
ICLS 2021 Proceedings 334 © ISLS 

 

 

analysis indicated a moderate but significant correlation between the pictorial representation and Rule-based 
conceptual model scores (r = 0.35, p = 0.0007, n = 90), but a small non-significant correlation between Rule- 
based model and Computational Model scores (r = 0.19, p = 0.13, n = 62), implying the relation may not be linear. 
We observed that 68% of the students had correctly working computational models and 92% implemented the 
three conditions correctly. These results suggest that students’ understanding of the runoff system improved upon 
constructing their computational models (though some students received help from the teachers or the researchers 
when constructing their models). For a deeper evaluation of students’ modeling processes over time, we present 
contrasting vignettes for three students. Each student’s final computational model is shown in Figure 3. 
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Figure 3. Final code for Alex (a), Marley (b), and Taylor (c). 

Student 1: Strongly integrated science and CT 
We selected Alex (name altered) for their strong performance on the pre-post assessment and curricular activities. 
On the pre-post assessment, Alex’s score improved from 17.5 to 20 on the science and engineering assessment 
and from 10 to 13 and on the CT assessment. 

During the conceptual modeling task, Alex correctly modeled each rule and demonstrated mechanistic 
understanding of conservation of matter. In response to the prompt to model water flow for 3 inches of rainfall 
and a 1inch absorption limit, Alex wrote: “1 inch of that gets absorbed into the ground and since that’s the 
absorption limit, the rest of the two inches becomes runoff.” This response indicated that Alex correctly calculated 
the runoff and total absorption based on the absorption limit and total rainfall and correctly described the process 
and mechanistic causal relations. 

Alex’s conservation of matter knowledge transferred to the Rule Creation task, where they could 
correctly define each rule (both the conditions and the output) via descriptive written responses. For example, in 
describing the “greater than” rule, Alex wrote: “If the total rainfall is greater than absorption limit, set absorption 
to absorption limit, set total runoff to total rainfall﹣absorption.” This also translated to their building the correct 
computational model for a score of 15 out of 15. As shown in Figure 3(a), Alex correctly built each condition 
(lines 4, 7 and 10) and set each variable in the correct location and in a generalizable form (e.g., for the greater 
than condition (lines 4-6), the student calculated total runoff using the subtraction operator and used the variables 
total rainfall and total absorption, after setting total absorption to the absorption limit). Using our conceptual 
framework (Figure 1), Alex’s learning trajectory is illustrated in Figure 4. 
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Figure 4. Alex’s learning trajectory. 

Student 2: Conservation of matter difficulties, high CT proficiency 
Marley demonstrated pre-post CT learning gains (improving from a score of 6 to 8), but Marley’s science and 
engineering scores decreased from pre-to-post (from 14 to 11). These results are consistent with Marley’s 
trajectory from conceptual to computational model as described below. 

Marley appeared to have difficulties implementing the conservation relation during the conceptual 
modeling task. For instance, when illustrating what happens when rainfall is less than the absorption limit, Marley 
indicated an absorption total greater than the total rainfall and stated “it absorbs more rainfall than actual rain” 
indicating a potential confusion about total absorption and absorption limit. During the Rule Creation task, Marley 
showed knowledge of conditional logic, providing a written response addressing each condition (e.g., “If total 
rain = absorption [limit]”); however, they did not correctly define the outputs for each rule indicating they did 
not fully understand the conservation law. Marley’s ability to apply conditional logic translated to the 
computational modeling task. Their final computational model (Figure 3b) shows that Marley eventually built 
correct conditional blocks for two rules (lines 4-6 and 7-9), but struggled with the condition where rainfall exceeds 
the absorption limit (lines 10-12), thus receiving a score of 12 out of 15. 

These results indicate that Marley leveraged conditional logic understanding to support the translation 
of the conservation of matter concepts into computational form (e.g., decomposing the code into conditional parts 
and then constructing blocks needed for each output). However, difficulties in the science domain may have 
limited their ability to correctly build and debug the model. Marley’s learning trajectory is illustrated in Figure 5. 
While they demonstrated CT proficiency, the persistence of their struggles with the conservation law affected 
their ability to construct the correct computational model. 

 

Figure 5. Marley’s learning trajectory. 

Student 3: Conservation of matter progress, but difficulties with CT integration 
Taylor earned a relatively low score on the pre-assessment, but did achieve pre-post gains in both science and 
engineering (improving from 11.5 to 14.5) and CT (improving from 5 to 8). During the conceptual modeling task, 
Taylor demonstrated a numerical understanding of the conservation of matter rules. Taylor correctly determined 
the total absorption and calculated the runoff based on a prompt of a total rainfall of 3 inches and an absorption 
limit of 1 inch. In their description, Taylor wrote “the cloud rained 3 inches and the ground absorbed 1 and others 
become runoff.” This description does indeed include all needed variables, but does not describe the mechanistic 
reasoning behind why or how to calculate the runoff. However, for the Rules Creation task, Taylor was able to 
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correctly define each rule condition and successfully calculate absorption and runoff for each rule, demonstrating 
an improved ability to apply the central matter conservation relationship. 

The computational modeling task appeared to be difficult for Taylor. Although the science task indicated 
their ability to correctly apply domain knowledge, Taylor had difficulties translating that knowledge to a 
computational form. As illustrated in Figure 3(c), Taylor tried multiple arrangements of conditional blocks, 
including an if-block in which the expression was set to a “total absorption ﹣total rainfall” expression (line 7) 
inside of the if-block for the greater than condition (line 6). Taylor’s computational model received a score of 5 
out of 15. these code snippets indicate that Taylor understood how to create if-blocks for each rule condition (e.g., 
total rainfall is greater than absorption limit); however, they seemed unable to translate their domain knowledge 
to correctly assign variables (e.g., total runoff), debug, or correct their code. 

Figure 6. Taylor’s learning trajectory. 

Interestingly, after being shown the expert computational model and completing the remainder of the 
tasks, Taylor demonstrated learning gains in both the science and engineering and CT components, illustrating 
the potential for computational science modeling to help contextualize difficult CT concepts (e.g., conditional 
logic). Although they were not able to achieve a working computational model on their own, Taylor’s successes 
in prior domain-knowledge application and usage of the model to problem-solve suggest improvements in their 
CT knowledge and skill. Taylor’s final learning trajectory is shown in Figure 6. 

 
Discussion and future implications 
The overarching goal of our analysis is to develop linked model representations to scaffold students’ 
computational models in science and understand how students transition across model representations to identify 
situations where they may have difficulties. This is especially critical in the context of integrated science and CT 
instruction and serves to disentangle the contributions of each domain and determine how students apply science 
and CT knowledge across model representations. Leveraging our conceptual framework (Figure 1), our analysis 
examines the impact of science domain knowledge on CT applications (and vice versa). Overall results showed 
that while there was a strong correlation between the conceptual model and the rule-based model, there was not a 
strong correlation between the rule-based model and the computational model, indicating additional personalized 
support may be needed for the more complex computational modeling task. For instance, although Marley was 
unable to correctly apply the conservation of matter rules during the conceptual modeling and rule creation tasks, 
their CT abilities guided them to an almost complete computational model and a high CT posttest score. 
Alternatively, Taylor indicated improvements in science, but demonstrated difficulties in translating that 
knowledge to a computational form. In these cases, using the curriculum design and student performance, we can 
identify the science and CT specific supports needed by the student in the computational modeling environment, 
and help students develop successful learning-by-modeling trajectories. In addition, these results align with other 
research findings that CT can serve as a vehicle for learning STEM concepts, but limitations in domain 
understanding may also impede computational model construction (cf. Sengupta et al., 2013). In terms of 
curriculum design, the majority of students indicated some proficiency in developing if-blocks in the 
computational model corresponding to the rules created in the Rules task. We believe this finding highlights a 
successful implementation of our coherence principle to support the transition from conceptual to computational 
modeling. 

As schools move toward increased integration of computation in K-12 STEM classrooms, the learning 
sciences community must advance its understanding of the learning processes and support needs of students. Our 
analysis provides an exploratory step in identifying such cases, deepening understanding of how students integrate 
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domain and CT knowledge for the development of multiple modeling representations. The identification of 
domain-specific instances of support along the learning trajectory may be supportive of more personalized 
(individual or group) feedback by the system or teacher. In addition, to promote student learning, our curriculum 
design approach and the coherence among modeling representations provide a systematic framework for 
evaluating applications of science and CT concepts over time. We believe this approach can inform curriculum 
design and scaffolding approaches that deepen understanding of how the domains are integrated, how students 
translate that knowledge to new representations, and where students may need additional support. Further research 
in applying our approach to other domains may support generalizability. 
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