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Abstract

We consider the problem of estimating a func-
tion from n noisy samples whose discrete Total
Variation (TV) is bounded by Cn. We reveal a
deep connection to the seemingly disparate prob-
lem of Strongly Adaptive online learning (Daniely
et al., 2015) and provide an O(n log n) time al-
gorithm that attains the near minimax optimal
rate of Õ(n1/3C

2/3
n ) under squared error loss.

The resulting algorithm runs online and optimally
adapts to the unknown smoothness parameter Cn.
This leads to a new and more versatile alterna-
tive to wavelets-based methods for (1) adaptively
estimating TV bounded functions; (2) online fore-
casting of TV bounded trends in time series.

1 Introduction

Total variation (TV) denoising (Rudin et al., 1992) is a clas-
sical algorithm originated in the signal processing commu-
nity which removes noise from a noisy signal y by solving
the following regularized optimization problem

min
f
‖f − y‖22+λTV(f).

where TV(·) denotes the total variation functional which is
equivalent to

∫
|f ′(x)|dx for weakly differentiable functions.

In discrete time, TV denoising is known as “fused lasso” in
the statistics literature (Tibshirani et al., 2005; Hoefling,
2010), which solves

min
θ∈Rn

n∑
i=1

(θi − yi)2 + λ

n∑
i=2

|θi − θi−1|. (1)

where θi is the element at index i of the vector θ. Un-
like their L2-counterpart, the TV regularization functional

Proceedings of the 24th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2021, San Diego, California,
USA. PMLR: Volume 130. Copyright 2021 by the author(s).

is designed to promote sparsity in the number of change
points, hence inducing a “piecewise constant” structure in
the solution.

Over the three decades since the advent of TV denoising,
it has seen many influential applications. Algorithms that
use TV-regularization has been deployed in every cellphone,
digital camera and medical imaging devices. More recently,
TV denoising is recognized as a pivotal component in gener-
ating the first image of a super massive black hole (Akiyama
et al., 2019). Moreover, the idea of TV regularization has
inspired a myriad of extensions to other tasks such as image
debluring, super-resolution, inpainting, compression, ren-
dering, stylization (we refer readers to a recent book (Cham-
bolle et al., 2010) and the references therein) as well as other
tasks beyond the context of images such as change-point
detection, semisupervised learning and graph partitioning.

In this paper, we focus on the non-parametric statistical
estimation problem behind TV-denoising which aims to
estimate a function f : [0, 1]→ R using observations of the
following form:

yi = f(xi) + εi, i ∈ [n] := {1, . . . , n},

where εi are iid N(0, σ2) and the function f belongs to
some fixed non-parametric function classF . The exogenous
variables xi belongs to some subsetX of R. The above setup
is a widely adopted one in the non-parametric regression
literature (Tsybakov, 2008). In this work, we take F to be
the Total Variation class: {f |TV(f) ≤ Cn} or its discrete
counterpart

F(Cn) :=

{
f

∣∣∣∣ n∑
t=2

|f(xt)− f(xt−1)|≤ Cn
}
.

We are interested in finding algorithms that generate esti-
mates ŷt, t ∈ [n] such that the total square error

Rn(ŷ, f) :=

n∑
t=1

E[(ŷt − f(xt))
2],

is minimized. Throughout this paper, when we refer to
rate, we mean the growth rate of Rn as a function of n
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and Cn. The family F(Cn) we consider here features a
rich class of functions that exhibit spatially heterogeneous
smoothness behavior. These functions can be very smoothly
varying in certain regions of space, while in other regions,
it can exhibit fast variations (see for eg. Fig. 5) or abrupt
changes that may even be discontinuous. A good estimator
should be able to detect such local fluctuations (which can
be short lived) and adjust the amount of “smoothing” to
apply according to the level of smoothness of the functions
in each local neighborhood. Such estimators are referred
as locally adaptive estimators by Donoho (Donoho et al.,
1998).

We are interested in algorithms that achieve the minimax
optimal rates for estimating functions in F(Cn) defined as:

R∗n(Cn) = inf
{ŷt}nt=1

sup
f∈F(Cn)

Rn(ŷ, f),

which is known to be Θ(n1/3C
2/3
n )(Donoho et al., 1990;

Mammen, 1991).

There is a body of work in Strongly Adaptive online learn-
ing that focuses on designing online algorithms such that
its regret in any local time window is controlled (Daniely
et al., 2015). Hence the notion of local adaptivity is built
into such algorithms. This makes the problem of estimating
TV bounded functions, a natural candidate to be amenable
to techniques from Strongly Adaptive online learning. How-
ever, it is not clear that whether using Strongly Adaptive
algorithms can lead to minimax optimal estimation rates. By
formalizing the intuition above, we answer it affirmatively
in this work.

We reserve the phrase adaptive estimation to describe the
act of estimating TV bounded functions such that Rn of
the estimator/algorithm can be bounded by a function of n
and Cn without any prior knowledge of Cn. An adaptively
optimal estimator ŷ is able to estimate an arbitrary function
f with an error

Rn(ŷ, f) = Õ
(

inf
Cn such that f∈F(Cn)

R∗n(Cn)
)
.

A TV bounded function will be referred as a Bounded Varia-
tion (BV) function henceforth for brevity.The notation Õ(·)
hides poly-logarithmic factors of n.

It is well known that all linear estimators that output a lin-
ear transformation of the observations attain a suboptimal
Ω(
√
nCn) rate (Donoho et al., 1990). This covers a large

family of algorithms including the popular methods based
on smoothing kernels, splines and local polynomials, as well
as methods such as online gradient descent (see a recent dis-
cussion from Baby and Wang, 2019). Wavelet smoothing
(Donoho et al., 1998) is known to attain the near minimax
optimal rate of Õ(n1/3C

2/3
n ) for Rn without any prior in-

formation about Cn. Recently the same rate is shown to
be achievable for the online forecasting setting by adding a

wavelets-based adaptive restarting schedule to OGD (Baby
and Wang, 2019).

In this paper, we provide an alternative to wavelet smoothing
by a novel reduction to a strongly adaptive regret minimiza-
tion problem from the online learning literature. We show
that the resulting algorithm achieves the same adaptive opti-
mal rate of Õ(n1/3C

2/3
n ). The algorithm is more versatile

than wavelet smoothing for three reasons:

1. Our algorithm is based on aggregating experts that
performs local predictions. The experts we use per-
form online averaging. However, one may use more
advanced algorithms such as kernel/spline smooth-
ing, polynomial regression or even deep learning ap-
proaches as experts that can potentially lead to better
performance in practice. Hence our algorithm is highly
configurable.

2. Our algorithm accepts a learning rate parameter that
can be set without prior knowledge of Cn to obtain
the near optimal rate of Õ(n1/3C

2/3
n ) (see Theorem

5). However, this learning rate can also be tuned using
heuristics that can lead to better practical performance
(see Section 5).

3. It can also handle a more challenging setting where the
data are streamed sequentially in an online fashion.

To the best of our knowledge, we are the first to formalize the
connection between strongly adaptive online learning and
the problem of local-adaptivity in nonparametric regression.
By establishing this new perspective, we hope to encourage
further collaboration between these two communities.

1.1 Problem Setup

Though we are primarily motivated to solve the offline/batch
estimation problem, our starting point is to consider a sig-
nificant generalization of the batch problem as shown in Fig.
1. Any adaptively optimal algorithm to this online game
immediately implies adaptive optimality in the batch/offline
setting. For example, to solve the batch problem, adversary
can be thought of as revealing the indices isotonically, i.e
it = t. However, note that in the online game, adversary
can even query the same index multiple times. The term
“forecasting strategy” in step 1 of Fig. 1, is used to mean an
algorithm that makes a prediction at current time point only
based on the historical data.

Solving the online problem has an added advantage that
the resulting algorithm can be applied to various instances
of time series forecasting like financial markets, spread of
contagious disease etc.

Assumption 1 |f(xi)|≤ B, ∀i ∈ [n] for some known B.

Though this constraint is considered to be mild and natural,
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1. Player (we) declares a forecasting strategy

2. Adversary chooses an X = {x1 < x2 < . . . < xn}
and reveals it to the player.

3. Adversary chooses f(x1), . . . , f(xn) such that∑n
t=2|f(xt)− f(xt−1)|≤ Cn.

4. Adversary fixes an ordered set {i1, . . . , in} where
each ij ∈ [n].

5. For every time point t = 1, ..., n:

(a) Adversary reveals it.
(b) We play ŷt.
(c) We receive a feedback yt = f(xit) + εt,

where εt is N(0, σ2).
(d) We suffer loss (ŷt − yt)2

6. Our goal is to minimize
∑n
t=1 E[(ŷt − f(xit))

2].

Figure 1: Online interaction protocol

we note that standard non-parametric regression algorithms
do not make this assumption.

1.2 Notes on novelty and contributions

To the best of our knowledge, in non-parametric regression
literature, only wavelet smoothing 1 (Donoho et al., 1998)
is able to provably attain a near optimal Õ(n1/3C

2/3
n ) rate

for estimating BV functions in batch setting without know-
ing the value of Cn. There are model-selection techniques
based on information-criterion, which often either incurs
significant practical overhead or comes with no optimal rate
guarantees (We will review these approaches in Section 1.3).

The contributions of this work is mainly theoretical. Our
primary result is a novel reduction from the problem of esti-
mating BV functions to Strongly Adaptive online learning
(Daniely et al., 2015). This reduction approach results in
the development of a new O(n log n) time algorithm that is:
1) minimax optimal (modulo log factors) 2) adaptive to Cn
and 3) can be used to tackle both online and offline estima-
tion problems thereby providing new insights. To elaborate
slightly, this is facilitated by few fundamentally different
viewpoints than those adopted in the wavelet literature. In
particular, we exhibit a specific partitioning of TV bounded
function into consecutive chunks that incurs low total varia-
tion such that total number of chunks isO(n1/3C

2/3
n ). Then

by designing a strongly adaptive online learner, we ensure
an Õ(1) cumulative squared error in each chunk of that
partition. This immediately implies an estimation error rate
of Õ(n1/3C

2/3
n ) when summed across all chunks. To the

best of our knowledge, this is the first time a connection
1Though (Baby and Wang, 2019) proposes a minimax policy

for forecasting TV bounded sequences online, they heavily rely on
the adaptive minimaxity of wavelet smoothing.

between strongly adaptive online learning and estimating
BV functions has been exploited in literature.

Experimental results (see Section 5) indicate that our algo-
rithm can outperform wavelet smoothing in terms of its cu-
mulative squared error incurred in practice. We demonstrate
that the proposed algorithm can be used without any hyper-
parameter tuning and incurs very low computational over-
head in comparison to model selection based approaches for
the fused lasso problem (see Eq. (1)).

Before closing this section, we remind the reader that this
work shouldn’t be viewed only as providing yet another
solution to a classical problem but rather one that provides a
fundamentally new set of tools that adds new insight to this
decades-old problem that might have a profound impact in
many extensions of the basic setting we consider and other
downstream tasks such as estimating higher-dimensional
BV functions, fused lasso on graphs, image deblurring, trend
filtering and so on.

1.3 Related Work

As noted before, the theoretical analysis of estimating
BV functions is well studied in the rich literature of non-
parametric regression. Apart from wavelet smoothing
(Donoho et al., 1990; Donoho and Johnstone, 1994a,b;
Donoho et al., 1998), many algorithms such as Trend Filter-
ing (Kim et al., 2009; Tibshirani, 2014; Wang et al., 2016;
Sadhanala et al., 2016; Guntuboyina et al., 2017) and lo-
cally adaptive regression splines (Mammen and van de Geer,
1997) can be used for estimation. However, one drawback
of these algorithms is that they require the TV of ground
truth Cn as an input to the algorithm to guarantee minimax
optimal rates. For example, the solution to fused lasso (Eq.
(1)) is minimax optimal only when one chooses the hyper-
parameter λ optimally. It is shown in (Wang et al., 2016)
that optimal choice of λ depends on the variational budget
Cn which may be unknown beforehand.

Theoretically one may tune the choice Cn (or λ) as a hyper-
parameter using criteria like AIC, BIC, Stein-Unbiased Risk
Estimate (SURE)-based approaches or the use techniques
presented in (Birge and Massart, 2001). However, such
model selection based schemes often have statistical or com-
putational overheads that make them impractical. The most
relevant is the effective degree of freedom (dof) approach
(See Eq.(8) and Eq.(9) in (Tibshirani and Taylor, 2012)). It
requires solving fused lasso with many λ (computational
overhead). The estimate of dof is unstable in some regimes
(statistical overhead). Generally, these methods may work
well in practice but often do not come with theoretical guar-
antees of adaptive optimality. Moreover, we are not aware
of any such model-selection technique that can solve the
online version of the problem.

There is also a body of work that focuses on the computation
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of solving problem (1) and their higher-dimensional exten-
sions (see (Chambolle and Lions, 1997; Barbero and Sra,
2011), and the excellent survey therein). This is comple-
mentary to our focus, which is to minimize the error against
the (unobserved) ground truth. Computationally, (Johnson,
2013)’s dynamic programming has a worst-case O(n) time-
complexity, but only for a fixed λ. Our algorithm runs in
O(n log n)-time while avoids choosing the λ parameter all
together.

The closest to us is perhaps (Baby and Wang, 2019) which
indeed has motivated this work. They consider an online
protocol similar to Fig. 1 with the adversary constrained
to reveal the indices it isotonically (i.e it = t) and propose
an adaptive restart scheme based on wavelets. However
such techniques are not useful to compete against a more
powerful adversary which can query indices in any arbitrary
manner — for example when the exogenous variables x ∈
X are sampled iid from a distribution and revealed online.
Further, their proof critically relies on adaptive minimaxity
of wavelets. We aim to build a radically new algorithm that
is agnostic to the results from wavelet smoothing literature.

A strongly adaptive online learner (Daniely et al., 2015;
Adamskiy et al., 2016), incurs low static regret in any inter-
val. This is accomplished by maintaining a pool of sleeping
experts that are static regret minimizing algorithms which
are awake only in some specific duration. Then an aggrega-
tion strategy to hedge over the experts is used to guarantee
low regret in any interval. This work was preceded by the
notion of weakly adaptive regret in (Hazan and Seshadhri,
2007). To the best of our knowledge, the efficient reduction
of TV-denoising to strongly-adaptive online learning is new
to this paper. We defer further discussions on related work
to Appendix A.

2 Preliminaries

In this section, we briefly review the elements from online
learning literature that are crucial to the development of our
algorithm.

2.1 Geometric Cover

Geometric Cover (GC) proposed in (Daniely et al., 2015)
is a collection of intervals that belong to N defined below.
In what follows [a, b] denotes the set of natural numbers lie
between a and b, both inclusive.

I =
⋃

k∈N∪{0}

Ik,

where ∀k ∈ N ∪ {0}, and Ik = {[i · 2k, (i+ 1) · 2k − 1] :
i ∈ N}. Define AWAKE(t) := {I ∈ I : t ∈ I}.By the
construction of Geometric Cover I, it holds that

|AWAKE(t)|= blog tc+ 1. (2)

Let’s denote I|J := {I ∈ I : I ⊆ J} for an interval J ⊆ N.
The GC has a very nice property recorded in the following
Proposition.

Proposition 1. (Daniely et al., 2015) Let I = [q, s] ⊆
N. Then the interval I can be partitioned into two finite
sequences of disjoint consecutive intervals (I−k, . . . , I0) ⊆
I|I and (I1, . . . , Ip) ⊆ I|I such that,

|I−i|
|I−i+1|

≤ 1

2
,∀i ≥ 1 and

|Ii|
|Ii−1|

≤ 1

2
,∀i ≥ 2.

2.2 Sleeping Experts and Specialist Aggregation
Algorithm (SAA)

In the problem of learning from expert advice with outcome
space O and action space A, there are K experts who pro-
vide a list of actions at,: = [at,1, ..., at,K ] ∈ AK at time
t = 1, ..., n. The learner is supposed to takes an action
at ∈ A based on the expert advice2 before the outcome
ot ∈ O is revealed by an adversary. The player then incurs
a loss given by `(at, ot), where ` is a loss function.

In the most basic setting, A,O are discrete sets, ` can be
described by a table, and we assign one constant expert to
each a ∈ A, then this becomes an online version of Von
Neumann’s linear matrix game. More generally, A can be
a convex set, describing parameters of a classifier, o ∈ O
could denote a feature-label pair in which case the loss
could be a square loss or logistic loss that measures the
performance of each classifier.

Our result leverages a variant of the learning from expert
advice problem which assumes an arbitrary subset of K
experts might be sleeping at time t and the learner needs to
compete against an expert only during its awake duration.
The learner chooses a distributionwt over the awake experts
and plays a weighted average over the actions of those awake
experts. It then incurs a surrogate-loss called “MixLoss”
which is a measure of how good the distribution wt is.
(See Figure 2 for details.) This setting is different from
the classical prediction with experts advice problem in two
aspects: 1) The adversary is endowed with more power
of selecting an awake expert set in addition to the actual
outcome ot at each round. 2) Instead of the loss `(at, ot),
the learner is incurred a surrogate loss on the distribution
chosen by the learner at time t.

Consider the protocol of learning with sleeping experts
shown in Fig. 2. Assume an expert pool of size K.

Lemma 2. (Adamskiy et al., 2016) Regret Rjn of SAA (Fig.
3) w.r.t. any fixed expert j ∈ [K] satisfies,

Rjn :=
∑
t∈[n]

1{j ∈ At}

(
− log(

∑
k∈At

wt,ke
−`t,k)− `t,j

)
≤ logK,

2Could be at,k for some k ∈ [K] or any other points in A
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For t = 1, . . . , n

1. Adversary picks a subset At ⊂ [K] of awake experts.

2. Learner choose a distribution wt over At.

3. Adversary reveals loss of all awake experts,
`t ∈ (−∞,∞]|At|.

4. Learner suffers MixLoss:
− log(

∑
k∈At

wt,ke
−`t,k).

Figure 2: Interaction protocol with sleeping experts. The
expert pool size is K.

Initialize u1,k = 1/|S| for all k in an index set S used to
index the expert pool.
For t = 1, . . . , n

1. Adversary reveals At ⊆ S.

2. Play weighted average action wrt distribution:
wt,k =

ut,k1{k∈At}∑
j∈At

ut,j
.

3. Broadcast the weights wt,k.

4. Receive losses `t,k for all k ∈ At.

5. Update:

• ut+1,k =
ut,ke

−`t,k∑
j∈At

ut,je
−`t,j

∑
j∈At

ut,j

if k ∈ At.
• ut+1,k = ut,k if k /∈ At.

Figure 3: Specialist Aggregation Algorithm (SAA).

where 1{·} is the indicator function, `t,k := L(at,k, ot) and
at,k is the action taken by expert k at time t.

Note that `t,j = MixLoss(ej) where ej selects j with prob-
ability 1. The regret measures the performance of the learner
against any fixed expert in terms of the MixLoss in the sub-
sequence where she is awake.

Definition 3. L(a, x) is η exp-concave in a for each x if∑K
k=1 wke

−ηL(ak,x) ≤ e−ηL(
∑K

k=1 wkak,x), for wk ≥ 0

and
∑K
k=1 wk = 1.

A MixLoss regret bound is useful because it implies a regret
bound on any exp-concave losses for learners playing the
weighted average action at =

∑
k∈At

wt,kat,k. To see this,
let L′(a, o) be η exp-concave in its first argument a ∈ A.
By the definition of exp-concavity it follows that if SAA is
run with losses L(a, o) = ηL′(a, o), then,

∑
t∈[n]:j∈At

(
ηL′

(∑
k∈At

wt,kat,k , ot

)
− ηL′(at,j , ot)

)
≤ Rj

n,

where at,k is the action taken by expert k at time t.

We refer to Chapter 3 of (Cesa-Bianchi and Lugosi, 2006)
and (Adamskiy et al., 2016) for further details on SAA.

3 Main Results

In this section, we present our algorithm and its performance
guarantees.

3.1 Algorithm

As noted in Section 1, our goal is to explore the possibility
that a Strongly Adaptive online learner can lead to minimax
optimal estimation rate. Consequently the algorithm that we
present is a fairly standard Strongly Adaptive online learner
that can guarantee logarithmic regret in any interval.

Our algorithm ALIGATOR (Aggregation of onLIne av-
eraGes using A geomeTric cOveR) defined in Fig.4 can
be used to tackle both online and batch estimation problems.
The policy is based on learning with sleeping experts where
expert pool is defined as follows.
Definition 4. The expert pool is E = {AI : I ∈ I|[n]},
where I|[n] is as defined in Section 2.1 and AI is an al-
gorithm that perform online averaging in interval I . Let
AI(t) denote the prediction of the expert AI at time t, if
I ∈ AWAKE(t).

Due to relation (2), we have |E|≤ n log n. Our policy basi-
cally performs SAA over E .

ALIGATOR:Inputs - time horizon n, learning rate η

1. Initialize SAA weights u1,I = 1/|E|,∀I ∈ I|[n].

2. For t = 1 to n:

(a) Adversary reveals an arbitrary xit ∈ X .
(b) Let At = AWAKE(it). Pass At to SAA.
(c) Receive wt,I from SAA for each I ∈ At.
(d) Predict ŷt =

∑
I∈At

wt,IAI(t).
(e) Receive yt = f(xit) + εt.
(f) Pass losses `t,I = η(yt −AI(t))2,

for each I ∈ At to the SAA.

Figure 4: The ALIGATOR algorithm

The precise definition of AI(t) used in our algorithm is

AI(t) =

{∑t−1
s=1 ys1{is∈I}∑t−1
s=1 1{is∈I}

if
∑t−1
s=1 1{is ∈ I} > 0

0 otherwise

where is is the index of the exogenous variable xis in step
2(a) of Fig. 4. This particular choice of experts is moti-
vated by the fact that performing online averages lead to
logarithmic static regret under quadratic losses. As shown
later, this property when combined with the SAA scheme
leads to logarithmic regret in any interval of [n].
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3.2 Performance Guarantees

Theorem 5. Consider the online game in Fig. 1. Under
Assumption 1, with probability atleast 1 − δ, ALIGATOR
forecasts ŷt obtained by setting η = 1

8
(
B+σ
√

log(2n/δ)
)2 ,

incurs a cumulative error

n∑
t=1

(ŷt − θt)2 = Õ(n1/3C2/3
n ),

where Õ(·) hides the dependency of constants B, σ and
poly-logarithmic factors of n and δ.

Proof Sketch. We first show that ALIGATOR suffers loga-
rithmic regret against any expert in the pool E during its
awake period. Then we exhibit a particular partition of
the underlying TV bounded function such that number of
chunks in the partition is O(n1/3C

2/3
n ) (Lemma 3 in Ap-

pendix B). Following this, we cover each chunk with atmost
log n experts and show that each expert in the cover suffers
a Õ(1) estimation error. The Theorem then follows by sum-
ming the estimation error across all chunks of the partition.
In summary, the delicate interplay between Strongly Adap-
tive regret bounds and properties of the partition we exhibit
leads to the adaptively minimax optimal estimation rate for
ALIGATOR.

Remark 6. We note that under the above setting, ALI-
GATOR is minimax optimal in n and Cn, and adaptive to
unknown Cn.

Remark 7. If the noise level σ is unknown, it can be ro-
bustly estimated from the wavelet coefficients of the observed
data by a Median Absolute Deviation estimator (Johnstone,
2017). This is facilitated by the sparsity of wavelet coeffi-
cients of BV functions .

Remark 8. In the offline problem where we have access to
all observations ahead of time, the choice of η = 1/(8ν̂2)
where ν̂ = max{|y1|, . . . , |yn|} results in the same near
optimal rate for Rn as in Theorem 5. This is due to the
fact that B + σ

√
log(2n/δ) is nothing but a high probabil-

ity bound on each |yt|. Hence we don’t require the prior
knowledge of B and σ for the offline problem.

Remark 9. The authors of (Donoho et al., 1998) use the
error metric given by the L2 function norm in a compact in-

terval [0, 1] defined as
∫ 1

0

(
f̂(x)− f(x)

)2
dx in an offline

setting, where f̂(x) is the estimated function. A common
observation model for non-parametric regression considers
xit = t/n (Tibshirani, 2014). When xit = t/n, ALIGATOR

guarantees that the empirical norm 1
n

∑n
t=1 (ŷt − f(t/n))

2

decays at the rate of Õ
(
n−2/3C

2/3
n

)
. For the TV class, it

can be shown that the empirical norm and the function
norm are close enough such that the estimation rates do not
change (see Section 15.5 of (Johnstone, 2017)).

Remark 10. Note that conditioned on the past observations,
the prediction of ALIGATOR is deterministic in each round.
So in the online setting, we can compete with an adversary
who chooses the underlying ground truth in an adaptive
manner based on the learner’s past moves. With such an
adaptive adversary, it becomes important to reveal the set
of covariates X ahead of time. Otherwise there exists a
strategy for the adversary to choose the covariates xit that
can enforce a linear growth in the cumulative squared error.
We refer the readers to (Kotłowski et al., 2016) for more
details about such adversarial strategy.

Proposition 11. The overall run-time of ALIGATOR is
O(n log n).

Proof. On each round |AWAKE(t)| is O(log n) by (2).
So we only need to aggregate and update the weights of
O(log n) experts per round which can be done in O(log n)
time.

4 Extensions

Motivated from a practical perspective, we discus two direct
extensions to ALIGATOR below. These extensions highlight
the versatility of ALIGATOR in adapting to each application.

Hedged ALIGATOR. In our theoretical results, we found
that choosing learning rate η conservatively according to
Theorem 5 or Remark 8 ensures the minimax rates. In
practice, however, one could use larger learning rates to
adapt to the structure of every input sequence.

We propose to use a hedged ALIGATOR scheme that ag-
gregates the predictions of ALIGATOR instantiated with
different learning rates. In particular, we run differ-
ent instances of ALIGATOR in parallel where an in-
stance corresponds to a learning rate in the exponen-
tial grid [η, 2η, . . . ,max{η, log2 n}] which has a size of
O
(
log
(
(B2 + σ2) log n

))
(recall that η is chosen as per

Theorem 5 or Remark 8). Then we aggregate each of these
instances by the Exponential Weighted Averages (EWA)
algorithm (Cesa-Bianchi and Lugosi, 2006). The learning
rate of this outer EWA layer is set according to the the-
oretical value. By exp-concavity of squared error losses,
this strategy helps to match the performance of the best
ALIGATOR instance. Since the theoretical choice of learn-
ing rate is included in the exponential grid, the strategy
can also guarantee optimal minimax rate. We emphasize
that Hedged ALIGATOR is adaptive to Cn and requires no
hyper-parameter tuning.

ALIGATOR with polynomial regression experts. This ex-
tension is motivated by the problem of identifying trends
in time series. Though in Section 3.1 we use online aver-
aging as experts, in practice one can consider using other
algorithms. For example, if the trends in a time series are
piecewise-linear, then experts based on online averaging can
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lead to poor practical performance because the TV budget
Cn of piecewise linear signals can be very large. To alleviate
this, in this extension, we propose to use Online Polynomial
Regression as experts where a polynomial of a fixed degree
d is fitted to the data with time points as its exogenous vari-
ables. This is similar to the idea adopted in (Baby and Wang,
2020) where they construct a policy that performs restarted
online polynomial regression where the restart schedule is
adaptively chosen via wavelet based methods. They show
that such a scheme can guarantee estimation rates that grow
with (a scaled) L1 norm of higher order differences of the
underlying trend which can be much smaller than its TV
budget Cn. This extension can be viewed as a variant to the
scheme in (Baby and Wang, 2020) where the “hard” restarts
are replaced by “soft restarts” via maintaining distributions
over the sleeping experts.

5 Experimental Results

Figure 5: Fitted signals for Doppler function with noise
level σ= 0.25

For empirical evaluation, we consider online and offline
vesrions of the problems separately.

Description of policies. We begin by a description of each
algorithm whose error curve is plotted in the figures.

ALIGATOR (hedged): This is the extension described in
Section 4

ALIGATOR (heuristics): For this hueristics strategy, we
divide the loss of each expert by 2(σ2 + σ2/m) where m is
the number of samples whose running average is compued
by the expert. This loss is proportional to the notion of
(squared) z-score used in hypothesis testing. Intuitively,
lower (squared) z-score corresponds to better experts. The
multiplier 2 in the previous expression is found to provide
good performnace across all signals we consider.

arrows: This is the the policy presented in (Baby and Wang,
2019), which runs online averaging with an adaptive restart-
ing rule based on wavelet denoising results.

wavelets: This is the universal soft thresholding estimator
from (Donoho et al., 1998) based on Haar wavelets which is

(a) Offline experiments

(b) Online experiments

Figure 6: Cumulative squared error rate of various algo-
rithms on offline setting and online setting. ALIGATOR
achieves the optimal Õ(n1/3) rate while performing better
than wavelet based methods. In particular, in the offline
setting, it achieves a performance closer to that of dof based
fused lasso while only incurring a cheap Õ(n) run-time
overhead.

Figure 7: A demo on forecasting COVID cases based on
real world data. We display the two weeks forecasts of
hedged ALIGATOR and Holt ES, starting from the time
points identified by the dotted lines. Both the algorithms
are trained on a 2 month data prior to each dotted line. We
see that hedged ALIGATOR detects changes in trends more
quickly than Holt ES. Further, hedged ALIGATOR attains a
20% reduction in the average RMSE from that of Holt ES
(see Section 5).
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known to be minimax optimal for estimating BV functions.

oracle fused lasso: This estimator is obtained by solving
(1) whose hyper-parameter is tuned by assuming access
to an oracle that can compute the mean squared error wrt
actual ground truth. The exact ranges used in the hyper-
parameter grid search is described in Appendix C. Note
that the oracle fused lasso estimator is purely hypothetical
due to absence of such oracles described before in reality
and is ultimately impractical. It is used here to facilitate
meaningful comparisons.

fused lasso (dof): In this experiment, we maintain a list of λ
for the fused lasso problem (Eq. (1)). Then we compute the
Stein’s Unbiased Risk estimator for the expected squared
error incurred by each λ by estimating its degree of freedom
(dof) (Tibshirani and Taylor, 2012) and select the λ with
minimum estimated error.

Experiments on synthetic data. For the ground truth sig-
nal, we use the Doppler function of (Donoho and Johnstone,
1994a) whose waveform is depicted in Fig. 5. The observed
data are generated by adding iid noise to the ground truth.
For offline setting, we have access to all observations ahead
of time. So we run Arrows and both versions of ALIGATOR
two times on the same data, once in isotonic order (i.e it = t
in Fig. 1) and other in reverse isotonic order and average
the predictions to get estimates of the ground truth. For
online setting such a forward-backward averaging is not
performed. This process of generating the noisy data and
computing estimates are repeated for 5 trials and the aver-
age cumulative error is plotted. As we can see from Fig.6
(a), ALIGATOR versions attains the Õ(n1/3) rate and incurs
much lower error than wavelet smoothing. Further, perfor-
mance of hedged and heuristics versions of ALIGATOR is in
the vicinity to that of the hypothetical fusedlasso estimator
while the policies arrows and wavelets violate this property
by a large margin. Even though the dof based fused lasso
comes very close to the oracle counterpart, we emphasize
that this strategy is not known to provide theoretical guaran-
tees for its rate and requires heavy computational bottleneck
since it requires to solve the fused lasso (Eq. 1) for many
different values of λ.

For the online version of the problem, we consider the policy
Arrows as the benchmark. This policy has been established
to be minimax optimal for online forecasting of TV bounded
sequences in (Baby and Wang, 2019). We see from Fig.6 (b)
that all the policies attains an Õ(n1/3) rate while ALIGATOR
variants enjoy lower cumulative errors.

Experiments on real data. Next we consider the task of
forecasting COVID cases using the extension of Aligator
with polynomial regression experts as in Section 4. The data
are obtained from the CDC website (cdc).

We address a very relevant problem as follows: Given access
to the historical data, forecast the evolution of COVID cases

for the next 2 weeks. We compare the performance of
hedged ALIGATOR and Holt Exponential Smoothing (Holt
ES), on this problem, where the later is a common algorithm
used in Time Series forecasting to detect underlying trends.
For ALIGATOR, we use Online Linear Regression as experts
where a polynomial of degree one is fitted to the data with
time points as its exogenous variables. For each time point
t in [Apr 20, Sep 27], we train both hedged ALIGATOR
and Holt ES on a training window of past 2 months. Then
we calculate a 2 week forecast for both algorithms. For
ALIGATOR this is achieved by linearly extrapolating the
predictions of experts awake at time t and aggregating them.
Following this, we compute the Root Mean Squared Error
(RMSE) in the interval [t, t+14) for both algorithms. These
RMSE are then averaged across all t in [Apr 20, Sep 27].

We choose data from the state of Florida, USA, as an illustra-
tive example. We obtained an average RMSE of 1330.12 for
hedged ALIGATOR and 1671.77 for Holt ES. Thus hedged
ALIGATOR attains a 20% reduction in forecast error from
that of Holt ES. A qualitative comparison of the forecasts
is illustrated in Fig. 7. As we can see, the time series is
non-stationary and has a varying degree of smoothness. ALI-
GATOR is able to adapt to the local changes quickly, while
Holt ES fails to do so despite having a more sophisticated
training phase. Similar experimental results for some of the
other states are reported in Appendix C.

The training step of hedged ALIGATOR involves learning
the weights of all experts by an online interaction protocol
as shown in Fig. 1 with it = t. It is remarkable that no
hyper-parameter tuning is required by ALIGATOR for its
training phase. The slowest learning rate to be used in the
grid for hedged ALIGATOR is computed as follows. First we
calculate the maximum loss incurred by each expert for a
one step ahead forecast in its awake duration. Then we take
the maximum of this quantity across all experts in the pool.
Let this quantity be β. The slowest learning rate in the grid
is then set as 1/(2β). The learning rate of the outer layer
of EWA is also set the same. This is justifiable because the
quantity 4

(
B + σ

√
log(2n/δ)

)
in the denominator of the

learning rate in Theorem 5 is a high probability bound on
the loss incurred by any expert for a one step ahead forecast.

We defer further experimental results to Appendix C.

An important caveat for practitioners. Though ALIGA-
TOR is able to detect non-stationary trends in the COVID
data efficiently, we do not advocate using ALIGATOR as
is for pandemic forecasting, which is a substantially more
complex problem that requires input from domain experts.

However, ALIGATOR could have a role in this problem, and
other online forecasting tasks. Estimating (and removing)
trend is an important first step in many time series methods
(e.g., Box-Jenkins method). Most trend estimation methods
only apply to offline problems (e.g., Hodrick-Prescott filter
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or L1 Trend Filter) (Kim et al., 2009), while Holt ES is
a common method used for online trend estimation. For
instance, Holt ES is being used as a subroutine for trend
estimation in a state-of-the-art forecasting method (Jin et al.,
2021) for COVID cases that CDC is currently using. We
expect that using ALIGATOR instead in such models that
use Holt ES will lead to more accurate forecasting, but that
is beyond the scope of this paper.

6 Concluding Discussion

In this work, we presented a novel reduction from estimat-
ing BV functions to Strongly Adaptive online learning. The
reduction gives rise to a new algorithm ALIGATOR that
attains the near minimax optimal rate of Õ(n1/3C

2/3
n ) in

O(n log n) run-time. The results form a parallel to wavelet
smoothing in terms of optimal adaptivity to unknown varia-
tional budget Cn. However, our algorithm is more versatile
than wavelets in terms of its configurability and practical
performance. Further, for offline estimation, ALIGATOR
variants achieves a performance closer (than wavelets) to an
oracle fused lasso while incurring only an Õ(n) run-time
with no hyper parameter tuning. This is in contrast to degree
of freedom based approaches of tuning the fused lasso hyper
parameter that requires significantly more computational
overhead and is not known to provide guarantees on its rate.
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