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ABSTRACT In the current decade, software systems have been more intensively employed in every aspect of
our lives. However, it is disappointing that the quality of software is far from satisfactory. More importantly,
the complexity and size of today’s software systems are increasing dramatically, which means that the
number of required modifications is also increasing exponentially. Therefore, it is necessary to understand
how function-level modifications impact the distribution of software bugs. In addition, other factors such as a
function’s structural characteristics as well as attributes of functions themselves may also serve as informative
indicators for software fault prediction. In this paper, we perform statistical methods and logistic regression
to analyze the possible factors that are related to the distribution of software bugs. We demonstrate our study
from the following five perspectives: 1) the distribution of bugs in time and space; 2) the distribution of
function-level modifications in time and space; 3) the relationship between function-level modifications and
functions’ fault-proneness; 4) the relationship between functional attributes and functions’ fault-proneness;
and 5) the relationship between software structural characteristics and functions’ fault-proneness.

INDEX TERMS Bug, bug distribution, defected software systems, modifications, open source projects.

I. INTRODUCTION
Currently, we are in an era in which software plays an
essential role in everyday life. The complexity and scale of
software systems have increased tremendously, especially for
those safety- or security-critical systems. According to [1],
in the past 40 years, the size of software has increased expo-
nentially. Yet the disappointing fact is that various quality-
related issues still exist in the entire life cycle of software
development. According to a National Institute of Standards
and Technology report [2], software bugs cost the U.S. econ-
omy an estimated $59.5 billion annually. More importantly,
due to the size and complexity of modern software systems,
the situation even deteriorates, and there is also pressure
from tighter schedules and reduced development budgets. In
addition, the report also states that more than one-third of the
costs would be eliminated if more proper quality assurance
approaches were applied.

Software has been widely applied in various complex sys-
tems in every aspect of our lives. More importantly, the appli-
cation of software in safety-critical areas, such as medicine
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and nuclear power generation, has a great impact on peo-
ple’s daily lives. When utilized in these and other, simi-
lar industries, software systems are usually used to control
the behaviors of electromechanical components and monitor
the interactions between them to ensure the smooth oper-
ations of the systems. Ideally, software should operate as
expected and not contribute to hazards [3]. However, with the
increasing complexity and size, software systems are becom-
ing unexpectedly large with advanced algorithms, interac-
tions with external systems, as well as the huge amounts
of data transmitted. For example, if the system turns into
an unsafe state or the operations performed by engineers
directly or indirectly lead the system into hazard, the outcome
can be catastrophic. In a recently published paper [4], the
authors examined 104 accidents in recent decades to address
the roles bugs played in those accidents and demonstrate
lessons learned to improve our development practices in
order to prevent similar accidents from happening in the
future.

Boehm [5] carefully analyzed the costs to fix potential
errors or bugs in different phases of the software life cycle
and suggested that the later a bug is detected, the costlier it
will be. In other words, it is optimal that developers can detect

VOLUME 8, 2020


https://orcid.org/0000-0002-4791-5940
https://orcid.org/0000-0002-1021-4753
https://orcid.org/0000-0002-2673-9909

J. Ai et al.: What Ruined Your Cake: Impacts of Code Modifications on Bug Distribution

IEEE Access

the potential defects in their systems under development as
early as possible. Hence, it is beneficial to identify fault-prone
software modules in order to alleviate the cost of software
debugging and bug fixing ([6]-[9]). Encouraging results in
prior research indicate that it is possible to predict which
modules are likely to be locations of defect occurrence using
Random Forest ([10], [11]), Neural Network ([12], [13]),
Support Vector Machines ([14], [15]), Logistic Regression
([16]-[18]), and Naive Bayes ([19]-[21]). In addition, there
has been research on defect classification ([22], [23]), just-
in-time defect prediction [24], and so on.

However, shortcomings still exist with respect to these
existing approaches. First, most of these approaches assume
functional-level modifications to be the indicators of bug
locations. Undoubtedly, bugs are the direct outcomes of these
modifications; however, other issues with respect to software
systems can also serve as the reasons why specific modifica-
tions are very likely to induce bugs. For example, suppose that
the complexity of one component is significantly higher than
its normal acceptable level. In this case, the likelihood that the
modifications towards this component introducing bugs also
increases, not only because of its own complexity but also due
to the complex interactions among the component and other
components within the system.

Another issue is that no study focused on exploring how
closely functional-level modifications are related to software
bug distributions currently exists. To what degree can these
modifications serve as an informative indicator of bug loca-
tions? Do all the modifications towards different functions
have the same likelihood of inducing bugs? These questions
all remain unanswered. In addition, most studies merely focus
on file and class level, so it is impossible to provide more
accurate prediction results for bug locations.

Many studies focus primarily on the analysis of code level
measurements. However, software development is a dynamic
process, and changes along with this process can have either
positive or negative impacts on the distribution of software
defects. Although researchers are aware of this, a close exam-
ination of process-related information from new perspectives
and a careful evaluation of their relationship with fault prone-
ness are still needed [25].

To solve these issues, we propose a thorough study on
various factors that could have an impact on the distribution
of software bugs. There are three novel aspects of our study.

First, we introduce the concept of software evolution into
the area of software fault prediction. Unlike existing studies,
we take the evolution of software systems into account in the
process of determining influential factors of fault distribution.
Instead of predicting bug locations based on one or several
specific versions, we analyze more than 1,000 consecutive
versions of open source projects to understand the impacts
of these factors as well as how they change during the entire
development process.

Second, we closely analyze the relationships between
functional-level factors and bug distributions. Unlike existing
metrics focusing on either class or file level, we introduce
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different functional-level factors that can be used as indicators
of bug distributions.

Third, we also analyze how structural attributes of software
systems can relate to fault distributions. Three functional-
level attributes as well as 24 network metrics are included
in our study to represent the software structures and then
serve as the candidate factors for predicting software fault
distributions.

The remainder of the paper is organized as follows:
Section II describes in detail the research questions we are
trying to solve. What follows in Section III contains the exper-
imental setups used in this study. In Section I'V, we introduce
the evaluation methods used to demonstrate the correlation
relationships. Our results and discussions are presented in
Section V, followed by the threats to validity in Section VI.
Other existing studies related to this paper are discussed
in Section VII, while we draw our conclusions in the final
section.

Il. RESEARCH QUESTIONS

In this paper, we carefully examined the following five
research questions to elicit informative and influential factors
of software fault distribution as well as the degree to which
they are related to fault proneness.

A. WHAT IS THE DISTRIBUTION OF DEFECTS

IN TIME AND SPACE?

In this paper, we represent software from two unique
dimensions: time and space. On one hand, we use time
to represent the evolution process of software projects. As
introduced in Section I, we consider software development
as a continuous process and recognize that fault distribu-
tion may also vary during this process. For example, with
respect to the 492 versions of Nginx, we analyze how bugs
distribute within these versions, such as how many bugs
each version contains and how the number of bugs changes
during the software project development process. On the
other hand, space is used to evaluate how bugs are dis-
tributed among functions within software projects. Unlike
most existing projects, which only focus on file- or class-
level fault distributions, we examine how many bugs are
contained within distinct functions. Exploring the distribution
of software defects in time and space helps us better under-
stand software defects and serves as guidance in subsequent
research.

B. WHAT IS THE DISTRIBUTION OF MODIFICATIONS

IN TIME AND SPACE?

The terms time and space here are the same as in RQ 1. In
this paper, the functional-level modifications are divided into
six types, and the distribution of them on the releases (or ver-
sions) and the associated functions are studied respectively.
To solve RQ 2, the distribution of modification types is care-
fully examined, and the results will serve as the fundamentals
of the remaining research questions.
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C. WHAT IS THE CORRELATION BETWEEN
FUNCTION-LEVEL MODIFICATIONS AND THEIR
CORRESPONDING FAULT-PRONENESS?

Though we acknowledge that modifications of software
source code may induce bugs, it is still unknown to what
degree these two aspects are related. Which type(s) of modifi-
cations are more likely to induce defects? To what degree are
these modifications related to functions’ defect-proneness?
With the answers to these questions, we will have more
detailed and effective indicators for software fault prediction
analyses.

D. WHAT IS THE CORRELATION BETWEEN ATTRIBUTES
OF FUNCTIONS AND THEIR CORRESPONDING
FAULT-PRONENESS?

Instead of considering all functions equal, we elicit differ-
ent attributes of functions to represent the characteristics of
functions in a more demonstrative way. For example, in this
paper, the duration of a software function is defined as how
many consecutive versions have the specific function. Are
the functions with longer or shorter durations more likely
to contain bugs? We also examined several other attributes
of functions and analyzed their relationships with functions’
fault-proneness.

E. WHAT IS THE CORRELATION BETWEEN SOFTWARE
STRUCTURAL CHARACTERISTICS AND THE
FAULT-PRONENESS OF FUNCTIONS?

Software systems have been widely employed in various
areas of our lives, which results in different software having
unique structural characteristics. Instead of treating different
software systems the same, we also performed experiments
to demonstrate the correlation between the structural char-
acteristics and functions’ fault-proneness. This information
can also help us better customize the fault-proneness analysis
approach to produce more effective and accurate prediction
results.

lll. EXPERIMENTAL SETUPS
In the following section, we first briefly introduce the subject
open source projects that have been used in this paper.

A. SUBJECT PROJECTS
In this paper, we analyzed four open source projects from
GitHub. Table 1 presents the detailed information of these
projects. The Total Functions and Total Calls in Table 1 are
calculated based on the most recent version.

Nginx [26] is a free and open source project that provides
a HTTP server, a mail server, and a generic TCP/UDP proxy
server. The software has been widely used in a large number
of websites and is known for its stability and performance as
well as its ease of usage and configuration.

Gedit [27] is a small and lightweight UTF-8 text editor
that is part of the GNOME environment. The project uses the
lastest GNOME and GTK+- libraries with support for Drag
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TABLE 1. Basic information of projects.

. . Total Total

Software Versions Commits  pynctions Calls
Nginx 492 6271 2239 5839
Gedit 356 11262 2917 3927
Nagioscore 101 2816 2319 6259

Redis 201 6494 4364 11831

FIGURE 1. Network of Nagioscore V1.0.

and Drop (DnD) from Nautilus (the GNOME file manager),
the use of the GNOME help system, the Virtual File System
GVfs, and the GTK+ print framework.

Nagioscore [28] is the core of an open source project
Nagios from GitHub, which can be utilized to monitors sys-
tems, networks, and infrastructures. In addition, the project
also provides supports for monitoring and alerting services
for servers, switches, and applications.

Redis [29] is another open source project that can be used
as cache or databases. It supports data structures such as
strings, hashes, lists, sets, sorted sets with range queries,
bitmaps, hyperloglogs, and geospatial indexes with radius
queries.

B. SUBJECT PROJECTS

In this subsection, we describe the procedures used in this
paper to collect data related to bugs, functions, and software
structural characteristics.

1) CONSTRUCTION OF SOFTWARE NETWORKS

In this paper, we use Function Call Graphs (FCGs) to form
software complex networks, which helps to more explicitly
illustrate the structures of software systems. The networks
are then used as foundations for the follow-up analyses. An
example of FCG based on Nagioscore V1.0 is presented in
Figure 1. In the FCG, we use nodes to represent unique func-
tions, while edges stand for the calling relationships between
pairs of functions. Necessary information to establish the
FCGs is extracted using Doxygen [30], a de facto standard
tool for generating documentation of multiple programing
languages, including C, C++, Java, Python, and so on.
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2) EXTRACTION OF DEFECT-RELATED INFORMATION

In order to locate bugs in open source projects, information
related to commits for fixing bugs is extracted from the issue
tracking system. In our study, we first collect information
related to bug fixing commits. With these commits, a list of
functions that are likely to contain bugs can be generated.
Then, we try to pinpoint the exact location of each bug as well
as their introduction time/version. In our study, we use the
issue tracking system provided by GitHub and the BugTracer
implemented by our team to help us retrieve information
related to bugs. Details of the extraction process are described
in the following steps:

Step 1. Similar to previous works ([31], [32]), we use key-
words such as “fix,” “bug,” “defect,” “fault,” and
“patch” in the commit comments to filter the com-
mits that are related to bug fixing. These commits
are closely related to bugs, since their goal is to fix
potential bugs in their previous releases. By doing
this, potential bugs within each version can be col-
lected. For instance, consider the following comment
of a commit: “Fixing the segmentation faults during
the execution of garbage collections.” It is obvious
that this commit is closely related to a bug, and the
modified code should be responsible for fixing this
bug.

Step 2. With Step (1) performed, a number of records that
contain the information related to bugs would be
stored in our database. In addition, the versions with
the code introduced to fix bugs can also be identified,
and we call them “bug-fixing versions,” denoted as
Uﬁx = {Vfixfl’ Vﬁxfz, cees Vﬁxfn}‘

With the bug-fixing version set achieved in Step 2, we then
determine the locations of bugs within versions of software
systems based on commits that corrected a failure in the
program’s source code. Ideally, with respect to each bug, we
can get two unique versions, Vju, and Vi, representing the
version introducing the corresponding bug and the version
fixing it, respectively.

Though developers evidently marked these version as bug-
fixing versions, it is possible that the modifications made
in this version are not purely related to fixing a specific
bug. In other words, the faulty statements should be isolated
from other modified statements that focus on implementing
features. Therefore, the procedures listed below are used to
derive the version set {Vju, Vpix} and the corresponding
modified functions set {Ffix—1, Ffix—2, ..., Ffix—x} to fix a
particular bug. A similar approach has also been utilized
in [33].

Step 3. Locate potential bug-fixing statements. With respect
to a specific version in Uy, say Vfix—m, which fixes
the mth bug, we compare the current version with its
prior version and locate statements that are modified
between the two versions. For a specific bug-fixing
version, the statements form another set, denoted as

Sfixfm = {Sﬁxfl s Sﬁxfz, cees Sfixft }
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Step 4. Determine the last versions that modify each state-
ment in Sgy—,. These versions are denoted as
V' = {Viodified—1> Vimodified—2> ---» Vmodified—1}-
Also, Numpdifiea—i represents the number of state-
ments in Sg,_, most recently modified by the ith
version in V/, where 1 <i <1.

Step 5. Rank the versions in V’ based on the their
Numpodified—i in descending order. V' will be updated
as { Vordered—1> Vordered—25 - - -» Vordered—1 }-

Step 6. Add versions in V' to Vfinal one by one until the sum
of Numypodifiea 0f versions in Vi, is larger than 90%
of the number of statements in Sy, achieved in
Step 2. Versions in Vg act as candidates for Viyy.

Step 7. Manually inspect by determining which statements
in Spx_, are the root cause of the bug, and select
versions in Vi, that lastly modify these statements.
The following three scenarios should be considered:
(a) If only one version is selected, this version will
be considered as the Vintro for the mth bug. (b)
If multiple versions are selected, the most recently
released version is regarded as Vintro. (c) If none of
the versions in Vfinal is selected, we abandon the
mth bug.

With the bugs locating and introducing versions, we can
determine the faulty functions of each version during the
entire life cycle of software systems as well as the introduced
and fixed time of each bug.

3) EXTRACTION OF INFORMATION RELATED TO
FUNCTION-LEVEL MODIFICATIONS

With respect to the function-level modifications, we focus
primarily on the following six types of modifications:

Addition, denoted as AD. Addition of newly implemented
functions can be observed frequently during the development
of software systems. We determine the addition of new func-
tions by comparing the network of a version with its previous
version. If a specific node does not exist in the current version,
we define it as a newly added function, and the AD value for
this function is one; otherwise, the value is zero.

Modified Code, denoted as MC. This category of modifi-
cation is used to represent whether the code within a function
has been modified when compared to its prior version. In our
study, we extract the code within each function and evaluate
the corresponding md5 value. If the mdS values remain the
same between two consecutive versions, it represents that the
function is not modified in these two versions, and the MC
value is zero. Otherwise, the contents of the function have
been modified, and the MC value is one.

In-Degree Change, denoted as Deg-In. Once the function
calls from other functions to a specific function, the in-degree
of this function changes. In this study, we use a Boolean
value to represent whether this set between two consecutive
versions has changed. In other words, Deg-In equals one if the
set of functions calling the corresponding function changes;
otherwise, Deg-In equals zero.
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Out-Degree Change, denoted as Deg-Out. Contrary to In-
Degree change, for a particular function, Deg-Out represents
changes in the set of functions called by the corresponding
function. Similar to Deg-In, we also use a Boolean value to
represent it.

Degree Change, denoted as Deg-Ch. Deg-Ch represents
when either the Deg-In or Deg-Out is one. If one of the two
measurements is one, it means that the calling relationships
between this function and other functions are changed. There-
fore, the Deg-Ch should also be one.

Overall Modification, denoted as OM. If any of the pre-
viously discussed modifications exists, the OM value for a
specific version is one. Otherwise, the OM value is zero.

4) EXTRACTION OF FUNCTION ATTRIBUTES

In the process of software development, when analyzing a
newer release, we should not only consider the modifications
of the current version, but also consider the influence of
the historical changes made to the functions. Therefore, in
addition to different types of modifications, we also con-
sider several other attributes with respect to each function.
The following three unique types of attributes, namely Time,
DiffCount, and HisBug, are included in our study and are
described in more detail as follows:

Time: This attribute measures the duration during which a
function has existed in the project. The Time of a particular
function equals the total number of versions from the version
in which it is introduced to the version where it is deleted. If
the function exists in the most recent version of the project,
this version is used as the last version of the function’s
duration.

DiffCount: With the function-level modification informa-
tion collected, we use DiffCount to represent the total number
of function-level modifications that have been made to a
particular function during the life cycle of the project. From
a mathematical point of view, the DiffCount of a function
equals the sum of the AD, MC, Deg-In, and Deg-Out of this
function in all previous versions.

HisBug: In this paper, we also consider the factor of
whether a function contains bug(s) in any of its previous
versions. Our intuition is that a function that had bugs in the
past may also contain bugs in the subsequent releases. For
example, fixing one bug may introduce additional new bugs
in the same functions.

5) NETWORK MEASURES

For each function node, we use an ego network and a global
network to analyze its structural characteristics from two
angles: local and global. For the ego network, its nodes
include a sole central node (“‘ego’”) and all the nodes that
the ego connects directly (“‘alters”), and its edges include the
edges between the ego and alters and the edges among the
alters. The ego network focuses on the study of the character-
istics of a single node in the local network. At the same time,
each alter and its alters can also form an ego network, and the
ego network of all nodes is combined to form the complete
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TABLE 2. Ego and global measures used in this study ([38], [39]).

Ego Network Measures:12

Size number of nodes that ego is directly connected to

Ties number of directed ties corresponds to the number
of edges

Pairs number of unique pairs of nodes, i.e.,

Sizex(Size-1)

Density % of possible ties that are actually present, i.e.,
Ties/Pairs

nWeakComp number of weak components in the ego network

pWeakComp number of weak components normalized by size

2StepReach number of nodes ego can reach within two steps
normalized by Size

2StepPct 2stepreach/(N-1)

ReachEffic 2StepReach normalized by the sum of the size of
the ego’s every neighbor’s ego network

Broker number of pairs not directly connected to each
other

nClosed the number of closed triads ego is involved in

Global Network Measures: 12

Degree number of nodes adjacent to a given node

Out Degree number of edges pointing out of the node

In Degree number of edges pointing in to the node

Ripple_Degree number of functions that the node can call directly

or indirectly

Closeness sum of the lengths of the shortest paths from a node
to all other nodes

Betweenness measures how many shortest paths between other
entities it occurs

PageRank From Google web page sorting algorithm based on
the link, which is not only influenced by the
number of other nodes of the pointing node, but
also related to the importance of other nodes
pointing to the node.

Clus_Coef measures the density of a node’s open
neighborhood

K_Cores the maximal subgraph with minimum degree at
least k

Eigenvector assigns relative scores to all nodes in the
dependency graphs

Efficiency normalizes EffiSize to the total size of the network

Constraint measures how strongly an node is constrained

The original table was published in [34] and reproduced as follows

global network. The global network contains all the nodes
and edges.

Similar to [34], we use the following 24 network measures
shown in Table 2, including 12 ego network measures and 12
global network measures, to analyze the relationship between
software structural characteristics and defects from two
unique perspectives: global and local. Based on the FCGs, a
widely-used library Networkx [35] is applied to help us obtain
the measurements of the software network structures.

IV. EVALUATING METHODOLOGIES

In this section, we will describe in detail all the methods
used to demonstrate whether a specific factor is related to the
distribution of bugs. In Section A, we discuss the basic knowl-
edge with respect to the power law distribution. What follows
in Section B is a conditional probability-based method to
analyze the correlation between modifications and bug dis-
tributions. In Section C, the logistic regression is introduced.
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A. POWER LAW DISTRIBUTION

In statistics, the power law is a functional relationship
between two quantities, where a relative change in one quan-
tity results in a proportional relative change in the other
quantity, independent of the initial size of those quantities;
one quantity varies as a power of another. For example, we
use the following formula to calculate the area of a circle:

S =mr?

Suppose that the radius r is doubled; the area S is therefore
multiplied by a factor of four. In this case, we conclude that
S and r conform to the power law distribution.

In this study, we find that the distribution of bugs and
function-level modifications conforms to the power law dis-
tribution, which can be defined as follows:

p(x) x x~apha  for x > xmin

The above definition can be utilized to verify if the distri-
bution under analysis is consistent with the power law dis-
tribution. In the above equation, p(x) represents the number
of bugs or the value of a particular type of modifications
on software element (function or version) with an index of
x. Then, PIfit [36], which is a Python implementation of a
power law distribution fitter, is used to check the consistency
with respect to the power law distribution. Plfit examines if
the power law is an acceptable fit based on the ‘““p-value”
calculated using the Monte-Carlo test. If the p-value is higher
than 0.1, we would say that the data conforms to the power
law distribution [37].

B. CONDITIONAL PROBABILITY-BASED METHOD

The following method is also employed to help us further
explore the correlation between a specific type of modifica-
tions and the faulty functions:

For each type of modification, we divide the functions in a
software system into four disjoint groups, which can be rep-
resented as Funcyp, Funcyg, Funcgp, and Funcgg, respec-
tively. Funcyp indicates the groups of faulty functions that
have one or several modifications of type X; Funcy g contains
the functions that do not contain any bugs but have been mod-
ified by X modifications; Funcyg possesses faulty functions
with no X modifications; and Funcyp represents the groups
of correct functions with no X modifications.

With the four groups divided, Nx g, NX’B, N}-(’B, and N)?,B
are used to represent the number of functions within each
group. In addition, N represents the number of functions
included in a specific version. We have the following:

Nx = Nx,p+ Nx 3
Ng =Ng p+ Ny p
Np =Nxp+Nzp
Np =Ny p+Ngp
We define the Px as the proportion of newly-added func-

tions in the total functions, which can be calculated with the
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following formula:
Nx
N

Also, we use Py pp to demonstrate the percentage of faulty
functions that have at least one modification of type X:

Px =

Nx B
Px g = Ny

Following the same evaluation criteria utilized in [40], if
Pxp,p is significantly greater than Py, the bugs are more likely
to be in functions with X modifications.

Take the addition of new functions as an example. With-
out loss of generality, assume that the Pap g of a specific
version is 0.85, and it has a P4p value of 0.25. These two
numbers indicate that 85% of bugs in the software system are
actually from those 25% newly added functions.

C. LOGISTIC REGRESSION

The following method is also employed to help us further
explore the correlation between a specific type of modifica-
tions and the faulty functions:

In our study, we used logistic regression to help us deter-
mine if a specific network measure discussed in Section III B
serves as a predictive variable for fault-proneness. Logistic
regression is a widely-used classification model that can be
utilized to determine which of two values the dependent
variable should be. Therefore, it is appropriate for our study,
since a function of a software system either contains a bug or
is bug-free.

When performing logistic regression, an important aspect
that needs to be considered is the identification of influential
observations, which can change the regression results [41]. If
a small subset of influential observations is included, it could
have a disproportionate impact on the estimation. In other
words, the model estimates are more likely to be calculated
based on these outliers than the rest of data [41].

Similar to other studies [34], we applied the method
described in [41] to exclude influential observations (whose
Cook’s distance is equal to or larger than 1 [42]) to ensure an
accurate analysis of the correlation between various factors
and their abilities to predict fault-proneness.

Two different types of logistic regression models exist.
The first is the univariate logistic regression model, which
can be used to determine the individual impacts brought by
the independent variable on the dependent variable. Another
type of model is the multivariate logistic regression model,
which tries to figure out the combinatorial effects brought by
multiple independent variables.

Obviously, the univariate logistic regression is a better
fit for our study to identify the relationships between each
software structural measure and functions’ fault-proneness.

The univariate logistic regression model is based on the
following:

ePotp1X

PIY = 1X) = sy
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where X is the independent variable, and Y is the dependent
variable, which can only be equal to either zero or one. By
and B are the regression coefficients and can be estimated
by maximizing the following:

n

[]Previ = 1y (1 = Pr(y; = Ofxi))!

i=1
where x; is the ith value of independent variable X, and y; is
the corresponding value of dependent variable Y.

With the logistic regression model, we use the following

statistics to evaluate whether each network measure is closely
related to bug location:

o p-value. The p-value is the most widely-used statistic
to determine if the dependent variable Y significantly
depends on the independent variable X . The null hypoth-
esis is Hp : B1 = 0, which means the independent
variable X has no impact on the dependent variable
Y. If the null hypothesis is rejected, it represents that
Y is dependent on X. Usually, we set the cutoff for
significance as 0.05. We reject the null hypothesis if we
achieve a p-value smaller than 0.05 and conclude that Y
is dependent on X.

e Odds ratio. The odds ratio is another commonly used
statistic to quantify the correlation between two variable
X and Y. The independent variable is considered to have
no impact on the dependent variable if the odds ratio
is equal to 1. A positive relationship between X and Y
can be established if the odds ratio is greater than 1,
while an odds ratio smaller than 1 indicates a negative
relationship.

V. RESULTS AND DISCUSSIONS
In this section, we will discuss the results regarding the five
research questions proposed previously.

A. RQ1: WHAT IS THE DISTRIBUTION OF DEFECTS IN
TIME AND SPACE?

The cumulative distributions of software bugs with respect
to software versions and functions for the projects under
analyses are shown in Figure 2. In this part, we only include
the figures for the distribution of bugs based on data collected
from Redis and Nginx. However, similar results can also be
observed in figures for other software systems used in this
study.

In the figures, the X-axis represents the number of bugs in
each version (see Figure 2(a) and (b)) or in each function (see
Figure 2(c) and (d)), while the Y-axis stands for the cumu-
lative percentage of versions or functions, respectively. For
example, the data point (2, 0.267) in Figure 2(a) represents
that (0.267 x 100% =) 26.7% versions of Redis contain at
least two bugs. Similarly, with respect to Nginx, the data point
(3,0.210) in Figure 2(b) demonstrates that (0.210 x 100% =)
21% versions of Nginx have three or more bugs.

Considering from the time point of view, it can be observed
from Figure 2(a) and (b) that most of the versions are bug-
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FIGURE 2. Bug distribution in time and space. (a) Redis in time; (b) Nginx
in time; (c) Redis in space; (d) Nginx in space.

free. For example, with respect to Redis in Figure 2(a), the
y value for x = 1 is 0.325, which represents that only
(0.325 x 100% =) 32.5% of all versions of Redis contain at
least one bug and the remaining 67.5% of versions are bug-
free. Similarly, as illustrated in Figure 2(b), the y value for
x = 11is 0.317, which means that (0.317 x 100% =) 31.7%
of all versions of Nginx are defected, while the rest are bug-
free. Consequently, our first observation is that bugs are more
likely to exist in a relatively small portion of versions.

When it comes to the distribution of bugs in space, similar
findings can be observed. It is noteworthy that most bugs con-
centrate on a relatively small percentage of functions, instead
of being evenly distributed in all functions. As demonstrated
in Figure 2(c), the data point (2, 0.032) represents that only
(0.032 x 100% =) 3.2% of all functions contain at least two
bugs. Moreover, when x = 1, the y value is 0.105, which
means that (1 — 0.105 x 100% =) 89.5% of all functions
in Redis are bug-free. Similar observations can also be made
in Figure 2(d). For instance, the point (1, 0.182) indicates
that only (0.182 x 100% =) 18.2% of all functions of Nginx
are defected. Therefore, another observation is that bugs are
more likely to exist in a relatively small portion of functions,
instead of being distributed in all functions.

In addition, from Figure 2(c) and (d), we can also conclude
that the distribution of bugs roughly conforms to the Pareto
principle ([43], [44]), which indicates that a small percentage
(20%) of software modules contains the majority (80%) of
faults. For example, the data point (1, 0.105) in Figure 2(c)
represents that of all the versions of Redis, bugs are concen-
trated in only (0.105 x 100% =) 10.5% of the functions.

In addition, statistical validation is also performed to verify
that the distribution of bugs in time and space fits to the power
law distribution. The fitting parameters are shown in Table 3.
According to [37], if the p-value is greater than 0.1, the data
sets satisfactorily fits the power-law distribution. As can be
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TABLE 3. Fitting parameters of bug distribution in time and space.

Fitting parameters in Fitting parameters in

Software fime . Space .
alpha  xmin value alpha xmin value
Nginx 2313 3 0.74 4373 3 0.15
Gedit 2.158 7 047 4489 4 0.58
Nagioscore  2.490 5 0.99 3.035 4 0.13
Redis 1.780 4 0.12 3.493 3 0.20
(a) (b)
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FIGURE 3. Modification distribution in time for Gedit. (a) AD; (b) MC;
(c) Deg-In; (d) Deg-Out; (e) Deg-Ch; (f) OM.

observed from Table 3, all p-value for the eight scenarios are
greater than 0.1, which means that the distribution of bugs in
time and space can be fitted using the power law distribution.

In summary, with respect to RQ1, our observations are as
follows:

o Bugs are more likely to exist in a relatively small portion
of versions

o Bugs are more likely to exist in a relatively small portion
of functions, instead of being evenly distributed in all
functions

o The distribution of bugs roughly conforms to the Pareto
principle

o The distribution of bugs in time and space conforms to
the power law distribution

B. RQ2: WHAT IS THE DISTRIBUTION OF MODIFICATIONS
IN TIME AND SPACE?

The distribution characteristics of bugs and the distribution
characteristics of modifications are also discussed. Figure 3
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FIGURE 4. Modification distribution in time for Nagioscore. (a) AD;
(b) MC; (c) Deg-In; (d) Deg-Out; (e) Deg-Ch; (f) OM.
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FIGURE 5. Modification distribution in time for Nginx. (a) Deg-In;
(b) Deg-Out; (c) Deg-Ch; (d) OM.

15
Total_Numbers_of_Bug

to Figure 5 illustrate data regarding the distribution of dif-
ferent types of modifications. Here, we only present the
data for Gedit, Nagioscore, and part of Nginx. However, we
would like to emphasize that similar phenomena can also be
observed for other projects used in this study.

In these figures, the X-axis represents the number of a
specific type of modification in each version (see Figure 3 and
Figure 4) or in each function (see Figure 5), while the Y-axis

84027



IEEE Access

J. Ai et al.: What Ruined Your Cake: Impacts of Code Modifications on Bug Distribution

stands for the cumulative percentage of versions or func-
tions, respectively. For example, the data point (50, 0.248) in
Figure 3(a) represents that (0.248 x 100% =) 24.8% versions
of Gedit contain more than 50 AD modifications.

If we consider the distribution from the time point of view,
it can be observed that all the curves in Figure 3 and Figure 4
roughly follow similar trends:

« For most of the curves, the beginning part is relatively
steep. This can be interpreted as the fact that the number
of modifications for most of the versions is relatively
small. For example, as demonstrated in Figure 3(a),
when x = 10, the y value is 0.515; however, when
x increases to 100, the y value drops dramatically to
0.206. This indicates that for the majority of versions,
the number of modifications is relatively small.
However, there do exist exceptions. Compared with
other figures, the first part of the curve in Figure 4(b)
exhibits a linear-style decrease. In this case, the MC
modifications with respect to Nagioscore tend to be
more evenly distributed in all versions when compared
with all other modification types.

o The remaining parts of these curves resemble each other
and show similar trends. After the first part discussed
above, the remaining parts follow a gentler decreasing
pattern. For example, as demonstrated in Figure 4(d), the
data point (74, 0.255) represents that (0.255 x 100% =)
25.5% of versions of Nagioscore contains more than 74
Deg-Out modifications; when the x value increases to
220, the y value only decreases by less than 13%, from
0.255 t0 0.194.

Therefore, we can conclude that a large number
of modifications are deployed on a small portion of
versions.

Similar observations can also be noted from the space
point of view. Without loss of generality, we only include
the figures for Nginx, as illustrated in Figure 5. Except
for Figure 5(d), all other figures exhibit similar character-
istics as those in Figure 3 and Figure 4, which means that
a large number of modifications focus on a small num-
ber of functions. Though Figure 5(d) is slightly different
from the other three figures, we can still achieve the same
conclusion.

Statistical validation is also performed to verify that the
distribution of modifications in time and space fits the power
law distribution. The fitting parameters are shown in Table 4.
As can be observed in Table 4, all p-values for AD, Deg-In,
Deg-Out, and Deg-Ch are greater than 0.1, which means that
the distribution of modifications in time and space can be
fitted using the power law distribution. However, based on
Figure 3 to Figure 5, MC and OM do not conform to the power
law distribution significantly. Therefore, MC and OM are not
included in Table 4.

In summary, with respect to RQ2, our observations are as
follows:

o Modifications are more likely to concentrate on a rela-

tively small number of versions
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TABLE 4. Fitting parameters for modifications power law distribution.

Fitting parameters in Fitting parameters in

Software fime - Space .
alpha  xmin value alpha  xmin value
Nginx 4D 195 094 089 / / /
f)gf 1.64 046 069 1.62 0001 0.507
L_);lg 173 058 058 167 0006 0.786
_Doeugt 159 054 074 154 0.007 0.709
Gedit 4D 153 082 048 / / /
iff 159 092 079 155 0022 0.901
L_);lg 148 128 082 1558 0012 0722
Deg 61 074 090 151 0012 0597
-Out

Nagio 4D 162 051 013 J J /
score Deg 467 082 011 146 0009 0.8

-Ch

[_’;g 156 048 018 143 0009 0.5
Deg 164 071 011 147 0008 025
-Out

Redis 4D 2.58 129  0.26 / / /

?gf 249 089 038 161 0003 0.687
Pes 225 074 049 158 0004 0697
Deg 537 065 183 156 0004 0752
-Out

o Most of the modifications are made to several “key”
versions

o AD, Deg-In, Deg-Out, and Deg-Ch conform to the power
law distribution

e MC and OM show no significant characteristics of the
power law distribution

C. RQ3: WHAT IS THE CORRELATION BETWEEN
FUNCTION-LEVEL MODIFICATIONS AND THEIR
CORRESPONDING FAULT-PRONENESS?
In this subsection, we further investigate the correlation
between different function-level modifications and fault-
proneness of functions. Here, we use the conditional
probability-based method discussed in Section IV B. Based
on the description in Section IV B, Px p|p represents the
percentage of defected functions that go through the modi-
fication X. Generally speaking, with respect to a function-
level modification type X, if Px pp is significantly greater
than Py pp. it indicates that the modification X is closely
correlated with whether a specific function contains bug(s).
In Figure 6, we only include the figures for AD, Deg-In,
Deg-Out, and Deg-Ch collected from Nagioscore. Note that
similar phenomena can also be observed for other types of
modifications with respect to other projects. In these figures,
we only include those versions that contain at least one bug,
and other bug-free versions are ignored in this subsection. In
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FIGURE 6. Correlation between function modifications and functions’ defect-proneness for Nagioscore. (a) AD; (b) Deg-In; (c) Deg-Out;
(d) Deg-Ch.
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TABLE 5. Correlations between function modifications and a function’s
defect-proneness LR results.

Logistic regression

rosults Nginx Gedit Nagioscore Redis
D p-value 0.000 0.025 0.038 0.047
Oddsratio  10.62 13.05 14.17 14.47
p-value 0.034 0.041 0.000 0.001
Deg-Ch Odsratio  1.95 3.67 0.78 091
Deo-in p-value 0.000 0.009 0.000 0.027
& Oddsratio  19.50 20.51 54.45 28.33
Dea-Out p-value 0.028 0.000 0.009 0.035
e&-PUl Oddsratio 6.51 2.33 5.24 4.86

these figures, we use orange bars to represent Px p|p and blue
bars for Py pp.

As seen in Figure 6, we find that for most of the scenarios,
Px pip is significantly greater than Py g 5. As illustrated in
Figure 6(a), Pap,pp is greater than P@,B|B in 35 of 36
versions. For example, with respect to version 2.1, Pap p|p
is 0.932, while P35 g is only 0.005. Taking version 3.0b2
in Figure 6(a) as another example, Pap g is 0.670, whereas
Pgp pip 18 0.057.

However, several exceptions exist. For example, as pre-
sented in Figure 6(c), for version 2.1, Ppeg—jn, g8 is 0.024
while Ppec—inBiB is 0.102. This indicates that for this partic-
ular version, bugs distributed more on the functions without
Deg-In modifications.

For further verification, we use logistic regression dis-
cussed in Section IV C to analyze the correlation between
function-level modifications and defects. The results are
shown in Table 5. Based on the table, all the p-values for AD,
Deg-In, Deg-Out, and Deg-Ch are smaller than 0.005, which
shows that those function-level modifications are closely cor-
related with whether the function contains bug(s) or not. In
addition, their corresponding odds ratios are all greater than
1, which represents that these modifications are positively
related to the functions’ fault-proneness. In other words, the
increase in these four types of modifications will very likely
induce defects into the functions being modified.

We would also like to mention that the correlation between
MC/OM and bug distribution is not remarkably significant
and is not included in Figure 6 and Table 5.

In summary, with respect to RQ3, our observations are as
follows:

o AD, Deg-In, Deg-Out, and Deg-Ch are positively related
to whether a function contains bug(s) or not

o MC and OM do not significantly correlate to whether a
function is defected or not

D. RQ4: WHAT IS THE CORRELATION BETWEEN
ATTRIBUTES OF FUNCTIONS AND THEIR
CORRESPONDING FAULT-PRONENESS?

In this subsection, we will explore the correlation between
attributes of functions and their corresponding fault-
proneness. As discussed in Section III B, the following three
attributes will be considered: Time, DiffCount, and HisBug.
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1) DISTRIBUTION OF BUGS WITH TIME

Intuitively, our conjecture is that the shorter a function exists
in a software system, the more likely that the function may
contain bug(s). If a function is removed very shortly after it is
added into the system, it is extremely likely that the function
is not compatible with other functions and therefore can be
rather difficult to implement. In such cases, the function could
induce more bugs than other functions normally do.

In Figure 7, each data point represents the percentage of
functions being defected with a predefined Time value. For
example, the data entry (0, 0.844) represents that for all
those functions defined in one version and then deleted in
the very next version, (0.844 x 100% =) 84.4% of the func-
tions are defected. Similarly, (23, 0.103) indicates that only
(0.103 x 100% =) 10.3% of functions with a Time value of
23 are defected.

It is noteworthy that the percentage of defected func-
tions decreases significantly with the increase in a func-
tion’s Time. For example, the average percentage of
defected functions with Time values between zero and 15
is (0.548 x 100% =) 54.8%. However, the value decreases
significantly to (0.083 x 100% =) 8.3% for functions with
Time values greater than 15. The downward trend indicates
that a function is more likely to contain bug(s) if its Time
value is small. Therefore, if the lifetime of a function is
relatively short, the possibility of the function containing
bug(s) is high.

2) DISTRIBUTION OF BUGS WITH DIFFCOUNT

As discussed in Section III B, we use DiffCount to represent
the total number of function-level modifications made to a
particular function during the life cycle of the project. Intu-
itively speaking, DiffCount should be positively related to the
possibility of the function being defected. This is because the
more modifications that are made to a particular function,
the more likely programmers may make errors and introduce
bugs.

In Figure 8, the X-axis represents the total number
of function-level modifications in different functions. The
Y-axis on the left shows the number of functions, and the
color bar on the right represents the number of bugs in
those functions in the same vertical bar. For example, when
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FIGURE 8. Distribution of defects with DiffCount.

DiffCount is equal to three, the grey vertical bar at x = 3
has a length of 202, indicating that 202 functions with three
function-level modifications do not contain any bug. Simi-
larly, the orange bar underneath has a length of 37, which
means that 37 functions with three modifications contain one
bug. It can be observed that with the increase in DiffCount,
the number of functions with the number of modifications
decreases. The same applies to the number of bug-free func-
tions and of defected functions.

We also include a red line indicating the percentage of
defected functions with a specific number of DiffCount.
For example, the data point (12, 0.260) represents that
(0.260 x 100% =) 26.0% of functions with a DiffCount of 12
are defected. Unlike the number of functions, the percentage
of defected functions increases significantly with the increase
in DiffCount. In other words, the more function-level modifi-
cations that are made to a function, the higher the possibility
that the function is defected.

3) DISTRIBUTION OF BUGS WITH HISBUG

We also use the mosaic plots (as in Figure 9) to describe the
correlation between HisBug and the functions being defected.
In these plots, we use the rectangular area to represent the
percentage of functions with a specific property. For example,
the area of the rectangle marked with (0, 0) represents the
percentage of bug-free functions that are also bug-free in
all its previous versions. Similarly, the area of the rectangle
marked with (1, 1) shows the percentage of defected functions
which also had bugs in their previous versions.

Without loss of generality, we only include the mosaic
plots for Nagioscore 2.6 and 3.0b2. However, most versions
of projects share similar characteristics. According to these
plots, most of the functions do not contain bugs. For example,
as illustrated in Figure 9(a), 72.5% of all functions are bug-
free, not only in their current version but also in their previous
versions.
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TABLE 6. Correlations between function modifications and functions’
defect-proneness LR results.

Logistic regression

Nginx Gedit Nagioscore Redis
results
Time pvalue  0.034 0.003 0.004 0.019
Oddsratio  0.310 0.378 0.028 2.610
) p-value 0016 0.009 0.006 0.045
DiffCount (3 4¢ ratio 1.209 1.912 3.920 2.640
' p-value  0.004 0.009 0.000 0.000
HisBug  0qds ratio  5.687 1262 2.032 3.113

As shown in Figure 9(b), the rectangular area (0, 0) is
0.710, whereas the area is 0.200 for rectangle (0, 1). This
indicates that for functions without bugs in their previous
versions, only one-third of them are defected in the current
version. However, the areas of rectangles (1, 0) and (1, 1)
are 0.025 and 0.065, respectively. In other words, for the
functions that were defected in previous versions, almost
61.5% are still defected.

Therefore, the possibility of a function containing defects
increases if it contains bugs in a previous version.

For further verification, we use logistic regression
discussed in Section IV C to analyze the correlation
between functions’ attributes and fault-proneness. The
results are shown in Table 6. It can be observed that all the
p-values are less than 0.05, which represents that these three
attributes are closely correlated to functions’ fault-proneness.
In addition, the odds ratios of these attributes also indicate
that Time is negatively related to functions’ fault-proneness,
while DiffCount and HisBug are positively related to fault-
proneness.

In summary, with respect to RQ4, our observations are as
follows:

o Time is negatively related to whether a function contains
bug(s) or not

o DiffCount and HisBug are positively related to whether
a function contains bug(s) or not

E. RQ5: WHAT IS THE CORRELATION BETWEEN
SOFTWARE STRUCTURAL CHARACTERISTICS AND THE
FAULT-PRONENESS OF FUNCTIONS?

In this section, we use logistic regression to analyze the
relationship between FCNs structural characteristics and
function’s defect-proneness. The results of global network
measures are shown in Table 7, while Table 8 presents the
results of ego network measures.
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TABLE 7. Global network measures.

TABLE 8. Ego network measures.

Logistic regression

Nginx Gedit Nagioscore Redis
results
p-value  0.023 0.009 0.003 0..048
Degree Odds 13.69 10.58 9.272 26.10
ratio
p-value  0.016 0.001 0.000 0.026
Out_Degree Odds 785.26 191.24 2811.68 289.62
ratio
p-value  0.436 0.529 0.120 0.685
In_Degree Odds 0.619 0.596 0.196 2.585
ratio
. p-value  0.017 0.022 0.000 0.019
Ripple
Degree Odfis 32.764 15.288 10.655 14.694
ratio
p-value  0.049 0.035 0.001 0.019
Closeness Odds 3.479 5.496 2.8589 2.187
ratio
p-value  0.049 0.024 0.016 0.039
Betweenness Odds 981.48 645.26 7521.581 487.69
ratio
p-value 3.486 0.789 0.375 1.287
PageRank Odds 0.486 0.389 0.200 1.756
ratio
p-value  0.004 0.008 0.029 0.034
Clus_Coef Odds 3.426 0.947 0.982 1.576
ratio
p-value  0.004 0.000 0.000 0.002
K_Cores Odds 14.537 10.489 9.376 28.469
ratio
p-value  0.018 0.009 0.007 0.004
Eigenvector Odds 32.471 68.290 20.608 18.465
ratio
p-value  0.000 0.024 0.000 0.008
Efficiency Odds 98.147 258.76 150.551 157.46
ratio
p-value  0.017 0.002 0.001 0.014
Constraint Odds -1.276 -0.048 -0.5198 -0.189

ratio

In Table 7 and Table 8, the rows marked gray indicate that
the measures do not satisfy the “relevant” standard. In other
words, these measures are not related to whether a function
contains bugs or not.

In summary, with respect to RQS5, our observations are
listed in Table 9.

VI. CROSS-COMPARISON

For comparison, we use logistic regression to analyze the
relationship between 19 traditional source code metrics
shown in Table 10 and functions’ defect-proneness on the
four open source projects used in this paper. These traditional
source code metrics include Lines-of-code Metrics, Halstead
Metrics, McCabe’s Cyclomatic Metrics, and Maintainability
Index Metrics. The values of these metrics are computed
using CMTH+.

The results of traditional source code metrics are shown in
Table 11. In Table 11, the cells marked gray indicate that the
metrics satisfy the “relevant” standard, that is to say, these
metrics can be considered as “relevant” to whether a function
contains bugs or not. Obviously, only (10 / 152 =) 6.7%
of the scenarios can prove the “relevance”. Moreover, the
same metric has different correlation with bugs in different
projects, so it has no universal significance. Compared to the
metrics we proposed in this paper, these metrics are of no
statistical significance.
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Logistic regression

Nginx Gedit Nagioscore Redis
results
p-value  0.014 0.005 0.011 0.008
Size Odds 0.687 0.095 0.084 0.147
ratio
p-value  0.001 0.000 0.000 0.000
Ties 0dds 4.1876  5.84756e+ 9.249639¢+6 6.49215
. 14e+4 70 9 Te+59
ratio 6
p-value  0.049 0.017 0.006 0.076
Pairs Odds 14795 4.218%64e  7.917911e-34  8.12476
ratio 64e-45 -46 e-30
p-value  2.469 1.486 0.370 0.476
Density Odds 14756  9.147625¢  6.636574e-11  9.51476
ratio 28e-14 -13 e-8
p-value 0.014 0.001 0.002 0.000
nWeakComp Odds 0.147 0.045 0.012 0.009
ratio
p-value 1.567 0.476 0.211 0.083
pWeakComp Odds 2.486 2.486 1.250 7.654
ratio
p-value  0.006 0.001 0.000 0.018
2StepReach Odds 73.51 86.16 45.53 49.18
ratio
p-value 0.004 0.000 0.000 0.005
2StepPct Odds 67.218 104.26 71.396 49.561
ratio
p-value 0.752 1.458 0.900 0.834
ReachEffic Odds 0.416 0.176 0.746 0.218
ratio
p-value 1.426 1.249 0.661 1.357
Broker Odds 0.0149 0.0005 0.0006 0.0012
ratio
p-value  0.029 0.004 0.000 0.000
24861  1.006549¢  1.848833e+l 8.46759
nClosed Odds g0ty +13 1 9e+10
ratio 1
p-value  0.018 0.000 0.001 0.009
EgoBetween Odds 19.16 35.18 21.37 42.19

ratio

TABLE 9. Network measures correlates to functions’ fault-proneness.

Global network measure Ego network measure

Size, Ties, Pairs, nWeakComp,
2StepReach, 2StepPct, nClosed,
EgoBetween

Degree, Out_Degree, Ripple Degree,
Closeness, Betweenness, Clus Coef,
K_Cores, Eigenvector, Efficiency,
Constraint

VIl. THREATS TO VALIDITY

The first threat involves whether the software projects
selected in this paper is representative enough to serve as the
basis of a solid study. In our study, we analyzed more than
1,000 versions from four open source projects, which is far
more than the numbers of versions used in other studies. For
example, the authors of [34] selected 39 versions, which is
far less than the number of versions we selected. In the next
stage, we will include more projects to make the results more
universal.

Second, the defects used in this study are extracted using
the steps described in Section III B. However, in order to
determine the exact locations of defects, manual inspection
is required. As a result, there is a possibility that the locations
of these defects are incorrect. However, we did our best to
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TABLE 10. Traditional source code metrics used in this study for
comparison analysis.

Lines-of-code Metrics (LOC):4

LOCphy  number of physical lines
LOChHI number of blank lines (a blank line inside a comment block is
considered to be a comment line)
number of program lines (declarations, definitions, directives,
LOCpro
and code)
LOCcom number of comment lines
Halstead-Metrics:9
nl number of unique (distinct) operators
n2 number of unique (distinct) operands
N1 total number of operators
N2 total number of operands
v the program volume (V) is the information contents of the
program, measured in mathematical bits
b the difficulty level or error proneness (D) of the program is
proportional to the number of unique operatorsin the program
L the program level (L) is the inverse of the error pronenessof
the program
the effort to implement (E) or understand a program is
E proportional to the volumeand to the difficulty levelof the
program
B the number of delivered bugs (B) correlates with the overall
complexity of the software
Maintainability Index Metrics:3
MIwoc  Maintainability Index without comments
Mlcw Maintainability Index comment weight

MI Maintainability Index = MIwoc + Mlcw

McCabe's Cyclomatic Metrics:1

McCabe's Cyclomatic number v(G) shows the complexity of
v(G) the flow of control through a piece of code. v(G) is the
number of conditional branches in the flowchart.

Others:2
Params  number of parameters
Maximum nesting depth is somewhat related to the
MaxND  algorithmic complexity v(G) and is an indication on how deep

the algorithmic nesting structure is in a function.

prevent this from happening. For the bugs that cannot be
reproduced, they will be dropped without further investi-
gation. In addition, several engineers are included in this
process. With respect to each bug, they should all agree on the
actual location of the bug. If no agreement can be reached, one
more engineer will be asked to investigate the bug and make
the final decision.

Finally, the network measures used in this study may not be
sufficient enough. There is the possibility that more attributes
should be included, and some of the included attributes only
apply to the selected projects. To make our study more repre-
sentative of most software projects today, more open source
projects as well as network measures will be included in the
next step.
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TABLE 11. Correlations between traditional source code metrics and
function’s defect-proneness LR results.

Lines-of-code Metrics Nginx Gedit Nagioscore Redis
pvalue  0.584 0.531 0.809 0.074
LOCphy Odds ) 304 0.740 1.149 2.184
ratio
pvalue  0.64 0.707 0.812 0.128
LOCbI Odds 706 1229 0.870 0.513
ratio
p-value  0.564 0.537 0.806 0.121
LOCpro Odds ) 75 1.306 0.867 0.508
ratio
p-value  0.874 0.463 0.667 0.07
LOCcom Odds 93 1.450 0.780 0.450
ratio
Halstead-Metrics Nginx Gedit Nagioscore Redis
pvalue  0.268 0.208 0.261 0.008
nl Odds 547 0.572 1.101 1.539
ratio
p-value  0.464 0.081 0.981 0.056
n2 Odds 1 438 1.267 1.001 0.848
ratio
p-value  0.024 0.95 0478 0.952
NI Odds ) 461 1.008 1.009 0.997
ratio
pvalue  0.402 0.497 0.458 0.759
N2 Odds 4 33 1.104 0.991 0.983
ratio
p-value  0.018 0.587 0.466 0.949
v Odds 989 0,994 0.999 0.999
ratio
p-value  0.024 0.05 0.076 0.123
D Odds 615 1.958 0918 0.780
ratio
p-value  0.875 0.221 0431 0.092
L(x1000) Odds - 40 0.972 0.990 1.012
ratio
p-value 0.249 0.024 0.165 0.817
E Odds 4 999 1.000 0.999 0.999
ratio
pvalue  0.026 0.049 0.133 0.457
B(x100) Odds 1319 0310 1.051 1201
ratio
Maintainability Index . . . .
Metrics Nginx Gedit Nagioscore Redis
pvalue  0.961 0.504 0.968 0.403
Mlwoc Odds ) 5 2.187 0.986 0.658
ratio
p-value  0.955 0.502 0.655 0.475
Miew Odds 94 2205751 1.155 0.69885
ratio 3
pvalue  0.934 0.503 0.891 0.488
Mi Odds 917 0454 0.956 1414
ratio
McCabe's Cyclomatic . . . .
Metrics Nginx Gedit Nagioscore Redis
pvalue  0.692 0.479 0.023 0.988
v@G) Odds 960 0.004 1.088 1.002
ratio
Others Nginx Gedit Nagioscore Redis
pvalue 0382 0.715 0.537 0.005
Params Odds 804 0881 0.955 1.473
ratio
p-value  0.403 036 0.36 0.06
MaxND Odds ) 35 1766 0.675 0.951

ratio

VIIl. RELATED STUDIES

In the last few decades, several studies have been conducted
to explore the empirical principles with respect to the dis-
tribution of faults in software systems ([16], [45]-[48]). The
Pareto principle is the most frequently cited. It suggests that
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most of the faults in a software system lie in a small num-
ber of modules. Fenton and Ohlsson [45] not only verified
the Pareto principle but also reported a ‘“‘counter-intuitive
relationship between pre- and postrelease faults.” The least
fault-prone modules in postrelease are the most fault-prone in
prerelease, and the most fault-prone modules in postrelease
are the least fault-prone in prerelease. The authors of [49]
also observed the same with respect to a large industrial
software system. Other studies ([16], [47], [48]) also verified
the Pareto principle.

Aside from the Pareto principle, studies such as [47] have
also been proposed to examine the quality assurance efforts
spent on various software modules. Grbac et al. [47] sug-
gested that defects are unevenly distributed in software sys-
tems, making quality assurance efforts spent on different parts
of a software system also varied. This finding needs to be
further validated by more empirical data.

Various software metrics have also been proposed to help
developers better predict possible locations of bugs. They
can be divided into two types: product metrics and process
metrics.

Product metrics can be further divided into two categories:
object-oriented metrics and source code metrics. Many stud-
ies focus on object-oriented metrics for fault prediction,
among which the CK metrics are most frequently refer-
enced [50].

Cross-comparisons among different object-oriented met-
rics have also been conducted. Goel and Singh [51] compared
ten class level metrics with respect to their abilities in fault
prediction for object-oriented software. Gyimthy et al. [52]
evaluated the performance of seven object-oriented metrics,
including Weighted Methods per Class (WMC) and Depth of
Inheritance Tree (DIT). Briand et al. [6] used 28 coupling
measures, 10 cohesion measures, 11 inheritance measures,
and a small selection of size measures to show that many
coupling and inheritance measures are strongly related to the
probability of fault detection in a class. Models derived by
some of the coupling and inheritance measures can accurately
predict most of the faults in some classes. Similar studies
such as [53] were also reported. However, fault prediction
based on object-oriented metrics can only help developers
predict bugs at a class or file level. Moreover, they cannot
be replicated across different environments and systems to
obtain generalized conclusions.

Studies ([47], [54]-[56]) have shown the limitation of
using source code metrics (e.g., lines of code) to predict
fault-proneness. Zhou et al. [56] reported that many source
code metrics have “moderate or almost moderate” ability
to detect fault-prone classes. Xu et al. [54] examined the
risk prediction abilities with respect to twelve metrics and
showed that these metrics are not strong enough to establish
a precise prediction model. Similar results can also be found
in ([47], [55D).

Unlike product metrics focusing on the static aspects of
software, process metrics emphasize the lack of considering
aspects related to the development process. Graves et al. [57]
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conducted a study to predict fault incidence based on the
change history of software. Illes-Seifert ef al. [S8] examined
the relationship between a file’s history and its correspond-
ing fault-proneness. They also used open source programs
to validate their findings. In recent years, software network
measurements with good fault prediction ([59]-[61]) have
attracted attention from both academia and industry.

The theory of complex networks has been widely used
in the area of software engineering to help engineers ana-
lyze software systems, especially for systems with extremely
large scale and complexity. Li et al. [62] considered software
systems as complex networks and proved that the power
consumption of software is non-linearly related to its network
characteristics. Chong and Lee [63] used a weighted complex
network to represent object-oriented software systems and to
capture the structural characteristics of these systems. The
maintainability and reliability of these systems were then
carefully evaluated based on the networks. Later, they [64]
provided an approach that can help practitioners automat-
ically achieve the clustering constraints from the implicit
structure of software systems based on graph theory. In [65],
Myers discussed the relationships between several network
topological measurements to software engineering practices.
Qian et al. [66] applied the widely-used community detec-
tion algorithm in the clustering of software modules and
demonstrated that the clustering performance is better than
that of the Bunch method. In addition, Le and Panchal [67]
proposed an analysis method for product structures at both the
product level and module level. In [68], the authors presented
an approach that models software packages as nodes and
dependencies among them as edges. Then, methods in the
field of complex networks were applied to explore properties
of network models. In [69], community structure detection
was proposed to evaluate the cohesion of object-oriented
software programs.

In recent years, software network measurements have also
been attracting practitioners from both academia and indus-
try. Zimmermann and Nagappan [70] suggested that by ana-
lyzing the dependencies exist among various pieces of code,
engineers could identify around 60% of the critical bina-
ries, which is twice as many as the percentage identified
by complexity metrics. Tosun et al. [60] indicated that the
network measurements are closely related to defective mod-
ules, whereas the correlation is not significant for small-scale
projects. T.H.D. Nguyen et al. [59] demonstrated that several
of the dependency network measurements are strongly cor-
related with post-release failures, while other measurements
are not. They also indicated that testing can benefit from bug
predictions and reduce costs during the entire testing pro-
cess. In [61], the authors proposed an MHCP model to help
engineers analyze open source projects based on software
complex network measures.

IX. CONCLUSIONS AND FUTURE WORK
In this paper, we first analyze the distribution of bugs from
both fime and space points of view. Different types of

VOLUME 8, 2020



J. Ai et al.: What Ruined Your Cake: Impacts of Code Modifications on Bug Distribution

IEEE Access

function-level modifications are proposed, and further inves-
tigations are performed to determine the correlation between
these modifications and functions’ fault-proneness. Other
attributes related to functions as well as software networks
are also utilized as possible indicators for fault prediction.

Our results indicate that: 1) bug distributions in both time
and space conform to the power law distribution; 2) of the
six types of function-level modifications, four of them (AD,
Deg-In, Deg-Out, and Deg-Ch) fit the power law distribution,
while MC and OM show no such pattern; 3) AD, Deg-In,
Deg-Out, and Deg-Ch are all positively related to functions’
fault-proneness, while MC and OM’s correlations with func-
tions’ fault proneness are not remarkable; 4) of the three
functional attributes, two of them (DiffCount and HisBug) are
positively related to functions’ fault-proneness, while Time
exhibits significant negative correlation with the possibility
that a function contains bug(s); 5) several software network
measures are also proven to be closely related to functions’
fault proneness. Overall, we have identified a set of criti-
cal factors that can serve as valuable indicators for existing
fault prediction approaches to help increase their prediction
accuracy.

In the next step, analyses towards more software projects
will be performed to achieve more in-depth knowledge with
respect to factors that have an influence on functions’ fault-
proneness. We would also like to establish a novel fault
prediction model based on not only the factors we have
proposed in this paper but also the existing metrics to provide
better precision in fault prediction. In addition, other software
network measures will also be introduced into the area of
software fault prediction so that engineers can achieve better
fault prediction strength.
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