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Measuring packing length in simulations for different polymer architectures
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Abstract

The packing length p figures prominently in scaling predictions of the entanglement length and bulk modulus for polymer melts and
solutions. p has been argued to scale as the ratio of chain displaced volume V and mean square end-to-end distance R”. This scaling works
for several cases; however, it is not obvious how to apply it to chains with side groups, and the scaling must fail for sufficiently thin, stiff
chains. In this work, we measure the packing length in simulations, without making any scaling assumptions, as the typical distance of
closest approach of two polymer strands in a simulated bead-spring melt. We use the intermolecular correlation function to measure the dis-
tance up to which a given polymer strand dominates the local volume fraction. Using our measured packing length, we find good agreement
of entanglement properties with Lin—Noolandi scaling for flexible polymers of different architectures. © 2021 The Society of Rheology.

https://doi.org/10.1122/8.0000305

. INTRODUCTION

Entanglements govern the viscoelastic properties of long
polymer liquids [1]. Entangled chains are represented as kineti-
cally confined to a tube, arising from uncrossability constraints
imposed by neighboring chains [2—4]. The extent of polymer
entanglement depends on molecular details of the repeat units.
Different entanglement regimes are expected, depending on
whether polymer chains are flexible or stiff within the tube. In
our view, polymer melts and solutions are as entangled as they
can be, limited only by how closely different polymer strands
can approach each other, and how readily such strands can
change direction to wrap around each other [5].

We are thus interested in the typical distance of the closest
approach of two backbone moieties on different strands,
which we call the packing length p. This intuitive, qualitative
concept has been previously translated to a specific, quantita-
tive definition intended for flexible chains by means of a
scaling argument, which we now briefly reprise [6].

Consider a flexible chain segment on a long chain in a
polymer melt of identical chains. A segment of mass M,
density p, and mean-square end-to-end distance R displaces a
volume V given by M/p and pervades a volume scaling as
R®. For long segments, the pervaded volume R is much
larger than V, with plenty of room for other chain segments.
But for a sufficiently short segment, these volumes are compa-
rable, and other chain segments cannot enter the pervaded
volume, without overfilling space.

The ratio R?/V becomes of order unity at some length
scale R = p, which implies
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For a flexible polymer chain in a melt, the ratio V/R? is a
material parameter, since both quantities are proportional to
the chain length. Hence, for a given polymer architecture, p
is a characteristic length over which monomers of a given
chain dominate the local density. p thereby governs the
typical distance of closest approach of monomers on different
chain segments.

This scaling argument for the packing length gives a
formula computable from data [p = M/(pR*)]. As with any
scaling result, the formula omits an unknown coefficient of
order unity. Figure 1 shows an interpretation of p, with chain
configurations represented as random walks of “packing
blobs,” which tend not to overlap.

The packing length evidently depends on the chain archi-
tecture. Flexible chains have larger p than stiff chains; like-
wise, bulky chains have larger p than thin chains. Flexible or
bulky chains have a stronger tendency to fill up the space
around their own monomers. Since the packing length
depends on identifiable polymer characteristics, materials can
be designed with controllable viscoelastic properties [7,8].

The scaling formula for p can be related to the Kuhn length
by defining an average diameter d of the chain such that the
displaced volume of a Kuhn segment is Vx = n(d/ 2)2LK (we
persist in omitting all factors of order unity). The chain
volume V can then be written V = Vg (L/Lg), where L is the
chain arc length and Lk is the Kuhn length. Likewise, the
mean-square end-to-end distance can be written R> = LLg.
Combining these, the ratio V/R? scales as d/Lg, which gives
another computable scaling expression for p, namely,

d2
~— 2
Le 2)

The scaling expression Eq. (2) should have a coefficient
substantially larger than unity; otherwise, since Lk is typi-

cally somewhat larger than d, we would immediately predict
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FIG. 1. The packing length dictates the typical distance of separation
between polymers. A flexible chain in a melt may be regarded as a random
walk of packing blobs. Reprinted with permission from Milner,
Macromolecules 53, 1314-1325 (2020). Copyright 2020, American
Chemical Society.

p smaller than d, which does not make physical sense. In any
case, this scaling predicts that stiffening a chain without
increasing its average diameter makes p smaller. Eventually,
whatever the prefactor, this scaling result will predict p to be
smaller than d.

But if chains are sufficiently stiff, close approaches with
other segments should be governed by the chain diameter
itself. Since the packing length is defined conceptually as the
typical distance of close approaches with other entangling
strands, we conclude the scaling result p ~ V/R?* (or equiva-
lently p ~ d?/Lg) must fail for sufficiently stiff chains.
Indeed, the scaling argument began with the assumption of
chains flexible and bulky enough to fill the space near a
given monomer on a strand with other near-neighbor mono-
mers along the same strand. This assumption certainly fails
for sufficiently stiff chains.

A complete formula for the packing length, or an algo-
rithm for determining p from simulation trajectories, must
crossover from the scaling result d* /L for flexible chains to
some measure of the chain diameter for sufficiently stiff
chains. However, the length-averaged chain diameter d
defined by V = n(d/ 2)’L may not always be an appropriate
estimate of the packing length for chains in this regime.

The above estimate for d implicitly assumes the chain is a
uniform flexible path with a constant diameter. Whereas
chains with long flexible side groups attached at intervals
along the backbone may have large displaced volumes per
unit length, while permitting close contacts with other back-
bone moieties. In other words, the effective repulsive poten-
tial between backbones, mediated by interactions between
side groups, may look rather different from a hard-core repul-
sion with a range set by the length-averaged diameter.

S. VINEETH BOBBILI AND S. T. MILNER

Hence, for flexible and stiff chains alike, scaling estimates
for the packing length may be inaccurate or invalid. This is
problematic because the packing length plays a central role in
modern theories of polymer entanglement, as we shall sum-
marize below. Tests of scaling relations for measured quanti-
ties such as the entanglement length N,, tube diameter a, or
plateau modulus G, may fail simply because an invalid esti-
mate of p is employed in the comparison.

In our recent work, we emphasize that comparing the
packing length to the Kuhn length determines what entan-
gles, and thus, how often entanglements occur. In the “flexi-
ble regime,” the packing length is larger than the Kuhn
length, and entanglements are close binary encounters of two
“packing blobs.” When the Kuhn length becomes larger than
the packing length, we crossover into the “semiflexible
regime,” in which entanglements are close encounters of two
Kuhn segments.

In the flexible regime, described by the Lin—Noolandi
scaling argument, the packing length controls the size of close
approaches, and two chain strands can wrap around each other
on the same scale. This leads to a scaling prediction for the
tube diameter a, namely, a ~ p [9,10]. The LN argument
implicitly assumes that chains are flexible in their tubes, so the
tube diameter a is larger than the Kuhn length L.

The entanglement molecular weight can be obtained from
the fact that the entanglement strand consists of a few
packing blobs, which are locally meltlike, leading to

NeQ() ~ p3, (3)

where €y is the monomer volume. Correspondingly, the
plateau modulus for the melt from the usual assumption of
rubber elasticity theory scales as kT per entanglement strand,
which gives

G~ kT/p’. )

The LN scaling results are consistent with data compiled
by Fetters et al. [11] for plateau modulus and packing length
of a wide range of polymers. To determine the packing
length, chain dimensions were determined by small angle
neutron scattering, with results reported as the ratio of mean
square end-to-end distance R’ to molecular weight M.
Together with the density p = M/V, the packing length
can be estimated from the scaling relation p ~ V/R* as
p=M/(pR%).

For semiflexible chains, close approaches between chain
segments are still governed by the packing length (by defini-
tion), which we now expect to be of order the chain diameter.
However, entanglement requires segments to change direc-
tion, which only happens on the scale of a Kuhn length
[5,12]. In this semiflexible regime, entanglement is best
described in terms of the arc length density. The arc length
density can be written for both melts and solutions in terms
of the polymer volume fraction ¢, and the chain length L and
displaced volume V, as ¢L/V = ¢/d>. Note that the ratio
L/V is a material parameter (since both L and V are
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proportional to chain mass) which scales as 1/d?, where d is
the length-averaged diameter defined previously.

For solutions and melts of semiflexible chains, entanglement
only depends on the arc length density of uncrossable backbone
threads, and not on the precise value of their diameter. That is,
¢ and d only appear in the theory in the combination ¢/d>.
Then the only remaining length scale is Lg, which determines
the size of the binary encounters. Hence, G must scale as
kT(p/ d2)2LK by dimensional analysis, assuming entanglements
are binary so the concentration dependence is quadratic.

This result for G can likewise be written in terms of the
concentration of Kuhn segments ¢ = ¢/(z(d/ 2)’Ly), as
G ~ kTc*L;,. This can be interpreted as the probability cL}
that one Kuhn segment encounters another within its per-
vaded volume, times the concentration of Kuhn segments c,
times kT per entanglement.

To summarize: the flexible scaling result for the packing
length p ~ V/R? is limited in its applicability; the precise
location of the crossover to the semiflexible regime is a
priori unknown; and the length-averaged chain diameter d is
problematic as an estimate for p in the semiflexible regime.
For these reasons, we are motivated to measure the packing
length directly, without employing any scaling estimates, by
observations in simulated polymer melts and solutions, of
how often backbone moieties on different strands come close
to each other. With measured values for p, we can evaluate
entanglement scaling relations without being concerned that
our estimates of p are in error.

In this work, we obtain the packing length from the radial
distribution function g,m.-(r) of neighboring chains near a
bead on a reference chain. We integrate g,m.-() to obtain in
a sphere of radius r the volume fraction of reference chain,
and of everything else. We use these volume fractions as
functions of r to find the distance at which monomers from
other chains start to dominate the density around a given
monomer on the reference chain. This approach provides a
direct measure of the packing length.

We obtain g,.-(r) from molecular dynamics simulations of
melts of long entangled polymer rings. In our previous work,
we developed a chain crossing technique to topologically equili-
brate ring polymers [13]. This approach results in a permanently
entangled network of ring polymers, which can be regarded as
a proxy for infinitely long linear chains, and avoids chain end
effects on entanglement properties. To quantify entanglements,
we obtain entanglement length N, through chain shrinking and
entanglement modulus G from shearing simulations.

With this approach, we perform a new set of simulations to
explore the flexible chain entanglement regime, where LN
scaling is expected to apply. We independently control chain
bulkiness (by the length of side groups) and stiffness (with
backbone angular springs) to move back and forth in the
expected degree of entanglement. In this way, we can test
whether our new way of measuring p leads to the expected LN
scaling for measured properties of the entanglement network.

Il. METHODS

In our simulated polymer melts, we use bead-spring poly-
mers with purely repulsive interactions. The beads interact
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via the truncated Lennard-Jones potential [Eq. (5)] with
cutoff distance r. = 2'/%¢. Although not representing any
particular polymer, we preserve ‘“atomistic” length and
energy scales in our model by choosing o to be 0.2 nm and &
to be 2.49 kJ/mol (1 kT at 300 K),

4e((9)? = (2 +e, r<r,
0, r>re.

UL(r) = { (&)

We represent the potential between bonded beads with a
stiff harmonic spring, given by

Upona(r) = (1/2)kp(r — ro)’, (6)

where ry =2'°6. We use a spring constant k, equal to
10 000 KT/nm 2 (400 kT/c?).

We study various architectures of polymer chains. The
packing length can be varied in two ways: we can increase
packing length by making the chains bulky, i.e., by adding
side chains, and we can lower the packing length by stiffen-
ing the polymer backbone. We also combine both approaches
for more control of p.

We increase the backbone stiffness by adding an angular
potential of the form U, = (1/ 2)x6?%, with the preferred deflec-
tion angle 6 = 0 corresponding to straight chains. We use
bending stiffness values of fx =0, 0.5, 1, and 2, where
B = 1/kT.

To increase the bulkiness of polymer chains, we add short
side groups to our linear bead-spring polymers (see Fig. 2).
We explore up to three side chain beads per backbone bead
(noted in Figs. 5-8 as “sc”). The addition of side groups
increases the packing length, making the polymers less
entangled.

Combining these two variations in polymer chain architec-
ture, we have a set of 12 different systems for which
increases in the side chain length should decrease entangle-
ment, and increases in chain stiffness should increase entan-
glement. Previously, we varied the chain stiffness of
polymers with no side groups to explore the semiflexible and
stiff regimes [13]. In this work, we simulated new systems
where we vary the backbone stiffness of polymers with small

FIG. 2. Ring polymers with sc = 0, 1, and 2 side group beads per backbone
bead. Polymer chains are made bulkier by adding side groups. Side chain
beads (green; away from the dashed line) have similar properties as back-
bone beads (blue; along the dashed line), except that we only consider back-
bone beads when measuring the radial distribution function g,ge, (7).
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side chains attached. Based on our previous work, we expect
all these new systems to be in the flexible entanglement
regime, for which LN scaling should hold.

Our melts consist of 40 rings of 800-1600 repeat units
each. We use longer polymers when side groups are involved
to ensure an adequate number of entangled strands in the
polymer chain, since making the chains bulkier makes them
less entangled. We generate initial chain configurations by
constructing a random walk of N steps, computing its
end-to-end vector R, and adding —R/N to all N bond vectors
so that the ring closes. The number density of beads to repre-
sent a melt is taken as 0.7 /c°.

Ring polymers offer several advantages over linear chains
in entanglement simulations [14]. A system of long entangled
rings in periodic boundary conditions can be regarded as a
proxy for a system of infinitely long chains. Entanglements
in a topologically equilibrated melt of rings are permanent.

A simulated melt of polymer rings can be equilibrated by
allowing the chains to cross each other. This allows access to
different topological states and relieves the entanglement
constraint. In our previous work [13], we introduced a techni-
que that allows chains to cross by weakening the repulsion
between the beads. To control the crossing frequency of the
chains, we vary the overall strength of the interaction with a
multiplying factor f. For a sufficiently small f, chains cross
readily; as f increases toward unity, chain crossing ceases.
We smoothly round off the repulsive Lennard-Jones interac-
tions to a parabolic dependence below a short-distance cutoff
to avoid problems associated with a singular repulsive poten-
tial. We start the simulation with f = 0 and slowly raise the
value of f toward unity to obtain an equilibrated melt config-
uration with appropriate interactions as described by Eq. (5).

FIG. 3. Simulation snapshot shows the front view of a periodic simulation
box that differentiates a reference chain from its neighbors. Pink beads are
backbone, blue beads are side groups, and gray (glassy) beads are from sur-
rounding chains.
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Once we have an equilibrated melt of long entangled
rings, we use chain-shrinking technique to obtain a network
of primitive paths and measure the entanglement length N,.
Our algorithm to obtain primitive path network is a combina-
tion of the technique originally proposed by Everaers et al.
[15,16] and the Z1 code by Kroger [17,18]. To directly
measure entanglement modulus, we induce shear by deform-
ing the simulation box. A detailed description of both equili-
bration and analysis techniques can be found in our previous
publication [13].

We use the radial distribution function g,m.(r) of neigh-
boring chains near a bead on a reference chain to obtain
packing length. g,m.-(r) describes how the density of beads
on other chains varies as a function of distance from a refer-
ence bead (see Figs. 3 and 4). With g,m.-(r), we can find
out at a given distance from a reference chain, if it is more
likely to find a monomer from the chain itself or from other
chains. For chains with side groups, we measure gomer(r)
only for backbone beads, since the short side groups do not
entangle.

lll. RESULTS AND DISCUSSION

The radial distribution function g,.-(r) depends on chain
architecture. As we stiffen the chains, it is more likely to find
monomers from other chains near a reference chain. This is
evident in Fig. 5(a), where we see a higher value of g, (1)
for the stiffest chain (purple curve) at smaller distances. All
the curves evidently approach unity at large r; but, how
quickly these curves increase to a point at which monomers
from other chains dominate, depends on stiffness in a con-
trolled way.

Similarly, gomer(r) depends on the bulkiness of a chain.
As we make chains bulky by adding small side groups, it is
less likely to find monomers from other chains near a chosen
reference chain. This is shown in Fig. 5(b), where gomer(r)
for bulkier chains is lower at small distances.

We calculate radial volume fraction F,4,,(r) by integrating
Zoter(r) over a spherical volume [see Eq. (7)]. Fomer(r) is the
volume fraction of monomers from chains other than the
reference chain within a distance » from the reference chain.
This function at large distances will be (N — 1)/N, where N
is the number of chains in the system. This value is close to

FIG. 4. Radial distribution function can be used to measure the fraction of
volume occupied by surrounding chains up to a certain distance. Such
volume fraction is obtained using Eq. (7).
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FIG. 5. Radial distribution function of “other” chains. (a) Stiffening the
chains results in a higher g,u.-(r) and (b) adding bulky side groups leads to
smaller g, (r) at smaller distances.

unity as most of the monomers come from other chains,

for g(anr'*dr' N1

F(r) =
®) ‘3—‘7rr3 N

(7

Reflecting the behavior of the radial distribution function,
stiffer chains have a higher volume fraction Fyp,,(r) of
monomers from other chains at small values of r. Bulky
chains have more monomers from the same chain near a
given monomer. This leads to a lower volume fraction
F,n0-(r) of monomers from other chains at smaller distances
r. At long distances, all chains will have the same F . (r)
equal to a saturation value of (N — 1)/N, but the rate at
which this value is approached depends on the architecture.
This behavior is observed in Fig. 6, where flexible and bulky
chains have more nearby monomers coming from their own
chain.

We use the radial volume fractions to identify the exact
distance up to which monomers predominantly come from
the same chain. We define the packing length as the distance
at which the radial volume fraction F,u.(r) equals 0.5. At
this characteristic distance, monomers from neighboring
chains start to dominate the local density.
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FIG. 6. Radial volume fraction of “other” chains. (a) Stiffening the chains
results in a higher fraction and (b) adding bulky side groups leads to a
smaller fraction of “other” chains near a reference chain of interest.

The packing length defined in this way can never be less
than the chain diameter. As evident in Figs. 7 and 8§, we
often obtain a value of p less than the chain diameter when
using the expression V/R?. Such a value for p is not realistic.
Using gomer(r) to measure p always gives a value greater than
or equal to d.

The packing length measured using gome(r) restores LN
scaling [Eqgs. (3) and (4)]. Figures 7 and 8 show good agree-
ment for both N, and modulus with LN scaling when p is
measured using radial distribution function. According to
Eq. (3), data in Fig. 7 should collapse on to a slope of 3,
which happens in Fig. 7(b) but not in Fig. 7(a). Similarly,
Eq. (4) suggests that the data in Fig. 8 should collapse to a
slope of —3. This collapse is observed in Fig. 8(b) but not in
Fig. 8(a). This suggests that measuring p using gomer(r) is
more reliable than using Eq. (1), which can give erroneous
values for certain chain architectures.

For sufficiently stiff chains, packing length, by definition,
is equal to the chain diameter d. In Fig. 9, we compare p
measured using F,.- and as V/R2 for semiflexible and stiff
polymers without any side chains. We expect such chains to
be outside the flexible regime and hence, not following the
LN scaling. p measured using F,y,, is almost equal to d for
the stiff polymers, as should be the case. Only at low values
of stiffness, where we are about to enter the flexible regime,
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FIG. 7. Entanglement length N, measured through chain-shrinking techni-
que is plotted against packing length measured in two ways: (a) scaling
expression V/R? and (b) radial volume fraction. Dashed line represents the
bead diameter. Here, V| is the number of beads in a monomer, that is,
Vo =sc+ 1.

we observe the value of p rising. This is not the case when
using V/R? to measure p. As evident in Fig. 9, V/R? reduces
to less than the chain diameter for stiff polymers. This
expression does not have a lower limit, which is in contradic-
tion with the way p is defined. N, decreases as the chains are
stiffened even in the stiff and semiflexible regimes, as does
the expression V/R?. This happens due to an increase in the
Kuhn length not because of the change in p.

The value of p does depend on the choice of threshold
value applied to F,.(r). Although a threshold value of 0.5
is intuitive from the way packing length is defined, we have
tested thresholds in the range 0.3—0.5. With different thresh-
olds, we obtain different values for packing length; impor-
tantly, however, the slopes we observe in Figs. 7(b) and 8(b)
remain the same with a different prefactor. (See the supple-
mentary material [19] for plots that illustrate how our results
vary with the choice of the threshold value.)

The wiggles in F,pe,(r) shown in Fig. 6 lead to the sensi-
tivity of our method for determining p to the choice of the
threshold value. These wiggles ultimately arise from the
sharp structures in g(r) evident in Fig. 4. A possible refine-
ment of our approach to reduce this sensitivity would be to
convolve g(r) with the form factor of the beads before per-
forming the partial integral of 4nr’g(r) to obtain Fpe,(r).

S. VINEETH BOBBILI AND S. T. MILNER
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FIG. 8. Entanglement modulus G measured from simulated shearing is plotted
against packing length measured in two ways: (a) scaling expression V/R? and
(b) radial volume fraction. Dashed line represents the bead diameter.

This would in the present case smear g(r) over a distance of
0.1 nm or so, diminishing the peaks in g(r) and hence the
wiggles in F e, (7).

We recover LN scaling using this improved method of
measuring packing length. This refinement was not necessary
for the experimental data compiled by Fetters er al. [11], for
which the scaling expression [Eq. (1)] works well. So why
do we have to go to such pains to obtain p? We speculate
that Fetters’ data comprises polymers with rather flexible
backbones and small side groups, similar to the red data
points in Fig. 8. Such simulated polymers likewise show
agreement with LN scaling when p is estimated by the
scaling expression. This approach fails when the simulated
polymer backbone becomes stiffer, albeit still in the “flexi-
ble” regime due to the bulkiness of the chains. This finding
is consistent with our initial assertion that p estimated using
Eq. (1) keeps decreasing as the chains stiffen, eventually pro-
ducing unrealistically small values.

Our new method for obtaining p can be applied to any
chain architecture and requires no scaling estimate of chain
structural properties such as diameter or stiffness. By measur-
ing gomer(r), we include all influence of chain structure, as
represented by the conformation and packing of chains in the
simulation.
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The intermolecular correlation function gm.-(r) can, in
principle, be obtained from neutron scattering experiments
using contrast variation techniques, in which deuterium label-
ing is used to vary the scattering length density for a dilute
mixture of chains in a melt of chemically identical but differ-
ently deuterated chains. By varying the contrast between the
dilute and background chains, the cross correlation between
the dilute chains and background can, in principle, be
obtained, the Fourier transform of which is gger ().

A. Packing length in polymer solutions

Measuring entanglements in solutions of flexible poly-
mers is increasingly challenging as the chains become more
dilute. We expect N, to increase with dilution approximately
as 1/¢. To measure G or N, in such solutions, we would
need much larger polymers, which would be computationally
expensive to investigate because of the larger systems and
longer relaxation times required. Here, we investigate the
effect of dilution on p, to explore how local correlations
affect its value.

We expect the packing length to increase with decreasing
concentration of polymers in solution, governed by the
solvent quality. When a polymer melt is diluted with a good
solvent, chains will swell and exclude other polymers from
their correlation blobs. As the nearby fraction of other poly-
mers decreases, the packing length will thus increase.
Diluting our melt of purely repulsive chains in vacuum corre-
sponds to the limit of very good solvent.

In contrast, chains swell very little in marginal solvents
and theta solutions, so the packing length should increase
much less on dilution. We can investigate theta solvents in
simulation either by diluting the melt with oligomer chains
or by adding attractive interactions to our chains tuned to the
theta condition.

In simulations reported below, we explore the impact of
polymer concentration and solvent quality on packing length
p, for a range of polymer volume fraction ¢ between 0.2 and
1, where ¢ = 1 represents melt density. We varied the con-
centration of polymer solutions in three different ways. First,
we use vacuum as a good solvent for our purely repulsive
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FIG. 10. g,m.-(r) versus r as we vary overall polymer volume fraction using
three different types of solvents: (a) oligomer solvent, (b) implicit theta
solvent, and (c) vacuum solvent.

chains, by increasing the volume of the simulation box,
keeping the number of chains constant. Second, we dilute the
polymer system using identical oligomers as a marginal
solvent. Third, we vary the polymer concentration at theta
condition. We obtain the theta point of polymers using the
method described by Graessley et al. [20], in which the
strength and cutoff distance of the interaction potentials is
tuned such that the mean square radius of gyration of dilute
polymers is proportional to chain length. Specifically, we
increase the Lennard-Jones cutoff length to 2.5 o, so that our
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polymer beads are somewhat attractive. Then, we find that
for T = 840 K, our chains scale as ideal random walks, indi-
cating we are at the theta temperature. We did not investigate
dilution with a monomeric (single bead) solvent. Naively,
one might expect this to correspond to the best possible
solvent conditions; actually, monomeric solvents of identical
beads are generally a rather marginal solvent because of
depletion attractions induced between bonded chain segments
by mobile beads [21].

To simulate these polymer solutions, since we will not
attempt to measure N, or G, we use simple linear bead-spring
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FIG. 12. p versus ¢ shows the increase in packing length as we dilute the
polymer solutions using three different types of solvent. Note: data point at
¢ = 0.8 for oligomers is lower than expected because of the finite size of
the beads that causes a small plateau in Foge,(r).

chains, rather than the ring polymers we used to measure
entanglements. For the implicit vacuum and theta solvents, we
simulate 100 chains of 200 beads each. For oligomer solu-
tions, we add oligomers of 10 beads each to maintain melt
density. We control the concentration by changing the volume
and the number of oligomers added to the simulation box.

Polymers are farther apart from each other in solutions
than they are in melts. As we dilute the solutions, it is less
likely to find other polymers near a given chain. This can be
observed from Fig. 10, where the value of g,s-() is smaller
near the reference chain for lower concentrations of poly-
mers. As usual for pair correlation functions, gume-(r) in
Fig. 10 is normalized to approach unity at large distances, for
each concentration. Hence, g,m.-(r) can be interpreted as the
ratio of the nearby concentration of monomers from other
chains, relative to the average value far away.

We define the radial volume fraction of other polymers
Fomer(r) by Eq. (7), just as we did for melts. As we dilute,
Fomer(r) increases more slowly with r (see Fig. 11). As the
solvent content increases, chains swell and one must move
farther away from the reference polymer for the volume frac-
tion of other polymers to increase to half its average value.
Thus, p increases as we dilute the solutions.

Vacuum is an extremely good solvent for purely repulsive
chains; hence, the packing length changes more drastically in
vacuum than in any other solvent. The changes in packing
length in oligomer solvent and at theta condition are very
similar, and much less pronounced (as evident in Fig. 12).

IV. CONCLUSION

The packing length is the characteristic distance of the
closest approach between polymer backbone segments in a
melt. In this work, we presented a new approach to measure
the packing length in simulations. This technique is applica-
ble even to polymers for which the chain diameter is difficult
to define unambiguously. Unlike the traditional estimate of p
as V/Rz, which can generate unrealistic values less than the
chain diameter, our new technique does not produce errone-
ous values for stiff chains.
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We use the radial distribution function g,m.-(r) to obtain
the volume fraction of backbone monomers from other
nearby chains, as a function of distance from a chosen back-
bone monomer on a reference chain. From g,p., (r), we
compute the distance at which monomers from other chains
start dominating the local density around the reference
monomer; we define this distance to be the packing length p.

The entanglement length N, is measured by chain shrink-
ing and the modulus G is measured by simulated shearing.
Using this combined approach, we explore a set of 12 differ-
ent bead-spring chain melts in which the side group length
and backbone stiffness are independently varied, which
should result in variations in entanglement. Based on our pre-
vious work, all these systems should be in the flexible entan-
glement regime, for which LN scaling is expected to hold.
When p is measured using our technique, both satisfy LN
scaling, which also holds for a wide range of polymers as
shown by Fetters et al. [11].

Estimates of the tube diameter based on the packing
length as measured here for long entangled linear chains
should be valid as well for long-chain branched polymers,
such as star polymers, H polymers, and more complex archi-
tectures. Indeed, it has been well demonstrated that dynamic
rheology of such branched polymers is well described by
contemporary tube-based theory, with the same tube diameter
used for branched and linear chains [22]. Here, we assume
implicity that the long-chain branching is “weak” in that (1)
chain segments between branch points are long compared to
the entanglement length and (2) branch point functionality is
low. Otherwise, chain segments may no longer be essentially
Gaussian and entangle locally in the same way as long linear
chains. For example, a high-functionality branch point leads
to a “corona” region of radially oriented chains to relieve
crowding near the branch point.

We showed that g,q.-(r) can be used to measure p in
polymer solutions using both implicit and explicit solvents.
For purely repulsive chains, vacuum is a very good solvent,
in which chains swell markedly. Oligomers serve as a nearly
theta solvent, which can also be represented by introducing
attractions between monomer beads in vacuum. We find that
p always increases with decreasing ¢, but the magnitude of
increase depends markedly on solvent quality.

Measuring p using gume-(#) does not depend on any a
priori estimates of chain structural parameters and can be
applied to any simulated polymer architecture. Structural
properties such as chain stiffness, diameter, or monomer
chemistry all influence g,m.(r) and thereby influence the
value of the packing length. This allows us to extend this
technique to other monomer architectures and atomistic simu-
lations, which will be reported in future publications.
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