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In the present paper, we summarize the results of the research devoted to the problem of stability of the fluid flow moving in a
channel with flexible walls and interacting with the walls. &e walls of the vessel are subject to traveling waves. Experimental data
show that the energy of the flowing fluid can be transferred and consumed by the structure (the walls), inducing “traveling wave
flutter.” &e problem of stability of fluid-structure interaction splits into two parts: (a) stability of fluid flow in the channel with
harmonically moving walls and (b) stability of solid structure participating in the energy exchange with the flow. Stability of fluid
flow, the main focus of the research, is obtained by solving the initial boundary value problem for the stream function. &e main
findings of the paper are the following: (i) rigorous formulation of the initial boundary problem for the stream function, ψ(x, y, t),
induced by the fluid-structure interaction model, which takes into account the axisymmetric pattern of the flow and “no-slip”
condition near the channel walls; (ii) application of a double integral transformation (the Fourier transformation and Laplace
transformation) to both the equation and boundary and initial conditions, which reduces the original partial differential equation
to a parameter-dependent ordinary differential equation; (iii) derivation of the explicit formula for the Fourier transform of the
stream function, 􏽥ψ(k, y, t); (iv) evaluation of the inverse Fourier transform of 􏽥ψ(k, y, t) and proving that reconstruction of
ψ(x, y, t) can be obtained through a limiting process in the complex k-plane, which allows us to use the Residue theorem and
represent the solution in the form of an infinite series of residues. &e result of this research is an analytical solution describing
blood flowing through a channel with flexible walls that are being perturbed in the form of a traveling wave.

1. Introduction

In the present paper, we formulate a number of results
obtained for a mathematical model describing incom-
pressible fluid flowing through a relatively long channel with
flexible walls.&emodel has originated in a biological setting
of blood moving through large arteries (or veins), whose
walls are subject to traveling waves. Experiments show that,
under some conditions, the energy of the fluid flow can be
transferred and then consumed by the structure (the walls),
which initiate “traveling wave flutter” [1].

We focus on the problem of stability, which splits into
two parts: (i) stability of the fluid flow in the channel, whose
walls undergo axisymmetric harmonic movement, and (ii)
the stability of the channel wall structure, which is par-
ticipating in the energy exchange with the flow. &e present
paper deals with the first part of the problem; that is, we

provide a closed-form solution of the problem of stability of
the fluid flow in the channel with harmonically moving walls.
Our forthcoming work will be devoted to the structure
response on the pressure changes from the flow. &e main
achievement of the present paper is the derivation of the set
of the explicit formulas for the flow velocities, which allows us
to answer the question on the flow stability. We expect that
the results obtained for two-dimensional configuration will
be relevant to the investigation of flutter-type instabilities of
collapsible tubes in three-dimensional setting.

Before we present our results and discuss their novelty,
we briefly discuss recent research works containing either
new important results or new analytic techniques. &e au-
thors of [2–4], Case and Shivamoggi, consider the stability
problem for inviscid incompressible fluid flowing between
infinite parallel plates. Carpenter and Garrad [5] investigate
flow-induced surface instabilities using a thin elastic plate
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model supported on a spring foundation. Kumaran [6, 7]
investigates the stability problem for the fluid flowing
through flexible tubes such as blood vessels. &e results
derived in [6] on hydrodynamic stability are similar to the
classical results of Drazin and Reid [8]. Heil and Jensen [9]
carry out analysis of steady flows in three-dimensional
collapsible tubes and obtain the results that cannot be
predicted by analyzing the lower-dimensional models.

In a series of works, different authors investigate non-
Newtonian flows in different biological and medical settings.
&e authors of [10], Abdelsalam and Bhatti, derive a model
of bioconvection flow and heat transfer through the space
between two infinite coaxial conduits. &ey use a mathe-
matical model and show that pressure fluctuations and outer
and inner tube friction could lead to the blood clots and
endoscopic effects (see also work [11] by Elmaboud and
Abdelsalam). In paper [12], Abdelsalam and Sohail inves-
tigate the heat and mass transfer in 3-dimensional setting of
viscous fluid flow containing microorganisms over a
stretched membrane. &e authors of [13], Abdelsalam et al.,
focus on the model of blood stream in the presence of
electroosmotic forces in the arteries having both aneurysm
and stenosis. &e model is supposed to be useful in medical
pumps for drug delivery systems incorporating nano-
particles. In [14], Abumandour et al. analyze the effects of
viscosity and magnetohydrodynamics of the peristalsis of
nanofluid using both analytical and numerical mathematical
tools. &e authors of [15], Bhatti et al., provide an analytical
study of a model of swimming microorganisms in a non-
Newtonian blood-based nanofluid moving along an aniso-
tropically narrowing artery. &ey take into account the
rheology as a non-Newtonian fluid. In the editorial paper
[16], Bhatti et al. outline state-of-the-art research of com-
putational fluid dynamics related to biologically inspired
models. &e authors of [17], Eldesoky et al., and Eldesoky
et al. of [18] study the effect of wall slip condition and heat
transfer on peristaltic inflow of magnetohydrodynamics
Newtonian fluid with suspended particles in a catheterized
tube. Sadat and Abdelsalam [19] analyze physical charac-
teristics of incompressible hybrid nanofluid (composed of
two different types of nanoparticles) in an annulus with
flexible boundaries. &e authors present a comparison of the
results obtained for “standard” nanofluids and hybrid
nanofluids. &e authors suggest that such a model can be
instrumental for the study of the metabolic structures
playing an important role in heat sources inside the human
body. &e authors of [20], Sohail et al., investigate the
properties of the boundary layer flow of Casson liquid over a
linearly elongated surface in porous medium. A coupled
system of nonlinear ordinary differential equations de-
scribing the model is solved numerically and interpreted
graphically.

&e authors of [21], Aittokallio et al., propose a math-
ematical model describing the operation of the lungs (both
the inspiratory and the expiratory phases). Beck et al. [22]
discuss the acoustic properties of snoring sounds and
identify two different patterns: the “simple-waveform”
snores and the “complex-waveform” snores. Grotberg and
Gavriely [23] focus on flow-induced flutter oscillations

producing wheezing sounds. &eir model predicts the
critical fluid speed that initiates flutter of the wall. Self-ex-
cited oscillations of collapsible lung airways are responsible
for respiratory wheezes during forced expiration, for speech
production during flow-induced vibrations of the vocal
chords, and for snoring sounds during deformation of the
soft palate and pharyngeal wall [9, 21–28]. &in-walled
circular shell structures containing or immersed in flowing
fluid may be found in many engineering and biomechanical
systems [29–32]. In many applications, the length of the
flexible tube is shorter than the entrance length of the flow.
Larose and Grotberg [33] study the fluid-elastic (flutter)
instability with a developing flow in a compliant channel.
Paı̈doussis and Li [34] present a comprehensive study of
different types of pipes conveying fluid (straight and curved
pipes, cantilevered pipes, and supported pipes). &e authors
of [35, 36], Päıdoussis, Semler, and Wadham-Gagnon,
present an extended review on the stability of aspiring pipes.
Paı̈doussis and Denise [31] provide an analytical model and
experimental results for clamped-clamped and clamped-free
shells conveying inviscid fluid. Amabili et al. [37] discuss the
nonlinear dynamics and stability of circular cylindrical shells
containing fluid flow and show that the system loses stability
by divergence.

Huang [1] studies the collapse and subsequent self-ex-
cited oscillation of compliant tubes conveying fluids. &e
author considers a two-dimensional, inviscid, shear flow in a
flexible channel of infinite length subject to linear traveling
varicose waves. Huang observes (i) the reversal of the col-
lapsing tendency of compliant fluid passages and (ii) the fact
that the fluid pressure always has a component in phase with
the wave slope causing wave drag and energy transfer from
the flow to the waves (a mechanism for traveling wave
flutter). In [38], Huang carries out analysis of a coupled
system describing the Poiseuille flow interacting with a
tensioned membrane of a finite length. &e author shows
that (i) flutter and divergence may occur at similar flow
velocities and may coexist. (ii) &e elastic waves over a
membrane, having a standing wave pattern, can be
decomposed into upstream traveling waves and downstream
traveling waves. &e downstream component is responsible
for energy transfer from the fluid to the wall.

Now we are in a position to outline briefly the content of
the present paper. Section 2 is devoted to the formulation of
the initial boundary value problem describing the dynamics
of pressure perturbation in the horizontal channel. &e
upper boundary condition reflects an assumption on the
axial symmetry of the unperturbed problem with respect to
the centerline of the channel (see equation (6)). We consider
quite general behavior of the lower boundary of the channel
and derive the equation that relates the vertical component
of the flow velocity and the velocity of the points of a solid
boundary of the channel (see equation (8)). We emphasize
that we do not impose any restrictions on the function
describing the elevation of the lower boundary, which means
that equation (8) can be used to analyze nonharmonic
movement of the channel boundary. In the present work, we
assume that the channel is a horizontal tube with the fol-
lowing properties of the walls reflecting the physical origin of
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the model. &ere exists a large positive number R (R≫ 1)
such that within the symmetric interval (− R, R) the wall is
flexible and the lower boundary moves “almost harmoni-
cally” in accordance with the law:

g(x, t) � C0e
iω(x− ct)

, ω> 0, x ∈ [− R, R], (1)

where ω is the wavenumber and c is the speed of the wave
crest propagation; g(x, t) denotes the transverse displace-
ment of the channel wall at location x andmoment in time t;
C0 is a small positive constant. We also assume that (1) there
exists a small positive number, r: r≪R, and r is such that,
outside the interval [− R − r, R + r], the wall is rigid; that is,
the vertical displacement on R\[− R − r, R + r] is zero; and
(2) there exists a smooth function, g0(x), which governs the
transition of displacement g(x, t) from formula (1) to zero;
that is, we set

g(x, t) � g0(x)e
iω(x− ct)

, g0(x)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≪ 1,ω> 0, − R − r≤ x

≤R + r, r≪ 1,

(2)

with supp g0(x)􏼈 􏼉 ∈ [− R − r,R + r] and g0(x) � g0(0) � C0
for x ∈ [− R,R] (see Figure 1).

Finally, we present the initial boundary value problem
(IBVP) given by (10)–(13) for the stream function ψ(x, y, t),
in which the harmonic behavior of the wall is addressed. We
recall that if one knows the stream function, then the
components of the velocity vector can be reconstructed [8]
(see formulae (3)).

In Section 3, we provide a modification of the IBVP
given by (10)–(13) and reduce it to a more tractable form.
First, we apply the Fourier transformation to the equation
and the boundary and initial conditions. As a result, we
obtain an equation in which the partial derivatives, with
respect to the x-variable, are replaced with polynomials with
respect to the Fourier transform parameter, k (see equation
(19)). Second, we apply to equation (19) the Laplace
transformation with respect to the time variable, t. &e
second integral transformation allows us to take into ac-
count the explicit expression for the unperturbed flow ve-
locity profile, U(y). After incorporating U(y), we apply the
inverse Laplace transformation and reduce IBVP (10)–(13)
to the new formulation (24)–(27). &e main equation (24) is
an ordinary differential equation with respect to the variable
y (the width of the channel) with the complex parameter k

(the result of the Fourier transformation) entering both the
equation and the boundary conditions. &is equation has
time-dependent right-hand side and nonhomogeneous
boundary conditions. We conclude this section with intro-
ducing and explicitly solving the boundary problem for the
corresponding stationary solution (31). Using the stationary
solution, we reduce IBVP (24)–(27) to a new one having
homogeneous boundary conditions (34)–(36). &e rest of
Section 3 is devoted to the construction of the inverse op-
erator to the second-order differential operator with the
Dirichlet boundary conditions. &e inverse operator is an
integral operator, whose kernel is Green’s function. We
derive an explicit formula for Green’s function and present a

closed-form expression for the Fourier transform of the
stream function denoted by 􏽥ψ(k, y, t) (see formula (41)).

To examine the behavior of the stream function as a
function of variable x, we have to evaluate the inverse
Fourier transform of (41). Section 4 contains the main
technical results of the paper.

+e technical tools used in proving the main results are as
follows. &e Fourier transform of the stream function,
􏽥ψ(k, y, t), is represented as a sum of three terms (see formula
(41)). &e inverse Fourier transform, which is the stream
function ψ itself, also contains three terms denoted by I1, I2,
and I3 (see formulae (43)–(45)). &e main results of the
paper are demonstrated in &eorems 1–3. &ese theorems
provide the desired representation for the stream function as
a function of time and space. To obtain such representations,
one has to split 􏽥ψ(k, y, t) into several terms and prove that
each term, containing the improper integral with respect to
k, can be extended into the complex k-plane and evaluated
by using the Residue theorem (the detailed derivation is
presented in our paper [39]). &e series (46), (62), and (63)
converge at exponential rates. It means that one can take
only several terms from each series and attain the desired
level of accuracy, which is important for practical applica-
tions of the obtained formulae.

2. Statement of the Problem

We consider a two-dimensional, inviscid, incompressible
shear flow through a long channel with elastic walls. &e
two-channel walls undergo varicose heaving motions of
small constant amplitudes in the form of a wave traveling in
the direction of the flow, that is, along the x-axis (see
Figure 2). Using dimensionless variables, we set the channel
height equal to two units and assume that the undisturbed
flow is the symmetrization of the Couette flowwith respect to
the axis y � 1. Channel wall movements induce pressure
disturbances within the fluid flow. Our goal is to provide the
analytical representation of the pressure distribution.

Based on the axial symmetry of the model, the 3-di-
mensional problem can be reduced to the 2-dimensional
problem. We introduce the following 2-dimensional vector
field: let q(x, y, t) � (U(y) + u(x, y, t), v(x, y, t))T be the
velocity vector with U(y) (undisturbed flow profile) being
the given function and u(x, y, t) and v(x, y, t) being the
perturbations.

&e incompressibility condition, (∇ · q)(x, y, t) � 0
written in terms of u(x, y, t) and v(x, y, t), has the form
ux(x, y, t) + vy(x, y, t) � 0. As is well known, this equation

g0 (x)

g0 (R)

R–R xR + r–R – r 0

Figure 1: &e amplitude profile function.
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means that there exists a scalar function ψ(x, y, t) (called the
stream function) defined on the domain (x, y) ∈ Ω ∈ R ×

[0, 1] such that

u(x, y, t) � ψy(x, y, t),

v(x, y, t) � − ψx(x, y, t).
(3)

&e Euler momentum equation written for q(x, y, t)

generates a nonlinear system of two equations with respect
to u(x, y, t) and v(x, y, t). We eliminate all nonlinear terms
in the aforementioned system and rewrite them in terms of
the stream function. Taking into account the symmetric
modification of the Couette flow, that is, U(y) � y, 0≤y≤ 1,
we obtain a system of two equations:

ψyt(x, y, t) + yψxy(x, y, t) − ψx(x, y, t) + px(x, y, t) � 0,

ψxt(x, y, t) + yψxx(x, y, t) − py(x, y, t) � 0.

(4)

Eliminating pressure terms (px and py), we obtain the
following partial differential equation for the stream
function:

z

zt
+ y

z

zx
􏼠 􏼡 ψxx(x, y, t) + ψyy(x, y, t)􏼐 􏼑 � 0. (5)

2.1.+e Boundary Conditions. Due to the axial symmetry of
the model, there is no vertical flow across the centerline
y � 1; that is,

v(x, 1, t) � − ψx(x, 1, t) � 0. (6)

We consider quite general behavior of the lower
boundary of the channel and derive the equation that relates
the vertical component of the flow velocities and the ve-
locities of the points of a solid boundary of the channel. Let
the vertical displacement of the lower wall at a position, x,
and at a moment in time, t, be given by the equation
y � g(x, t). It is proven in paper [39] that, to satisfy the
requirement that the normal components of the fluid ve-
locity and the wall velocity are equal, the following boundary
condition at y � 0 must be satisfied:

gt(x, t) � − [U(y) + u(x, y, t)]gx(x, t) + v(x, y, t). (7)

Equation (7) can be used to analyze nonharmonic
movement of the channel boundary. We assume that g(x, t)

is a function of a small amplitude and consider linear as-
ymptotic approximations: U(y) � U(0) + yUy(0) + O(y2),
u(x,y,t) � u(x,0, t) + yuy(x,0, t) +O(y2), and v(x,y,t) �

v(x,0, t) + yvy(x,0, t) +O(y2). Keeping only the zero-order
terms, we obtain the following approximation for the
boundary condition of (7):

gt(x, t) +[U(0) + u(x, 0, t)]gx(x, t) � v(x, 0, t). (8)

Taking into account equation (2) for g(x, t) and the fact
that in our model ux(x, 0, t) � 0 and U(0) � 0, we rewrite
(8) in terms of the stream function as

ψx(x, 0, t) � iωcg(x, t). (9)

Note that, in the problem with a rigid wall channel, we
would have had the condition ψx(x, 0, t) � 0. &us, in the
present paper, we focus on the following initial boundary
value problem (IBVP) for the stream function:

z

zt
+ y

z

zx
􏼠 􏼡 ψxx(x, y, t) + ψyy(x, y, t)􏼐 􏼑 � 0, (10)

ψx(x, 0, t) � iωcg(x, t), (11)

ψx(x, 1, t) � 0, (12)

ψ(x, y, 0) � F(x, y). (13)

3. Reformulation of IBVP Using Fourier and
Laplace Integral Transformations

We apply two integral transformations to the IBVP (10)–(13)
in order to reduce the IBVP involving a partial differential
equation to the boundary value problem involving a pa-
rameter-dependent ordinary differential equation. If
􏽥ψ(k, y, t) denotes the Fourier transform of the stream
function, then applying the Fourier transformation to
equation (10) yields

− k
2􏽥ψt(k, y, t) + 􏽥ψyyt(k, y, t) − ik

3
y􏽥ψ(k, y, t) + iky􏽥ψyy(k, y, t) � 0.

(14)

Let Ψ(k, y, λ) be the Laplace transform of 􏽥ψ(k, y, t) with
respect to time variable, t. Applying the Laplace transfor-
mation to both sides of equation (14) yields

z
2

zy
2 − k

2
􏼠 􏼡Ψ(k, y, λ) �

1
λ + iky

z
2

zy
2 − k

2
􏼠 􏼡􏽥ψ(k, y, 0),

(15)

where 􏽥ψ(k, y, 0) is the Fourier transform of the initial
state. Notice that the only influence of the Couette-like flow
is the “y” term in the denominator on the right-hand side of
(15). If instead of Couette-like profile we have an arbitrary
axisymmetric profile, U(y), then, in place of “y,” we would

U (y)

2

1

0 x

y

Figure 2: Symmetric undisturbed flow profile, U(y).
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have had the function, U(y), and thus have a factor of
(λ + ikU(y))− 1 in equation (15). &e unknown function,
Ψ(k, y, λ) in (15), being a function of y, 0≤y≤ 1, depends
on two complex parameters, k and λ.

Applying the inverse Laplace transformation to both
sides of equation (15) yields

1
2πi

􏽚
c

z
2

zy
2 − k

2
􏼠 􏼡Ψ(k, y, λ)e

λtdλ �
1
2πi

􏽚
c

e
λt

λ + iky

z
2

zy
2 − k

2
􏼠 􏼡􏽥ψ(k, y, 0)dλ,

(16)

where the contour of integration can be taken any vertical
line, located in the open right half-plane of the complex
λ-plane (see Figure 3).

Closing the contour of integration in the λ-complex
plane and using the Residue theorem to evaluate the contour
integral at the right-hand side of equation (16), we obtain the
desired form of the differential equation:

z
2

zy
2 − k

2
􏼠 􏼡􏽥ψ(k, y, t) � e

− ikyt z
2

zy
2 − k

2
􏼠 􏼡􏽥ψ(k, y, 0). (17)

However, we do not have the boundary conditions for
􏽥ψ(k, y, t); we have the boundary conditions only for
ψx(k, y, t) when y � 0 and y � 1 (see (11) and (12)). Since
ψx(x, 1, t) � 0, we immediately obtain the boundary con-
dition at y � 1, 􏽥ψ(k, 1, t) � 0. To derive the boundary
condition at y � 0, we have to specify the properties of the
force profile function, g0(x) (see (9)). According to the
physical origin of themodel, the channel walls are flexible for
|x|≤R + r and rigid for |x|>R + r.

Assumption 1. &e amplitude function, g0(x), is a con-
tinuously differentiable, even function with a compact
support, such that (see Figure 1)

g0(x) � 0, forx ∈ R/[− R − r, R + r], R≫ 1, r≪ 1,

g0(x) � g0(R)≪ 1, for x ∈ [− R, R].

(18)

Collecting equation (17), boundary condition at y � 1,
and evaluating the Fourier transformation of the boundary
condition (11), we obtain the following reformulation of the
IBVP (10)–(13) for 􏽥ψ(k, y, t):

z
2

zy
2 − k

2
􏼠 􏼡􏽥ψ(k, y, t) � e

− ikyt z
2

zy
2 − k

2
􏼠 􏼡􏽥ψ(k, y, 0), (19)

􏽥ψ(k, 0, t) � −
2ωc

k
e

− iωct
􏽚

R+r

R
g0′(ξ)

sin(ξ(k − ω))

k − ω
dξ, (20)

􏽥ψ(k, 1, t) � 0, (21)

􏽥ψ(k, y, 0) � 􏽥F(k, y). (22)

IBVP (19)–(22) is the main object of interest in the rest of
the paper.

3.1. Reductionof Problems (19)–(22) to theProblemwithTime-
Independent Boundary Conditions. Let us introduce a new
function:

Y(k, y, t) � e
iωct 􏽥ψ(k, y, t). (23)

Since Y(k, y, 0) � 􏽥ψ(k, y, 0), the problem for Y(k, y, t)

can be represented in the form

z
2

zy
2 − k

2
􏼠 􏼡Y(k, y, t) � e

− i(ky− ωc)t z
2

zy
2 − k

2
􏼠 􏼡Y(k, y, 0),

(24)

Y(k, 0, t) � −
2ωc

k
􏽚

R+r

R
g0′(ξ)

sin(ξ(k − ω))

k − ω
dξ, (25)

Y(k, 1, t) � 0, (26)

Y(k, y, 0) � 􏽥F(k, y). (27)

To reduce the IBVP (24)–(27) to the IBVP with ho-
mogeneous boundary conditions, we introduce the steady-
state solution, Y0(k, y), which satisfies the following
boundary value problem:

z
2

z
2
y

− k
2

􏼠 􏼡Y0(k, y) � 0, (28)

Y0(k, 1) � 0, (29)

Y0(k, 0) � −
2ωc

k
􏽚

R+r

R
g0′(ξ)

sin(ξ(k − ω))

k − ω
dξ. (30)

&is problem has a unique solution that can be given by
an explicit formula:

Y0(k, y) � −
2ωc sinh(k(1 − y))

k sinh(k)
􏽚

R+r

R
g0′(ξ)

sin(ξ(k − ω))

k − ω
dξ.

(31)

It can be readily seen that the steady-state solution
satisfies the initial boundary value problem (24)–(27), in
which the initial state is simply Y0(k, y).

0

γ

λ

ε – i∞

ε + i∞

 (λ)

 (λ)

Figure 3: Contour for inversion of Laplace transform.
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Assumption 2. We assume that the initial state of the system
is a function whose Fourier transform is a small perturbation
of the steady-state solution; that is,

􏽥F(k, y) � 􏽥f(k, y) + Y0(k, y), (32)

where 􏽥f(k, y) is a smooth compactly supported function of
y. Now, let us introduce a new function, Z(k, y, t), which
satisfies the zero boundary conditions; that is,

Z(k, y, t) � Y(k, y, t) − Y0(k, y). (33)

It can be verified by straightforward calculations that the
IBVP for Z(k, y, t) can be written in the following form:

z
2

zy
2 − k

2
􏼠 􏼡Z(k, y, t) � e

− i(ky− ωc)t z
2

zy
2 − k

2
􏼠 􏼡􏽥ψ(k, y, 0),

(34)

Z(k, 0, t) � Z(k, 1, t) � 0, (35)

Z(k, y, 0) � 􏽥f(k, y). (36)

3.2. Solving Problems (34)–(36) via Green’s Function. We
construct an explicit solution of equation (34) satisfying the
Dirichlet boundary conditions (35). &e initial condition
(36) is incorporated into equation (34) in which
􏽥ψ(k, y, 0) � 􏽥f(k, y).

As is known [40, 41], the solution of the boundary
problem,

W″(k, y) − k
2
W(k, y) � Φ(k, y), W(k, 0) � W(k, 1) � 0,

(37)

can be given in terms of Green’s function as

W(k, y) � 􏽚
1

0
G(η, y)Φ(η, k)dη. (38)

&e following properties must be satisfied for
G(η, y)[40, 41]: (i) symmetry, that is, G(η, y) � G(y, η); (ii)
continuity, that is, G(η, y)⟶ G(y, y) as η⟶ y; (iii) a
unit jump derivative, that is, Gy(η, y)|y�η+0 −

Gy(η, y)|y�η− 0 � 1; (iv) the boundary conditions:
G(η, 0) � G(η, 1) � 0; (v) the equation: Gyy(η, y) − k2G

(η, y) � δ(η − y) with δ(·) being the Dirac delta function.
It can be verified directly that the function given by

explicit formula,

G(η, y) �
1

k sinh(k)

− sinh(k(1 − η)) sinh(ky), y< η,

− sinh(kη) sinh(k(1 − y)), y> η,

⎧⎪⎨

⎪⎩

(39)

satisfies all properties (i)–(v). Using this Green’s function,
we obtain the following solution of systems (34) and (35):

Z(k, y, t) � e
iωct

􏽚
1

0
e

− ikηt
G(y, η)

z
2

zη2
− k

2
􏼠 􏼡􏽥ψ(k, η, 0)dη

� − e
iωctsinh(k(1 − y))

k sinh(k)
􏽚

y

0
e

− ikηtsinh(kη)
z
2

zη2
− k

2
􏼠 􏼡􏽥ψ(k, η, 0)dη

− e
iωct sinh(ky)

k sinh(k)
􏽚
1

y
e

− ikηtsinh(k(1 − η))
z
2

zη2
− k

2
􏼠 􏼡􏽥ψ(k, η, 0)dη,

(40)

which yields the desired result for
􏽥ψ(k, y, t) � e− iωct[Z(k, y, t) + Y0(k, y)]:

􏽥ψ(k, y, t) � −
sinh(k(1 − y))

k sinh(k)
􏽚

y

0
e

− ikηtsinh(kη)
z
2

zη2
− k

2
􏼠 􏼡􏽥ψ(k, η, 0)dη

−
sinh(ky)

k sinh(k)
􏽚
1

y
e

− ikηtsinh(k(1 − η))
z
2

zη2
− k

2
􏼠 􏼡􏽥ψ(k, η, 0)dη

− e
− iωct2ωc sinh(k(1 − y))

k sinh(k)
􏽚

R+r

R
g0′(ξ)

sin(ξ(k − ω))

k − ω
dξ.

(41)
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4. Evaluation of the Inverse Fourier Transforms

We need to provide the space-time representation for the
vertical component of the velocity perturbation v(x, y, t),
which is related to the derivative of the stream function by
formula (6). It means that, in fact, we are looking for the
inverse Fourier transform of the function k􏽥ψ(k, y, t). It is

convenient to introduce the following notation for the in-
verse Fourier transform of the stream function:

iψx(x, y, t) �
1
2π

􏽚
∞

− ∞
e

ikx
k􏽥ψ(k, y, t)dk ≡ I1 + I2 + I3,

(42)

where

I1 � −
cω
π

e
− iωct

􏽚
∞

− ∞
e

ikx sinh(k(1 − y))

sinh(k)
􏽚

R+r

R
g0′(ξ)

sin(ξ(k − ω))

k − ω
dξ􏼢 􏼣dk, (43)

I2 � −
1
2π

􏽚
∞

− ∞
e

ikx sinh(k(1 − y))

sinh(k)
􏽚

y

0
e

− ikηtsinh(kη)
z
2

zη2
− k

2
􏼠 􏼡􏽥f(k, η)dη􏼢 􏼣dk, (44)

I3 � −
1
2π

􏽚
∞

− ∞
e

ikx sinh(ky)

sinh(k)
􏽚
1

y
e

− ikηtsinh(k(1 − η))
z
2

zη2
− k

2
􏼠 􏼡􏽥f(k, η)dη􏼢 􏼣dk. (45)

Our first result is concerned with the integral I1. &is
integral is, in fact, the solution of the IBVP with f(x, y) � 0.

Theorem 1. +e following explicit formula holds for the term
I1 from the decomposition (42):

I1 � − ωce
iω(x− ct)

g0(R)
sinh(ω(1 − y))

sinh(ω)
− 2ωce

− iωct
􏽘

∞

m�1

sin πmy

π2
m

2
+ ω2

× 􏽚
R+r

R
dξg0′(ξ)e

− πmξ
[πm cosh(πmx + iξω) − iω sinh(πmx + iξω)],

(46)

with the series being absolutely convergent for any
x ∈ (− R, R), 0<y< 1, and − ∞< t<∞.

4.1. Remarks on the Proof of +eorem 1. We outline the
analytical tools needed to investigate the structure of I1.
Using Fourier and Laplace transforms, we obtain the fol-
lowing formula for I1 (see (43)):

I1 � −
cω
π

e
− iωct

􏽚
R+r

R
dξg0′(ξ) 􏽚

∞

− ∞
dk e

ikxsinh(k(1 − y))

sinh(k)

sin(ξ(k − ω))

k − ω
,

(47)

where R and r are introduced in (2) in the description of
amplitude function. Formula (47) is not convenient for
the analysis of the qualitative behavior of I1 as a function
of x and y. For this reason, we investigate the improper
integral from (47) further and evaluate it using techniques
of complex analysis. To carry out the integration in (47)
with respect to k, we split sin(ξ(k − ω)) into two expo-
nential functions and prove that each of the two resulting
integrals, which we denote by I and 􏽥I, respectively,
converges in the sense of the principal value. Each integral
ofI and 􏽥I can be approximated by sequences of integrals
In and 􏽥In, n⟶∞; that is, I1 � limn⟶∞(In + 􏽥In). If
we fix n, then the domain of integration for In (as well as
􏽥In) is given by (− ∞,ω − εn)∪ (ω + εn,∞), with εn􏼈 􏼉

∞
n�1

being a sequence of positive numbers converging to zero.
For each n, the domain consists of two disjoint

subdomains. In turn,In can be represented as a limit of a
sequence of integrals IS

n, where each IS
n is defined on the

domain (− S,ω − εn)∪ (ω + εn, S); that is, In � limS⟶∞
IS

n. For a given pair (n, S), we consider a closed contour
on the complex k-plane, obtained by connecting two
segments (− S,ω − εn) and (ω + εn, S) by two semicircles
(see Figure 4), CS(0) and Cεn

(ω), where CS(0) is a semi-
circle centered at the origin of radius S and Cεn

(ω) is a
semicircle centered at x � ω of radius εn.

We show that the integral along CS(0) tends to zero as
S⟶∞ and the integral along Cεn

(ω) tends to zero as
εn⟶ 0.&us, we show that the integralIn can be obtained
as a limit of a sequence of the closed contour integrals.
Similar steps can be carried out for evaluation of the integral
􏽥In by closing the contour of its integration in the lower half-
plane. In turn, closed contour integrals can be evaluated by
using the Residue theorem.

As a result, we obtain that the term I1 can be represented
in the form of an infinite series given in (46). We notice that,
for |x|<R and ξ > x, the series converges at an exponential
rate. &us, to analyze the behavior of I1 as a function of
x, y, t, one can keep a finite number of terms in the sum and
obtain the required accuracy.

To formulate the results on the integrals I2 and I3, we
assume that f(x, 0) � f(x, 1) � 0 and make some prelim-
inary steps. Namely, we integrate by parts twice in formula
(44) and (45) and then take the sum to have
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−
1
2π

I2 + I3( 􏼁 � 􏽚
∞

− ∞
dkke

ikx
e

− ikyt 􏽥f(k, y)

+ 􏽚
∞

− ∞
dk

e
ikx

sinh(k)
sinh(k(1 − y)) 􏽚

y

0
dη􏽥f(k, η)

z
2

zη2
− k

2
􏼠 􏼡 e

− ikηtsinh(kη)􏽨 􏽩􏼨

+ sinh(ky) 􏽚
1

y
dη􏽥f(k, η)

z
2

zη2
− k

2
􏼠 􏼡 e

− ikηtsinh(k(1 − η))􏽨 􏽩􏼩.

(48)

Remark 1. One can readily check that the first integral of
(48) generates the following result:

− 􏽚
∞

− ∞
dkke

ik(x− yt) 􏽥f(k, y) � ifx(x − yt, y). (49)

If we fix y for 0<y< 1 and consider x and t such that
x − yt � C, where fx(x − yt, y) is some constant, then the
function fx(x − yt, y) is also equal to a constant. It means
that the perturbation velocity moves with the speed y along
the x-axis. &e second improper integral in (48) can be
represented as a sum 􏽐

4
j�1 Ij, where

I1 � 􏽚
y

0
dη􏽚
∞

− ∞
dke

ik(x− ηt) 􏽥f(k, η) − k
2
t
2

􏼐 􏼑
sinh(k(1 − y))

sinh(k)
sinh(kη), (50)

I2 � 􏽚
y

0
dη􏽚
∞

− ∞
dke

ik(x− ηt) 􏽥f(k, η) − 2ik
2
t􏼐 􏼑
sinh(k(1 − y))

sinh(k)
cosh(kη), (51)

I3 � 􏽚
1

y
dη􏽚
∞

− ∞
dke

ik(x− ηt) 􏽥f(k, η) − k
2
t
2

􏼐 􏼑
sinh(ky)

sinh(k)
sinh(k(1 − η)), (52)

I4 � − 􏽚
1

y
dη􏽚
∞

− ∞
dke

ik(x− ηt) 􏽥f(k, η) − 2ik
2
t􏼐 􏼑
sinh(ky)

sinh(k)
cosh(k(1 − η)). (53)

Assumption 3. Let f(·, y) be a smooth function with
compact support; that is,

supp f(·, y)􏼈 􏼉 ∈ 0, r0( 􏼁, r0 > 0, (54)

such that

fx(x, y) � fxx(x, y) � fxxx(x, y) � 0, x � 0, x � r0.

(55)

Using Assumption 3, one can obtain that

􏽥f(k, y) �
i

k
3 􏽚

r0

0
dxe

− ikx
fxxx(x, y) ≡

1
k
3 􏽥g(k, y),

whereg(x, y) � ifxxx(x, y).

(56)

It is convenient to present the integrals Ij, j � 1, 2, 3, 4, in
the forms

I2j− 1 � − t
2􏽢I2j− 1, j � 1, 2,

I2j � − 2it􏽢I2j, j � 1, 2.
(57)

k

Semicircle CS (0)

Semicircle Cεn (ω)

S–S 0 ω

ω – εn ω + εn

 (k)

 (k)

Figure 4: Closed contour in the upper half-plane for evaluation of In.
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Using (50)–(53) and (57), we obtain the following
representations for 􏽢Ij, j � 1, 2, 3, 4:

􏽢I1 � 􏽚
r0

0
dξ 􏽚

y

0
dηg(ξ, η) 􏽚

∞

− ∞
dke

ik(x− ηt− ξ)sinh(k(1 − y))sinh(kη)

k sinh(k)
, (58)

􏽢I2 � 􏽚
r0

0
dξ 􏽚

y

0
dηg(ξ, η)P.V. 􏽚

∞

− ∞
dke

ik(x− ηt− ξ)sinh(k(1 − y))cosh(kη)

k sinh(k)
, (59)

􏽢I3 � 􏽚
r0

0
dξ 􏽚

1

y
dηg(ξ, η) 􏽚

∞

− ∞
dke

ik(x− ηt− ξ)sinh(k(1 − η))sinh(ky)

k sinh(k)
, (60)

􏽢I4 � − 􏽚
r0

0
dξ 􏽚

1

y
dηg(ξ, η)P.V. 􏽚

∞

− ∞
dke

ik(x− ηt− ξ)sinh(ky)cosh(k(1 − η))

k sinh(k)
. (61)

We evaluate these improper integrals by representing
each of them as a limit of a sequence of closed contour
integrals on the complex k-plane and then use the Residue
theorem. It turns out that the derivation of the desired result
for the sum (􏽢I1 + 􏽢I3) is different from the derivation for the
sum (􏽢I2 + 􏽢I4).

We have to consider two separate cases: x≤ r0 and x≥ r0.
In what follows, we present the results for the case x≥ r0.&e
case x≤ r0 can be analyzed in a similar manner. &e first
result is concerned with the sum (􏽢I1 + 􏽢I3).

Theorem 2. For x≥ r0, the following representation is valid
for (􏽢I1 + 􏽢I3):

􏽢I1 + 􏽢I3 � 2π 􏽚
r0

0
dξ 􏽚

1

0
dηg(ξ, η) 􏽘

∞

m�1
e

− πm|x− ηt− ξ|sin(πmy)sin(πmη)

πm
.

(62)

Let G(x, y, t) be defined as

G(x, y, t) � − 2πi 􏽚
r0

0
dξ 􏽚

1

0
dηg(ξ, η)

x − ηt − ξ
|x − ηt − ξ|

􏽘

∞

m�1
e

− πm|x− ηt− ξ|sin(πmy)cos(πmη)

πm
, (63)

and then the following results are valid for the sum (􏽢I2 + 􏽢I4).

Theorem 3. For x≥ r0, the following representations are
valid for the sum (􏽢I2 + 􏽢I4).

(a) When t≥x/y,

􏽢I2 + 􏽢I4 � G(x, y, t) + 2πi(1 − y) 􏽚
r0

0
dξ 􏽚

(x− ξ)/t

0
dηg(ξ, η)

− πi(1 − y) 􏽚
r0

0
dξ 􏽚

y

0
dηg(ξ, η) + πiy 􏽚

r0

0
dξ 􏽚

1

y
dηg(ξ, η).

(64)

(b) When x/y> t≥ (x − r0)/y,

􏽢I2 + 􏽢I4 � G(x, y, t) − 2πiy 􏽚
r0

0
dξ 􏽚

(x− ξ)/t

y
dηg(ξ, η)

+ πiy 􏽚
r0

0
dξ 􏽚

1

y
dηg(ξ, η) + πi(1 − y) 􏽚

r0

0
dξ 􏽚

y

0
dηg(ξ, η).

(65)

(c) When (x − r0)/y> t≥ (x − r0),
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􏽢I2 + 􏽢I4 � G(x, y, t) − πiy 􏽚
r0

0
dξ 􏽚

1

y
dηg(ξ, η) + πi(1 − y) 􏽚

r0

0
dξ 􏽚

y

0
dηg(ξ, η). (66)

4.2. Statement on Data Availability. &e present paper is
concerned with an important question on stability of a fluid
flow interacting with flexible channel walls. &is research has a
purely analytical nature; that is, it is devoted to finding a
representation for a solution of the initial boundary value
problem generated by Navier-Stokes equations in the case of a
specifically chosen geometry of the channel and properties of
the boundary. Due to the very nature of this research, we have
usedmanymathematical tools (like techniques from the area of
ordinary and partial differential equations, boundary value
problems, integral transformations, improper integration,
evaluation of contour integrals on the complex plane by using
the Residue theorem, etc.). &e obtained results are theoretical.
In our forthcoming work, we are planning to compare ana-
lytical results with the experimental data. In the conclusion, we
clearly indicate the major steps that have been carried out to
present our research findings:

Formulation of the fluid-structure interaction model as
a rigorous initial boundary value mathematical prob-
lem (IBVP) with respect to the unknown function,
which is called the stream function (see partial differ-
ential equation (5)). Having the formula for the stream
function, one can obtain the vertical and horizontal
components of the velocity vector and then, using the
Navier-Stokes equation, one can find the analytical
representation of the pressure distribution.
Derivation of the boundary conditions that take into
account the symmetry of the flow with respect to the
centerline of the channel and the “no-slip” condition,
which means that there is no relative movement

between the wall and the near-wall fluid flow in the
vertical direction.
Reformulation of the IBVP (10)–(13) involving partial
differential equation (10) in the form of the boundary
value problem (19)–(22) involving parameter-depen-
dent ordinary differential equation (19). &e refor-
mulation is possible due to the application of double
integral transformations (the Fourier and Laplace
transformations) to equation (10) and corresponding
boundary and initial conditions. &e problem of
solving an ordinary differential equation (instead of a
partial differential equation) is more feasible.
Reduction of the IBVP (19)–(22) with time-dependent
boundary conditions to the problem with time-inde-
pendent Dirichlet boundary conditions (34)–(36) by
using the steady-state solution.
Solving the problem in (34)–(36) by using the ap-
propriate Green’s function and getting an explicit ex-
pression (41) for the Fourier transform of the stream
function 􏽥ψ(k, y, t).
Reconstruction of the stream function itself, ψ(x, y, t),
from its Fourier transform. It is the most challenging
technical step, since 􏽥ψ(k, y, t) is represented as a sum:

􏽥ψ(k, y, t) � 􏽥I1(k, y, t) + 􏽥I2(k, y, t) + 􏽥I3(k, y, t), (67)

and inversion of each term Ij(k, y, t), j � 1, 2, 3, yields
its own technical difficulties. To clarify all the issues
occurring in the inversion of the corresponding Fourier
transform, we present the detailed analysis only for the
first term 􏽥I1, that is, for

I1 � −
cω
π

e
− iωct

􏽚
R+r

R
dξg0′(ξ) 􏽚

∞

− ∞
dke

ikxsinh(k(1 − y))

sinh(k)

sin(ξ(k − ω))

k − ω
. (68)

Evaluation of the improper integral with respect to k

from the above formula for I1 is one of the main steps
in obtaining the results. In turn, this evaluation in-
volves the following: (a) to carry out the integration

k

S–S

0 ω
ω – εn ω + εn

 (k)

 (k)

Semicircle CS (0)
~

Figure 5: Closed contour in the lower half-plane for evaluation of 􏽥In.
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with respect to k, we split the function sin(ξ(k − ω))

into two exponentials and prove that each of the two
resulting integrals (denoted by I and 􏽥I, respec-
tively) converges in the sense of principle value; (b)
each integral of I and 􏽥I can be approximated by a
sequence of closed contour integrals in the complex
k-plane (see Figure 4 for I and Figure 5 for 􏽥I); (c)
each closed contour integral can be evaluated by
using the Residue theorem of complex analysis and
represented as a finite sum of residues; (d) passing to
the limits, we arrive at formula (46) for I1. Evaluation
of the improper integrals for (I2 + I3) follows basi-
cally the same route as was used for obtaining for-
mula (46).
&e proposed problem is a biologically relevant model
of blood flowing through a blood vessel. &e result of
this work is the analytically derived solution of fluid
flowing through a channel with flexible walls being
perturbed by a traveling wave.

Data Availability

&e present paper is concerned with an important question
on stability of a fluid flow interacting with flexible channel
walls.&is research has a purely analytical nature; that is, it is
devoted to finding a representation for a solution of the
initial boundary value problem generated by Navier-Stokes
equations in the case of a specifically chosen geometry of the
channel and properties of the boundary. Due to the very
nature of this research, we have used many mathematical
tools (like techniques from the area of ordinary and partial
differential equations, boundary value problems, integral
transformations, improper integration, evaluation of con-
tour integrals on the complex plane by using the Residue
theorem, etc.). &e obtained results are theoretical. In our
forthcoming work, we are planning to compare analytical
results with the experimental data. However, for the present
work, no data was necessary.
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