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Dynamic fault trees (DFTs) with spare gates have been used extensively in reliability analysis. The tra-

ditional approach to DFTs is Markov-based that may suffer from problems like state–space explosion.

Algebraic-structure-based methods consume long computation time caused by the inclusive/exclusive

formula. Recently, some combinatorial solutions have been applied to DFTs such as sequential binary

decision diagrams (SBDD) and algebraic binary decision diagrams (ABDD). They analyze systems by the

minimal cut sequence (MCQ) based on sequence-dependence. We propose an analytical method based

on conditional binary decision diagrams (CBDD) for combinatorial reliability analysis of non-repairable

DFTs with spare gates. A detectable component state is mined to describe the sequence-dependent

failure behaviors between components in the spare gate. Minimal cut set (MCS) instead of MCQ is used

for qualitative analysis to locate faults via the component state. Compared to Markov-based methods,

our method can generate system reliability result with any arbitrary time-to-failure distribution for

system components. Different from SBDD and ABDD, specific operation rules are proposed to eliminate

inconsistencies and reduce redundancies when building a CBDD. For quantitative analysis, the CBDD

simplifies computation via using the sum of disjoint products. Case studies are presented to show the

advantage of using our method.

© 2020 Elsevier Inc. All rights reserved.
e
c
w
s
g
c
t
(
e

1. Introduction

System reliability is one of the measures of dependability in
systems engineering (Commission et al., 2016). Fault Tree Analy-
is (FTA) is a traditional reliability analysis method that is suitable
or system dependable computing. In fault trees, the dynamic
ault tree (DFT) (Dugan et al., 1992; Ruijters and Stoelinga, 2015)
s an extension of the static fault tree (SFT) (Vesely et al., 2002).
The DTF considers functional-dependent failure and sequence-
dependent failure. Compared to the static fault tree, the dynamic
fault tree includes several dynamic gates such as functional-
dependency (FDEP) gate, spare gate, priority-and (PAND) gate,
and sequence-enforcing (SEQ) gate. As a result of dynamic be-
haviors like function-dependency and sequence-dependency, the
reliability analysis of high-reliability systems in the critical field
becomes complicated. To maintain the desired high-reliability for
the system, a high degree of redundancy, dynamic redundancy
management, and spares are usually required. Compared to re-
dundancy, spares can flexibly adjust its working state by adopting
three kinds of spare gates to balance its required performance and
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nergy consumption. The spare gate (Fig. 1) is widely known as a
ommon design technique for achieving the fault-tolerant system,
hich can keep the system working despite hardware failures or
oftware errors that may cause the entire system to fail. The spare
ate consists of primary components and spare components. Ac-
ording to the state of spare components, the spare gate has
hree different types: hot spare (HSP [Fig. 1(a)]) gate, warm spare
WSP [Fig. 1(b)]) gate, and cold spare (CSP [Fig. 1(c)]) gate (Dugan
t al., 1992; Dugan and Doyle, 1996; Misra, 2008). For considering

energy consumption, the HSP gate is the most expensive of the
three types of spare gates since the primary component and
spare components are both in a working state. The hot spare
component can be placed into service immediately when the
current primary component (an initial primary component or an
activated spare component) fails. It is usually used in applications
whose failure resume time is minimal such as A/V switches, com-
puters, network printers, and hard drive data backup systems. In
contrast, the CSP gate is the most economical of the three types of
spare gates since its spare component is always in an unpowered
state before the current primary component failure activates the
cold spare component. The cold spare component requires a long
time to replace the faulty component in the CSP gate. Hence, the
CSP gate is typically applied in places where power is limited
such as satellites and conventional submarines. The WSP gate is
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Acronyms and abbreviations

FTA Fault tree analysis
SFT Static fault tree
DFT Dynamic fault tree
CFT Conditional fault tree
BDD Binary decision diagram
MDD Multiple-valued decision diagram
CBDD Conditional binary decision diagram
MCQ Minimal cut sequence
MCS Minimal cut set
HSP Hot spare
WSP Warm spare
CSP Cold spare

Assumptions

(1) The system is non-repairable.
(2) All the spare components supply service

in a specified order (from left to right in
the spare gate).

Notation

θX Component X .
X Failure of component X .
♢ Boolean operator (and/or).
+, ·, ¬ Basic Logic OR, AND, Negation
◁ Temporal non-inclusive BEFORE (BF)

operator
→ Precedence order of component failures

Fig. 1. Three types of the spare gate. (a) HSP, (b) WSP and (c) CSP.

a compromise solution between the HSP gate and the CSP gate
since the warm spare component is in a dormant (standby) state
that is power-on but not actively operating. Compared to the HSP
gate, the WSP gate consumes much less power before the warm
spare component is activated. Compared to the CSP gate, the WSP
gate has a shorter response time to let the spare component
replace the faulty component and restore the system. The WSP
gate is commonly used in sensor networks, disk management
systems, and vehicle management systems.

In the DFT reliability analysis, the spare gate is one of the most
omplicated cases. It includes sequence-dependent failure behav-
ors and different failure probabilities in the same spare com-
onent in different states. Spare gate fires when all components
ncluding the primary component and the spare components fail
shared spare component may be occupied rather than fail). In
he CSP gate, all the spare components may fail only after the
urrent primary component fails. Note that cold spare component
s not considered to have failed before it is activated (Dugan et al.,
992). In this case, the cold spare component has two failure
robabilities: one is 0 before it is activated and the other is PrCa af-
er it is activated. Unlike the cold spare component, however, the
arm spare component has no sequential fault restriction if spe-
ific failure states are not concerned; it also has two failure prob-
bilities: one is PrWd in the dormant state and the other is PrWa in
he working state. In the HSP gate, the hot spare component fail-
re is neither sequence-dependent nor has different probabilities.
ence, if we only consider failure behaviors, an HSP gate with
on-shared spares is equivalent to a logic AND gate, which has
o sequence-dependent failure behaviors. As a result, the spare
ate in this paper mainly involves CSP and WSP gates except for
ig. 2 (hot spare mode). Current approaches to reliability analysis
f dynamic fault trees (DFTs) with spare gates are Markov-based
ethods (Misra, 2008), simulation-based methods (Long, 2002;

Merle et al., 2016), Bayesian-network-based methods (Boudali
and Dugan, 2005; Kabir et al., 2014) and algebraic-structure-
based methods (Merle et al., 2011a,b). Markov-based methods
may suffer from the state–space explosion problem when the
scale of DFTs is large (Ruijters and Stoelinga, 2015). However,
it can achieve the reliability analysis of large DFT via reducing
state–space for cases mentioned in Volk et al. (2016), Volk et al.
(2018). Also, it is only suitable for the exponential time-to-failure
probability distribution of basic events. Simulation-based meth-
ods eliminate the exponential time-to-failure distribution restric-
tion, but they cannot offer accurate results. Bayesian-network-
based methods have similar computation complexity troubles
as the Markov-based methods. With the help of temporal logic,
algebraic-structure-based methods (Merle et al., 2011a) use a
symbol ◁ to denote a sequential relationship ‘‘before’’. Algebraic-
structure-based methods can handle any arbitrary time-to-failure
probability distribution but they may require using the I/E (In-
clusive/Exclusive) formula for reliability computation. However,
they will relate to a huge amount of computation when minimal
cut sequences (MCQs) are too numerous. In recent years, BDD-
based methods are used for DFTs analysis. Converting the fault
tree to binary decision diagram (BDD) is an efficient method to
find MCS (Akers and B, 1978). After converting, the BDD has
exponential complexity in the worst case, but it also has linear
complexity in the best case (Ruijters and Stoelinga, 2015).

We mine a detectable component state in spare gates. Accord-
ing to this specific state, we create a certain conditioning event
that implies sequence-dependent behaviors in spare gates. Thus,
the DFT described in our paper is a fault tree that consists of spare
gates and static logic gates (logic AND gate and/or logic OR gates).
Our proposed method also is a combinatorial solution involving
an extended BDD.

Firstly, we convert the DFT to the conditional fault tree (CFT)
by using some conditioning events that relate to the status of the
component. Secondly, according to the proposed rules, a system
CBDD model corresponding to the CFT is built. At last, a system
CBDD model can be evaluated by translating paths from the top
to terminal ‘‘1’’ to algebraic expressions of sequence-dependent.

Note that, the DFT described in our paper is a fault tree that
consists of spare gates and static logic gates (logic AND gate
and/or logic OR gates). We do not consider voting gates separately
since it can be replaced by the combination of logic OR and AND
gates (Ruijters and Stoelinga, 2015).

The remainder of this paper is organized as follows. Section 2
presents recent related work regarding reliability analysis using
BDDs and multiple-valued decision diagrams (MDDs). Section 3
introduces some concepts of static transform and basics of BDD.
Section 4 presents the conditional state transformation. Section 5
shows the construction of the CBDD. How to use a CBDD for
reliability analysis based on DFTs with spare gates is presented in
Section 6. In Section 7, three practical DFT case studies are illus-
trated for the reliability analysis using CBDD in detail. Section 8
concludes the paper.
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2. BDD Related work

Recently, many BDD-based methods were used in reliability
analysis or related field. A new and efficient BDD-based method
was utilized for performability analysis of k-to-l-out-of-n com-
puting systems (Mo et al., 2018), An improved BDD can re-
duce memory consumption and computation time by combining
truncation with modularization, which quickly obtains an accu-
racy probability in the fault tree analysis if a proper truncation
probability is found (Deng et al., 2015). A BDD assisted with
a dynamic labeling method is proposed for non-coherent fault
tree analysis. The dynamic labeling can be used to reduce the
number of intersections to be calculated for the determination of
prime implicants (Matuzas and Contini, 2015). A BDD combined
with an incremental method is used for the quantification of
sequences of linked fault trees, adopting a reduction procedure
that can be used individually to each fault tree defined in the se-
quence (Ibáñez-Llano et al., 2010). However, sequence-dependent
behaviors are not considered. An analytical and combinatorial
method based on sequential BDD (SBDD) was proposed for the
analysis of non-repairable standby systems (Xing et al., 2012;
Tannous et al., 2011) and it was improved by creating a heuristic
variable index to keep the scale of resultant cut sequences as
small as possible (Ge et al., 2015). However, the SBDD can-
not eliminate sequence-dependent at prime events level, and
it removes invalid nodes after the final SBDD has been built.
The SBDD (Rauzy, 2011) that was inspired by Minato’s Zero-
Suppressed BDD (Minato, 1993) used a new data structure to
encode sets of sequences of basic events. All rules related to
sequence algebras can be operated based on the proposed data
structure. Nevertheless, it is similar to algebraic-structure-based
methods and allows complex sequence-operation rules in the
SBDD. Also, the SBDD is not developed based on a well-defined
temporal or sequential algebra. Hence, the SBDD is complicated
when conducting both qualitative and quantitative analysis of a
large-scale DFT. An algebraic BDD (ABDD) on algebraic-structure-
based methods was applied for the analysis of DFTs (Jiang et al.,
2018), but it eliminates the invalid path after the final ABDD has
been completed and relates to complex operations with temporal
logical failure behaviors as well. MDD, which is an extended
version of BDD, has mainly been used for multiple-state sys-
tem reliability analysis. The MDD inherits all the advantages of
BDD, such as no restriction on the time-to-failure distribution
for the basic event in the DFT and reliability computed by the
sum of disjoint product (SDP). A generalized MDD was pro-
posed for the reliability analysis of fault-tolerant systems (Xiang
et al., 2016). A multi-state MDD was presented for the anal-
ysis of multi-state systems with multi-state components (Xing
and Dai, 2009). A new MDD-based analysis technique was pro-
posed for the reliability analysis of network systems with depen-
dent propagation effects (Mo et al., 2016). An MDD is proposed
to evaluate cold standby systems via supplementing a mark to
the activated event (Zeng, 2019). Some MDDs were used for
the analysis of warm standby systems and cold standby sys-
tems (Zhai et al., 2013, 2015a,b) based on fault coverage models.
An efficient MDD-based method was proposed for the reliability
analysis of binary-state phased-mission systems by using in-
dependent multi-valued variables to encode component failure
behavior across phases (Peng et al., 2014). However, they con-
duct reliability analysis based on coverage models or multi-state
systems rather than the DFT model. An efficient MDD-based DFT
analysis approach for computing the reliability measures of large
dynamic subtrees was proposed (Mo, 2014). This method can
relieve the state–space explosion problem by identifying whether
subtree components relate dynamic failure behaviors, but it still
has the exponential limitation on basic events in dynamic gates.
Fig. 2. A simple example of the static transformation (Xiang et al., 2013).

The above methods either cannot be directly available to DFTs or
involve state–space explosions or complex sequence-dependent
failure behaviors. Unfortunately, sequence-dependent failure be-
haviors may cause a permutation problem due to cut sequence
searching in DFTs, and a permutation problem usually involves a
factorial complexity problem (Dixon and Mortimer, 1996). In this
paper, an analytical and combinatorial method is proposed for
reliability analysis of non-repairable DFTs with spare gates while
addressing problems of the existing approaches. The proposed
method is based on conditional binary decision diagram (CBDD),
an extended version of BDD (Bryant, 1986; Rauzy, 1993).

It is easy to understand that searching cut sets in SFTs is a
mathematical combinatorial problem. The complexity of combi-
natorial problems is much less than that of permutation prob-
lems (Biggs and White, 1979). To reduce the complexity, a static
conditional transformation of spare gates is proposed. A new
conditional fault tree (CFT) is built with the static conditional
transform, and the minimal cut set (MCS) replaces the MCQ. In
the CFT, permutation problems are changed into combinatorial
problems, since sequence-dependent failure behaviors are con-
verted into conditional states in DFTs with spare gates. In this
paper, a novel BDD (CBDD) based on the CFT is propounded for
reliability analysis of DFTs with spare gates.

Note that, in this paper, different from the state based on
state–space methods, the conditional state is located in the com-
ponent (basic event) level rather than the gate (or system) level.
We only focus on the entire system reliability evaluation and
assume that the time to failure of the system components sat-
isfies the continuous probability distribution function (PDF). The
PDF of the system components can be estimated by methods of
statistical inference (ALLEN AO, 1990) if it is unknown or partially
unknown.
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Fig. 3. Two BDD nodes: (a) the general BDD node (b) the prime BDD node.

. Static transform & binary decision diagram

A transformation from dynamic PAND gates to static AND
ates with some dependent conditioning events has been pre-
ented in Xiang et al. (2013). The fault tree conditioning event
relates to some specific conditions or restrictions that are used to
any logic gate. With the help of the transformation, the MCQ of a
DFT with PAND gates is converted into the MCS of a conditional
SFT. After the transformation, the conditional AND gate is called
the CAND gate. It can represent the priority relations that cannot
be modeled by the PAND gate. A simple example of the trans-
formation is shown in Fig. 2. In the CAND gate, the conditioning
event ‘‘Switch Connects to Principal Supply’’ indicates the switch
fails before the principal supply fails. In other words, it implies
the sequence-dependent failure behaviors between components.
The specific conditioning event can be used to achieve static
transformation for PAND gates (Xiang et al., 2013). If we only
consider failure behaviors, in most cases, the SEQ gate is likely to
be replaced by a special case of CSP gates with non-shared spare
components (Ruijters and Stoelinga, 2015; Manian et al., 1999)
and the FDEP gate can be translated into a logic OR gate (Merle
et al., 2011b). In some special scenarios (Boudali et al., 2010;
Junges et al., 2016), it cannot achieve translation rules regarded
as SEQ gates and FDEP gates. For example, an SEQ gate with a
logical AND gate as the second child or an FDEP gate whose two
dependent events are the inputs in a PAND gate. However, the
static transformation-related complete solution of spare gates is
not proposed.

BDD was first used as a new algorithm for fault tree analysis
in Rauzy (1993). Unlike other methods of fault tree reliability
analysis, BDD requires less memory and computation time. It is
a rooted acyclic graph based on the Shannon decomposition as
follows:

f = x · fx=1 + ¬x · fx=0 = ite(x, F1, F0) (1)

In Eq. (1), f denotes a Boolean expression and x denotes a Boolean
variable in f . F1 and F0 equal fx=1 and fx=0, respectively. fx=1 and
fx=0 represent f evaluated as x being one and zero, respectively.
ite represents the concise if − then − else format. The BDD
has two branches, labeled by 0-edge and 1-edge, representing
the operable state and failed state, respectively. The two BDD
terminal nodes are logic value 0 and value 1. The general BDD
node and prime BDD node are shown in Fig. 3.

An SFT can be converted to the BDD by recursively using the
following operation rules set out in Bryant (1986). Let ♢ represent
any logic operation (AND/OR). g and h represent two Boolean
expressions corresponding to the traversed sub STFs, and then we
have g♢h = ite(x,G1,G0) ♢ ite(y,H1,H0) =⎧⎨⎩
ite(x,G1♢H1,G0♢H0) index(x) = index(y);
ite(x,G1♢H,G0♢H) index(x) < index(y);
ite(y,G♢H1,G♢H0) index(x) > index(y);

where index represents the Boolean variable order based on the
heuristic method.
If BDDs are suitable for static fault trees, the DFT also could
be converted to a certain BDD after static transformation. Thus,
our combinatorial solution addressing this is presented in the
following sections.

4. Conditional state transformation

A component in dynamic gates has some detectable static
states when it is in different conditions such as operable, failure,
and other states. In spare gates, a spare component has two
states: working state and standby state. Precisely, the standby
state can be divided into two states, un-power state and dormant
state, which are respectively located in the CSP gate and the WSP
gate. The spare component in WSP gates can fail in the dormant
state. When a primary component fails, a spare component is
activated and replaces the failed primary component. At this
point, the spare component is working before it fails. The spare
component in the working state plays a role of the primary
component. It can be replaced by the other spare component
as well. Generally speaking, the spare component can replace a
replaceable component. The replaceable component refers to a
primary component or a working spare component in the spare
gate. Also, we consider that if there is an available spare compo-
nent, a replaceable component will be replaced when it fails, and
a spare component is operational when it replaces a component.

4.1. Conditioning event

A particular event may occur in the spare gate, which can
determine the replacement behaviors between components. Here
we introduce a ‘‘replacement’’ symbol rep to represent this condi-
tioning event, which exists only in spare gates. rep(θ1, θ2) denotes
the conditioning event that a component θ1 replaces a compo-
nent θ2, where θ1 can only be a spare component while θ2 is
a replaceable component (either a primary component θP or a
working spare component θS). Accordingly, ¬rep(θ1, θ2) denotes
that the replacement between θ1 and θ2 has never happened. It
is easy to understand that rep(θS, θS) represents the conditioning
event that θS never replaces any other component, as it is in
the dormant state at all time. In this case, rep(θS, θS) · S de-
notes the warm spare component θS fails in the dormant state.
¬rep(θS, θS) denotes θS replaces a certain component. It implies
θS is activated by a replaceable component. In the algebraic-
structure-based method (Merle et al., 2011a), Sa denotes a spare
component θS fails after it replaces a component, and Sd denotes
a spare component θS fails while no replacing any other compo-
nents. As opposed to Sa and Sd, the rep (conditioning event) does
not imply the spare component θS failure.

4.2. Conditional fault tree

Thanks to rep, the combination of component states can be
considered to supersede the sequence-dependent behaviors be-
tween components in the spare gate. Based on the specific rep, if
we only consider the non-shared spare, the WSP gate or the CSP
gate can be converted into a kind of conditional SFT called CFT,
as shown in Fig. 4. For the shared spare WSP gate and shared
spare CSP gate, primary components could be affected by each
other due to the occupation of the shared spare component. The
conversion of shared spare gates (WSP gate and CSP gate) is
shown in Fig. 5. For Fig. 5, it is easy to observe that the occupation
of a shared spare is symmetrical for TE1 and TE2. Hence, if TE1
and TE2 are combined with a logic OR gate, we only consider the
failure of P1 and P2 for the logic OR gate, but not which one will
be replaced first. For m primary components and n shared spare
components, each primary component corresponds to a spare
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Fig. 4. Converting the DFT into the CFT.

Fig. 5. Converting the shared spare SP gates into the CFT.

ate, and we can deduce that one of the shared spare SP gates
s bound to happen if n + 1 components fail. Furthermore, it can
e obtained that one of the shared SP gates will happen if n + 1
rimary components fail and m > n.
Compared with the sequence-dependent failure behavior, the

tatic transformation expression of spare gates can describe both
he location and failure state of basic events. Thus, it can more
 W
accurately describe the failure process of the spare gate. Fur-
thermore, a combination of primary events (Vesely et al., 2002)
and conditioning events, instead of primary event permutation,
describes the dynamic failure behavior of DFTs with spare gates.

4.3. Minimal cut set vs minimal cut sequence

As a result of conditional states replacing the sequence-
dependent failure behaviors, MCQ is no longer suitable for qual-
itative analysis of a CFT. Hence, MCS is considered to be used
in qualitative analysis. However, basic events in the MCS are
typically primary events (Vesely et al., 2002) which are assumed
to be independent. Obviously, the conditioning events in the CFT
are dependent events. According to the definition of basic events,
the conditioning event is a type of basic events (Vesely et al.,
2002). The MCS is the smallest combination of basic events that
result in the top event. Thus, MCS can also be applied to CFTs,
but the inconsistency and redundancy caused by conditioning
events need to be eliminated. The replacement can only happen
when the replaceable component fails. The following rules can be
introduced to solve the redundancy problem:

P · rep(θS, θP ) = rep(θS, θP ) (2)

S ′
· rep(θS, θS′ ) = rep(θS, θS′ ) (3)

Eqs. (2) and (3) indicate if a replacement happens and if the
corresponding replaceable component was bound to fail.

If a replaceable component is operational, then it is impos-
sible to be replaced (it refers to Eqs. (4) and (5)). For a spare
component, ‘‘never replace’’ and ‘‘replace’’ cannot happen at the
same time, which refers to Eq. (6). It is also impossible for a spare
component to ‘‘never replace’’ and ‘‘be replaced’’ simultaneously,
which refers to Eqs. (7) and (8). A spare cannot replace more than
one replaceable component at the same time as well, which refers
to Eqs. (9) and (11). For the same reason, a replaceable component
cannot be replaced twice or more simultaneously, which refers
to Eqs. (10) and (12). Based on the above analysis, the following
ules can be introduced to solve the inconsistency problem:

P · rep(θS, θP ) = 0 (4)

S ′
· rep(θS, θS′ ) = 0 (5)

ep(θS, θP ) · rep(θS, θS) = 0 (6)

ep(θS, θS′ ) · rep(θS, θS) = 0 (7)

ep(θS, θS′ ) · rep(θS′ , θS′ ) = 0 (8)

ep(θS, θP ) · rep(θS, θP ′ ) = 0 (9)

ep(θS, θP ) · rep(θS′ , θP ) = 0 (10)

ep(θS, θS′
1
) · rep(θS, θS′

2
) = 0 (11)

ep(θS1 , θS′ ) · rep(θS2 , θS′ ) = 0 (12)

here θP and θP ′ are distinct primary components in the shared
pare gate. θS′

1
and θS′

2
are distinct working spare components in

he same spare gate. θS1 and θS2 are distinct spare components
n the same spare gate. In this paper, the conditioning event
nly refers to the relationship between replaceable components
nd spare components in spare gates. However, the conditioning
vent is not a primary event (the primary component failure),
hough it can imply the replaceable component failure. The spare
ate only fires when all components fail. Hence, the conditioning
vent cannot appear in the MCS singly. It combines with at least
ne primary event. For the spare gates shown in Fig. 4, the MCS
s presented as follows:

SP : rep(θS, θP ) · S

SP : rep(θS, θP ) · S + P · rep(θS, θS) · S
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Fig. 6. CFT of the WSP gate with two spare components.

s we know, the CSP gate can be regarded as a special case of the
SP gate if the failure of the spare component in the dormant is
ot considered. Thus, the following part of this paper focuses on
SP gates. For a WSP gate, the MCS is the product of all primary

vents in the WSP gate if the specific failure status of the spare
omponent is not distinguished. However, the failure probability
f a spare component is different before or after the replacement.
n quantitative analysis, it will be divided into two sub-events.
or the convenience of engineering applications, these differences
ill be reflected in the MCS. For example, a WSP gate with two
pare components has a primary components θP and two spare
components θS1 and θS2 . It can be converted into a CFT, as shown
in Fig. 6. Four MCSs of the CFT are as follows:

rep(θS1 , θP ) · rep(θS2 , θS1 ) · S2
+ rep(θS1 , θP ) · rep(θS2 , θS2 ) · S1 · S2
+ rep(θS1 , θS1 ) · rep(θS2 , θP ) · S1 · S2
+ P · rep(θS1 , θS1 ) · rep(θS2 , θS2 ) · S1 · S2
If MCQs are used for the above example, the six MCQs are as
below:

(P ◁ S1a ◁ S2a ) · S2a
+ (P ◁ S2d ◁ S1a ) · S1a
+ (S2d ◁ P ◁ S1a ) · S1a
+ (S1d ◁ P ◁ S2a ) · S2a
+ (S1d ◁ S2d ◁ P) · P
+ (S2d ◁ S1d ◁ P) · P

The symbol ◁ denotes a sequential relationship ‘‘before’’. For
example, if A and B are two basic events in a DFT, then A ◁ B
denotes that only when the event A occurs before event B, the
event (A ◁ B) will occur.

For the WSP gate with two spare components, it is evident that
the quantity of MCSs is less than that of MCQs. This is because
some MCSs can imply two MCQs. P ·rep(θS1 , θS1 )·rep(θS2 , θS2 )·S1 ·S2
implies (S1d ◁ S2d ◁ P) · P and (S2d ◁ S1d ◁ P) · P , and rep(θS1 , θP ) ·

rep(θS2 , θS2 ) ·S1 ·S2 implies (P ◁S2d ◁S1a ) ·S1a and (S2d ◁P ◁S1a ) ·S1a .
The general non-shared spare case is the WSP gate with n

spare components. In this case, the WSP gate firing will be satis-

fied if:
(i) All the components fail.
(ii) Each spare component can only fail in one of the two different
states simultaneously. One is the failure without replacement,
and the other is the failure after replacement.

According to the inconsistency rules (9) and Eq. (11), it is im-
possible for a spare component to replace two different replace-
able components at the same time. Hence, a spare component
has a unique replacement failure (failing after replacement) in
one MCS. The MCS that leads to the WSP gate firing is related
to a simple combination of the primary component failure state
and the spare component failure state. A primary component has
only one failure state, and each spare component has two possible
failure states. In total, n spare components have 2n possible failure
states. Therefore, the quantity of combinations of possible failure
states in the non-shared general case is 1 · 2n

= 2n. Correspond-
ingly, the quantity of MCSs is also 2n. Compared to the MCS, MCQ
is a sequence permutation with all primary events (one primary
component failure and n spare components failure) in the WSP
gate. In the general non-shared spare case, the quantity of MCQs
is Pn+1

n+1 :

Pn+1
n+1 = (n + 1) · n · (n − 1) · (n − 2)... · 1 > 2n, where n > 1

In the qualitative analysis, the quantity of MCSs is less than that
of MCQs if the WSP gate has two or more spare components. Also,
as the quantity of spare components increases, the difference is
more significant.

The general shared spare case is m WSP gates with n shared
spare components. In this case, a single WSP gate firing will be
satisfied if:
(i) Its primary component fails.
(ii) All the spare components are exhausted. Each shared spare
component can only be consumed in one of three different states
at the same time. One is the failure without replacement, one is
the failure after replacement, and the third is the replacement in
the not-self WSP gate.

Each shared spare component has two failed states that are
the same as those in the non-shared WSP gate. However, it is dif-
ferent from the case of non-shared WSP gates. The shared spare
component has one more state (occupied state) that replaces the
replaceable component in the not-self WSP gate. The possible
quantity of occupied states is related to the number of primary
components in the shared WSP gate. In the general shared case,
the quantity of primary components is m, and then the shared
spare component has m−1 possible occupation states. Therefore,
the shared spare component has m + 1 ((m − 1) + 2) possible
consumed states. In total, n spare components have (m + 1)n
possible consumed states. Similarly, combined with the primary
component failure state, the quantity of MCSs of a single WSP
gate in general shared case is 1 · (m+ 1)n = (m+ 1)n. If m = 1, it
is converted into 2n, which is a general case of non-shared spare.
In other words, (m + 1)n can also solve the general non-shared
spare case. Thus, it is considered a general formula for a WSP gate
failure. For the general shared spare case, if n+1 components fail,
one of the WSP gates is bound to fire. Additionally, the probability
of occurrence of each WSP gate, in this case, is the same. Hence,
the quantity of MCQs of a single WSP gate in a general shared
case is Pn+1

n+m/m.

Pn+1
n+m/m =(m + n) · (m + n − 1)...(m + 1) > (m + 1)n

where n > 1.

For example, two WSP gates (with two primary components θP1 ,
θP2 ) share two spare components (θS1 , θS2 ). Nine MCSs can cause
one of the WSP gates to fail (the WSP gate with θP1 ), as follows:

The quantity of MCSs : (2 + 1)2 = 9

rep(θS1 , θP1 ) · rep(θS2 , θS1 ) · S2
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+ rep(θS1 , θS1 ) · rep(θS2 , θP1 ) · S1 · S2
+ rep(θS1 , θP1 ) · rep(θS2 , θS2 ) · S1 · S2
+ P1 · rep(θS1 , θS1 ) · rep(θS2 , θS2 ) · S1 · S2
+ P1 · rep(θS1 , θP2 ) · rep(θS2 , θS1 )
+ rep(θS1 , θP2 ) · rep(θS2 , θP1 ) · S2
+ rep(θS1 , θP1 ) · rep(θS2 , θP2 ) · S1
+ P1 · rep(θS1 , θP2 ) · rep(θS2 , θS2 ) · S2
+ P1 · rep(θS1 , θS1 ) · rep(θS2 , θP2 ) · S1

In the same condition, the quantity of MCQs is twelve.

The quantity of MCQs : P3
4/2 = 12

(P1 ◁ S1a ◁ S2a ) · S2a + (P1 ◁ S2d ◁ S1a ) · S1a
+ (S1d ◁ P1 ◁ S2a ) · S2a + (S1d ◁ S2d ◁ P1) · P1
+ (S2d ◁ P1 ◁ S1a ) · S1a + (S2d ◁ S1d ◁ P1) · P1
+ (P2 ◁ S2d ◁ P1) · P1 + (P2 ◁ P1 ◁ S2a ) · S2a
+ (S1d ◁ P2 ◁ P1) · P1 + (S2d ◁ P2 ◁ P1) · P1
+ (P2 ◁ S1a ◁ P1) · P1 + (P1 ◁ P2 ◁ S1a ) · S1a

Typically, in mathematical theory, the complexity of the com-
bination problem is smaller than that of the permutation prob-
lem (Lucey and Lucey, 2002). Generally speaking, the quantity of
MCSs of a single WSP gate is less than that of MCQs whether it
is a WSP gate that has shared or non-shared spare components
if the spare components are more than one. The more spare
components and the more shared WSP gates, the higher the
difference. Furthermore, when the WSP gate is combined with the
static gate, the difference will become more significant as well.
Additionally, our MCS is more intuitive and straightforward than
the MCQ for describing dynamic behaviors in spare gates since
rep can directly denote replacement between components.

5. Conditional binary decision diagram

Our BDD is an extension of the traditional BDD, as it involves
s-dependent nodes that are converted by conditioning events
rep. Thus, to distinguish other BDDs, our BDD is called Condi-
tional BDD (CBDD). The node in traditional BDD is considered to
be s-independent, but the node in CBDD may not be since the
conditioning node is converted from the conditioning event. In
CBDD, conditioning nodes are not the same as sequential nodes
in SBDD (Ge et al., 2015) and ABDD (Jiang et al., 2018), since
they cannot be represented alone and have different dependent
relation. Hence, it is assumed that all of the nodes in CBDD are
s-independent. However, the dependent relation between CBDD
nodes will be considered in the quantitative analysis. Similar
to the traditional BDD, an ordering strategy of nodes is always
needed since the order of input variables is also heavily relevant
to the size of the CBDD. However, the solution in Rauzy (1993)
cannot be directly used to the CBDD due to conditioning nodes.
Also, more operational rules will be introduced to eliminate some
redundancy and inconsistency.

A few solutions were proposed for an ordering strategy of
BDD nodes such as depth-first-based methods (Bouissou, 1996),
heuristics-based methods (Mo et al., 2013), neural network-based
methods (Bartlett and Andrews, 2002), and neighbor-first-based
methods (Sun and Du, 2008). However, there is no generic so-
lution for the ordering strategy of BDD nodes. In this paper, we
choose a neighbor-first-based method called progressive neigh-
bor first ordering (PNFO) since it can reduce the number of BDD
nodes as much as possible. PNFO evaluates logical relationships
among the basic events in the CFT and is not influenced by
the way the CFT has been constructed. Also, it focuses on re-
peated events and gives the ordering priority to their neighbor
events (Sun and Du, 2008).
Fig. 7. Operation rules for inconsistency for CBDD generation.

Fig. 8. Simplification rule for CBDD generation.

To eliminate the inconsistency problem caused by condition-
ing nodes during the logical operation between CBDDs, several
rules are introduced based on Eq. (4) to Eq. (12), as shown in
Fig. 7.

As the CBDD is built, simplification rules are available to
ensure that the final CBDD is minimal based on the index or-
der of chosen nodes. Besides simplification rules of traditional
BDD, there is a simplification rule of CBDD that is introduced as
follows:
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Fig. 9. No. 1 gate CBDD generation.

Fig. 10. Sub_ CBDD generated by No.1 gate CBDD logic OR operation No.2 gate
BDD.
Fig. 11. Sub-CBDD generated by No.3 gate CBDD logic OR operation No. 4 gate
CBDD.

• Simplification Rule. Replace the redundant node S’ to its 1-
edge sub_node H , if the node S’ and the conditioning node
rep(θS, θS′ ) are on the same path, as shown in Fig. 8.

We illustrate how to construct the CBDD using a WSP gate.
The CFT shown in Fig. 6 consists of four logic AND gates with
conditioning events. Based on the PNFO mentioned above, the
index order of nodes is set to P < S1 < S2 < rep(θS1 , θS1 ) <
ep(θS2 , θS2 ) < rep(θS1 , θP ) < rep(θS2 , θS1 ) < rep(θS2 , θP ). The
CBDD of the CFT is generated as follows:

The CBDD of No. 1 gate in Fig. 6 is built as shown in Fig. 9.
Similarly, CBDDs of No. 2 to No. 4 gates are constructed. These
are basic logical operations without inconsistency. Fig. 10 shows
the sub_CBDD generated by logical operation between CBDDs of
No. 1 gate and No. 2 gate.

The same operation for sub_BDD generated via No. 3 gate
CBDD merging with No. 4 gate CBDD is shown in Fig. 11.

The CBDD of the CFT is generated by a logic OR operation
between two sub_CBDDs shown in Figs. 10 and 11. However,
when the structure of the CBDD is complicated, the inconsisten-
cies problem will emerge. For example, there is an inconsistency
elimination operation (Fig. 7(b)) during logical operation between
two sub_CBDDs, as shown in Fig. 12. The red dotted circle indi-
cates the removed inconsistent node by replacing it to terminal
node ‘0’.

Finally, the CBDD of the CFT after inconsistency elimination
operations (Fig. 7(b)) is shown in Fig. 13.

Typically, inputs of spare gates are basic events (Dugan et al.,
1992). However, if a basic event is both a primary event and a
spare event, for example, a spare gate, the replacement becomes
unclear (Boudali et al., 2010). Our proposed solution also can
analyze this case if the definition of rep makes a corresponding
extension. An example of DFT with specific spare gates is shown
in Fig. 14 (Volk et al., 2018). To handle this DFT, the θ1 and θ2 in
ep(θ1, θ2) are allowed to denote a subtree, respectively.

WSP gates in Fig. 14 are converted to logic AND gates with the
pecific conditioning event. Once either θA or θB fails, the logic OR
ate connected as the primary component will happen. Hence, we
onsider θA or θB as a primary component respectively during the
onversion of CFT. The CFT of Fig. 14 is shown in Fig. A.1 (in the
ppendix). We can build the CBDD based on the CFT shown in
ig. A.1. The steps are similar to the CBDD construction of Fig. 6.
he final CBDD of the WSP gate with subtrees inputs is shown
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Fig. 12. CBDD of the CFT before elimination inconsistency and simplification.

Fig. 13. Final CBDD of the CFT.

s Fig. 15 based on the index order selected by PNFO. The index
order is set to C < D < E < A < B < rep(θD, θC ) < rep(θD, θD) <

ep(T , T ) < rep(T , θA) < rep(T , θB). The evaluation based on the
BDD is presented in Appendix A.
Note that our extension cannot be used for SP gates with

rbitrary subtrees. For example, if both primary components and
pare components are dependent events in an FDEP gate, then
nce the trigger is activated, spare races (more than two pri-
ary components simultaneously compete for the same spare
omponent) may cause the non-deterministic behavior (Junges
t al., 2016). Moreover, some complex nested SP gates in (Junges
t al., 2016) also need carefully identifying replacement behaviors
egarded to activation.
Fig. 14. WSP gate with subtrees inputs (Volk et al., 2018).

Fig. 15. CBDD of WSP gate with subtrees inputs.

6. Reliability analysis using conditional binary decision dia-
gram

A general three-step process can design the CBDD based on
dynamic fault trees with spare gates: CFT conversion, system
CBDD model generation, and system CBDD model evaluation,
which are described in the following:

Step 1 — CFT Conversion
The replacement behavior of the spare gate in the DFT is

extracted, and the replacement behavior is transformed into the
conditioning event after analysis. Then, the spare gate is con-
verted into one or more logic AND gates with conditional events.
Also, the occupation of shared spare components is considered
(mentioned in Section 4.2). If some condition is satisfied, it may
simplify conditioning AND gates to a logic AND gate. According
to the description in Section 4.2, we assume that m SP gates
(each SP gate only has one primary component) share n spare
components, and m SP gates are connected by a logical OR gate
where m > n, then any combination of n+1 primary components
failure (in total Cn+1

m ) will cause the logical OR gate to occur.
Consequently, we can use logical AND gates instead of partial
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Fig. 16. A simplification for conditioning AND gates to a logical AND gate.

Fig. 17. DFT for the hard disk system (Tannous et al., 2011).

conditioning AND gates in this scenario. For example, three SP
gates (θP1 , θP2 , and θP3 ) connected by a logical OR gate share
ne spare component (θS), as shown in Fig. 16. A logical AND
ates with two primary components (any combination of two
rimary components among three) can replace two conditioning
ND gates, as shown in Fig. 16. Similarly, there two other logical
ND gates (P1P3 and P2P3) that can be obtained, in total there are
hree (C2

3 = 3). After that, the DFT can be converted into the CFT.

tep 2 — System CBDD Model Generation
Construct the CBDD based on the CFT using the process men-

ioned in Section 5. First, build sub-CBDDs related to separate
ogic gates. Then, new sub-CBDDs are generated by combining
wo sub-CBDDs via logical operations that correspond to the
tatic logical gate in the CFT. Loop this process until the final
BDD is presented. In these operations, pay attention to avoiding
ontradiction and redundancy by using elimination redundancy
nd inconsistency rules mentioned in Figs. 7 and 8.

tep 3 — System CBDD Model Evaluation
Collect all paths from the top node to terminal node 1 in the

BDD. After eliminating negation events, inconsistency, and re-
undancy, all the paths are converted to corresponding algebraic-
tructure-based expressions (Merle, 2010). Finally, the results are
obtained by using an integral-based method.

7. Case studies

In this section, three systems are illustrated to use and verify
the proposed solution in detail.
 (
Fig. 18. CFT for the hard disk system.

Fig. 19. Two conditional AND gate CBDDs generation.

7.1. Case study I

A hard disk system (Tannous et al., 2011) is shown in Fig. 17.
The θA and θB are primary hard disks (primary components)
sharing the same warm spare disk (spare component) θS in the
ard disk system.

tep 1 — CFT Conversion
In this system, any WSP gate failure can lead to an entire sys-

em failure. The shared spare component failure and occupation
replaces the other primary component) are able to cause WSP
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Fig. 20. Sub-CBDD of the hard disk system generation.

ate failure when the primary component fails. There are three
onditioning events: rep(θS, θA), rep(θS, θB), and rep(θS, θS). The
DFT of the hard disk system needs to be converted into the CFT,
as shown in Fig. 18. As mentioned in Section 4.2, two primary
components share one spare components (2 > 1), and one of
two WSP gates will occur if both of the two primary components
fail. Because θS can only replace one primary component, when
θA and θB both fail, one of two WSP gates is bound to fire, and
the WSP gate firing will cause the entire system to fail as well.
Hence, the No. 1 gate in Fig. 18 is constructed as a logic AND
gate. Due to the logic OR gate in the top, when any one of the
WSP gates fires individually, the entire system will also fail. Each
WSP gate can fire in two conditions. One condition is when the
primary component fails and then the spare component replaces
the primary component and finally fails, which corresponds to
No. 2 gate and No. 4 gate. The other condition is when the
spare component fails first and then the primary component fails,
which corresponds to No. 3 gate and No. 5 gate. No. 2 gate and
No. 4 gate include conditioning events related to replacement. No.
3 gate and No. 5 gate include conditioning events related to non-
replacement. Any gate firing can result in an entire system failure.

Step 2 — System CBDD Model Generation
According to PNFO, the index order of variables corresponding

to nodes of CBDD is S < A < B < rep(θS, θS) < rep(θS, θA) <

ep(θS, θB), and all components start to work (or are in the dor-
ant state) simultaneously. The CFT for the hard disk system

ncludes one logic AND gate and four conditional AND gates. In
he system CFT model, the occurrence of any one of the condi-
ional AND gates or the logic AND gate can result in the top event
appening.
Firstly, construct CBDDs of five gates numbered 1 to 5 as

hown in Fig. 18. The No. 1 gate is a logic AND gate. The No. 2 gate
nd No. 3 CBDD model generation are shown as Fig. 19. Similarly,
o. 4 gate and No. 5 gate are built as well.
Secondly, merge the CBDDs of five gates.

i) Perform a logic OR operation between two CBDDs related to
o. 2 gate and No. 3 gate as a sub-CBDD of the hard disk system,
s shown in Fig. 20.
ii) The same operation is used for CBDDS of No. 4 gate and No. 5
ate, and the result is the other sub-CBDD of the hard disk system.
iii) The sub-CBDD generated in (i) does a logic OR operation with
he CBDD of No. 1 gate, and it can generate the third sub-CBDD
f the system.
iv) The final CBDD can be obtained by a logic OR operation
etween the sub-CBDD generated in (ii) and the sub-CBDD gen-

rated in (iii), as shown in Fig. 21.
Five MCSs can be found by the system CBDD as well as from
the CFT directly:
(1) A · B (absorbs S · A · B )
(2) S · rep(θS, θB)
(3) S · B · rep(θS, θS)
4) S · rep(θS, θA)
5) S · A · rep(θS, θS)

However, they need to be converted to the sequence-
ependent model of the algebraic structure to compute fail-
re probability via the I/E-based method. Obviously, it is more
omplicated than the SDP-based method.

tep 3 — System CBDD Model Evaluation
The CBDD can implicitly represent the SDP. Each disjoint prod-

ct (DP) corresponds to a path from the root node to terminal
ode ‘1’ like that in the BDD. As a result of all the paths being
isjointed, we can compute the entire system probability via the
um of probabilities of all the paths from the root to the terminal
ode ‘1’. To evaluate the system CBDD model, probabilities of all
he paths from the root node to the terminal node ‘1’ must be
alculated. There are six paths shown as the logic operation result
n Fig. 21, which can lead to an entire system failure. The symbol
denotes a path between two CBDD nodes.

1) ¬S ⇛ A ⇛ B
2) S ⇛ ¬A ⇛ B ⇛ rep(θS, θS)
(3) S ⇛ ¬A ⇛ B ⇛ ¬rep(θS, θS) ⇛ rep(θS, θB)
(4) S ⇛ A ⇛ ¬B ⇛ rep(θS, θS)
(5) S ⇛ A ⇛ ¬B ⇛ ¬rep(θS, θS) ⇛ rep(θS, θA)
(6) S ⇛ A ⇛ B

Two paths (1) and (6) in Eq. (13) can be considered as a path
A ⇛ B. The system failure probability can be expressed as:

Usystem =Pr{S · ¬A · B · rep(θS, θS)
+ S · ¬A · B · ¬rep(θS, θS) · rep(θS, θB)
+ S · A · ¬B · rep(θS, θS)
+ S · A · ¬B · ¬rep(θS, θS) · rep(θS, θA)

+ A · B} (13)

From Eq. (13), all the disjunctive terms are mutually exclusive.
Actually, they are DPs. According to the inclusion–exclusion prin-
ciple, Eq. (13) can be deduced as follows:

Usystem =Pr{S · ¬A · B · rep(θS, θS)}
+ Pr{S · ¬A · B · ¬rep(θS, θS) · rep(θS, θB)}
+ Pr{S · A · ¬B · rep(θS, θS)}
+ Pr{S · A · ¬B · ¬rep(θS, θS) · rep(θS, θA)}

+ Pr{A · B} (14)

n this case, some negation conditioning events can be replaced
s follows:

rep(θS, θA) = ¬A + A · rep(θS, θS) + A · rep(θS, θB) (15)

rep(θS, θB) = ¬B + B · rep(θS, θS) + B · rep(θS, θA) (16)

¬rep(θS, θS) = rep(θS, θA) + rep(θS, θB) (17)

According to Eq. (15) to Eq. (17) and the elimination redundancy
and inconsistency rules (in Section 4.3), Eq. (14) can be reduced
as follows:

Usystem =Pr{A · B}
+ Pr{S · A · ¬B · rep(θS, θS)}
+ Pr{S · ¬B · rep(θS, θA)}

+ Pr{S · ¬A · B · rep(θS, θS)}



12 S. Zhou, J. Xiang and W.E. Wong / The Journal of Systems & Software 170 (2020) 110766
Fig. 21. CBDD of the hard disk system generation.
Fig. 22. Time relationship for TA , TS,d , and TS,a .

+ Pr{S · ¬A · rep(θS, θB)} (18)

Pr{A · B} = Pr{A} · Pr{B} can be easily deduced.
Pr{S · A · ¬B · rep(θS, θS)} = (1 − Pr{B}) · Pr{S · A · rep(θS, θS)}.

Pr{S · A · rep(θS, θS)} is the failure probability of the WSP gate
consisting of the primary component θA and the spare component
θS in the condition of non-replacement. Non-replacement implies
θS failed in the dormant state. S · A · ¬B · rep(θS, θS) represents θA
fails and θB does not fail in the case that θS fails in a dormant state.
It implies the spare component θS fails first (θS fails before θA and
θB), θA fails after θS , and θB does not fail. Thus, S · A · rep(θS, θS)
can be converted into a sequence-dependent model of algebraic
structure function as (Sd ◁A) · (Sd ◁B) ·A. Then, S ·A ·¬B · rep(θS, θS)
can be converted into ¬B · (Sd ◁ A) · (Sd ◁ B) · A. According
to the sequence-dependent model of algebraic determination of
the structure-function deduction rules (Merle, 2010), it can be
deduced as follows:

¬B · (Sd ◁ A) · (Sd ◁ B) · A
= ¬B · (Sd ◁ A) · ((Sd ◁ B) · B + Sd · ¬B) · A
= ¬B · (Sd ◁ A) · Sd · ¬B · A

= ¬B · (Sd ◁ A) · A (19)

Here, TA is set as a random variable (r.v) that represents the
time-to-failure of the primary component θA. Similarly, TB refers
to the primary component θB. TSd and TSa are set as the time
to failure r.v of warm spare component θS before and after it
is activated, respectively. The relationship between TA, TS,d, and
TS,a is shown in Fig. 22. For ease of computation, it is assumed
that all components start to work at t = 0. Let fA(t), fB(t), fS,d(t),
and f (t) denote the probability density function of T , T , T ,
S,a A B S,d
and TS,a respectively. The calculation similar to (Sd ◁ A) · A has
been discussed many times (Merle et al., 2011a; Merle, 2010).
Assuming that θS fails at τ1, then the probability that θA fails after
θS (θA fails after τ1) is:

Pr{TA > τ1} =

∫ t

τ1

fA(τ2)dτ2 (20)

Hence, the probability that θS fails before θA and θA fails is given
as follows:

Pr{(Sd ◁ A) · A} =

∫ t

0

∫ t

τ1

fA(τ2)fS,d(τ1)dτ2dτ1 (21)

Consequently, the probability of S · A · ¬B · rep(θS, θS) is:

Pr{S · A · ¬B · rep(θS, θS)}
= Pr{¬B} · Pr{(Sd ◁ A) · A}

= (1 − Pr{B}) · Pr{(Sd ◁ A) · A}

=

(
1 −

∫ t

0
fB(τ3)dτ3

)
·

∫ t

0

∫ t

τ1

fA(τ2)fS,d(τ1)dτ2dτ1 (22)

Pr{S · ¬B · rep(θS, θA)} = Pr{¬B} · Pr{S · rep(θS, θA)}. Pr{S ·

rep(θS, θA)} is the failure probability of the WSP gate consisting
of the primary component θA and the spare component θS in
the condition that replacement occurs. Replacement indicates θS
fails in the activated state. It implies that θA fails first (before θB
and θS fail), and θS fails after the failure of component θA. Thus,
S · ¬B · rep(θS, θA) can be converted into a sequence-dependent
model of algebraic structure function as ¬B · (A ◁ B) · (A ◁ Sa) · Sa.
It can also be deduced as follows:

¬B · (A ◁ B) · (A ◁ Sa) · Sa
= ¬B · ((A ◁ B) · B + A · ¬B) · (A ◁ Sa) · Sa
= ¬B · A · ¬B · (A ◁ Sa) · Sa
= ¬B · (A ◁ Sa) · Sa (23)

First, the probability that the primary component θA fails at
τ2 and the spare component θS fails after θA, meaning that θS
survives τ2 (the probability of θS non-occurrence in a dormant
state from time 0 to time τ2):

Pr{S survives τ2} = 1 − Pr{S fails before τ2}

= 1 −

∫ τ2

0
fS,d(τ1)dτ1 (24)

Pr{S fails after τ2|S survives τ2}

=

∫ t

fS,a(t1)dt1

τ2
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=

∫ t−τ2

0
fS,a(t1 − τ2)d(t1 − τ2) =

∫ t−τ2

0
fS,a(τ1)dτ1 (25)

Secondly, the probability that θA fails at τ2 and then θS fails after
A equals the probability that θA fails, θS survives τ2 and θS fails
fter τ2:

r{(A ◁ Sa) · Sa}

=

∫ t

0

∫ t−τ2

0
fS,a(τ1)fA(τ2)

(
1 −

∫ τ2

0
fS,d(τ1)dτ1

)
dτ1dτ2 (26)

inally, the Pr{S · ¬B · rep(θS, θA)} is:

r{S · ¬B · rep(θS, θA)}
= Pr{¬B · (A ◁ Sa) · Sa}

=

(
1−

∫ t

0
fB(τ3)dτ3

)
·

∫ t

0

∫ t−τ2

0
fS,a(τ1)fA(τ2)

(
1−

∫ τ2

0
fS,d(τ1)dτ1

)
dτ1dτ2 (27)

The structure of S · A · ¬B · rep(θS, θS) and S · ¬B · rep(θS, θA)
re symmetrical to S · ¬A · B · rep(θS, θS) and S · ¬A · rep(θS, θB),
espectively. A system failure can be caused by the failure of the
SP gate, which consists of the primary component θB and the

pare component θS . Hence, they can be analyzed in a similar way
ith the following results:

r{¬A · B · rep(θS, θS) · S} = Pr{¬A · (Sd ◁ B) · B}
= Pr{¬A} · Pr{(Sd ◁ B) · B}
= (1 − Pr{A}) · Pr{(Sd ◁ B) · B}

=

(
1 −

∫ t

0
fA(τ2)dτ2

)
·

∫ t

0

∫ t

τ1

fB(τ3)fS,d(τ1)dτ3dτ1 (28)

r{¬A · rep(θS, θB) · S}
= Pr{¬A · (B ◁ Sa) · Sa}

=

(
1−

∫ t

0
fA(τ2)dτ2

)
·

∫ t

0

∫ t−τ3

0
fS,a(τ1)fB(τ3)

(
1−

∫ τ3

0
fS,d(τ1)dτ1

)
dτ1dτ3 (29)

ccording to Eq. (18), Eq. (22), Eq. (27), Eqs. (28) and (29), the
nreliability of the system is:

system =

(∫ t

0
fA(τ2)dτ2

)
·

(∫ t

0
fB(τ3)dτ3

)
+

(
1 −

∫ t

0
fB(τ3)dτ3

)
·

∫ t

0

∫ t

τ1

fA(τ2)fS,d(τ1)dτ2dτ1

+

(
1−

∫ t

0
fB(τ3)dτ3

)
·

∫ t

0

∫ t−τ2

0
fS,a(τ1)fA(τ2)

(
1−

∫ τ2

0
fS,d(τ1)dτ1

)
dτ1dτ2

+

(
1 −

∫ t

0
fA(τ2)dτ2

)
·

∫ t

0

∫ t

τ1

fB(τ3)fS,d(τ1)dτ3dτ1

+

(
1−

∫ t

0
fA(τ2)dτ2

)
·

∫ t

0

∫ t−τ3

0
fS,a(τ1)fB(τ3)

(
1−

∫ τ3

0
fS,d(τ1)dτ1

)
dτ1dτ3

(30)

To verify the results, the Markov-based method, SBDD, and
BDD are used to analyze the same system. Assume that θA,
B, and θS fail exponentially with constant rates. Let fA(τ2) =

−aAτ2 −aBτ3 −aSτ1
Ae , fB(τ3) = aBe , fS,a(τ1) = aSe and fS,d(τ1) =
Fig. 23. Markov model of the hard disk system.

Fig. 24. Fault tree after conversion by SBDD (Tannous et al., 2011).

dSe−dSτ1 . Use the parameter values of aA = 0.002/day, aB =

.0015/day, aS = 0.0025/day (replacement), and dS = 0.001/day
non-replacement). The Markov model generated in the Markov
olution is shown in Fig. 23. As a result, there are five different dif-
erential equations, as shown in Eq. . According to the assumption
entioned above, the initial state (at time 0) is state 1.

P1(0) = 1 and Pi(0) = 0, i ̸= 1
d
dt

P1(t) = −(aA + aB + ds)P1(t)

d
dt

P2(t) = aAP1(t) − (aB + aS)P2(t)

d
dt

P3(t) = aBP1(t) − (aA + aS)P3(t)

d
dt

P4(t) = dSP1(t) − (aA + aB)P4(t)

d
dt

P5(t) = (aB + aS)P2(t) + (aA + aS)P3(t)

+ (aA + aB)P4(t) (31)

The converted trees are shown as Figs. 24 and 25 and they
correspond to SBDD and ABDD, which are shown as Fig. 26
and Fig. 27, respectively. In Figs. 24 and 26, the symbol ‘‘→’’
denotes the precedence order of component failures, for example,
‘‘S → A’’ means that a basic event S fails before a basic event A
fails (Tannous et al., 2011). The SBDD and ABDD (only compute 7
valid paths ) use the SDPs-based method to calculate the system
unreliability (Tannous et al., 2011; Jiang et al., 2018).

We compute the system unreliability results by using the pro-
osed solution, the Markov solution, the SBDD solution, and the
BDD solution for three different mission times (t=300, 500, and
00 days, respectively). All equations (integrals and differentials)
re programmed via Matlab 2016 and get an exact match, as
hown in Table 1.



14 S. Zhou, J. Xiang and W.E. Wong / The Journal of Systems & Software 170 (2020) 110766

T
R

t
u
0
0
d
i
e
a
d
C
t
i
c
i
D
c
o
i

7

i
2
o

θ

o
c
c
s
a
A
g
t
c

Fig. 25. Fault tree after conversion by ABDD (Jiang et al., 2018).

Fig. 26. Final SBDD of the hard disk system (Tannous et al., 2011).

able 1
esults for the hard disk system analysis.
Method t (days)

300 500 900

Markov 0.365588 0.627432 0.894022
SBDD (Exponential) 0.365588 0.627432 0.894022
ABDD (Exponential) 0.365588 0.627432 0.894022
CBDD (Exponential) 0.365588 0.627432 0.894022
CBDD (Weibull) 0.137563 0.479438 0.942553

The time-to-failure distributions of Weibull also can be applied
o the system components. The following parameter values are
sed for computation: Weibull (shape: k = 1.8, scale: aA =

.002/day, aB = 0.0015/day, aS = 0.0025/day, and dS =

.001/day, fA(τ2) = k(akA)τ
k−1
2 e−(aAτ2)k ). Results of the Weibull

istribution used in CBDD with different mission times are shown
n Table 1. It is obvious that our proposed method is not limited to
xponential distribution. We can calculate the disk system unreli-
bility when the system components follow other time-to-failure
istributions, such as Weibull. Compared to SBDD and ABDD,
BDD avoids sequence-dependent (or temporal logic) nodes in
he formal and eliminates inconsistencies in the process of build-
ng the CBDD. As opposed to SBDD and ABDD, all nodes of CBDD
an be located in the basic event level. Moreover, our approach
s more efficient than using the I/E-based method (Dugan and
oyle, 1996; Liu et al., 2007) on MCSs/MCQs directly since it only
omputes an expression of 5 integrals rather than an expression
f 31 (25

− 1, 5 MCSs) terms (each term is also an integral)
ncluding our 5 integrals.

.2. Case study II

The DFT with spare gates example that we are going to use
s the DFT of a Vehicle Management System (VMS) (Vesely et al.,
002) in the application, as shown in Fig. 28. The system consists
f three WSP gates, a logic AND gate, and a logic OR gate. Three
 W
Fig. 27. The final ABDD of the hard disk system including invalid paths (Jiang
et al., 2018).

Fig. 28. An example DFT for VMS (Vesely et al., 2002).

WSP gates share the same spare component θS in the VMS. In
the system, a vehicle management subsystem is a logic AND gate
that is composed of two WSP gates (vehicle management A and
vehicle management B). Finally, the system consists of the vehicle
management subsystem and the WSP gate (vehicle management
C) via logic OR gate.

Step 1 — CFT Conversion
When WSP gates are used, the assignment of the spare com-

ponent as well as the determination of the failure rate for each
spare component is included. The failure of vehicle management
C can directly lead to an entire system failure, which can be
caused by two cases. One case is both θC and θS (before or after
replacement) fail, and the other case is when θS replaces either
A or θB, then θC fails. The subsystem failure caused by the failure
f two WSP gates can also result in the entire system failure. The
ombination between A, B, S, rep(θS, θA), rep(θS, θB), and rep(θS, θS)
an deduce three cut sets to lead to a subsystem failure. Another
et that causes subsystem failure is the combination of A, B, C ,
nd rep(θS, θC ). In the VMS, three WSP gates share a spare θS .
ccording to the analysis of converting from shared spare SP
ates to CFTs in Section 4.2, one of three WSP gates will fail after
wo primary components fail. However, two of three primary
omponents failing may not cause a system failure because two

SP gates are combined with a logic AND gate. For example, C
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f

Fig. 29. The CFT for VMS.

Fig. 30. CBDD of Vehicle Mgmt C generation.

ailed before B fails, C failed before A fails, and both A and B fail. If
all three primary components fail, two of three WSP gates will fail
since only one spare component is available. Any two WSP gates
fail will cause the top event to happen. Thus, the combination of
A, B, and C can directly lead to entire system failure. Hence, the
combination of A, B, and C is chosen. According to the analysis
above, the DFT can be converted into the CFT, as shown in Fig. 29.
The CFT is made up of seven conditional AND gates and one logic
AND gate. In this case study, it is not easy to directly obtain a
logical AND gate with three primary components (θA, θB, and θC )
by the rule mentioned in Section 4.2. It is required to separately
analyze the two WSP gates connected by a logical AND gate
then consider the replacement between the spare component and
three primary components to translate the logical AND gate.

Step 2 — System CBDD Model Generation
Set the index order of nodes as A < B < C < S < rep(θS, θA) <

rep(θS, θB) < rep(θS, θS) < rep(θS, θC ) based on the PNFO when
two CBDDs are merged by logical operations. According to the
VMS CFT, the system failure is caused by any one of the eight
gates (seven conditional AND gates and one logic AND gate) that
are numbered from 1 to 8 from left to right. All gates from 1
to 8 can be easily constructed as shown in Fig. 19. The primary
events C , S, conditioning event rep(θS, θC ), and conditioning event
rep(θS, θS) can cause the No. 1 gate and No. 2 gate to fire (Vehicle
Mgmt C), which will lead to VMS system failure. The related CBDD
is built as shown in Fig. 30. The subsystem failure is caused by
three primary events (A, B, and S) and three conditioning events
(rep(θ , θ ), rep(θ , θ ) and rep(θ , θ )), and the subsystem CBDD
S A S B S S
Fig. 31. The subsystem CBDD generation.

Fig. 32. Sub-CBDD of VMS generated by No. 7 gate CBDD logic OR operation
No. 8 gate CBDD.

is built as shown in Fig. 31. Merge No. 7 gate CBDD with No. 8
gate CBDD by logic OR operation, as shown in Fig. 32. Similarly,
do logic OR operation between these CBDDs including the CBDD
of Vehicle Mgmt C, subsystem CBDD, No. 6 gate CBDD, and the
CBDD in Fig. 32 via logic OR operation. During the operation, some
inconsistencies can be solved by inconsistency elimination rules
shown in Fig. 7. The Final CBDD of VMS is shown in Fig. 33.

Step 3 — System CBDD Model Evaluation
Assume that all components start to work (or are in the

dormant state) at the same time in the beginning. The fourteen
paths that can lead to the VMS failure are from the root node to
a terminal node ‘1’ in the VMS CBDD, as shown in Fig. 33.

(1)¬A ⇛ ¬B ⇛ C ⇛ S ⇛ ¬rep(θS, θS) ⇛ rep(θS, θC )
(2)¬A ⇛ ¬B ⇛ C ⇛ S ⇛ rep(θ , θ )
S S
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Fig. 33. CBDD of VMS.

(3)¬A ⇛ B ⇛ C ⇛ ¬S ⇛ rep(θS, θB)
(4)¬A ⇛ B ⇛ C ⇛ S ⇛ rep(θS, θB)
(5)¬A ⇛ B ⇛ C ⇛ S ⇛ ¬rep(θS, θB) ⇛ ¬rep(θS, θS)

⇛ rep(θS, θC )
(6)¬A ⇛ B ⇛ C ⇛ S ⇛ ¬rep(θS, θB) ⇛ rep(θS, θS)
(7)A ⇛ ¬B ⇛ C ⇛ ¬S ⇛ rep(θS, θA)
(8)A ⇛ ¬B ⇛ C ⇛ S ⇛ rep(θS, θA)
(9)A ⇛ ¬B ⇛ C ⇛ S ⇛ ¬rep(θS, θA) ⇛ ¬rep(θS, θS)

⇛ rep(θS, θC )
(10)A ⇛ ¬B ⇛ C ⇛ S ⇛ ¬rep(θS, θA) ⇛ rep(θS, θS)
(11)A ⇛ B ⇛ ¬C ⇛ S ⇛ ¬rep(θS, θA) ⇛ ¬rep(θS, θB)

⇛ rep(θS, θS)
(12)A ⇛ B ⇛ ¬C ⇛ S ⇛ ¬rep(θS, θA) ⇛ rep(θS, θB)
(13)A ⇛ B ⇛ ¬C ⇛ S ⇛ rep(θS, θA)
(14)A ⇛ B ⇛ C

Based on the binary logic of VMS CBDD, the mutually exclusive
relation can be easily found in these paths. Hence, the probability
of the VMS failure is shown as follows:

Pr{VMS} =Pr{¬A · ¬B · C · S · ¬rep(θS, θS)
· rep(θS, θC )}+
Pr{¬A · ¬B · C · S · rep(θS, θS)}+
Pr{¬A · B · C · ¬S · rep(θS, θB)}+
Pr{¬A · B · C · S · rep(θS, θB)}+
Pr{¬A · B · C · S · ¬rep(θS, θB)
· ¬rep(θS, θS) · rep(θS, θC )}+
Pr{¬A · B · C · S · ¬rep(θS, θB)
· rep(θS, θS)}+
Pr{A · ¬B · C · ¬S · rep(θS, θA)}+
Pr{A · ¬B · C · S · rep(θS, θA)}+
Pr{A · ¬B · C · S · ¬rep(θS, θA) · ¬rep(θS, θS)
· rep(θS, θC )}+
Pr{A · ¬B · C · S · ¬rep(θS, θA) · rep(θS, θS)}+

Pr{A · B · ¬C · S · ¬rep(θS, θA) · ¬rep(θS, θB)
· rep(θS, θS)}+
Pr{A · B · ¬C · S · ¬rep(θS, θA) · rep(θS, θB)}+
Pr{A · B · ¬C · S · rep(θS, θA)}+

Pr{A · B · C} (32)

Consider the entire logical relation in the VMS. Negation condi-
tioning events are converted into the following basic events:

¬rep(θS, θA) = ¬A + A · rep(θS, θB) + A · rep(θS, θC )+

A · rep(θS, θS) (33)
¬rep(θS, θB) = ¬B + B · rep(θS, θA) + B · rep(θS, θC )+

B · rep(θS, θS) (34)
¬rep(θS, θC ) = ¬C + C · rep(θS, θA) + C · rep(θS, θB)+

C · rep(θS, θS) (35)

¬rep(θS, θS) = rep(θS, θA) + rep(θS, θB) + rep(θS, θC ) (36)

According to Eq. (33) to Eq. (36), replace negation conditioning
events and remove inconsistencies. Furthermore, to reduce cal-
culations, ¬A · B · C · ¬S · rep(θS, θB) and ¬A · B · C · S · rep(θS, θB)
are merged into ¬A · C · rep(θS, θB). The same operate from ¬A ·

¬B · C · S · rep(θS, θS) and ¬A · B · C · S · ¬rep(θS, θB) · rep(θS, θS) to
¬A·C ·S·rep(θS, θS). Similarly, ¬B·C ·rep(θS, θA) and ¬A·S·rep(θS, θC )
can also be obtained. Finally, fourteen products are reduced to ten
products, as shown in the following:

Pr{VMS} =Pr{¬A · C · S · rep(θS, θS)}+
Pr{¬A · S · rep(θS, θC )}+
Pr{¬A · C · rep(θS, θB)}+
Pr{A · ¬B · C · S · rep(θS, θS)}+
Pr{A · ¬B · S · rep(θS, θC )}+
Pr{¬B · C · rep(θS, θA)}+
Pr{A · B · ¬C · S · rep(θS, θS)}+
Pr{A · ¬C · S · rep(θS, θB)}+
Pr{B · ¬C · S · rep(θS, θA)}+

Pr{A · B · C} (37)

Similarly, for the purpose of verification, Markov, SBDD and ABDD
analysis are performed on the same VMS case study. Assume
that all the component failures in the VMS follow an exponential
distribution with parameter a. The warm spare component can
fail either before or after the primary component with failure rate
dS and aS , respectively. Similar to the assumption in Section 5,
the failure PDF are fS,d(τ1) = dSe−dSτ1 (θS before replacement),
fS,a(τ1) = aSe−aSτ1 (θS after replacement), fAa (τ2) = aSe−aAτ2 (θA),
fBa (τ3) = aSe−aBτ3 (θB), and fCa (τ4) = aSe−aC τ4 (θC ), respectively.
The unreliability of the VMS is calculated by an expression with
ten integral terms shown in Eq. (B.1) (in Appendix B).

The Markov model of the VMS example is shown in Fig. B.1.
According to Fig. B.1, we have to solve the Markov chain with
11 states and 21 transitions. As a result, 11 different differential
equations are shown in the Eq. (B.2).

The converted fault tree of VMS prepares to generate the SBDD
is shown in Fig. B.2. The SBDD (Tannous et al., 2011) of VMS is
shown in Fig. B.3 under the index order (C → S) < (S → C) <

(A → C) < (B → C) < (A → S) < (S → A) < (B → S) <

(S → B) < A < B < C . Different from Fig. 33, the path from top
to terminal node 1 in Fig. B.3 is not necessarily able to be used
for qualitative analysis since some of them may be invalid (for
example, ¬(C → S) ⇛ ¬(S → C) ⇛ ¬(A → C) ⇛ ¬(B → C) ⇛
(A → S) ⇛ ¬(B → S) ⇛ ¬(S → B) ⇛ A ⇛ B ⇛ C). Each path

needs to be analyzed to identify its correctness.
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Table 2
Analysis results for the VMS.
Method t (days)

300 500 900

CBDD 0.466659 0.747732 0.956783
Markov 0.466659 0.747732 0.956783
SBDD 0.466659 0.747732 0.956783
ABDD 0.466659 0.747732 0.956783

Fig. 34. VMS unreliability time distribution (components exponential failure
distribution).

The converted fault tree of VMS for building the ABDD is
shown in Fig. B.4. However, the ABDD does not eliminate incon-
sistencies during generation (It handles invalid paths after ABDD
generation). As a result, the ABDD of VMS seems to be more
complex than both the CBDD and the SBDD, as shown in Fig. B.5.
Its index order is C < S < A < B < C < (S ◁ C) < (A ◁ C) <
B ◁ C) < (C ◁ S) < (A ◁ S) < (S ◁ B) < (B ◁ S) < (B ◁ A) <
S ◁ A) < (A ◁ B). Remove inconsistencies or reduce some paths
hen calculating paths from the top to terminal node 1 after the

inal ABDD is constructed.
Setting parameter values of dS = 0.001/day, aS = 0.0025/day,

aA = 0.002/day, aB = 0.0025/day, and aC = 0.003/day, we
use Matlab 2016 to compute the system unreliability results from
the proposed method, the Markov approach (the initial state (at
time 0) is state 1), the SBDD method, and the ABDD method,
which match for three different mission times accurately, as
shown in Table 2. The VMS unreliability time distribution under
the condition of components exponential failure distribution is
shown in Fig. 34.

However, the I/E based method can also be used to compute
the VMS unreliability via evaluating an expression of (2n

− 1)
terms (Dugan and Doyle, 1996) based on n MCQs in general.
For our example, the I/E-based method involves at least 8 MCSs
deduced from Fig. 29. According to the I/E-based formula, an
expression of (28

−1) = 255 terms (each term involves integrals)
is required to evaluate the VMS unreliability if internal mutually
exclusive is not considered. Compared to 255 terms, our proposed
method, which only computes an expression of 10 integrals (they
are included in 255 terms), is more efficient than the I/E-based
method in the VMS example.

7.3. Case study III

We will illustrate a more complex example than the previous
two case studies. A multiprocessor computing system (Montani
et al., 2006) is shown in Fig. 35. The DFT of the multiprocessor
computing system involves a logic AND gate, three logic OR
gates, four WSP gates including two shared spare component
WSP gates, and a (one-short) PDEP gate (Portinale et al., 2010).
Fig. 35. DFT model of the multiprocessor computing system..

The function of the system consists of two computing modules
(CM1 and CM2). CM1 includes two disks (a primary disk θD11
nd a spare disk θD12), processor θP1, and memory θM1. Similarly,
he structure of CM2 is the same as CM1. θM1 in CM1 shares a
pare memory θM3 with θM2 in CM2. Moreover, a power supply θPS
upports both θP1 and θP2, and all data from both two computing
odules transit through the Bus θN .

tep 1 — CFT Conversion
To WSP gates, we can directly convert them to logic AND gates

ith specific conditioning events. For a one-short PDEP gate that
s a special case of FDEP, the trigger event leads the dependency
vents to fail with a probability P ≤ 1. Here, we set P = 1 as
he same as Montani et al. (2006). Hence, we can treat this PDEP
ate as a FDEP gate. In this condition, once the failure of θPS cases
oth θP1 and θP2 fail, which leads the system to fail. The CFT of
he multiprocessor computing system is shown in Fig. 36.

tep 2 — System CBDD Model Generation
A similar operation with the previous two case studies is used

o build the sub_CBDD of each gate. Then, merge sub_CBDDs by
sing Boolean operation rules. During the operation, eliminate
otential inconsistencies and simplify. The index of variables is
< PS < P1 < M1 < M3 < M2 < rep(θM3, θM1) < rep(θM3, θM3)
rep(θM3, θM2) < D11 < D12 < rep(θD12, θD11) < rep(θD12, θD12)
P2 < D21 < D22 < rep(θD21, θD22) < rep(θD22, θD22). The final

BDD under the index determined by PNFO is shown in Fig. 37.

tep 3 — System CBDD Model Evaluation
There are fifty-nine paths from the top node N to terminal

odes ‘1’, which corresponds to fifty-nine computing items for the
ystem failure. The negation conditioning events are converted
nto the following basic events:

¬rep(θM3, θM1) = ¬M1 + M1 · rep(θM3, θM2)

+ M1 · rep(θM3, θM3) (38)
¬rep(θM3, θM2) = ¬M2 + M2 · rep(θM3, θM1)

+ M2 · rep(θM3, θM3) (39)

¬rep(θM3, θM3) = rep(θM3, θM1) + rep(θM3, θM2) (40)

rep(θD12, θD11) = ¬D11 + D11 · rep(θD12, θD12) (41)

rep(θD12, θD12) = rep(θD12, θD11) (42)

rep(θ , θ ) = ¬D21 + D21 · rep(θ , θ ) (43)
D22 D21 D22 D22
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¬
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Fig. 36. CFT model of the multiprocessor computing system.
rep(θD22, θD22) = rep(θD22, θD21) (44)

or fifty-nine calculation items, according to Eq. (38) to Eq. (44),
replace negation conditioning events and remove inconsistencies.
Obviously, there are six products that can be reduced as three
products. Pr{¬N · ¬PS · ¬P1 · M1 · M2 · M3 · rep(θM3, θM1)} and
Pr{¬N · ¬PS · P1 · M1 · M2 · M3 · rep(θM3, θM1)} can be merged
into Pr{¬N · ¬PS · M1 · M2 · M3 · rep(θM3, θM1)}. Similarly, we
can obtain Pr{¬N · ¬PS · M1 · M2 · M3 · rep(θM3, θM3)} from
Pr{¬N ·¬PS ·¬P1·M1·M2·M3·rep(θM3, θM3)} and Pr{¬N ·¬PS ·P1·

M1·M2·M3·rep(θM3, θM3)}. Pr{¬N ·¬PS·M1·M2·M3·rep(θM3, θM2)}
is from Pr{¬N · ¬PS · ¬P1 · M1 · M2 · M3 · rep(θM3, θM2)} and
Pr{¬N · ¬PS · P1 · M1 · M2 · M3 · rep(θM3, θM2)}. All assumptions
are the same as the previous two case studies. We also assume
each component in the multiprocessor computing system failure
follows an exponential distribution with parameter a. Setting
parameter values of aN = 2 × 10−9/day, aPS = 6 × 10−6/day,
aP1 = aP2 = 5 × 10−7/day, aD11 = aD21 = 8 × 10−5/day,
aD12 = aD22 = 8 × 10−5/day(θD12 or θD22/day after replacement),
dD12 = aD22 = 4 × 10−5/day(θD12 or θD22 before replacement),
aM1 = aM2 = 3 × 10−8/day, aM3 = 3 × 10−8/day(θM3 after re-
placement), and dM3 = 1.5 × 10−8/day(θM3 before replacement).
Finally, we also are using Markov (212 states), SBDD, and ABDD
to verify the result of our CBDD relating to the multiprocessor
computing system. The system unreliability results computed by
Matlab from different methods match for three different mission
times accurately, as shown in Table 3.

35 MCQs/MCSs (32 MCQs, 3 MCSs) can be deduced from
Fig. 36. If we use the I/E-based method to compute the unreliabil-
ity, we have to evaluate an expression of (235

−1) terms (including
integrals terms) if internal mutually exclusive is not considered.
Compared to (235

− 1) terms, our proposed method, which only
computes an expression including 33 integrals terms and 3 non-
integrals terms. However, even if we consider mutually exclusive
Table 3
Analysis results for the multiprocessor computing system.
Method t (days)

500 1000 1500

CBDD 0.002998 0.006009 0.009072
Markov 0.002998 0.006009 0.009072
SBDD 0.002998 0.006009 0.009072
ABDD 0.002998 0.006009 0.009072

between 32 MCQs, the number of terms based on the I/E-based
method is much more than ours. Hence, the proposed method is
more efficient than the I/E-based method in the multiprocessor
computing system example.

8. Conclusion

In this paper, we have presented an efficient reliability analysis
method of DFTs with spare gates based on CBDD via conditional
transformation. CBDD can be applicable to both spare systems
(DFTs model with spare gates) and static systems (SFT mod-
els) with any arbitrary component time-to-failure distributions
and different component failure parameter values. We proved
that our MCS (with conditioning events) is more intuitive and
efficient than MCQ in reliability analysis of spare gates. Addi-
tionally, our MCS can help engineers locate component faulty
by conditional events needless to search current or historical
records associated with fault components. We demonstrated that
the MCS could be explained by sequence-dependent failure be-
haviors used in algebraic-structure-based methods (Merle et al.,
2011a,b). Compared to SBDD (Xing et al., 2012; Tannous et al.,
2011) and ABDD (Jiang et al., 2018), our proposed solution avoids
sequence-dependent (or temporal logical) nodes and uses MCSs

instead of MCQs to analyze system reliability. Although they
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Fig. 37. CBDD of the multiprocessor computing system..
are converted to temporal logic to compute failure probability
via integrals, CBDD replaces MCQs with MCSs by transferring
sequence-dependent behaviors to static conditional status. Based
on the data collected in our case studies, our proposed method
is more efficient than the MCQ combining I/E-based method.
At last, the quantitative analysis based on the CBDD has been
presented by means of a hard disk system, VMS examples, and
multiprocessor computing system example.

In future work, our proposed method will be expanded to DFTs
including other dynamic gates (PAND gates and SEQ gates) reli-
ability analysis. Also,we will focus on some scenarios (including
the complex shared spare SP gate and other cases in Junges et al.
(2016)) which we have not implemented the automation yet.
Finally, we will develop an integrated solution based on CBDDs
for reliability analysis of dynamic fault trees including monotonic
or non-monotonic and repairable or non-repairable.
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Appendix A. Analysis of WSP gate with subtrees inputs based
on the CBDD

Based on Fig. 15 , there are fourteen cut sets (paths from top
to terminal ‘‘1’’). However, some cut sets can be combined as one.
Cut sets after removing negation conditioning events can be con-
verted into a sequence-dependent model of algebraic structure-
function. This can help users gain a better understanding of the
dependency between basic events. The negation conditioning
events can be replaced as follows:

¬rep(θD, θC ) = ¬C + C · rep(θD, θD)
¬rep(θD, θD) = rep(θD, θC )
¬rep(T , T ) = rep(T , θA) + rep(T , θB)
¬rep(T , θA) = ¬A + rep(T , θB) + rep(T , T )
¬rep(T , θB) = ¬B + rep(T , θA) + rep(T , θB)

Eight merged paths replacing fourteen are used for evaluation,
shown as follows:

1 Pr{C · D · E · ¬A · B · ¬rep(θ , θ ) · rep(θ , θ )
D C D D
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Fig. A.1. CFT of WSP gate with subtrees inputs.
t
· ¬rep(T , T ) · rep(T , θB) + C · D · E · A · B · ¬rep(θD, θC )
· rep(θD, θD) · ¬rep(T , T ) · ¬rep(T , θA) · rep(T , θB)}
= Pr{C · D · E · B · rep(θD, θD) · rep(T , θB)}
= Pr{(B ◁ ((Dd ◁ C) · C · E)) · ((Dd ◁ C) · C · E) · (B ◁ A)}
= Pr{(B ◁ C) · (E ◁ B) · (Dd ◁ C) · (B ◁ A) · C}

+ Pr{(B ◁ E) · (Dd ◁ C) · (B ◁ A) · C · E}

2 Pr{C · D · E · ¬A · B · ¬rep(θD, θC ) · rep(θD, θD)
· rep(T , T ) + C · D · E · A · B · ¬rep(θD, θC )
· rep(θD, θD) · rep(T , T )}
= Pr{C · D · E · B · rep(θD, θD) · rep(T , T )}
= Pr{(((Dd ◁ C) · C · E) ◁ A)
· (((Dd ◁ C) · C · E) ◁ B) · B}
= Pr{(Dd ◁ C) · (C ◁ A) · (E ◁ A) · (C ◁ B)
· (E ◁ B) · (B ◁ A)}
+ Pr{(Dd ◁ C) · (C ◁ A) · (E ◁ A) · (C ◁ B)
· (E ◁ B) · (A ◁ B) · B}
Pr{C · D · E · ¬A · B · rep(θD, θC ) · ¬rep(θD, θD)
· ¬rep(T , T ) · rep(T , θB) + C · D · E · A · B · rep(θD, θC )
· ¬rep(θD, θD) · ¬rep(T , T ) · ¬rep(T , θA) · rep(T , θB)}
= Pr{C · D · E · B · rep(θD, θC ) · rep(T , θB)}
= Pr{(B ◁ ((C ◁ D) · C · E)) · ((C ◁ D) · C · E) · (B ◁ A)}
= Pr{(E ◁ B) · (B ◁ Da) · (C ◁ Da) · (B ◁ A) · Da}

+ Pr{(B ◁ E) · (B ◁ Da) · (C ◁ Da) · (B ◁ A) · Da · E}

+ Pr{(C ◁ Dd) · (Dd ◁ B) · (B ◁ E) · (B ◁ A) · C · E}

To (C ◁Dd) · (Dd ◁ B) · (B ◁ E) · (B ◁ A) · C · E replaces the primary θC
nd subtree T replaces primary θB (θC activates θD and θB actives
), but θD fails before T replaces θB (T is activated). Hence, θD fails
n the dormant state. The same case is in calculation formula 7.

Although primary θC fails and spare θD replaces it (θC activate
D), all components in the subtree T (Fig. 14) remain in the
ormant state since primary θA or θB is not replaced by the

ubtree T . Thus, the θD remains in the dormant state because
he T is not activated (Boudali et al., 2010). The same case is
considered in the following calculation formulas (4 and 8).

4 Pr{C · D · E · ¬A · B · rep(θD, θC ) · ¬rep(θD, θD)
· rep(T , T ) + C · D · E · A · B · rep(θD, θC )
· ¬rep(θD, θD) · rep(T , T )}
= Pr{C · D · E · B · rep(θD, θC ) · rep(T , T )}
= Pr{(((C ◁ Dd) · Dd · E) ◁ A)
· (((C ◁ Dd) · Dd · E) ◁ B) · B}
= Pr{(C ◁ Dd) · (Dd ◁ A) · (E ◁ A) · (Dd ◁ B)
· (E ◁ B) · (B ◁ A)}
+ Pr{(C ◁ Dd) · (Dd ◁ A) · (E ◁ A) · (Dd ◁ B)
· (E ◁ B) · (A ◁ B) · B}

5 Pr{C · D · E · A · ¬B · ¬rep(θD, θC ) · rep(θD, θD)
· ¬rep(T , T ) · rep(T , θA) + C · D · E · A · B · ¬rep(θD, θC )
· rep(θD, θD) · ¬rep(T , T ) · rep(T , θA)}
= Pr{C · D · E · B · rep(θD, θD) · rep(T , θA)}
= Pr{(A ◁ ((Dd ◁ C) · C · E)) · ((Dd ◁ C) · C · E) · (A ◁ B)}
= Pr{(A ◁ C) · (E ◁ A) · (Dd ◁ C) · (A ◁ B) · C}

+ Pr{(A ◁ E) · (Dd ◁ C) · (A ◁ B) · C · E}

6 Pr{C · D · E · A · ¬B · ¬rep(θD, θC ) · rep(θD, θD)
· rep(T , T )}
= Pr{C · D · E · A · ¬B · rep(θD, θD) · rep(T , T )}
= Pr{(((Dd ◁ C) · C · E) ◁ A) · A · ¬B}
= Pr{(Dd ◁ C) · (C ◁ A) · (E ◁ A) · A · ¬B}

7 Pr{C · D · E · A · ¬B · rep(θD, θC ) · ¬rep(θD, θD)
· ¬rep(T , T ) · rep(T , θA) + C · D · E · A · B · rep(θD, θC )
· ¬rep(θD, θD) · ¬rep(T , T ) · rep(T , θA)}
= Pr{C · D · E · A · rep(θD, θC ) · rep(T , θA)}
= Pr{(A ◁ ((C ◁ D) · C · E)) · ((C ◁ D) · C · E) · (A ◁ B)}
= Pr{(E ◁ A) · (A ◁ Da) · (C ◁ Da) · (A ◁ B) · Da}

+ Pr{(A ◁ E) · (A ◁ D ) · (C ◁ D ) · (A ◁ B) · D · E}
a a a
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+ Pr{(C ◁ Dd) · (Dd ◁ A) · (A ◁ E) · (A ◁ B) · C · E}

8 Pr{C · D · E · A · ¬B · rep(θD, θC ) · ¬rep(θD, θD)
· rep(T , T )}
= Pr{C · D · E · B · rep(θD, θC ) · rep(T , T )}
= Pr{(((C ◁ Dd) · Dd · E) ◁ A) · A · ¬B}
= Pr{(C ◁ Dd) · (Dd ◁ A) · (E ◁ A) · A · ¬B}

Each calculation formula from 1 to 8 can be computed by the
multiple integral (Merle, 2010). Because the above eight calcula-
tion formulas are mutually exclusive, directly summing them can
be used for the calculation of the failure probability for the DFT
shown in Fig. 14.

Appendix B. Figures and equations relating to case study II

The following is a calculation of the unreliability of the VMS.

UVMS =

(
1 −

∫ t

0
fA(τ2)dτ2

)
·

(∫ t

0

∫ t

τ1

fS,d(τ1)fC (τ4)

×

(
1 −

∫ τ1

0
fB(τ3)dτ3

)
dτ4dτ1

)
+(

1 −

∫ t

0
fA(τ2)dτ2

)
·

(∫ t

0

∫ t−τ4

0
fC (τ4)fS,a(τ1)

(
1 −

∫ τ4

0
fS,d(τ1)dτ1

)
×

(
1 −

∫ τ4

0
fB(τ3)dτ1

)
dτ1dτ4

)
+(

1 −

∫ t

0
fA(τ2)dτ2

)
·

(∫ t

0

∫ t

τ3

fB(τ3)fC (τ4)
(
1 −

∫ τ3

0
fS,d(τ1)dτ1

)
dτ4dτ3

)
+(

1 −

∫ t

0
fB(τ3)dτ3

)
·

(∫ t

0

∫ t

τ1

∫ t

τ1

fS,d(τ1)fA(τ2)fC (τ4)dτ4dτ2dτ1

)
+(

1 −

∫ t

0
fB(τ3)dτ3

)
·

(∫ t

0

∫ t−τ4

0

∫ t

τ4

fC (τ4)fS,a(τ1)fA(τ2)

×

(
1 −

∫ τ4

0
fS,d(τ1)dτ1

)
dτ2dτ1dτ4

)
+(

1 −

∫ t

0
fB(τ3)dτ3

)
·

(∫ t

0

∫ t

τ2

fA(τ2)fC (τ4)
(
1 −

∫ τ2

0
fS,d(τ1)dτ1

)
dτ4τ2

)
+(

1 −

∫ t

0
fC (τ4)dτ4

)
·

(∫ t

0

∫ t

τ1

∫ t

τ1

fS,d(τ1)fA(τ2)fB(τ3)dτ3dτ2dτ1

)
+(

1 −

∫ t

0
fC (τ4)dτ4

)
·

(∫ t

0

∫ t−τ3

0

∫ t

τ3

fB(τ3)fS,a(τ1)fA(τ2)

×

(
1 −

∫ τ3

0
fS,d(τ1)dτ1

)
dτ2dτ1dτ3

)
+(

1 −

∫ t

0
fC (τ4)dτ4

)
·

(∫ t

0

∫ t−τ2

0

∫ t

τ2

fA(τ2)fS,a(τ1)fB(τ3)

×

(
1 −

∫ τ2

0
fS,d(τ1)dτ1

)
dτ3dτ1dτ2

)
+(∫ t

0
fA(τ2)dτ2

)
·

(∫ t

0
fB(τ3)dτ3

)
·

(∫ t

0
fC (τ4)dτ4

)
(B.1)
Fig. B.1. Markov model of the VMS example.

Fig. B.2. The converted fault tree of VMS for SBDD.

Fig. B.3. SBDD of VMS.

The Markov model of the VMS is shown in Fig. B.1. The
following are differential equations relating to the Markov chain
of the VMS.
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Fig. B.4. The converted fault tree of VMS for ABDD.

Fig. B.5. Complicated ABDD of VMS.

P1(0) = 1 and Pi(0) = 0, i ̸= 1
d
dt

P1(t) = −(aA + aB + aC + ds)P1(t)

d
dt

P2(t) = aAP1(t) − (aB + aC + aS)P2(t)

d
dt

P3(t) = aBP1(t) − (aA + aC + aS)P3(t)

d
dt

P4(t) = aCP1(t) − (aA + aB + aS)P4(t)

d
dt

P5(t) = dSP1(t) − (aA + aB + aC )P5(t)

d
dt

P6(t) = aBP2(t) + aAP3(t) − (aA + aS)P6(t)

d
dt

P7(t) = aSP2(t) + aAP5(t) − (aB + aC )P7(t)

d
dt

P8(t) = aSP3(t) + aBP5(t) − (aA + aC )P8(t)

d
dt

P9(t) = aBP4(t) − (aA + aS)P9(t)

d
P10(t) = aAP4(t) − (aB + aS)P10(t)
dt
d
dt

P11(t) = aCP2(t) + aCP3(t) + aSP4(t) + aCP5(t)

+ (aC + aS)P6(t) + (aB + aC )P7(t)
+ (aA + aC )P8(t) + (aA + aS)P9(t)

+ (aB + aS)P10(t) (B.2)
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