along with their note-taking and summarizing activities.
Correlation analyses conducted in a series of experimental studies using MetaTu-
tor (Cloude et al., 2018; Greene & Azevedo, 2010; Taub et al., 2018; Taub et al.,
2019) have shown that students’ learning gains are linked to their strategy use. For
example, one study found that college students’ metacognitive awareness increased
as they progressed in their learning tasks (Greene & Azevedo, 2010).

The Betty’s Brain learning environment (Biswas et al., 2016; Leelawong &
Biswas, 2008) is an OELE that helps students acquire knowledge and understanding
of scientific phenomena, such as climate change and the human body thermoreg-
ulation, by constructing causal models. The system adopts a learning-by-teaching
paradigm (Biswas et al., 2005), where students construct the causal model to teach a
virtual teachable agent, generically named Betty. A mentor agent monitors students’
work, and when needed provides help in the form of cognitive and metacognitive
learning strategies (Munshi et al., 2018). As she is being taught a particular topic, for
example, the causes and effects of climate change, Betty can answer queries, such
as If deforestation increases, what will happen to the amount of heat trapped by the
earth?. To answer the question, Betty uses the current causal map she has been taught
to follow a succession of causal links and derive her answer to the question.

Questions can be posed to Betty individually, or in the form of a quiz that is admin-
istered by the mentor agent, Mr. Davis. The mentor agent grades the quiz, and Betty’s
performance on the quiz provides students with contextualized feedback that they can
use to check and correct their maps. Methods for building, checking, and correcting
the map require a number of strategies that students can employ to find and correct
errors in the model. Studies demonstrate that students learning (measured as pre- to
post-test learning gains) is directly proportional to how well they can teach Betty
the correct causal map (Biswas et al., 2016; Kinnebrew et al., 2017). The mentor
agent, Mr. Davis observes students’ model-building and model checking behaviors,
and intervenes with help on appropriate strategies when they are not performing well.

As an OELE, Betty’s Brain provides students with rich opportunities to practice
their metacognitive strategies for solving complex and open-ended problems (Segedy
et al., 2015b). A series of middle school classroom studies with Betty’s Brain have
demonstrated that students achieved significant pre- to post-test learning gains on
science content (Leelawong & Biswas, 2008; Segedy et al., 2015b; Biswas et al.,
2016), and students with higher learning gains and model scores (i.e., more correct
links in their model) used more effective learning strategies (Kinnebrew et al., 2014;
2017).
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Problem Statement

The literature has established that learning strategies are an integral part of SRL
frameworks. However, despite their importance and ubiquity, research on strategies
needs to address:

1. The Grounding problem. Learning strategies are generically defined as skills or
methods to enhance performance but they are not grounded in operational forms.
As a result, they cannot be measured on a consistent, numerical scale;

2. The Generalizability problem. Learning strategies have been studied in specific
and disjoint learning domains, such as reading, writing, and mathematics, but a
general framework for representing strategies has not emerged.

3. The Measurement problem. There is a dearth of systematic approaches for
measuring and evaluating strategy use from learners’ activity data in computer-
based learning environments and in particular, OELEs. Most related work has
been directed toward analyzing undergraduate students’ strategy use in flipped
classrooms or MOOC settings.

Past studies on strategy analysis have relied on self-report, think-aloud protocols,
and just-in-time interviews to measure students’ use of learning strategies (Winne
et al., 2002; Schunk & Greene, 2018; Fincham et al., 2018). These methods suffer
from issues, such as (1) the set of self-report items often do not form an internally
consistent category to measure the latent variable (Winne et al., 2002); (2) the inter-
viewer interprets and represents the learner’s response through their own heuristics
lenses (Winne et al., 2002); and (3) learners report their perceived learning meth-
ods rather than their actual learning processes (Fincham et al., 2018). Therefore, the
observation of a phenomenon (strategy definition and use) is sensitive to and can be
greatly impacted by the data collection method (Dent, 1999).

In this work, we directly address two of the three issues listed above, i.e., the
grounding problem and the measurement problem. To elaborate further, one of our
goals in this paper is to extend and generalize our previous work on detecting and
interpreting students’ learning strategies in the Betty’s Brain environment (Kin-
nebrew et al., 2017; Segedy et al., 2015a). The model construction process in Betty’s
Brain requires students to build a causal map. In the work reported in this paper, stu-
dents have to synergistically combine their knowledge of science and CT concepts
and practices to build, test, debug, and analyze computational models of scientific
processes. These synergistic processes require the use of more involved and com-
prehensive strategies (Hutchins et al., 2020a; Sengupta et al., 2013; Snyder et al.,
2019).

In this paper, we develop a task-oriented strategy framework for the CTSiM
learning-by-modeling environment using cognitive task analysis (Schraagen et al.,
2000). Our exploratory, data-driven approach combines coherence analysis and
sequence mining methods to identify and interpret effective and ineffective strategies
as students work on open-ended learning tasks. Our approach also allows us to track
changes in students’ strategy application over time (i.e., across a sequence of tasks).

We define open-ended learning tasks as those in which students have a choice in
pursuing their learning and problem-solving tasks. In general, learners can leverage
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resources provided in the environment to acquire, understand, and apply the knowl-
edge needed to solve or complete a problem or goal. They are also provided with
resources that help them test and check on their evolving solutions to assigned prob-
lems. As discussed in the literature review (“Background and Related Work”), this
includes inquiry environments (e.g., Ecolab), study tools (e.g., nStudy, MetaTutor),
and constraint-based models (e.g., Betty’s Brain), and their accompanying resources
(e.g., digital content, pedagogical agents, expert models). Further, this approach has
been extended to studying students’ open-ended learning and problem-solving strate-
gies in game-based environments, such as Crystal Island (Taub et al., 2017) and
Tuglet (Käser & Schwartz, 2020).

We present our task model in “The Task and Strategy Models of CTSiM” that
maps student actions in our OELE to three primary cognitive processes (Information
Acquisition, Solution Construction, and Solution Assessment). Open-ended learning
tasks that expect students to employ similar cognitive processes can leverage the pre-
sented framework. Furthermore, learning environments that log students’ activities
in the context of the tasks they are performing can employ the methods we describe
below for analyzing students’ learning behaviors and strategies.

Along these lines, our framework generalizes the previous work presented in
Basu et al (2017), where we studied students’ use of specific, pre-identified strate-
gies and developed adaptive scaffolding methods to help them learn these strategies
effectively. As a result, the exploratory analysis presented for discovering students’
strategies and linking them to their performance tackles the grounding problem
through the systematic analysis of activity data during model construction and the
measurement problem by leveraging that analysis in the context of student knowledge
construction and learning during open-ended problem solving in different domains.
Therefore, this presents an example of generalization from our previous framework,
supporting the generalizability problem based on the framework presented in the
context of OELEs in the previous paragraph.

Learning byModeling: The CTSiM System

Computational modeling and the use of computational thinking (CT) concepts and
practices (Wing, 2006; Chao, 2016) present an effective way to promote an under-
standing of dynamic systems (Wilensky & Reisman, 2006). For example, Weintrop
et al. (2016) have discussed the CT practices associated with understanding the
relationship within a system and investigating systems at different levels to foster
students’ development of systems thinking in STEM classrooms.

The deep understanding of systems with emergent behaviors, along with the pro-
ficient application of learning strategies, is essential to prepare students for future
scientific endeavors. Science education standards have recognized the benefit and
importance of teaching students about systems thinking (Cheng et al., 2010; NRC,
2000) and CT (Sengupta et al., 2013; Shute et al., 2017). However, students often
face difficulties in performing system-level analyses (Basu et al., 2015; Basu et al.,
2016; Cheng et al., 2010; Chi, 2005; Chi et al., 2012; Wilensky & Resnick, 1999).
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Some of the difficulties can be attributed to the confusion in the relationship between
components, e.g., the realization that emergent behaviors arise as higher-level pat-
terns derived from aggregated interactions of lower-level components (Jacobson &
Wilensky, 2006). Other forms of misunderstanding, e.g., understanding the notion of
equilibrium can be attributed to commonsense conceptions of systems, i.e., for a sys-
tem to be in equilibrium it must be at rest. Novice learners are prone to assigning
intentionality to individuals in a system (Chi et al., 2012), or assuming the existence
of centralized control (Cheng et al., 2010). Because students’ conceptions are often
formed by induction or abduction based on causal reasoning, misconceptions are
difficult to mitigate and tend to remain robust (Chi, 2005). Roscoe et al. (2013) sum-
marized and analyzed novice learners’ development of shallow strategies, especially
when SRL support was not offered by the OELE. Overall, the challenges that novice
learners face are multi-fold, consisting of content-related difficulties and the lack
of efficient and effective learning strategies to overcome difficulties and incorrect
conceptions (VanLehn, 2013).

Learning Science by Building Computational Models

Educators and cognitive scientists have suggested that the exercise of building computa-
tional models may help students gain a deep understanding of scientific phenomena
by overcoming common difficulties and misunderstandings (NRC, 2010; Wilensky
& Reisman, 2006). Modeling is an essential practice in STEM domains that supports
conceptualization, understanding, and reasoning about complex scientific phenom-
ena. A systematic modeling process includes problem decomposition, exploration,
and understanding of the relationships between components. Modeling activities can
help students develop an understanding of a wide range of scientific constructs (NRC,
2000; Land, 2000; VanLehn, 2013). Model-based, constructivist curricula are more
effective when compared with traditional approaches (NRC, 2000).

The CTSiM OELE

The CTSiM OELE adopts a systems-thinking approach supported by important CT
concepts and practices to help middle school students learn and reason about sci-
entific phenomena by building computational models (Sengupta et al., 2013; Zhang
et al., 2017; Zhang & Biswas, 2018). Students perform five primary learning-oriented
tasks as they build computational models of science phenomena: (1) acquiring infor-
mation of the domain and CT-related content by reading the built-in hypertext
resource library; (2) building conceptual models of the system by defining the com-
ponents (e.g., agents and the environment) and their properties and behaviors using an
agent-based modeling framework; (3) constructing executable computational models
that define the agents’ interactions with the environment and with each other using
a block-based modeling language; (4) running simulations with the computational
models to analyze and debug the agents’ behaviors; and (5) comparing the behav-
iors of their computational models to the behaviors generated by an expert reference
model (Basu et al., 2017).
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Figure 1 illustrates the interfaces for five of the primary activities that students
perform in the system: (1) Acquiring information from the system library (top-left);
(2) Building a conceptual model by identifying components of the system (e.g., the
molecules and the container) and selecting their properties (e.g., the position, direc-
tion of travel, and velocity) (top-right) from pre-populated drop-down lists of the
agent or environmental properties; (3) Dragging-and-dropping computational blocks
to implement the update-speed-and-direction behavior of the dye molecule agents
in the diffusion process (center-left); (4) Testing the computational model by run-
ning simulations and observing the generated model behaviors (center-right); and (5)
Comparing the model behaviors to those of an expert model running synchronously
to deduce if the student’s model behaviors differ from that of the expert model
(bottom).1 In the testing and the comparison interface, the students can set up the
simulation with various combinations of parameters to ensure that their model imple-
mentation covers enough edge-cases and that the simulation invariant is held true in
all cases. In this particular example (bottom row of Fig. 1), the student’s model ter-
minated the simulation when a local equilibrium on the concentration gradient was
met, which was identified as a common misconception among novice learners by
Chi et al. (2012). The plots in the simulation interface are presented in a dashboard
format, and students can check the simulation status, and also look for potential mod-
eling errors (e.g., the average speed and total energy of the particles should remain
relatively constant).

In addition, it is important to note that students have access to all interfaces at
all times, supporting the open-ended nature of the approach. This means that stu-
dents can run comparisons with an expert model, regardless of whether they have
completed any steps in the conceptual and computational modeling interfaces. More
specifically, if the student has not created a model when they run a comparison, the
expert model executes with a default set of parameters. If the student has created
a partial model, e.g., they have specified some initial parameters but specified no
behaviors, then the expert model runs using the student-specified parameter values
as an initialization. The initialization also impacts the view of the student simulation,
but the agents in the student model show no dynamic behaviors, because the student
has not specified any. If the student specifies some or all required behaviors (cor-
rectly or incorrectly) both models are executed in lock-step to the extent it is possible
until one terminates, at which point both models are stopped. As a result, the student
gets to compare their model behaviors against the expert model behaviors in anima-
tion and through the generated plots. However, the student never sees the code for
the expert model.

While performing the conceptual and computational model-building activities,
students learn the domain content along with CT concepts (e.g., variables, loop
structures, and conditionals) and practices (e.g., systems thinking, problem decompo-
sition, and debugging) (Basu et al., 2016; Zhang et al., 2017; Weintrop et al., 2016).
Much like other OELEs, CTSiM offers learners the freedom to decide their own
learning goals and learning trajectories that demonstrate their choice of information

1The students are not able to see the code for the expert model.
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Fig. 1 The graphical user interface and learning activities of CTSiM. The top pane illustrates the
Resources window; The middle pane illustrates the Solution Construction (model-building) window; and
the bottom pane shows the Solution Assessment (study and compare model behaviors) window



International Journal of Artificial Intelligence in Education

acquisition, model-building, and model-checking tasks. These choices depend on stu-
dents’ metacognitive monitoring and reflect students’ understanding of the use of
various learning strategies.

We have developed science learning units in the CTSiM system for middle school
classrooms. These include kinematics (relations between acceleration, velocity, and
position of objects) and dynamics (introduction of force and momentum) units in
mechanics, diffusion processes (movement of suspended particles in a liquid), and
ecology (fish tank system). In the diffusion unit, students model the processes of (1)
random motion of individual particles, (2) particle collisions with one another, and
(3) particle collisions with the container wall. We believe that constructing correct
computational models of the component processes of colliding particles and studying
the resultant aggregated behaviors helps students understand the emergent behaviors
of diffusion processes. It also helps them overcome the misunderstandings that may
be linked to (1) false intentionality in a system (Chi et al., 2012) and (2) centralized
control (Cheng et al., 2010).

A Strategy Framework for the CTSiMOELE

In this section, we introduce our methods for modeling, measuring, and evaluat-
ing students’ strategies in OELEs. When students work on complex problems, they
develop and apply a variety of strategies to support their learning and problem-
solving tasks. For example, students often reuse solutions derived from previous
problems and may apply trial-and-error approaches to advance when they encounter
difficult situations. In this context, strategies represent students’ conscious and
controllable sequences of actions to facilitate and enhance task performance.

As an open-ended and choice-rich environment, CTSiM provides students with
a multitude of opportunities to develop and practice their learning strategies for
building models of scientific processes. In this work, we focus on cognitive
strategies (e.g., acquiring and organizing information into computational struc-
tures) and metacognitive strategies (e.g., monitoring and executing control, i.e.,
selecting, modifying, and replacing cognitive strategies). The use of strategies is
latent, thus, they cannot be observed or measured directly. However, the use of
strategies is reflected in the sequence of actions students perform in the environ-
ment, and they indirectly manifest students’ declarative, procedural, and conditional
knowledge (Schraw et al., 2006).

In previous work, we have applied cluster analysis methods to categorize the dif-
ferent learning behaviors students exhibit in CTSiM and found that certain behaviors
lead to better model-building performance and better pre- to post-test learning gains
in the domain and CT concepts (Zhang et al., 2017). We have developed similar
approaches to characterizing students’ aggregate behaviors in the Betty’s Brain envi-
ronment (Gauch & Biswas, 2016; Segedy et al., 2015a; 2015b) and have obtained
similar results. In our analyses, we found that the aggregated behavior descriptions
(e.g., the time spent on certain learning activities) can mask the actual strategies stu-
dents use because of the loss of contextual information in the aggregated actions
(Kinnebrew et al., 2013).
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The approach presented in this paper defines strategies and targets their system-
atic evaluation as conscious and controllable sequences of actions students per-
form to facilitate and enhance their task performance. Therefore, the approach
identifies common action sequences that students employ to accomplish their tasks
and enhance their overall model-building performance (in this work, their goal is to
build models whose behaviors closely match expert-generated solutions).

To do so, we adopt Coherence Analysis (CA) (Segedy et al., 2015b) along with a
combined theory- and data-driven framework for identifying, interpreting, and ana-
lyzing students’ common sequences of actions in CTSiM and for evaluating the
effectiveness of those sequences (e.g., strategies) in supporting problem solving. This
approach generalizes and extends an approach that was previously developed and
applied to the Betty’s Brain system (Kinnebrew et al., 2017; Segedy et al., 2015a).
We detail the steps of this approach in the following subsections.

The Task and StrategyModels of CTSiM

The first step in this process is to generate a hierarchical task model that creates a
mapping between students’ actions in CTSiM to the three primary sub-tasks (cog-
nitive processes) they employ for building and analyzing computational models:
(1) Information Acquisition (IA), (2) Solution Construction (SC), and (3) Solution
Assessment (SA). Figure 2 (adapted from Basu et al. 2017) shows the task model
with the cognitive processes expressed at different levels of detail. Students’ logged,
time-stamped actions map directly to the leaf nodes of the hierarchy. There are no
horizontal links in the task model, implying that students are free to perform their
activities in any order they wish to accomplish their tasks.

Students perform IA actions that include Read Page and Search Information,
using the Resources interface (the top-left of Fig. 1). They perform SC actions that
include conceptual (top-right, Fig. 1) and computational (middle-left, Fig. 1) model
construction and model editing actions. They accomplish SA tasks by Run Simu-
lation, i.e., executing (simulating) their current model in the center-right interface
of Fig. 1, and Make Comparison actions, which correspond to analyzing the differ-
ences in behaviors generated by their model versus a correct expert model (as seen
in the bottom row of Fig. 1). We will discuss differences in how students’ use of

Fig. 2 The Task model for our learning-by-modeling environment
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these observable actions of the task model when we compare strategies of high and
low-performing groups in “Results”.

The hierarchical task model helps us to map students’ actions into higher-level
constructs (e.g., reading a set of resource pages can be interpreted as an IA task
to gather information on a specific scientific process). Frequently occurring action
sequences imply that the corresponding patterns represent strategies students use in
their model-building tasks (e.g., reading a set of pages (IA) to find information and
using it to make changes in the model code (SC) to correct system behaviors).

Assessments of Learning Performance

The summative assessments include domain and CT pre- and post-tests. More
specifically, we designed the acceleration and diffusion unit domain assessments
to target common student misunderstandings that have been reported in the litera-
ture (Hestenes et al., 1992; Chi, 2005; Chi et al., 2012). An example of a student
misunderstanding when studying diffusion processes is particles in a liquid stop mov-
ing when the concentration levels achieve equilibrium (Chi et al., 2012). Some of
the test items in the acceleration unit were adapted from the Force Concept Inven-
tory (Hestenes et al., 1992). We also included CT questions that focused on the
mastery of fundamental programming constructs, such as loop structures and condi-
tionals. The questions in the pre-post tests were formulated at the level appropriate
for middle school students. We provide examples of the test items in the Appendix.

The formative evaluation of student learning consisted of the learning behaviors
and performance when building the conceptual and computational science mod-
els, measured using the CA framework. These measurements helped us understand
how students progressed in their learning tasks and the effectiveness of students’
strategy use. Students constructed their conceptual models by selecting relevant con-
cepts, their properties, and relevant processes to define system behaviors from a
pre-populated drop-down list. We adopted a bag-of-words (BOW) representation and
a simple matching similarity measure to score the students’ models in relation to an
expert (correct) conceptual model (Zhang et al., 2010). A larger intersection between
a student’s conceptual model and the expert conceptual model indicated that the
model was more accurate (correct). Analogously, a student’s conceptual model edit
was considered to be effective if the similarity value between the students’ model and
the expert model increased.

To analyze students’ computational model-building performance, we first encoded
their models as abstract syntax trees (ASTs) before comparing them against the
expert model using the tree edit distance (TED) (Bille, 2005; Basu et al., 2014). ASTs
are tree-structured representations used in compilers to capture the syntactic struc-
ture of computer programs (Grosch & Emmelmann, 1990). They have also been used
for code evaluation (Baxter et al., 1998) and studying the construction of a computer
program by a student (Neamtiu et al., 2005). ASTs provide a flexible, compact, and
extendable representation, where semantic information can be embedded into the tree
structure to enable more in-depth analysis of a program (Rabinovich et al., 2017).
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In our work, we have adapted the AST structure to capture a generalized and
compact hierarchical structure of the computational models the students construct in
CTSiM. Each node of the tree represents a computational block with the fields asso-
ciated with the block being represented as subtrees under the primary block (Bille,
2005). We further standardize the AST representation to create canonical structures
by applying semantics-preserving transformations to some of the constructs (e.g., all
conditionals are expressed in the ≤ form) (Xu & Chee, 2003). As a result, simi-
lar programs (models) produce similar AST structures, and, therefore, similar TED
scores. We have used the computed TED from the students’ final models as the
students’ model performance score. The smaller the distance, the better the match
between a pre-defined expert model and the model generated by the student.

Assessing Students Learning Behaviors

Sequential pattern mining (SPM) approaches find relevant patterns across a large
number of objects, where each object is represented by an ordered sequence of
items (Agrawal & Srikant, 1995). In our case, the objects represent students, and each
student is represented by the ordered sequence of actions that they perform in the
system. The mined patterns represent frequently occurring sub-sequences of actions
across all of the students.

Two parameters characterize an SPM algorithm: (1) a support threshold, s-support
—this specifies the number of action sequences for which a chosen pattern appears
at least once in one group. In this work we set the s-support threshold to be 0.7, i.e.,
for a pattern to be considered at least 70% of the students perform this pattern at least
once; and (2) a gap —the maximum interval of time allowed between two consecutive
items of the sequence (Zaki, 2001). Since we consider strategies to be manifested
from deliberately thought-out action sequences that a learner execute, we consider a
long gap in time between two actions to imply that the actions are independent and
not likely to be part of the same sub plan. In this work, we computed the average
gap time between actions, and used this to set the gap threshold at 6 minutes. In this
work, we used a second parameter when defining action sequences. These are noise
actions, i.e., one or more irrelevant actions that a student may perform between two
actions in a sequence that are relevant to the strategy (Kinnebrew et al., 2013). We
use a gap value of 1, allowing for at most one noise action between two consecutive
actions of a strategy.

The Differential Sequence Mining (DSM) algorithm (Kinnebrew et al., 2013)
extends SPM by comparing the instance support, i.e., i-support value between two
groups of students (e.g., high- vs. low-performers). i-support is defined as the aver-
age number of occurrences of a pattern across all students in a group. We hypothesize
that frequent action patterns extracted from students’ action sequences correspond
to strategies they apply to advance their model-building and problem-solving tasks.
In previous work, we have observed that students’ behaviors can vary substantially,
and these differences are also indicative of differences in their model-building and
learning performance (Kinnebrew et al., 2014; 2017).
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Study and Data

We use the results from a classroom study with CTSiM to demonstrate the stu-
dents’ use of learning strategies and our methods for detecting and evaluating these
strategies. The participants were 52 sixth-grade students from a middle school in
the United States. Among the students enrolled in the school, 9% were Asian, 26%
were African American, 7% were Hispanic/Latino, 56% were White, and 2% did not
provide a response. Ten percent of the students received free or reduced-price lunch.

Student work was divided into five units over 14 days (45 minutes daily) that
included training and the building of three computational models. On day 1, the
students took the pre-tests. On day 2, the students were introduced to agent-based
modeling concepts and the CTSiM system. On days 3 and 4 (training units), students
programmed software agents to draw geometric shapes. On days 5-7, the students
learned to apply Newton’s laws of motion (involving force, mass, acceleration, veloc-
ity, and position) to build computational models of racing cars (the acceleration unit).
On days 8-10, the students learned about the conservation of momentum by mod-
eling collisions of inelastic objects with different weights (the collision unit). On
days 11-13, students learned about diffusion by constructing models of the motion of
water and dye particles in a closed container (the diffusion unit). The post-tests were
administered on day 14.

The data collected from the study included the summative domain and CT assess-
ments, the conceptual and computational models that the students built, and students’
logged actions in the CTSiM system. Action information, i.e., the list of logged
actions was represented using a pre-defined <action,view> scheme. This helped
us capture the context in which students performed specific actions (Segedy et al.,
2015a). The context helped us determine how proximal actions performed by the stu-
dents related to one another, and this provided the basis for inferring the strategies
they employed to accomplish their learning and problem-solving goals.

Specifically, our focus in this work is on detecting and evaluating the learning
strategies that students develop and apply in the acceleration and the diffusion units.
Assessment and log data from the collision unit were omitted from our analyses
because the collision unit served as a preparation for the diffusion unit, and the major
concepts associated with collisions were also covered in the diffusion unit.

Results

“Learning Performance: Domain and CT Learning Gains” presents the students’
overall learning gains derived from their pre- and post-test scores. “Learning Per-
formance: Conceptual and Computational Modeling-Building” reports students’ con-
ceptual and computational modeling performance in relation to a correct ‘expert’
model. These results demonstrate the overall effectiveness of the CTSiM intervention
in helping students learn their science and CT, and serve as the basis for investigating
RQ3, where we hypothesize that the use of good strategies when building science
models is linked to better learning outcomes on the science and CT concepts.



International Journal of Artificial Intelligence in Education

“Students’ Strategy Use in the Acceleration Unit” illustrates the results of apply-
ing our sequence mining algorithm to detect and interpret patterns of activity that
correspond to the strategies students use in their learning and model-building tasks.
These results answer RQ 1. The analyses conducted in “Students’ Strategy Use in
the Diffusion Unit” provide evidence for RQ 2 by showing the changes in students’
frequently-used strategies from the acceleration to the Diffusion unit in CTSiM.
Finally, “Evaluating Strategy Use with Respect to the Learning Performance” divides
the students into high (HG) and low (LG) performers based on the pre-post test learn-
ing gains and then uses the DSM method discussed in “Assessing Students Learning
Behaviors” to investigate RQ 3, i.e., are there differences in strategies used by high
and low performers? If there are differences, what do these differences represent?

Learning Performance: Domain and CT Learning Gains

The acceleration pre-post tests included nine multiple-choice questions and two
short-answer questions; the diffusion test had 11 multiple-choice questions, and the
CT test had five multiple-choice questions and four short-answer questions. We com-
puted the Cronbach’s α of the internal consistency for the CT test, where we believe
there is an internal consistency among the test items, i.e., they test similar con-
cepts. The two domain tests cover multiple concepts and relations from kinematics
and mechanics in the acceleration test, and concepts and relations among tempera-
ture, energy, velocity, movement of particles, and collisions in the diffusion unit (see
“Assessments of Learning Performance”). Therefore, we did not run Cronbach’s α

on the two domain tests.
The moderately high value of Cronbach’s α for the CT test, 0.77, indicates that the

test items have high internal consistency with each other. This is because the test cov-
ers questions related to basic computing constructs, such as loops and conditionals,
as well as CT practices like decomposition and debugging, which require interpre-
tation and application of the basic constructs (Weintrop et al., 2016). However, like
the domain constructs, we designed the CT questions to achieve coverage instead of
internal validity.

Kolmogorov-Smirnov tests run on the students’ pre-post test scores showed that
the scores were not normally distributed. Therefore, we used the non-parametric
Mann-Whitney U -Test to determine the significance of the students’ pre-to-post
learning gains. In addition, taking into account the non-normality of the data and fol-
lowing the suggestion from Rosenthal et al. (1994), we calculated the effect size of
the learning gains as Z√

N
) instead of using Cohen’s d .

Table 1 lists the median, the 25th percentile, and the 75th percentile of the students’
pre-test and post-test scores. It also reports the p−values for the test of significance
and the effect sizes. The max scores achievable for the three tests were 24, 12, and
34 points, respectively. In all three tests, students showed significant improvements
in their pre- to post-test scores, with moderate effect sizes for the acceleration and
CT test gains (0.43 and 0.57, respectively), and a large effect size for the diffusion
test (0.9). These results indicate that the intervention helped students improve their
understanding of both the domain and CT skills and practices.
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Table 1 Pre-post learning gains

Measure Pre-test Scores Post-test Scores p-value Effect Size

(Median, [25%, 75%]) (Median, [25%, 75%])

Acceleration 13.5 [11, 15.5] 16 [13, 18] 0.01 0.43
Diffusion 4 [2, 5] 5 [4, 7] < 0.0001 0.90
CT 13.5 [10.5, 13.5] 19.5 [18, 22.5] 0.002 0.57

Learning Performance: Conceptual and Computational Modeling-Building

In CTSiM, the conceptual modeling activity (corresponding to the top-right screen-
shot in Fig. 1) requires that the learner identify the important components in the
system as agents. Along with this, the learner needs to identify the relevant prop-
erties and behaviors of the agents in the system. Students are provided with a set
of constructs that include the relevant ones plus additional extraneous constructs,
and this allows us to evaluate the students’ abilities to pick the accurate (i.e., they
include all relevant constructs) and precise models for the needed agents (i.e., they do
not include irrelevant constructs). The constructs include agent properties, additional
variables, and behaviors for each agent. The students also choose the agent behav-
iors with their corresponding input-output parameters. In addition, they choose the
environment variables that may influence the model behaviors.

By comparing students’ conceptual models to an expert-defined set of needed
agents and their associated constructs, we can identify situations where students miss
variables or behaviors, or if the student adds unnecessary constructs to their model.
For example, in the task for modeling accelerating cars, each car is modeled as an
agent with relevant properties, such as the traction force generated by the car’s engine
and its mass, that are required to define the car’s motion. On the other hand, prop-
erties, such as the car’s cost and color are not directly relevant to the equations that
describe the car’s motion.

For this paper, we evaluated learners’ conceptual models by comparing the
student-generated models with an expert model using the BOW representation along
with the similarity measure (note: dissimilarity/distance = 1− similarity). Figure 3

Fig. 3 The final extraneous conceptual model distances (normalized) in the acceleration unit (left) and the
diffusion unit (right)
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shows the number of students that had extraneous components in their models when
compared against the expert (correct) conceptual model. Students who had more
correct conceptual components in their models proportionally added less irrelevant
and unnecessary components to their models. We use the addition of irrelevant
components as a proxy for a lesser understanding of the domain concepts, and the
conceptual model score reflects this fact. The average final conceptual model dis-
tance across all students was 3.11 (SD = 1.35) for the acceleration unit and 9.60
(SD = 1.32) for the diffusion unit.

We also computed the students’ final computational model distance to the struc-
ture of the expert model using the tree-edit distance (TED) metric.The histogram in
Fig. 4 shows the students’ computational model score on the x-axis, and the number
of students who had extraneous model constructs for the two units. The plot on the
left represents the tree edit distance (TED) for the acceleration unit and the plot on the
right is the edit distance for the diffusion unit. Students whose model score distance
= 0 generated models that matched the expert model. The greater the edit distance,
the more extraneous or incorrect constructs were included in the model. Some student
models contained unnecessary procedural components in their agent behaviors. In
most cases, these additional elements did not affect the agent’s behaviors (for exam-
ple, having a superfluous setColorOfCar procedure in the acceleration unit did
not influence the motion of the car). In these cases, the student model often gener-
ated the same behaviors as the expert model, even though the TED between the two
models was not 0.

Unlike the conceptual modeling task, students with more complete computational
models also tended to have extraneous components in their models. A possible expla-
nation for this could be that students initially had difficulties with their models, and,
therefore, started by adding a number of extraneous components to their models. But,
they did not remove them at the end. In other words, their focus seemed to be on
getting a model that generated the correct behaviors, and not on building the most
compact or precise model to generate those behaviors. In the acceleration unit, the
average final distance between the student models and the expert model was 7.58
(SD = 6.34), and the average final distance between the student models and the
expert model in the diffusion unit was 22.8 (SD = 8.99). The diffusion models were

Fig. 4 The final extraneous computational model distances (normalized) in the acceleration unit (left plot)
and the diffusion unit (right plot)
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less accurate than the acceleration models, and this may be attributable to the greater
complexity of the model.

Student’s Learning Strategies

To investigate students’ strategy use in CTSiM and how strategy use evolved across
the two modules, we mined students’ logged actions in the acceleration and the
diffusion units using an SPM algorithm (Zaki, 2001). As discussed earlier, this anal-
ysis helped us answer RQ 1. Student actions were characterized by five specific
actions that we explained in greater detail in “The CTSiM OELE”: (1) IA read, (2)
SC conceptual, (3) SC computational, (4) SA run, and (5) SA compare. The links
from these five actions to their higher-level categories appear in the CTSiM task
model (see “The Task and Strategy Models of CTSiM”)2.

To simplify the derived pattern representations, we adopted notation from
automata theory (Hopcroft et al., 2001), and replaced multiple consecutive occur-
rences of the same action with a + superscript symbol; e.g., IA→IA→IA may be
represented as IA+. We also annotated SC actions with additional information by
adding a suffix -EFF to indicate that the action was effective (i.e., it reduced the
student’s model BOW distance for the conceptual, and the TED distance for the com-
putational models with respect to corresponding expert models). The suffix -INEFF
was used when a model editing action resulted in a decrease in a model score.

For example, a pattern SC computational-EFF+ → SA compare indicates that
the student made a series of consecutive effective SC edits on their computational
model, and then ran a simulation to compare the behaviors of their model against the
expert model.

The following parameter settings were used for the sequence mining algorithm:
(1) the threshold value of support for considering a pattern was set at 0.7, implying
that a pattern needed to occur in at least 70% of the students’ action sequences; and
(2) the maximum noise gap between two actions was set at 1.

Students’ Strategy Use in the Acceleration Unit

Table 2 lists the frequent patterns mined with the action log data in the acceleration
unit by our SPM algorithm. The transitions between actions in a pattern are linked by
→, and the patterns are ordered in descending order of their s-support values. We also
report the i-support values for all of the sequences that met the s-support threshold.

An immediate observation from the derived action patterns shows that the students
tended to read several resource pages (IA) in succession, and then switched to solu-
tion construction (SC) actions, performing a number of model-building actions. This
approach is indicative of a “depth-first” approach to acquiring information (IA) and
then building model constructs (SC). In contrast, one might have expected other stu-
dents to adopt a more targeted back-and-forth IA → SC strategy for model-building,

2These actions are labeled by combining the generic action types (IA, SC, and SA) and the observable
data logged in the OELE (see also Fig. 2)
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Table 2 Action patterns mined from log data in the acceleration unit

Pattern S-Support I-Support Strategy Type

1 SA run→SC computational-EFF+ 0.94 5.13 SASC

2 SC computational+→SA run+ 0.90 4.48 TK

3 SA run+→SC computational-EFF+ 0.90 3.48 SASC

4 IA read+ 0.85 6.73 MIA

5 SC computational-EFF→SC conceptual+→SC computational 0.83 2.12 MTPR

6 SA run→SC computational-EFF+→SA run 0.83 3.21 SASC

7 SC computational→SC conceptual+→SC computational-EFF 0.81 2.10 MTRP

8 SC computational→SA run→SC computational-EFF+ 0.81 2.63 SASC

9 SC computational-EFF→SA run→SC computational-EFF+ 0.79 2.13 SASC

10 IA read→SC computational-EFF+ 0.77 1.48 IASC

11 SC computational-EFF→IA read 0.71 1.60 SCIA

which may correspond to a building in parts approach that students may apply when
building more complex models.

Falling back on our definition of strategies as students’ conscious and controllable
action sequences to facilitate and enhance task performance, we provide an interpre-
tation for the discovered patterns as learning strategies in the context of the CTSiM
environment.

1. Multiple information acquisition (MIA). Pattern #4. Students used this as
a depth-first strategy to acquire relevant knowledge from the domain and CT
resources to support their model-building. We assume that students used this
strategy early on to gain the information they needed to support their model-
building tasks. Not surprisingly, this pattern (#4) was performed by 85% of
the students, and it was also the most frequent pattern (average of 6.73 occur-
rences per student in their activity sequences), supporting the conjecture that the
students started as naive learners and depended on the resources a lot to gain
relevant domain and CT knowledge.

2. Support solution construction with information acquisition (IASC). Pat-
tern #10. This pattern contrasts with the depth-first MIA strategy. Presumably,
students found specific knowledge and information that they applied to their
model-building tasks. In pattern #10, the IA action was followed by one or more
effective computational model edits. The average use of this pattern per student
was low (≈ 1.5 per student).

3. Check the constructed model by reading resources (SCIA). Pattern #11. This
is the flipped version of the IASC strategy. In this case, students strategically re-
read the resource page to check that the SC actions they generated were correct
as they understood it. The number of occurrences of this pattern per student was
low (≈ 1.6).

4. Tinkering (TK). Pattern #2. When tinkering, students adopted a trial-and-
error strategy to complete a task. The trial-and-error search was not completely
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random and can imply some just-in-time planning or narrowing down by elim-
ination strategies (Berland et al., 2013). In CTSiM, tinkering activity can be
detected as interweaved and repeated solution construction (SC) and solution
assessment (SA) actions. Most students (≈ 90%) used this pattern, on an average
of ≈ 4.5 times per student. It also shows that novice learners adopt incremental
methods to support their model-building.

5. Gain understanding with multiple representations (MTRP). Patterns #5 and
#7. In this case, students switched between the two modeling representations,
implying that they were applying a form of the model-building in parts strategy.
In pattern #5, students started with effective computational edits but made errors
in subsequent conceptual and computational edits when extending their model.
For pattern #7, this was reversed. The students initially made incorrect edits,
but then made a correct computational edit. On average, this strategy was exe-
cuted approximately twice by each student. Our analysis indicates two possible
interpretations: (1) students may be leveraging a model-building in parts strategy
effectively to work on a complex problem (Basu et al., 2017) and (2) students
were ineffective in applying model-building in parts, and went back and forth
between their conceptual and computational models trying to determine what
agent properties and behaviors they may need to add to complete their model.
The latter interpretation is better explained in our differential sequence mining
results, where we differentiate between the HG and LG student behaviors.

6. Revising Model (SASC). Patterns #1, #3, #6, #8, and #9. When students evalu-
ated their solutions (computational models) by running a simulation, analyzing
the results generated may have provided information that helped them improve
their current model. The SA action(s) constitute checking and assessing solu-
tions, and students may have used the information generated from the analyses
to correct errors in their models. Patterns #1 and #3 represent the use of this
strategy with the students sometimes making multiple comparisons to check
their model behaviors, and sometimes making multiple edits to improve their
model. A more advanced variation of this strategy is represented by pattern #6.
Here students followed up on the SC steps by re-running, and, therefore, re-
checking their model for additional errors. Patterns #8, and #9 represent a quick
check after a model-building action, and then a sequence of model-building
actions.

These results demonstrate that students developed and applied different strate-
gies that combined their reading, model-building, and model-checking activities to
support their model-building tasks. The build and assess, and assess and rebuild
strategies were quite frequent, along with tinkering, which is a widely used mech-
anism that novice programmers use for learning and understanding programming
constructs (Berland et al., 2013; Bers et al., 2014).

Students’ Strategy Use in the Diffusion Unit

To study how students’ use of strategies evolved over time, we applied our sequence
mining methods to the logged CTSiM action sequences in the diffusion unit, which
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Table 3 Differences in action pattern use between the diffusion and acceleration units

Pattern Strategy I-Support I-Support Effect

Type (Acceleration) (Diffusion) Size

1 IA read→SC computational-EFF+ IASC 1.48 0.17 1.17

2 SC computational-EFF→IA read SCIA 1.60 0.08 1.03

3 IA read+ MIA 6.73 1.81 0.97

4 SC computational→SC computational-
EFF+→SA run+

TK 2.62 0.37 1.43

5 SC conceptual+→SC computational-
EFF+

MTRP 0.76 2.03 1.34

students worked on after completing the acceleration and collision units. The anal-
ysis showed small shifts in the strategies that students used. Table 3 lists the action
patterns that were different in the two units. We looked for large effect sizes in the
difference between the i-support values for the two units. To control for type I errors,
we applied a False Discovery Rate correction (Glickman et al., 2014) on the hypoth-
esis test results of the different patterns and confirmed that these differences were
statistically significant3.

Other than the MTRP (modeling in parts with multiple representations) strategy,
the use of all other strategies reduced considerably from the acceleration to the dif-
fusion unit. For example, the use of the MIA, IASC, and SCIA strategies reduced
considerably (effect sizes of 0.97, 1.03, and 1.17, respectively). This change may be
attributed to the students’ increased familiarity with the learning environment and the
resources, e.g., the CT resources were the same for all units. Students were less likely
to access resources on topics they had become familiar with, which may explain
the drop in the i-support values for the MIA, IASC, and SCIA strategies. However,
the fact that this led to larger conceptual and computational model distances for the
diffusion model (see “Learning Performance: Conceptual and Computational Mod-
eling-Building”), implies that the students would have benefited from continuing to
apply these strategies, especially by reading the resources to better understand the
diffusion process.

The use of the model-building in parts (MTRP) strategy increased considerably
(effect size = 1.34). Students seemed to go back and forth between their concep-
tual model (to get the right framing) and the computational model (to implement
behaviors correctly) for the more complex diffusion model. In previous work, we
have shown that greater use of the MTRP strategy, interpreted as building the model
in parts, can be linked to more successful model-building and higher pre-post learn-
ing gains (Basu et al., 2017). Interestingly, students’ use of the tinkering strategy
became more refined and more effective, i.e., they were followed by more correct
computational model edits. However, the TK strategy was used less than in the
acceleration unit (effect-size ≈ 1.4). The complexity of the diffusion model may

3Most of the computed p-values were < 0.0001. Therefore, the correction did not change the results
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Table 4 Confusion matrix of the
breakdown of HG and LG
students vs. their post-test
performance

n=52 post-test low post-test high

gain low 18 6

gain high 7 21

have affected students’ performance (model scores) and their ability to apply more
advanced strategies.

A possible takeaway from these results is that novice learners need more support
to become effective strategy users. When faced with difficulties that impede their
progress in model building, students tend to use more trial-and-error and tinkering
strategies. However, a better approach is to decompose the complex tasks into smaller
sub-tasks to manage this complexity. Therefore, timely feedback in these situations
(as we demonstrated in Basu et al. (2017) may help students overcome their diffi-
culties and make more progress in their learning and model-building tasks. Overall,
this helps us answer RQ 2, i.e., students’ use of learning strategies evolved as they
worked on multiple modeling tasks.

Evaluating Strategy Use with Respect to the Learning Performance

Results presented in “Learning Performance: Domain and CT Learning Gains”
showed that the overall learning gains in the acceleration and diffusion unit were sig-
nificant (effect sizes of 0.43 and 0.9, respectively). Leveraging these results as well
as the identification and interpretation of common strategies through SPM (see “Stu-
dent’s Learning Strategies”), and to answer RQ 3, we study the relationship between
the use of strategies and students’ performance measured by (1) their overall learning
gains, and (2) their ability to build correct models.

We divided the 52 participants in the classroom study into two groups by their
performance: (1) a high learning-gain group (HG, n = 28) and (2) a low learning-
gain group (LG, n = 24). One of the primary results we show in this paper is the link
between the use of strategies and learning. To demonstrate this, we chose the pre-post
learning gains for the HG-LG division. We used a median split on the learning gains
derived from the pre-post test scores.4 We also show in Table 4 that if we performed
a median split on the post-test scores, 21 students with high post-test scores also had
high learning gains. Similarly, 18 students with low post-test scores had low learning
gains. A much smaller number, 6, students had high post-test test scores but low
learning gains. Correspondingly, 7 students were below the median scores on the
post-test, but their learning gains were high.

4The number of HG students is slightly larger because four students had the same learning gain as the
median and were assigned to HG.
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Table 5 Comparison of HG and LG student’s performance and behavior measures

Measure HG (Median [25%, 75%]) LG (Median [25%, 75%]) p-value Effect Size

Diffusion-gain 4 [3, 5] 0.5 [-1.25, 1] <0.0001 0.80

CT-gain 4.75 [-0.125, 8.125] 2.5 [-1, 6.25 ] 0.02 0.29

conceptual distance (Acc.) 4 [3.5, 4] 4 [2, 4] 0.08 0.20

computational distance (Acc.) 5.5 [2, 10] 5 [3, 11] 0.24 0.10

conceptual distance (Diff.) 10 [9.5, 10] 10 [10, 10] 0.45 0.02

computational distance (Diff.) 19 [16, 26] 26 [17.5, 31] 0.15 0.15

Measure HG time distribution LG time distribution p-value Effect Size

(M, SD) (M, SD)

Read 4% (7%) 3% (9%) 0.28 0.08

Conceptual Edit 24% (11%) 22% (9%) 0.56 0.03

Computational Edit 32% (11%) 33% (11%) 0.59 0.03

Run (test) 10% (9%) 8% (7%) 0.38 0.04

Comparison 14% (9%) 13% (7%) 0.87 0.06

dle 16% (7%) 20% (9%) 0.15 0.14

The upper half of Table 5 summarizes the differences in the performance measures
(learning gains in diffusion and CT, and the conceptual and computational model-
ing scores for the acceleration and diffusion units) for the HG and LG students.
Mann-Whitney U -tests were performed to check if the differences were statistically
significant. Table 5 shows that HG students had significantly higher learning gains in
the diffusion and CT pre-post tests. However, although the computational modeling
scores for the diffusion unit showed a meaningful imbalance in the baseline covari-
ance with effect sizes > 0.1 (Austin, 2009), the modeling score differences between
the HG and LG groups were not statistically significant.

To understand the performance gap in the test scores, we also computed the time
spent on the different CTSiM activities for the HG and LG students. The bottom
section of Table 5 shows the percentage of time that HG and LG students spent in
all five learning activities and their estimated idle time percentage. Overall, the large
p-values and small effect sizes indicate that the HG and LG students did not differ
by much in the time spent on the different learning and model-building activities.
The total time logged in the system by students in each group was also similar (HG
mean = 2746 seconds, LG mean = 3124 seconds, p = 0.14).

As a next step, we compared the strategies used by the two groups to see if they
may explain the difference in the students’ pre-post learning gains. To examine the
differences in strategy use by the HG and LG students, we ran the differential sequen-
tial mining algorithm (Kinnebrew et al., 2013) to extract the patterns that showed
sufficient differences between the two groups. Table 6 presents the mined patterns
for which the HG and the LG groups had statistically significant differences in the
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Table 6 Patterns with different support among HG and LG students

Pattern Strategy I-Support I-Support Effect
Type (HG) (LG) Size

1 SA run→SC computational-
EFF+→SC conceptual-EFF

SASC 1.14 0.58 0.55

2 SA run→SC computational-EFF+ SASC 0.71 0.38 0.50
3 SC conceptual-

EFF+→SC conceptual-EFF+
MSC 1.32 0.71 0.63

4 SC computational+→SA compare
→SC computational+

TK 0.14 0.88 1.06

5 SC computational-
EFF+→SC computational→
SC conceptual+→SC computational

MTPR 0.43 1.04 0.85

6 SC computational+→SC computational-
EFF+→SA compare→SC computational

TK 0.18 0.83 0.88

7 SC computational-
EFF+→SC computational+

MSC 0.39 1.17 0.97

i-support values for the diffusion unit. Similar to the results presented in Table 3, we
applied the False Discovery Rate adjustment to the p-values and verified that these
patterns were still statistically significant.

The patterns reported in Table 3 are divided into two groups: (1) patterns that HG
students performed more frequently than LG students, (2) patterns that LG students
performed more frequently.

The effect sizes for the two SASC patterns (#1 and #2) indicate that the HG stu-
dents were more successful in making corrections to their models after comparing
their model behavior to the expert model behavior. The SASC patterns capture stu-
dents debugging behaviors. Whereas the use of the SASC strategy did not seem to
result in a clear difference in the model scores between the two groups, the better
debugging behaviors may have led to the better domain and CT learning gains. On
the other hand, patterns #4−#6, which were performed more by the LG students
indicate continued unproductive tinkering (TK) behavior and the use of multiple rep-
resentations during model-building (MTPR). These students SC actions were mostly
not EFF (effective)) in improving their models. Therefore, the LG students did
not seem to learn the relevant domain and CT knowledge while working on their
model-building tasks.

Finally, both the HG and the LG students performed multiple SC behaviors (pat-
terns #3 and #7) indicating a depth-first strategy to model-building. Pattern #3, which
was performed more by the HG, shows that they were better at conceptualizing their
models than the LG students. Pattern #7 shows that the LG students were more likely
to make incorrect computational model edits even after they had made a few cor-
rect ones. Deficiencies in their domain and CT knowledge may have affected their
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model-building performance, and their inability to correct their models after run-
ning SA actions (Patterns #4−#6 as opposed to Patterns #1 and #2) made it harder
for them to build correct models and learn from their model-building tasks. Similar
issues of depth-first computational modeling behaviors have been reported in Grover
et al. (2016).

Discussion and Conclusions

This work extends the existing research on strategy analysis in open-ended learn-
ing environments (OELEs), and in particular, environments that are geared to the
learning-by-modeling paradigm. We have provided a systematic approach for the
modeling, detection, and interpretation of students’ learning strategies as they work
on their knowledge acquisition, model building, and problem-solving tasks. It adds
value to recent research that applies data-driven approaches to study strategy use
from traces of students’ learning activities (e.g., Gasevic et al., 2017; Fincham et al.,
2018; Whitelock-Wainwright et al., 2020; Matcha et al., 2019; Ahmad Uzir et al.,
2020). The focus of most of the reported work has been on studying undergradu-
ate students’ strategy use when video-watching in the context of flipped classrooms
(Gasevic et al., 2017; Fincham et al., 2018; Ahmad Uzir et al., 2020), information
processing using search tools and a concept map to support essay writing (Whitelock-
Wainwright et al., 2020), and learning software programming from MOOCs (Matcha
et al., 2019).

In contrast, the focus in this work has been on studying middle school students’
use of strategies in learning-by-modeling (that is how we use it elsewhere in the
paper) and problem-solving environments. Unlike undergraduate students, middle
school students (10-12-year-olds) are novices, just beginning to learn science and
computational concepts in a systematic way. Building and analyzing conceptual
and computational models in science domains by combining knowledge acquisition,
computational model building, and model checking is a complex task for these stu-
dents. As our study has demonstrated (“Students’ Strategy Use in the Acceleration
Unit”), not all students learn effective strategies as they are working in our envi-
ronments, and the ineffective strategy use affects students’ learning of domain and
computational constructs through model-building tasks (see Table 1 and Figs. 3 and
4). But students become better at using strategies as they progress through the cur-
riculum, and it is interesting to study how they develop and apply strategies that span
domain and CT learning to succeed in their tasks (“Students’ Strategy Use in the
Diffusion Unit”).

In summary, our current work provides (1) an operational definition of learn-
ing strategies in a learning-by-modeling environment where students are involved in
three primary activities: information acquisition, solution construction, and solution
assessment, and (2) the design and implementation of a framework to model, mea-
sure, and evaluate students’ learning strategies. A significant finding in our analysis is
that high-performing students were better at applying the SASC strategy to detect and



International Journal of Artificial Intelligence in Education

correct errors in their models by comparing their model behaviors against expert (i.e.,
correct) model behavior. Furthermore, tracking students’ behaviors from the accel-
eration to the diffusion unit showed how high-performing students’ debugging and
learning strategies evolved from tinkering to systematic checking. High-performers
interspersed model construction (SC) and model assessment (SA) actions, making
it easier for them to detect errors as they built their models in parts. On the other
hand, low-performing students continued to use tinkering strategies in the diffusion
unit. Evidence shows that there are correlational (not causal) links between system-
atic debugging ability and better understanding of the domain and CT knowledge in
high performing students. We would like to study these relations in greater detail in
future work.

This finding leads us to believe that students who struggle to apply effective
learning strategies may benefit from adaptive scaffolding to aid them in their model-
building and learning tasks. Initial studies with adaptive feedback on a few strategies
in the CTSiM system helped students become better learners (Basu et al., 2017).
In future work, we will develop targeted scaffolding and feedback to help students
develop effective model-building and model-debugging strategies. An important
component of this work will be to tease apart students’ difficulties with the domain
concepts and computational constructs and practices, and then guide them to using
strategies that will help them combine concepts and practices across these two
domains.

As discussed in the literature review, a significant amount of work has been done in
defining and characterizing strategies and explaining them in the context of students’
self-regulated learning behaviors. However, we also indicated limitations in the exist-
ing literature on learning strategies. In particular, we discussed three in “Problem
Statement”: (1) the grounding problem; (2) the generalizability problem; and (3) the
measurement problem.

In this work, we addressed the grounding problem by developing an operational
definition of strategies in the context of tasks that students perform when construct-
ing computational models to learn about scientific processes. We also addressed
the measurement problem by representing the student behaviors in a hierarchical
representation using Coherence Analysis and then apply sequential pattern mining
and differential sequential pattern mining approaches (Kinnebrew et al., 2013; Zaki,
2001) to understand students’ strategic behaviors in the context of the tasks they were
performing. The sequence mining approach differs from other related work that has
used clustering (e.g., Segedy et al. 2015a), MANOVA (e.g., Gillies 2003), and Hidden
Markov Model methods (e.g., Biswas et al., 2010; Boyer et al., 2011) to characterize
learning behaviors and strategies. In the work we present, our analysis of strategic
behaviors goes beyond discovering and labeling strategies as sequences of actions.
Rather, we have linked students’ use of strategies to their success in accomplishing
their model building and learning of domain knowledge.

Regarding the generalizability problem, we have shown examples of generaliz-
ability of this approach by demonstrating its applicability in two learning domains,
Betty’s Brain (past work) and CTSiM (current work). Currently, we are extending
the approaches presented in this paper to other computational modeling environ-
ments, such as C2STEM (Hutchins et al., 2020b) and SPICE (McElhaney et al., 2020;
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Zhang, 2020). We have also analyzed students’ strategy use when they learn cyber-
security concepts in a network programming environment (NetsBlox) (Yett et al.,
2020).

More generally, we would like to scale up our work and encourage other
researchers to adopt this framework in problem-based learning environments
(Hmelo-Silver, 2004). This would require applying cognitive task analysis (Schraa-
gen et al., 2000) and evidence-centered design (Mislevy et al., 2003) approaches
to create task subtask hierarchies as a framework for interpreting and analyzing
students’ activity sequences, much like we have done in this paper and in current
work with other systems (Hutchins et al., 2020a; Kinnebrew et al., 2017; Zhang,
2020). Similarly, the learning environment has to be designed to capture fine-grained
activity data and information that helps to interpret these actions in the context of
relevant subtasks and subproblems (Bernacki, 2017; Hadwin et al., 2007; Segedy
et al., 2015a). In addition to sequence mining (Zaki, 2001; Kinnebrew et al., 2014),
a number of analytics and machine learning methods have been applied for analyz-
ing activity trace data, e.g., Markov chain modeling (Zhang, 2020), Hidden Markov
models (Biswas et al., 2010; Boyer et al., 2011; Fincham et al., 2018), process min-
ing (Juhaňák et al., 2019; Maldonado-Mahauad et al., 2018), clustering methods
(Kovanović et al., 2015; Segedy et al., 2015b; Zhang et al., 2017), knowledge tracing
(Pelánek, 2017; Piech et al., 2015), and path analysis (Bernacki et al., 2012; Zhang
et al., 2020). In other words, data-driven methods for analyzing students’ strate-
gic learning behaviors is a very rich and fertile field that can contribute greatly to
next-generation intelligent learning environments.

Students’ development of productive strategies is a key factor in succeeding in
today’s technologically advanced workforce needs. Computer-based learning envi-
ronments, and specifically OELEs, provide the means for students to develop and
practice important learning and problem-solving strategies. Leveraging this frame-
work, future research can explore students’ strategy development and its’ impact on
learning and problem solving across different domain topics and problem solving
contexts. There are also fertile opportunities to exploit the identification and inter-
pretation of students’ strategies for the development of adaptive feedback to support
their learning and problem solving, especially when they face difficulties. Devel-
oping online methods can also aid teachers in noticing and responding to students’
conceptual understanding and problem-solving in context as part of their classroom
instruction.

Appendix

Example Domain and CT question items used in the pre-post tests. Figure 5 shows
a test item in the acceleration pre-post test. It was adapted from the Force Concept
Inventory (Hestenes et al., 1992). Figure 6 is question 6 in the diffusion pre-post test
adapted from Chi et al.’s work targeting the common misunderstanding of particle
diffusion (Chi et al., 2012). Figures 7 and 8 target on the CT concepts of variable,
sequence, Boolean logic, and conditionals. The items in the CT test come from Basu
et al.’s work (Basu et al., 2017).
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Fig. 5 Question 1 in the acceleration unit pre-post test
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Fig. 6 Question 2 in the diffusion unit pre-post test

Fig. 7 Question 2 in the CT pre-post test
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Fig. 8 Question 3 in the CT pre-post test
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Käser, T., & Schwartz, D. L. (2020). Modeling and analyzing inquiry strategies in open-ended learning
environments. International Journal of Artificial Intelligence in Education, 30(3), 504–535.

Kinnebrew, J. S., Loretz, K. M., & Biswas, G. (2013). A contextualized, differential sequence mining
method to derive students’ learning behavior patterns. JEDM— Journal of Educational Data Mining,
5(1), 190–219.

Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2014). Analyzing the temporal evolution of students’
behaviors in open-ended learning environments. Metacognition and learning, 9(2), 187–215.

Kinnebrew, J. S., Segedy, J. R., & Biswas, G. (2017). Integrating model-driven and data-driven tech-
niques for analyzing learning behaviors in open-ended learning environments. IEEE Transactions on
Learning Technologies, 10(2), 140–153. https://doi.org/10.1109/TLT.2015.2513387.
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