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Abstract. The distribution of natural frequencies of the Euler–Bernoulli beam resting on elastic foundation and subject to
an axial force in the presence of several damping mechanisms is investigated. The damping mechanisms are: (i) an external
or viscous damping with damping coefficient (−a0(x)), (ii) a damping proportional to the bending rate with the damping
coefficient a1(x). The beam is clamped at the left end and equipped with a four-parameter (α, β, κ1, κ2) linear boundary
feedback law at the right end. The 2 × 2 boundary feedback matrix relates the control input (a vector of velocity and its spacial
derivative at the right end) to the output (a vector of shear and moment at the right end). The initial boundary value problem
describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space of
the system. The dynamics generator has a purely discrete spectrum (the vibrational modes). Explicit asymptotic formula for the
eigenvalues as the number of an eigenvalue tends to infinity have been obtained. It is shown that the boundary control parameters
and the distributed damping play different roles in the asymptotical formulas for the eigenvalues of the dynamics generator.
Namely, the damping coefficient a1 and the boundary controls κ1 and κ2 enter the leading asymptotical term explicitly, while
damping coefficient a0 appears in the lower order terms.

Keywords: Non-selfadjoint operator, dynamics generator, vibrational modes, distributed damping, boundary control parameters,
spectral asymptotics

1. Introduction

The present paper is concerned with the asymptotic properties of the eigenmodes of the Euler–
Bernoulli beam model subject to two distributed damping mechanisms and a four-parameter family
of non-conservative boundary conditions. At the left end the beam is clamped, while at the right end it
is subject to linear feedback type conditions with a feedback matrix depending on four control parame-
ters: α, β, κ1, and κ2. In addition, there are the following damping mechanisms: (i) an external viscous
damping with damping coefficient (−a0(x)) and (ii) a damping which is proportional to the bending rate
with damping coefficient a1(x). In some particular cases, e.g. when |α| + |β| > 0 and κ1 = κ2 = 0,
the system is dissipative, i.e. the energy of the system is a decreasing function of time. However, when
κ1 + κ2 6= 0, the system is neither dissipative, nor conservative. In our approach, the initial boundary-
value problem describing the beam dynamics is reduced to the evolution equation in the Hilbert state
space, H, equipped with the energy norm. This evolution equation is completely determined by its dy-
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namics generator, iL, which is an unbounded non-skew-selfadjoint matrix differential operator in H.
The eigenmodes (the vibrational modes) and mode shapes of the system are defined as the eigenvalues
and the generalized eigenvectors of the operator iL. It is technically convenient to study spectral and
asymptotic properties of the operator L (rather than iL). Clearly, the dynamics generator iL and the
operator L have the same generalized eigenvectors. In what follows, for the set of the vibrational modes
we use the notation {νn}n∈Z′ , where Z

′ = Z \ {0} and for the set of the eigenvalues of the operator L we
use the notation {λn}n∈Z′ , which yields νn = iλn.

The main object of interest in the present paper is the asymptotic distribution of vibrational modes
for the problem having a combination of distributed damping and boundary controls. To the best of our
knowledge such an analysis has never been done before. The main result – Theorem 7.2 – provides
asymptotic approximation for the vibrational modes when the number of the mode tends to infinity.
The leading asymptotical terms contain both the distributed damping coefficient and boundary control
parameters.

At this moment we would like to emphasize that there exists an extensive literature devoted to different
aspects of the Euler–Bernoulli model dynamics, such as asymptotic, spectral and stability analysis of the
model (both linear and nonlinear versions) and control of the corresponding distributed parameter sys-
tem. We mention below several recent works where the model has been used in contemporary research
directions. One of them is concerned with developing unmanned aerial vehicles (UAVs) in aeronautics.
For intelligence missions, surveillance and environmental research, highly flexible unmanned airframes,
that have been designed recently, allow for high-altitude and long duration flights (Patil and Hodges
[24]; Patil et al. [25]). In particular, a light and flexible long-span object in flight (high aspect-ratio ‘fly-
ing wing’ configuration) can be modelled as an elastic beam with both ends free. A boundary feedback
stabilization of such beam-like structures could be of great interest both in control theory and in engi-
neering practice. In works (Patil and Hodges [24]; Patil et al. [25]) a computer theoretical methodology
for a highly flexible wing has been presented. The authors use geometrically exact beam theory for
elastic deformations coupled with aerodynamic theory of large motion airfoils.

Paulsen [27] has discussed another important area of applications of the modelling of large space
structures, e.g. a large communication satellite or a space platform. In such a structure, different types
of damping devices are installed at the joints of the beam elements to suppress vibrations. Without
these dampers, small vibrations would persist and even slowly build up. In Paulsen [27] the model of
serially connected non-collinear Euler–Bernoulli beams with dissipative joints has been considered and
numerical simulation results presented. Obviously, rigourous analytical results on the multi-beam model
would be desirable.

A class of Euler–Bernoulli beam models with boundary and structural damping has been discussed
in (Russell [28]; Chen and Russell [5]; Chen et al. [2,3]). We also mention works (Chen et al. [4];
Liu and Liu [18,19]) dealing with the models with viscous and Kelvin–Voigt damping. For a cantilever
model, the lack of exponential stabilization under velocity feedback has been proven in Littman and
Markus [17]; the energy multiplier method has been used in Conrad and Morgül [6] to prove the expo-
nential stabilization under the linear boundary feedback control αht(1, t) + hxxxt(1, t) = 0. In Gottlieb
[15] the author has shown the existence of different classes of non-homogeneous Euler–Bernoulli beam
models with continuous density and flexural rigidity functions and different end conditions, that are
analytically solvable and ‘isospectral’ to a homogeneous beam model of clamped–clamped end condi-
tions.
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From the numerous works on the inverse problem for the Euler–Bernoulli model, we refer to the paper
of Gladwell [11]. It has been long known that two scaling factors and three spectra, corresponding to
three different end conditions, are required to determine the cross-sectional area A(x) and the cross-
sectional moment of inertia I (x). However, the necessary and sufficient conditions on the spectral data
that yield ‘positive’ functions A(x) and I (x) have not been known. Such conditions have been derived
in Gladwell [11].

In Wang and Chen [34] the authors study a slender beam with spatially non-homogeneous viscous
damping and structural damping. For constant damping coefficients, it is well known that the structural
damping induces a strong attenuation rate that is frequency proportional, while the viscous damping
induces a constant attenuation rate for all frequencies. In Wang and Chen [34] the author have shown
that for the case of variable damping coefficients, the asymptotic patterns of the spectra remain the
same, i.e. the viscous damping causes an asymptotically constant shift in the attenuation rates; hence, it
is overwhelmed by the structural damping effect.

We also mention the work of Paulsen [26], where the asymptotic distribution of the eigenfrequencies
of in-plane vibrations of an Euler–Bernoulli beam curved as an arc of a circle has been computed. This
result could be instrumental in the analysis of Euler–Bernoulli beam system describing UAVs (Patil and
Hodges [24].)

Finally, we mention some recent papers where the models’ boundary conditions are just particular
cases of conditions (3.5) considered in the present paper. Fernandes da Silva et al. [10] carry out the
dynamic analysis of a beam with the ends elastically restrained against rotation and translation or with
ends connected to concentration masses or rotational inertia. The authors split the boundary conditions
into two groups that they call classical conditions (describing e.g. beams with free ends, clamped ends
or supported ends) and non-classical conditions (describing beams with the ends connected to masses,
springs, rotational inertia and/or dampers). Numerical results on the models are presented and discussed
in the paper. Among other models, Fernandes da Silva et al. [10] consider two models with dampers
at the right end. The case of linear damping is modelled by boundary conditions corresponding to the
combination k1 = k2 = β = 0 and α > 0 from (3.5) of the present paper, while the case of torsional
damping is modelled by boundary conditions corresponding to the case of k1 = k2 = α = 0 and β > 0
from (3.5).

In Gorrec et al. [14] the Euler–Bernoulli beam model connected to nonlinear mass–spring systems is
studied. The model is motivated by the control of compliant micro-mechanical systems (microgrippers)
that are used for the manipulation of biological samples. These systems are represented by undamped
Euler–Bernoulli model connected to mass–spring damper systems. The boundary conditions used in
Gorrec et al. [14] correspond to the case given by (3.5) with the following values of the control parame-
ters: k1 = k2 = 0, α = 1, β = −1.

Hermansen and Thomsen [16] have suggested a practically efficient methodology for using measured
vibrations to estimate linear boundary stiffness and damping of beams, while simultaneously estimating
axial tension. Estimation is performed by fitting model boundary parameters to measured model vibra-
tion data. The authors consider the Euler–Bernoulli beam model with linear and rotational springs and
dampers at its boundaries. The transverse and longitudinal boundary conditions consist of transverse and
rotational springs (K2 and K4) and dampers (C2 and C4). In these boundary conditions non-dimensional
quantities are used, i.e. k4 = K4l/EI , c4 = C4lω0/EI , where l is the length of the beam and ω0 is a
characteristic angular frequency. Boundary condition (6) in the paper of Hermansen and Thomsen [16]
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is u′′(1, τ ) = −k4u
′(1, τ ) − c4u̇

′(1, τ ), where u(x, τ ) is the non-dimensional vertical displacement of
the beam at location x and time τ , and the overdot stands for the time derivative. Direct comparison of
condition (6) in Hermansen and Thomsen [16] with the first boundary condition in (3.6) of the present
paper shows the two conditions coincide if we identify the parameters k4 and c4 of (6) with k1/EI (L)

and β/EI (L) of (3.6), respectively.
The present paper is a continuation of the study initiated in our works (Shubov and Shubov [32];

Shubov and Kindrat [30] and [31]). In the paper of Shubov and Shubov [32], we have considered the
model whose boundary feedback matrix contained only two non-trivial parameters, k1 and k2 (with
α = β = 0). One of the main results of Shubov and Shubov [32] is related to the stability of the
model, i.e. it is shown that even though the model is not dissipative, for the case when one of the con-
trol parameters is positive and the other is sufficiently small, the set of the eigenmodes is located in
the left half-plane of the complex plane. We have derived ‘the main identity’ (that might be of interest
in its own right) which establishes a relation between the eigenmodes and mode shapes of the non-
conservative model corresponding to the case (k1, k2) 6= (0, 0) and the eigenmodes and mode shapes of
the clamped-free conservative model corresponding to the case (k1, k2) = (0, 0). We suggest a hypothe-
sis that a similar stability result can be proven for the multiparameter case (|α|+ |β|+ |k1|+ |k2| > 0) as
well. In our second paper (Shubov and Kindrat [30]), we have considered the case of a four-parameter
feedback control matrix and have shown a number of results on the general spectral properties of the
non-selfadjoint operator L. In particular, it is shown that for any combination of the boundary param-
eters the corresponding operator, L, is a finite-rank perturbation of one and the same selfadjoint oper-
ator, L0, where iL0 is the dynamics generator for a cantilever beam model. It is also shown that the
non-selfadjoint operator, L, shares a number of spectral properties specific to its selfadjoint counter-
parts. (i) Namely, we have introduced four selfadjoint operators (corresponding to the clamped-free,
clamped-hinged, clamped-sliding and clamped-clamped beam models) and derived specific inequalities
that describe the boundary behaviour of the eigenfunctions of these operators. We have obtained the
generalization of the aforementioned results for the non-selfadjoint operator L. (ii) We have shown that
each selfadjoint problem has a simple spectrum, and a similar result holds for the non-selfadjoint op-
erator L, i.e. the geometric multiplicity of any eigenvalue of L is one, while the algebraic multiplicity
of each eigenvalues is finite but not necessarily one. Thus, for each eigenvalue there could exist a fi-
nite chain of associate functions. (iii) Finally, it is shown in Shubov and Kindrat [30], that if exactly
one control parameter is not equal to zero, the operator L does not have real eigenvalues. On the other
hand, when there are two or more non-zero boundary parameters, there could be real eigenvalues de-
pending on which parameters are non-zero. In the third work of the series (Shubov and Kindrat [31])
we derive explicit formulae describing the asymptotic distribution of the eigenvalues of the operator
L, as the number of an eigenvalue tends to infinity. As expected, the asymptotic results strongly de-
pend on the boundary control parameters. Our goal is to obtain such asymptotic formulae that contain
all four parameters. To this end, in some cases it is not enough to derive the main leading asymptotic
terms, but also the next order terms to identify the role of all control parameters. We derive asymptotic
approximations for the eigenvalues of the operator L (and hence for the vibrational modes) when all
boundary control parameters are non-negative (practically, the most important case). It is shown that
the asymptotic approximation for the eigenvalues of L strongly depends on whether parameter β > 0
or β = 0. It turns out that in this case when β = 0 the spectral asymptotics are controlled by the
parameter K = (1 − κ1κ2)/(κ1 + κ2). To briefly represent the main results, we use the following termi-
nology.
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We call a vibrational mode, νn, stable if the energy norm of the vector exp{iLt}9n, with 9n being the
corresponding mode shape is a decreasing function of time, i.e. we have

∥∥exp{iLt}9n

∥∥
H

=
∣∣eνnt

∣∣‖9n‖H = e(ℜνn)t‖9n‖H → 0 as t → ∞.

ℜνn is called the energy decay rate (Curtain and Zwart [7]). If ℜνn = 0, the corresponding vibrational
mode is called marginally stable. If ℜνn > 0, the corresponding vibrational mode is called an unstable
mode and ℜνn is the energy gain rate.

It is shown that for K > 0, K 6= 1, there exists an infinite countable set of stable vibrational modes
and, at most, a finite set of unstable modes. The rate of energy decay of a stable mode depends on the
number of a mode, i.e. if νn is the nth vibrational mode, then for the energy decay rate, the following
relation holds: |ℜνn/n| = O(1) as |n| → ∞. If K < 0, K 6= −1, there exists an infinite set of unstable
vibrational modes and at most a finite number of stable modes; the rate of energy gain is proportional
to |n|. For the cases when |K| = 1, the stability of vibrational modes and energy decay rates depend
on the parameter α. The spectral asymptotics for the case β > 0 behave as follows: distant vibrational
modes have about the same rate of energy decay if k1k2 < 1 + αβ and about the same rate of energy
gain (but different if k1k2 > 1 + αβ). In addition, if k1k2 = 1 and α = 0, the spectrum of the operator L
is asymptotically close to the real axis which can be an indication that the corresponding non-selfadjoint
operator L is ‘close’ to its selfadjoint counterpart.

2. Spectral properties of the dynamics generator

We consider the Euler–Bernoulli beam model, subject to the general four-parameter family of non-
conservative linear boundary conditions and distributed damping acting along the beam. We assume that
the beam rests on an elastic foundation, whose modules of elasticity is γ (x) and is subject to an axial
force S(x). There are also the following damping mechanisms: (i) an external or viscous damping with
the damping coefficient (−a0(x)) and (ii) a damping which is proportional to the bending rate with the
damping coefficient a1(x). The transverse displacement of the beam, u(x, t), at position x and time t is
governed by the following damped wave equation:

ρ(x)ut t(x, t) +
(
EI (x)uxx(x, t)

)
xx

−
(
S(x)ux(x, t)

)
x
+ γ (x)u(x, t)

+ a0(x)ut(x, t) −
(
a1(x)utx(x, t)

)
x

= 0, (2.1)

where ρ(x) is the density of the beam and EI (x) is the modulus of elasticity.
Heuristic considerations. We begin with the derivation of the energy expression, which will be instru-

mental for obtaining the state space metric form. Without loss of generality, we assume that the beam is
of a unit length. The beam is clamped at the left end, i.e. the solution of Eq. (2.1) satisfies the following
left–end conditions:

u(0, t) = 0, ux(0, t) = 0. (2.2)
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To derive the right-end conditions, we need some preliminary steps. Let us multiply Eq. (2.1) by ut(x, t)

and integrate with respect to x. We obtain

∫ 1

0
ρ(x)ut t(x, t)ut(x, t) dx +

∫ 1

0

(
EI (x)uxx(x, t)

)
xx

ut(x, t) dx

−
∫ 1

0

(
S(x)ux(x, t)

)
x
ut(x, t) dx +

∫ 1

0
γ (x)u(x, t)ut(x, t) dx

+
∫ 1

0
a0(x)u2

t (x, t) dx −
∫ 1

0

(
a1(x)utx(x, t)

)
x
ut dx ≡

6∑

i=1

Ii(t) = 0. (2.3)

Taking into account conditions (2.2), we get the following representations for the integrals Ii(t), i =
1, . . . , 6:

(i) I1(t) =
1

2

d

dt

∫ 1

0
ρ(x)u2

t (x, t) dx,

(ii) I2(t) =
(
EI (x)uxx(u, t)

)
x

∣∣∣∣
x=1

ut(1, t) − EI (1)uxx(1, t)uxt(1, t)

+
1

2

d

dt

∫ 1

0
EI (x)u2

xx(x, t) dx,

(iii) I3(t) = −S(1)ux(1, t)ut(1, t) +
1

2

d

dt

∫ 1

0
S(x)u2

x(x, t) dx,

(iv) I4(t) =
1

2

d

dt

∫ 1

0
γ (x)u2(x, t) dx, (v) I5(t) =

∫ 1

0
a0(x)u2

t (x, t) dx,

(vi) I6(t) = −
∫ 1

0

(
a1(x)utx(x, t)

)
x
ut(x, t) dx

= −a1(1)utx(1, t)ut(1, t) +
∫ 1

0
a1(x)u2

tx dx.

(2.4)

Summing up expressions (i)–(vi) of (2.4), we obtain the following equation:

1

2

d

dt

∫ 1

0

[
ρ(x)u2

t (x, t) + EI (x)u2
xx(x, t) + S(x)u2

x(x, t) + γ (x)u2(x, t)
]
dx

+
∫ 1

0
a0(x)u2

t (x, t) dx +
∫ 1

0
a1(x)u2

xt(x, t) dx +
[(

EI (x)uxx(x, t)
)
x

∣∣∣∣
x=1

− S(1)ux(1, t)

]
ut(1, t) −

[
EI (1)uxx(1, t) + a1(1)ut(1, t)

]
uxt(1, t) = 0. (2.5)
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Definition 2.1. Let the energy functional, E(t), be defined by

E(t) = 1

2

∫ 1

0

[
ρ(x)u2

t (x, t) + EI (x)u2
xx(x, t) + S(x)u2

x(x, t) + γ (x)u2(x, t)
]
dx. (2.6)

Based on this definition, we rewrite Eq. (2.5) in the form

d

dt
E(t) = −

∫ 1

0
a0(x)u2

t (x, t) dx −
∫ 1

0
a1(x)u2

xt(x, t) dx

−
[(

EI (x)uxx(x, t)
)
x

∣∣∣∣
x=1

− S(1)ux(1, t)

]
ut(1, t)

+
[
EI (1)uxx(1, t) + a1(1)ut(1, t)

]
uxt(1, t). (2.7)

Now we are in a positions to introduce the right–end boundary conditions for the model.
If the following conditions are satisfied at the right end x = 1:

(
EI (x)uxx

)
x

∣∣∣∣
x=1

− S(1)ux(1, t) = 0, EI (1)uxx(1, t) + a1(1)ut(1, t) = 0. (2.8)

then we call them the generalized free–end conditions.
If the following conditions are satisfied at the right end x = 1:

(
EI (x)uxx(x, t)

)
x

∣∣∣∣
x=1

− S(1)ux(1, t) = 0, uxt(1, t) = 0, (2.9)

then we call them the generalized sliding conditions.
If the following conditions are satisfied at the right end x = 1:

EI (1)uxx(1, t) + a1(1)ut(1, t) = 0, ut(1, t) = 0, (2.10)

then we call them the generalized pinned conditions.
If at x = 1 the following conditions are satisfied at the right end:

uxt(1, t) = 0, ut(1, t) = 0, (2.11)

then we call them the clamped condition.
In all four cases, i.e. for a clamped-free model, a clamped-sliding model, a clamped-pinned model,

and clamped-clamped model, the corresponding system is dissipative, i.e. its energy dissipates in time.
The aforementioned examples are well-known in the applied sciences; however, there could be other
types of the boundary conditions generating non-conservative systems (Benaroya [1]; Chen et al. [4];
Gladwell [11,12]; Littman and Markus [17]; Russell [29]; Wang and Chen [34]).

In the present paper we consider the initial boundary–value problem defined by Eq. (2.1), the left–end
conditions (2.2), one of the right–end conditions from the set (2.8)–(2.11), and a standard set of the
initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x). (2.12)
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Operator reformulation of the problem. Let us rewrite the initial boundary value problem as the
first order in time evolution equation in the state space of the system (the energy space). We assume that
EI (x), ρ(x), S(x), γ (x), a0(x), and a1(x) are strictly positive functions from C2[0, 1].

Let H be the Hilbert space of two–component functions obtained as a closure of smooth functions
8(x) = [ϕ0(x), ϕ1(x)]T such that ϕ0(0) = ϕ′

0(0) = 0 in the following norm:

‖8‖2
H

=
1

2

∫ 1

0

[
EI (x)

∣∣ϕ′′
0 (x)

∣∣2 + S(x)
∣∣ϕ′

0(x)
∣∣2 + γ (x)

∣∣ϕ0(x)
∣∣2 + ρ(x)

∣∣ϕ1(x)
∣∣2]

dx. (2.13)

The energy space H is topologically equivalent to the space H̃ 2
0 (0, 1) × L2(0, 1), where H̃ 2

0 = {ϕ ∈
H 2(0, 1) : ϕ(0) = ϕ′(0) = 0}. Let us introduce the following matrix expression:

L = −i

[
0 1
M1 M2

]
, (2.14)

with M1 and M2 being the differential operations defined by

(M1ϕ)(x) = −
1

ρ(x)

d2

dx2

(
EI (x)

d2ϕ(x)

dx2

)
+

1

ρ(x)

d

dx

(
S(x)

dϕ(x)

dx

)
+ γ (x)ϕ(x), (2.15)

(M2ϕ)(x) = −a0(x)

ρ(x)
ϕ(x) + 1

ρ(x)

d

dx

(
a1(x)

dϕ(x)

dx

)
. (2.16)

Let L be defined on the domain

D(L) =
{
8 ∈ H : 8 = (ϕ0, ϕ1)

T , ϕ0 ∈ H 4(0, 1), ϕ1 ∈ H 2(0, 1);

ϕ1(0) = ϕ′
1(0) = 0; “right-end conditions”

}
. (2.17)

Depending on the choice of the right–end conditions, we obtain different matrix differential operators in
the space H (Mennicken and Möller [22]).

(i) If for the right–end conditions we take conditions (2.8), then the differential operator defined by
(2.14)–(2.17), and (2.8) corresponds to the clamped–free model. We denote this operator by Lcf . One
can verify by direct calculations that the initial boundary value problem defined by Eq. (2.1), conditions
(2.2), (2.8), and (2.12) can be represented as the evolution problem in H:

9t(x, t) = i(Lcf 9)(x, t), 9(x, 0) =
[
ψ0(x), ψ1(x)

]T
, 0 6 x 6 1, t > 0. (2.18)

(ii) If for the right–end conditions, we take conditions (2.9), then the differential operator defined by
(2.14)–(2.17), and (2.9) corresponds to the clamped–sliding model. We denote this operator by Lcs . One
can verify that the initial boundary value problem defined by Eq. (2.1), conditions (2.2), (2.9), and (2.12)
can be written as the evolution problem in H:

9t(x, t) = i(Lcs9)(x, t), 9(x, 0) =
[
ψ0(x), ψ1(x)

]T
, 0 6 x 6 1, t > 0. (2.19)

(iii) If for the right-end condition we take conditions (2.10), then the operator defined by (2.14)–(2.17),
and (2.10) corresponds to the clamped–pinned model. Denoting this operator by Lcp, we can verify that
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the initial boundary value problem defined by Eq. (2.1), conditions (2.2), (2.10), and (2.12) can be written
as an evolution problem in H:

9t(x, t) = i(Lcp9)(x, t), 9(x, 0) =
[
ψ0(x), ψ1(x)

]T
, 0 6 x 6 1, t > 0. (2.20)

(iv) To deal with the clamped–clamped model, one has to consider a different state space H̃, which
is obtained as a closure of smooth two–component functions 8(x) = [ϕ0(x), ϕ1(x)]T such that
ϕ0(0) = ϕ′

0(0) = 0 and ϕ0(1) = ϕ′
0(1) = 0 in the norm (2.13). Thus H̃ is a proper subspace of H,

i.e., dimH(mod H̃) = 1. If for the right–end conditions we take (2.11), then the operator defined in H̃

by (2.14)–(2.17), and (2.11) corresponds to the clamped–clamped model, Lcc. The appropriate evolution
problem in H̃ can be written in the form:

9t(x, t) = i(Lcc9)(x, t), 9(x, 0) =
[
ψ0(x), ψ1(x)

]T
, 0 6 x 6 1, t > 0. (2.21)

In what follows we focus on asymptotic and spectral analysis of the operator Lcf . Using similar
techniques asymptotic and spectral results can be obtained for each operator from the remaining set, i.e.
for Lcs , Lcp, and Lcc.

We recall that the operator Lcf is defined by matrix differential expressions (2.14)–(2.16) on the
domain

D(Lcf ) =
{
8 ∈ H : 8 = (ϕ0, ϕ1)

T , ϕ0 ∈ H 4(0, 1), ϕ1 ∈ H 2(0, 1);

ϕ1(0) = ϕ′
1(0) = 0;EI (1)ϕ′′

0 (1) + a1(1)ϕ1(1) = 0,

(
EI (x)ϕ′′

0 (x)
)′
∣∣∣∣
x=1

− S(1)ϕ′
0(1) = 0

}
. (2.22)

Our first result on the operator Lcf is the following statement.

Theorem 2.2. Lcf is a dissipative operator in H.

Proof. A linear operator is said to be dissipative if its quadratic form has non-negative imagery part
(see, e.g., Gohberg and Krein [13] and Szökefalvi-Nagy and Foias [33]). Thus, it suffices to show that
ℑ(Lcf 8, 8)H > 0. We have for 8 ∈ D(Lcf )

i(Lcf 8, 8)H =
((

ϕ1(x)

ψ(x)

)
,

(
ϕ0(x)

ϕ1(x)

))

H

, (2.23)

where

ψ(x) = −
1

ρ(x)

(
EI (x)ϕ′′

0

)′′ +
1

ρ(x)

(
S(x)ϕ′

0(x)
)′

−
γ (x)

ρ(x)
ϕ0(x) −

a0(x)

ρ(x)
ϕ1(x) +

1

ρ(x)

(
a1(x)ϕ1(x)

)′
. (2.24)
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Evaluating the inner product of (2.23) denoted by J, we have

J =
1

2

∫ 1

0

{
EI (x)ϕ′′

1 (x)ϕ′′
0 (x) + S(x)ϕ′

1(x)ϕ′
0(x) + γ (x)ϕ1(x)ϕ0(x)

−
(
EI (x)ϕ′′

0 (x)
)′′

ϕ1(x) +
(
S(x)ϕ′

0(x)
)′
ϕ1(x) − γ (x)ϕ0(x)ϕ1(x)

− a0(x)ϕ1(x)ϕ1(x) +
(
a1(x)ϕ′

1(x)
)′
ϕ1(x)

}
dx. (2.25)

Integrating by parts the integral (2.25) and representing J as the sum: J =
∑4

j=1 Ij + J̃, we obtain the
following representations for the integrals Ij , j = 1, . . . , 4:

I1 ≡
∫ 1

0
EI (x)

[
ϕ′′

1 (x)ϕ′′
0 (x) − ϕ′′

0 (x)ϕ′′
1 (x)

]
dx = 2iℑ

∫ 1

0
EI (x)ϕ′′

1 (x)ϕ′′
0 (x) dx,

I2 ≡
∫ 1

0
S(x)

[
ϕ′

1(x)ϕ′
0(x) − ϕ′

0(x)ϕ′
1(x)

]
dx = 2iℑ

∫ 1

0
S(x)ϕ′

1(x)ϕ′
0(x) dx,

I3 ≡
∫ 1

0
γ (x)

[
ϕ1(x)ϕ0(x) − ϕ0(x)ϕ1(x)

]
dx = 2iℑ

∫ 1

0
γ (x)ϕ1(x)ϕ0(x) dx,

I4 ≡
∫ 1

0

[
a0(x)

∣∣ϕ1(x)
∣∣2 + a1(x)

∣∣ϕ′
1(x)

∣∣2]
dx.

(2.26)

Out of integral term, J̃, is given by:

J̃ = −
(
EI (x)ϕ′′

0 (x)
)′
ϕ1(x)

∣∣∣∣
x=1

+ EI (1)ϕ′′
0 (1)ϕ′

1(1) + S(1)ϕ′
0(1)ϕ1(1) + a1(1)ϕ′

1(1)ϕ1(1)

= −
[(

EI (x)ϕ′′
0 (x)

)′
∣∣∣∣
x=1

− S(1)ϕ′
0(1)

]
ϕ1(1) +

[
EI (1)ϕ′′

0 (1) + a1(1)ϕ1(1)
]
ϕ′

1(1). (2.27)

Taking into account the domain of Lcf (see (2.22)), we obtain that the expression J̃ of (2.27) is zero.
Thus, substituting formulae (2.26) into (2.23), we obtain

ℑ(Lcf 8, 8)H =
∫ 1

0

[
a0(x)

∣∣ϕ1(x)
∣∣2 + a1(x)

∣∣ϕ′
1(x)

∣∣2]
dx > 0.

The theorem is shown. �

Remark 2.3. Using similar techniques, one can show that the operators Lcp and Lcs are dissipative in
the space H and Lcc is dissipative in the space H̃.

3. Generalization of the model to the case of four-parameter boundary conditions

In this section, we introduce an additional mechanism for damping through parameter-dependent
boundary conditions. To this end, we consider the generalized moment M(x, t) and the generalized
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shear Q(x, t) (Benaroya [1]; Gladwell [12]):

M(x, t) = EI (x)uxx(x, t) + a1(x)ut(x, t),

Q(x, t) =
(
EI (x)uxx(x, t)

)
x
− S(x)uxt(x, t).

(3.1)

Let the input, U(t), and the output, Y(t), be given as R2 – vectors

U(t) =
[
−Q(1, t), M(1, t)

]T
and Y(t) =

[
ut(1, t), uxt(1, t)

]T
, (3.2)

where the superscript “T” stands for transposition. The feedback control law can be given as follows:

U(1) = KY(t), and K =
[

−α −κ2

−κ1 −β

]
, (3.3)

with α, β, κ1, and κ2 being the control parameters. The feedback (3.3) can be written in the form

(
EI (x)uxx(x, t)

)
x

∣∣∣∣
x=1

− S(1)uxt(1, t) = αut(1, t) + κ2uxt(1, t),

EI (1)uxx(1, t) + a1(1)ut(1, t) = −κ1ut(1, t) − βuxt(1, t).

(3.4)

Having in mind conditions (3.4), we introduce a new matrix differential operator in H denoted by
Lcf (α, β, κ1, κ2), which will be our main object of interest. This operator is defined by the matrix ex-
pression given by (2.14)–(2.16) on the domain

D
(
Lcf (α, β, κ1, κ2)

)
=

{
8 = (ϕ0, ϕ1)

T , ϕ0 ∈ H 4(0, 1), ϕ1 ∈ H 2(0, 1);ϕ1(0) = ϕ′
1(0) = 0;

EI (1)ϕ′′
0 (1) + a1(1)ϕ1(1) = −κ1ϕ1(1) − βϕ′

1(1),

(
EI (x)ϕ′′

0 (x)
)′
∣∣∣∣
x=1

− S(1)ϕ′
1(1) = αϕ1(1) + κ2ϕ

′
1(1)

}
. (3.5)

Our first result is this section is the following statement.

Lemma 3.1. For the case of non–negative parameters α, β, κ1, and κ2, the operator Lcf (α, β, κ1, κ2) is

dissipative in H when κ1 + κ2 = 0 and it is not dissipative when κ1 + κ2 > 0.

Proof. To prove the result, it suffices to evaluate ℑ(Lcf (α, β, κ1, κ2)8, 8)H for 8 ∈ D(Lcf (α, β,

κ1, κ2)). Evaluating the inner product, we have to repeat all the steps that have been carried out for
the operator Lcf in Theorem 2.2. As the result, we obtain

i
(
Lcf (α, β, κ1, κ2)8, 8

)
H

=
((

ϕ1(x)

ψ(x)

)
,

(
ϕ0(x)

ϕ1(x)

))

H

, (3.6)

where ψ is given in (2.24). Evaluating the inner product of (3.6) denoted by J1 we obtain that J1 can
be given by formula similar to (2.25) evaluated on the functions from the domain of Lcf (α, β, κ1, κ2).
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Integrating by parts we represent J1 as a sum: J1 =
∑4

j=1 Ĩj + J̃1, where the integrals Ĩj , j = 1, 2, 3, 4,
are given by the formulae similar to (2.26). Taking into account the domain (3.5), we obtain the following
representation for out of integral term J̃1:

J̃1 =
[
−αϕ1(1) − κ1ϕ

′
1(1)

]
ϕ1(1) +

[
−κ1ϕ1(1) − βϕ′

1(1)
]
ϕ′

1(1)

= −α
∣∣ϕ1(1)

∣∣2 − β
∣∣ϕ′

1(1)
∣∣2 − κ2ϕ

′
1(1)ϕ1(1) − κ1ϕ1(1)ϕ′

1(1). (3.7)

Substituting this representation for J̃1 into (3.6) we obtain

ℑ
(
Lcf (α, β, κ1, κ2)8, 8

)
H

= α
∣∣ϕ1(1)

∣∣2 + β
∣∣ϕ′

1(1)
∣∣2 + ℜ

[
κ1ϕ1(1)ϕ′

1(1) + κ2ϕ
′
1(1)ϕ1(1)

]
. (3.8)

If κ1 + κ2 = 0, then ℜ[κ1(ϕ1(1)ϕ′
1(1) − κ2ϕ

′
1(1)ϕ1(1))] = 0 and the dissipativity of the operator

Lcf (α, β, κ1, κ2) follows from (3.8).
The lemma is shown. �

To simplify the notations, without loss of generality, we will write L in place of Lcf (α, β, κ1, κ2).
To investigate the spectral properties of the operator L, it is convenient to represent it as the sum, L =
L0 + M. The operator L0 is given by (2.14)–(2.16) in which S(x) = γ (x) = 0 and defined on the same
domain as L:

L
0 = −i

(
0 1

− 1
ρ(x)

d2

dx2 (EI (x) d2

dx2 ·) − a0(x)

ρ(x)
+ 1

ρ(x)
d
dx

(a1(x) d
dx

·)

)
, (3.9)

with

D
(
L

0
)

= D(L). (3.10)

The operator M is given by the formula

M = −i

(
0 0

1
ρ(x)

d
dx

(S(x) d
dx

·) − γ (x)

ρ(x)
0

)
. (3.11)

It can be checked that M is a bounded operator in H. The following statement holds for L0.

Theorem 3.2. 1) L0 is an unbounded non–selfadjoint operator in H with compact resolvent, whose

spectrum consists of a countable set of normal eigenvalues (i.e., each eigenvalue is an isolated point

of the spectrum, whose algebraic multiplicity is finite (Locker [20]; Marcus [21]; Gohberg and Krein

[13])). The set of the eigenvalues accumulates only at infinity.

2) For any combination of the parameters, such that α + β + κ1 + κ2 > 0, the operator L0 is a finite–

rank perturbation of the operator L0 corresponding to the cantilever case when α = β = κ1 = κ2 = 0.

The fact that L0 is a perturbation of L0 should be understood in the following sense. The operators

(L0)−1 and L
−1
0 exist and are related by the rule

(
L

0
)−1 = L

−1
0 + T , (3.12)
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where T is a finite–rank operator. The following formulae are valid for any G = (g0, g1)
T ∈ H:

((
L

0
)−1

G
)
(x) =

[
(R0g0)(x) +

(
R1g

′
0

)
(x) + (R2g1)(x), ig0(x)

]T
, (3.13)

where R0, R1, and R2 are Volterra integral operators defined on a differentiable function ψ by the

following formulae:

(i) (R0ψ)(x) = −i

∫ x

0
dτ

∫ τ

0

dη

EI (η)

∫ 1

η

dξ

∫ 1

ξ

a0(w)ψ(w) dw,

(ii) (R1ψ)(x) = −i

∫ x

0
dτ

∫ τ

0

dη

EI (η)

∫ 1

η

a1(w)ψ ′(w) dw,

(iii) (R2ψ)(x) = −i

∫ x

0
dτ

∫ τ

0

dη

EI (η)

∫ 1

η

dξ

∫ 1

ξ

ρ(w)ψ(w) dw. (3.14)

The operator T is defined by the formula

(T G)(x) =
[
ĝ(x), 0

]T
, G(x) =

[
g0(x), g1(x)

]T
, (3.15)

where

ĝ(x) =
[(

a1(1) + κ1

)
g0(1) + βg′

0(1)
]
g(x) +

[
αg0(1) +

(
S(1) + κ2 + a1(1)

)
g′

0(1)
]
h(x), (3.16)

with g(x) and h(x) being given by

g(x) = −i

∫ x

0
dη

∫ η

0

dw

EI (w)
, h(x) = −i

∫ x

0
dη

∫ η

0

1 − w

EI (w)
dw. (3.17)

The operator L0 is self–adjoint in a Hilbert space H0, whose norm can be obtained from the norm of H

by setting S = γ = 0.

3) The decomposition similar to (3.12) is valid for the adjoint operator, i.e.,

((
L

0
)∗)−1 =

(
L

∗
0

)−1 + T
∗, (3.18)

where T ∗ is given by the formulae similar to (3.15) and (3.16) in which α, β, κ1, and κ2 have been

replaced with (−α), (−β), (−κ1), and (−κ2) respectively.

Proof. To prove the decomposition (3.12), let us show that the equation L08 = F has a unique solution
8 ∈ D(L) for any F ∈ H. Rewriting this equation component–wise, we obtain the following system:

ϕ1(x) = if0(x),
(
EI (x)ϕ′′

0 (x)
)′′ + a0(x)ϕ1(x) −

(
a1(x)ϕ′

1(x)
)′ = −iρ(x)f1(x). (3.19)

Eliminating ϕ1 from system (3.19) we obtain the equation for ϕ0:

(
EI (x)ϕ′′

0 (x)
)′′ = −iρ(x)f1(x) − ia0(x)f0(x) + i

(
a1(x)f ′

0(x)
)′
. (3.20)
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Integrating Eq. (3.20) from x to 1 and taking into account the α – boundary condition from (3.4), we

rewrite this equation as

(
EI (x)ϕ′′

0 (x)
)′ = iαf0(1) + i

(
S(1) + κ2

)
f ′

0(1) + i

∫ 1

x

ρ(w)f1(w) dw

+ i

∫ 1

x

a0(w)f0(w) dw − ia1(1)f ′
0(1) + ia1(x)f ′

0(x). (3.21)

Integrating this equation once again from x to 1, we get

EI (1)ϕ′′
0 (1) − EI (x)ϕ′′

0 (x)

= i
[
αf0(1) +

(
S(1) + κ2

)
f ′

0(1)
]
(1 − x)

+ i

∫ 1

x

dξ

∫ 1

ξ

ρ(w)f1(w) dw + i

∫ 1

x

dξ

∫ 1

ξ

a0(w)f0(w) dw

+ i

∫ 1

x

a1(w)f ′
0(w) dw − ia1(1)f ′

0(1)(1 − x).

Taking into account the β – boundary condition from (3.4) we rewrite this equation as

−i
(
a1(1) + κ1

)
f0(1) − iβf ′

0(1) − EI (x)ϕ′′
0 (x)

= i
[
αf0(1) +

(
S(1) + κ2

)
f ′

0(1) − 2a1(1)f ′
0(1)

]
(1 − x)

+ i

∫ 1

x

dξ

∫ 1

ξ

ρ(w)f1(w) dw

+ i

∫ 1

x

dξ

∫ 1

ξ

a0(w)f0(w) dw + i

∫ 1

x

a1(w)f ′
0(w) dw. (3.22)

From (3.22) we obtain the following formula for ϕ′′
0 :

ϕ′′
0 (x) = −

i

EI (x)

{[(
a1(1) + κ1

)
f0(1) + βf ′

0(1)
]

+
[
αf0(1) +

(
S(1) + κ2 + 2a1(1)

)
f ′

0(1)
]
(1 − x) +

∫ 1

x

dξ

∫ 1

ξ

ρ(w)f1(w) dw

+
∫ 1

x

dξ

∫ 1

ξ

a0(w)f0(w) dw +
∫ 1

x

a1(w)f ′
0(w) dw

}
. (3.23)
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Integrating Eq. (3.23) twice from 0 to x and taking into account that ϕ′
0(0) = 0, we obtain the explicit

formula for ϕ0

ϕ0(x) = −i
[(

a1(1) + κ1

)
f0(1) + βf ′

0(1)
] ∫ x

0
dη

∫ η

0

dw

EI (w)

− i
[
αf0(1) +

(
S(1) + κ2 + a1(1)

)
f ′

0(1)
] ∫ x

0
dη

∫ η

0

1 − w

EI (w)
dw

− i

∫ x

0
dτ

∫ τ

0

dη

EI (η)

∫ 1

η

dξ

∫ 1

ξ

a0(w)f0(w) dw

− i

∫ x

0
dτ

∫ τ

0

dξ

EI (ξ)

∫ 1

η

a1(w)f ′
0(w) dw

− i

∫ x

0
dτ

∫ τ

0

dη

EI (η)

∫ 1

η

dξ

∫ 1

ξ

ρ(w)f1(w) dw. (3.24)

If g and h are the functions defined in (3.17) and R0, R1, and R2 are the Volterra integral operators
defined in (3.14), then ϕ0 can be written in the form

ϕ0(x) =
[(

a1(1) + κ1

)
f0(1) + βf ′

0(1)
]
g(x) +

[
αf0(1) +

(
S(1) + κ2 + a1(1)

)
f ′

0(1)
]
h(x)

+ [R0f0](x) +
[
R1f

′
0

]
(x) + [R2f1](x). (3.25)

Let A be an operator that maps a continuous function into its value at x = 1, i.e. (Af )(x) = f (1) and B

be an operator that maps continuously differentiable function f into f ′(1), i.e. [Bf ](x) = f ′(1). Then
ϕ0(x) of (3.25) can be given as

ϕ0(x) =
{(

a1(1) + κ1

)
[Af0] + β[Bf0]

}
g(x) +

{
α[Af0] +

(
S(1) + κ2 + a1(1)

)
[Bf0]

}
h(x)

+ [R0f0](x) +
[
R1f

′
0

]
(x) + [R2f1](x). (3.26)

Using formulae (3.19) for ϕ1 and (3.26) for ϕ0, one can check that the operator, which is inverse to L0

and is defined by (3.9) on the domain (3.10), can be written as the following sum:

(
L

0
)−1 = (L0)

−1 + T , (3.27)

L0 is an unbounded non-selfadjoint operator, which is defined by the differential expression (3.9) with
free boundary conditions at the end x = 1, (α = β = κ1 = κ2 = 0), i.e. L0 corresponds to the can-
tilever beam model; T is a finite-rank operator. The operators (L0)

−1 and T are given by the following
formulae:

(L0)
−1 =

[
R0 · +R1(

d
dx

·) R2·
i 0

]
, (3.28)
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T · =
[
[T1·]g(x) + [T2·]h(x) 0

0 0

]
,

T1· =
(
a1(1) + κ1

)
[A·] + β[B·],

T2· = α[A·] +
(
S(1) + κ2 + a1(1)

)
[B·].

(3.29)

The proof is complete. �

Finally, we present the main result of this section.

Theorem 3.3. The non-selfadjoint operator, L, has a countable set of normal eigenvalues that can

accumulate at infinity. (An isolated eigenvalue is said to be normal if its multiplicity is finite (Gohberg

and Krein [13]).)

Proof. Using the operators L0 and M introduced in (3.9)–(3.11), we obtain the following decomposi-
tion:

L
−1 =

[
L

0
(
I +

(
L

0
)−1

M
)]−1 =

(
I +

(
L

0
)−1

M
)−1(

L
0
)−1

. (3.30)

As is shown in Theorem 3.2, (L0)−1 ∈ S∞(H) and M ∈ R(H) (S∞(H) denotes the set of all
compact operators in H and R(H) denotes the set of all bounded operators in H). Thus, to prove that
L−1 ∈ S∞(H), we have to show the only fact that 0 is not an eigenvalue of L (see Gohberg and Krein
[13]). Using the contradiction argument, assume that there exists 8 ∈ D(L) such that L8 = 0. From
formulae (2.14)–(2.16) for L, we get that ϕ1(x) = 0 and that ϕ0 has to satisfy the equation

−
(
EI (x)ϕ′′

0 (x)
)′′ +

(
S(x)ϕ′

0(x)
)′ − γ (x)ϕ0(x) = 0, (3.31)

and the boundary conditions

ϕ′′
0 (1) = 0,

(
EI (x)ϕ′′

0 (x)
)′
∣∣∣∣
x=1

= 0. (3.32)

We multiply Eq. (3.31) by ϕ0(x) and integrate it to have

−
(
EI (x)ϕ′′

0 (x)
)′
ϕ(x)

∣∣∣∣
1

0

+ EI (x)ϕ′′
0 (x)ϕ′(x)

∣∣∣∣
1

0

−
∫ 1

0
EI (x)

∣∣ϕ′′
0 (x)

∣∣2
dx

+ S(x)ϕ′
0(x)ϕ0(x)

∣∣∣∣
1

0

−
∫ 1

0
S(x)

∣∣ϕ′
0(x)

∣∣2
dx −

∫ 1

0
γ (x)

∣∣ϕ0(x)
∣∣2

dx = 0. (3.33)

Taking into account the boundary conditions at x = 0 and conditions (3.32) we obtain

S(1)ϕ′
0(1)ϕ0(1) −

∫ 1

0

[
EI (x)

∣∣ϕ′′
0 (x)

∣∣2 + S(x)
∣∣ϕ′

0(x)
∣∣2 + γ (x)

∣∣ϕ0(x)
∣∣2]

dx = 0. (3.34)
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Since ϕ0 satisfies Eq. (3.31) and conditions (3.32), this function is in fact an eigenfunction of an Euler–
Bernoulli clamped-free beam model and, therefore, ϕ0 is defined up to a multiplicative constant. Without
loss of generality, we can choose ϕ0 in such a way that ϕ′

0(1)ϕ0(1) 6 0 (Benaroya [1]; Gladwell [12];
Shubov and Kindrat [30]). Since EI (x) > 0, S(x) > 0, and γ (x) > 0, we obtain that ϕ0(x) = ax + b,
which reduces Eq. (3.34) to

∫ 1
0 [a2S(x) + γ (x)|ax + b|2] dx = 0, from which we get a = 0 and hence,

b = 0.
The proof is complete. �

4. Spectral equation

In this section we derive the equation, whose solutions coincide with the eigenvalues of the opera-
tor L. Namely, we consider the eigenvalue – eigenfunction equation for the operator L, i.e. L8 = λ8,
8 ∈ D(L). From this moment on, we will carry out the asymptotic analysis for the case of constant
parameters of the model. The case of variable coefficients will be presented in our forthcoming work.

It is convenient for technical reason to represent the damping terms as a0(x) = 2̃a0(x) and a1(x) =
2̃a1(x). Without loss of generality, we set EI = 1 and obtain the following description of the domain of
the operator L:

ϕ′′
0 (1) = −

(
2̃a1(1) + κ1

)
ϕ1(1) − βϕ′

1(1),

ϕ′′′
0 (1) = αϕ1(1) + (S + κ2)ϕ

′
1(1). (4.1)

Eliminating ϕ1 from the system of two equations, resulting from the equation L8 = λ8, we obtain that
the first component of vector–function 8 must satisfy the following equation:

ϕ′′′′(x, λ) − (2iλ̃a1 + S)ϕ′′(x, λ) −
(
ρλ2 − 2iλ̃a0 − γ

)
ϕ(x, λ) = 0. (4.2)

Let us modify Eq. (4.2) by introducing λ̃, â0, and â1 according to the formulae: λ̃ = λ
√

ρ, â0 = ã0/
√

ρ,
and â1 = ã1/

√
ρ. In the new notations, Eq. (4.2) has the following form:

ϕ′′′′(x, ·) − (2ĩλ̂a1 + S)ϕ′′(x, ·) −
(̃
λ2 − 2ĩλ̂a0 − γ

)
ϕ(x, ·) = 0. (4.3)

Comparing (4.2) and (4.3) shows that if one knows the solution of Eq. (4.2) with ρ = 1, then the solution
for the case ρ 6= 1 can be found without difficulties.

For the rest of this section we focus on Eq. (4.2) with ρ = 1. The characteristic equation associated
with the differential equation (4.2) with ρ = 1 can be written in the form

z4 − (2iλ̃a1 + S)z2 −
(
λ2 − 2iλ̃a0 − γ

)
= 0. (4.4)

Solving this biquadratic equation we obtain the representation for its roots

z2
1,2 =

(
iλ̃a1 +

S

2

)
±

√
λ2

(
1 − ã2

1

)
+ iλ(Sã1 − 2̃a0) +

(
S2

4
− γ

)
. (4.5)
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It can be readily checked that for ã1 < 1 the following asymptotic approximations are valid as |λ| →
∞:

z2
1,2 =

(
iλ̃a1 +

S

2

)
± λ

√
1 − ã2

1

(
1 +

i(Sã1 − 2̃a0)

λ(1 − ã2
1)

+
S2

4 − γ

λ2(1 − ã2
1)

)1/2

= iλ̃a1 ± λ

√
1 − ã2

1 +
(

S

2
±

i(Sã1 − 2̃a0)

2
√

1 − ã2
1

)
+ O

(
1

λ

)
. (4.6)

Notice, the damping parameter ã0 does not enter the leading asymptotical terms in (4.6).
It is convenient to use the following notations for z2

1,2 of (4.5):

µ2 =
(

iλ̃a1 +
S

2

)
+

√
λ2

(
1 − ã2

1

)
+ iλ(Sã1 − 2̃a0) +

(
S2

4
− γ

)
,

ν2 =
(

iλ̃a1 +
S

2

)
−

√
λ2

(
1 − ã2

1

)
+ iλ(Sã1 − 2̃a0) +

(
S2

4
− γ

)
.

(4.7)

Using (4.6) we immediately get asymptotic approximations for µ2 and ν2. As the fundamental set for
Eq. (4.2), one can take a “standard” set of four solutions

{
cosh(µx), sinh(µx), cosh(νx), sinh(νx)

}
.

In the sequel, we will use an equivalent basis composed from functions C± and S± defined below. Let
us introduce new functions convenient for dealing with the beam equation

C±(x) = 1

2

[
cosh(µx) ± cosh(νx)

]
, S±(x) = 1

2

[
sinh(µx)

µ
± sinh(νx)

ν

]
. (4.8)

These functions satisfy the following set of the boundary conditions at x = 0:

(i) C−(0) = 0, C ′
−(0) = 0, C+(0) = 1, C ′

+(0) = 0;
(ii) S−(0) = 0, S ′

−(0) = 0, S+(0) = 0, S ′
+(1) = 1;

(iii) S ′
−(1) = C−(1), S ′′

−(1) = C ′
−(1), S ′′′

− (1) = C ′′
−(1). (4.9)

One can readily verify that the solution of Eq. (4.2) satisfying the left-end boundary conditions
(ϕ(0, λ) = ϕ′(0, λ) = 0) can be represented in the form

ϕ(x, λ) = A(λ)C−(x) + B(λ)S−(x), (4.10)

with A(λ) and B(λ) being arbitrary functions of λ. If ϕ(x, λ) satisfies the α – boundary conditions from
(4.1), i.e., ϕ′′′(1) = iλ(S + κ̂2)ϕ

′(1) + iαλϕ(1), then in terms of (4.10) we obtain the equation

A(λ)
[
C ′′′

− (1) − iλ̂κ2C
′
−(1) − iλαC−(1)

]

+ B(λ)
[
S ′′′

− (1) − iλ̂κ2S
′
−(1) − iλαS−(1)

]
= 0, (4.11)
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where κ̂2 = S +κ2. If ϕ(x, λ) satisfies the β–boundary condition, i.e., ϕ′′(1)+ iλβϕ′(1)+ iλ̂κ1ϕ(1) = 0,
where κ̂1 = a1 + κ1 = 2̃a1 + κ1, then in terms of (4.10) we obtain the equation:

A(λ)
[
C ′′

−(1) + iλβC ′
−(1) + iλ̂κ1C−(1)

]

+ B(λ)
[
S ′′

−(1) + iλβS ′
−(1) + iλ̂κ1S−(1)

]
= 0. (4.12)

To obtain a non–trivial solution of the system (4.11) and (4.12) for A(λ) and B(λ), we set to zero its
determinant denoted by D(λ):

[
C ′′′

− (1) − iλ̂κ2C
′
−(1) − iλαC−(1)

][
S ′′

−(1) + iλβS ′
−(1) + iλ̂κ1S−(1)

]

−
[
C ′′

−(1) + iλβC ′
−(1) + iλ̂κ1C−(1)

][
S ′′′

− (1) − iλ̂κ2S
′
−(1) − iλαS−(1)

]
= 0. (4.13)

Using formulae (4.9)(iii), we represent the determinant, D(λ), as the following sum:

D(λ) =
7∑

n=1

In(λ), (4.14)

where

(i) I1(λ) =
[
C ′′′

− (1)S ′′
−(1) − S ′′′

− (1)C ′′
−(1)

]
= C ′′′

− (1)C ′
−(1) −

(
C ′′

−(1)
)2

,

(ii) I2(λ) = iλβ
[
C ′′′

− (1)S ′
−(1) − S ′′′

− (1)C ′
−(1)

]
= iλβ

[
C ′′′

− (1)C−(1) − C ′′
−(1)C ′

−(1)
]
,

(iii) I3(λ) = iλ̂κ1

[
C ′′′

− (1)S−(1) − S ′′′
− (1)C−(1)

]
,

(iv) I4(λ) = −iλ̂κ2

[
C ′

−(1)S ′′
−(1) − S ′

−(1)C ′′
−(1)

]
= iλ̂κ2

[(
C ′

−(1)
)2 − C−(1)C ′′

−(1)
]
,

(v) I5(λ) = −(iλ)2κ̂1κ̂2

[
C ′

−(1)S−(1) − S ′
−(1)C−(1)

]

= −(iλ)2κ̂1κ̂2

[
C ′

−(1)S−(1) −
(
C−(1)

)2]
,

(vi) I6(λ) = −(iλ)α
[
C−(1)S ′′

−(1) − S−(1)C ′′
−(1)

]
= iλα

[
C−(1)C ′

−(1) − S−(1)C ′′
−(1)

]
,

(vii) I7(λ) = −(iλ)2αβ
[
C−(1)S ′

−(1) − S−(1)C ′
−(1)

]

= (iλ)2αβ
[(

C−(1)
)2

) − S−(1)C ′
−(1)

]
.

(4.15)

Taking into account the expressions for C−(1) and S−(1) of (4.8), we obtain for I1(λ):

I1(λ) =
1

4

{(
µ3 sinh µ − ν3 sinh ν

)
(µ sinh µ − ν sinh ν) −

(
µ2 cosh µ − ν2 cosh ν

)2}

=
1

4

{
−µ4 − ν4 − µν

(
µ2 + ν2

)
sinh µ sinh ν + 2µ2ν2 cosh µ cosh ν

}
. (4.16)
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For I2(λ) we get

I2(λ) = iλβ

4

{(
µ3 sinh µ − ν3 sinh ν

)
(cosh µ − cosh ν)

− (µ sinh µ − ν sinh ν)
(
µ2 cosh µ − ν2 cosh ν

)}

=
iλβ

4

{
µ

(
ν2 − µ2

)
sinh µ cosh ν + ν

(
µ2 − ν2

)
cosh µ sinh ν

}
. (4.17)

For I3(λ) we get

I3(λ) =
iλ̂κ1

4

{(
µ3 sinh µ − ν3 sinh ν

)(sinh µ

µ
−

sinh ν

ν

)

− (cosh µ − cosh ν)
(
µ2 cosh µ − ν2 cosh ν

)}

=
iλ̂κ1

4

{
−µ2 − ν2 +

(
µ2 + ν2

)
cosh µ cosh ν −

(
µ3

ν
+

ν3

µ

)
sinh µ sinh ν

}
. (4.18)

For I4(λ) we get

I4(λ) = −
iλ̂κ2

4

{
(µ sinh µ − ν sinh ν)2 − (cosh µ − cosh ν)

(
µ2 cosh µ − ν2 cosh ν

)}

= −
iλ̂κ2

4

{
−µ2 − ν2 − 2µν sinh µ sinh ν +

(
µ2 + ν2

)
cosh µ cosh ν

}
. (4.19)

For I5(λ) we get

I5(λ) = −(iλ)2κ̂1κ̂2

4

{
(µ sinh µ − ν sinh ν)

(
sinh µ

µ
− sinh ν

ν

)
− (cosh µ − cosh ν)2

}

= −
(iλ)2κ̂1κ̂2

4

{
−2 −

(
ν

µ
+

µ

ν

)
sinh µ sinh ν + 2 cosh µ cosh ν

}
. (4.20)

For I6(λ) we get

I6(λ) = − iλα

4

{
(cosh µ − cosh ν)(µ sinh µ − ν sinh ν)

−
(
µ2 cosh µ − ν2 cosh ν

)(sinh µ

µ
−

sinh ν

ν

)}

= −
iλα

4

{(
ν2

µ
− µ

)
cosh ν sinh µ +

(
µ2

ν
− ν

)
cosh µ sinh ν

}
. (4.21)
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For I7(λ) we get

I7(λ) = −(iλ)2αβ

4

{
(cosh µ − cosh ν)2 −

(
sinh µ

µ
− sinh ν

ν

)
(µ sinh µ − ν sinh ν)

}

= −
(iλ)2αβ

4

{
2 − 2 cosh µ cosh ν +

(
µ

ν
+

ν

µ

)
sinh µ sinh ν

}
. (4.22)

Substituting (4.17)–(4.22) into Eq. (4.13) we obtain the general form of the spectral equation

[
−

(
µ4 + ν4

)
− µν

(
µ2 + ν2

)
sinh µ sinh ν + 2µ2ν2 cosh µ cosh ν

]

+ iλβ
[
µ

(
ν2 − µ2

)
sinh µ cosh ν + ν

(
µ2 − ν2

)
sinh ν cosh µ

]

+ iλ̂κ1

[
−

(
µ2 + ν2

)
+

(
µ2 + ν2

)
cosh µ cosh ν −

(
µ3

ν
+

ν3

µ

)
sinh µ sinh ν

]

− iλ̂κ2

[
−

(
µ2 + ν2

)
+

(
µ2 + ν2

)
cosh µ cosh ν − 2µν sinh µ sinh ν

]

+ λ2κ̂1κ̂2

[
−2 −

(
µ

ν
+ ν

µ

)
sinh µ sinh ν + 2 cosh µ cosh ν

]

− iλα

[(
ν2

µ
− µ

)
cosh ν sinh µ +

(
µ2

ν
− ν

)
cosh µ sinh ν

]

+ λ2αβ

[
2 − 2 cosh µ cosh ν +

(
µ

ν
+

ν

µ

)
sinh µ sinh ν

]
= 0. (4.23)

Remark 4.1. In our paper (Shubov and Kindrat [31]), we have derived the spectral equation for the
case of the beam equation, in which the distributed damping, axial force, and modulus of elasticity were
equal to zero, i.e., ã0 = ã1 = S = γ = 0. Let us show that the spectral equation (2.27) obtained in the
aforementioned paper can be derived from Eq. (4.23). For ã0 = ã1 = S = γ = 0, we have ν = iµ, i.e.,
µ2 + ν2 = 0 and µ2 − ν2 = 2µ2. For this case, Eq. (4.23) can be reduced to the following:

[
−2µ4 − 2µ4 cosh µ cosh ν

]
+ iλβ

[
−2µ3 sinh µ cosh ν + 2iµ3 cosh µ sinh ν

]

+ iλ̂κ1

[
2iµ2 sinh µ sinh ν

]
− iλ̂κ2

[
−2iµ2 sinh µ sinh ν

]

− (iλ)2κ̂1κ̂2[−2 + 2 cosh µ cosh ν] − iλα[−2µ cosh ν sinh µ − 2iµ cosh µ sinh ν]

− (iλ)2αβ[2 − 2 cosh µ cosh ν] = 0. (4.24)

Taking into account that cosh ν = cos µ and sinh ν = i sin µ, we modify (4.24) as

−2µ4[1 + cosh µ cos µ] − 2iλµ3β[sinh µ cos µ + cosh µ sin µ]

− 2iλµ2κ̂1[sinh µ sin µ] − 2iλµ2κ̂2[sinh µ sin µ] + 2(iλ)2κ̂1κ̂2[1 − cosh µ cos µ]

+ 2iλµα[cos µ sinh µ − cosh µ sin µ] − 2(iλ)2αβ[1 − cosh µ cos µ] = 0. (4.25)
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Recalling (4.7), i.e., λ = µ2, and nothing that κ̂1 and κ̂2 correspond to κ1 and κ2 from Shubov and
Kindrat [31], we rewrite this equation in the form

µ
{
κ1κ2[1 − cosh µ cos µ] + i(κ1 + κ2) sinh µ sin µ + (1 + cosh µ cos µ)

}

= −iµ2β[sinh µ cos µ + cosh µ sin µ] + iα[sinh µ cos µ − cosh µ sin µ]
+ αβµ[1 − cosh µ cos µ],

which coincides with the spectral equation (2.27) from paper Shubov and Kindrat [31].

5. Asymptotic analysis of the spectral equation

In the first statement of this section, we collect all technical results needed in the sequel.

Lemma 5.1. 1) The following explicit formulae hold:

(i) µ2ν2 = −λ2 + 2iã0λ + γ, µ2 + ν2 = S + 2iã1λ,

(ii) µ4 + ν4 = 2
(
1 − 2̃a2

1

)
λ2 + 4i(Sã1 − ã0)λ + S2 − 2γ,

(iii) µ2 − ν2 = 2

√
λ2

(
1 − ã2

1

)
+ iλ(Sã1 − 2̃a0) +

(
S2

4
− γ

)
.

(5.1)

2) For the case 0 < ã1 < 1, the following asymptotic approximations are valid as |λ| → ∞:

(i) µ =
√√

1 − ã2
1 + iã1

√
λ +

S

√
1 − ã2

1 + i(Sã1 − 2̃a0)

4
√

1 − ã2
1

√√
1 − ã2

1 + iã1

1
√

λ
+ O

(
1

λ1.5

)
,

(ii) ν = i

√√
1 − ã2

1 − iã1

√
λ −

iS

√
1 − ã2

1 + (Sã1 − 2̃a0)

4
√

1 − ã2
1

√√
1 − ã2

1 − iã1

1
√

λ
+ O

(
1

λ1.5

)
,

(iii)
µ

ν
+

ν

µ
= 2̃a1 +

i(2̃a0ã1 − S)

λ
+ O

(
1

λ2

)
,

(iv) µ2 − ν2 = 2
√

1 − ã2
1λ +

i(Sã1 − 2̃a0)√
1 − ã2

1

(5.2)

+
[

S2 − 4γ

4
√

1 − ã2
1

+
(Sã1 − 2̃a0)

2

4(1 − ã2
1)

3/2

]
1

λ
+ O

(
1

λ2

)
,
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(v)
µ3

ν
+

ν3

µ
= 2i

(
2̃a2

1 − 1
)
λ + 2

(
−2̃a0ã

2
1 + 2Sã1 − ã0

)

+ i
(
2̃a2

1γ + γ − 6̃a2
0 ã

2
1 + 4Sã0ã1 − ã2

0 − S2
)1

λ
+ O

(
1

λ2

)
.

Proof. Using the explicit formulae of µ2 and ν2 given in (4.7), we keep the first three terms in the
corresponding Taylor expansions as |λ| → ∞. We obtain

µ2 =
(
iã1 +

√
1 − ã2

1

)
λ +

(
i
Sã1 − 2̃a0

2
√

1 − ã2
1

+
S

2

)

+
(

S2 − 4γ

8
√

1 − ã2
1

+
(Sã1 − 2̃a0)

2

8(1 − ã2
1)

3/2

)
1

λ
+ O

(
1

λ2

)
, (5.3)

and

ν2 =
(
iã1 −

√
1 − ã2

1

)
λ +

(
−i

Sã1 − 2̃a0

2
√

1 − ã2
1

+
S

2

)

−
(

S2 − 4γ

8
√

1 − ã2
1

+
(Sã1 − 2̃a0)

2

8(1 − ã2
1)

3/2

)
1

λ
+ O

(
1

λ2

)
. (5.4)

We calculate the square roots of right-hand sides of Eqs (5.3) and (5.4) to get formulae (5.2(i)) and
(5.2(ii)). Using similar approach we obtain the remaining set of the formulae from (5.2).

The lemma is proven. �

Remark 5.2. For the case when ã1 > 1, the corresponding asymptotic approximations can be derived
using a similar approach.

Now we are in a position to derive the asymptotic form of the spectral equation (4.23). Namely, let us
represent this equation in the form

A(λ) sinh µ sinh ν + B(λ) cosh µ cosh ν

+ C(λ) sinh µ cosh ν + D(λ) cosh µ sinh ν + F(λ) = 0, (5.5)

where the coefficients are given by the following expressions:

A(λ) = −µν
(
µ2 + ν2

)
− iλ

[
κ̂1

µ4 + ν4

µν
− 2µνκ̂2

]
+ λ2 µ2 + ν2

µν
(αβ − κ̂1κ̂2), (5.6)

B(λ) = 2µ2ν2 − iλ
(
µ2 + ν2

)
(̂κ1 − κ̂2) + 2λ2(̂κ1κ̂2 − αβ), (5.7)

C(λ) = iλ
(
ν2 − µ2

)(
βµ −

α

µ

)
, D(λ) = iλ

(
µ2 − ν2

)(
βν −

α

ν

)
, (5.8)



24 M.A. Shubov / Spectral analysis of Euler–Bernoulli beam model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

F(λ) = −
(
µ4 + ν4

)
− iλ

(
µ2 + ν2

)
(̂κ1 − κ̂2) − 2λ2κ̂1κ̂2 + 2λ2αβ. (5.9)

Using Lemma 5.1, we obtain the asymptotic approximation for all functions (5.6)–(5.9) when |λ| → ∞.
To simplify the presentation below, we will omit “∼” over a0 and a1. We have collected the assymptotical
results in the statement below.

Lemma 5.3. (i) Asymptotic approximation for the coefficient for sinh µ sinh ν of Eq. (5.5) can be given

in the form

A(λ) =
[
2a1 + 2

(
2a2

1 − 1
)
κ̂1 − 2̂κ2 + 2a1(αβ − κ̂1κ̂2)

]
λ2

+
[
−i(2a0a1 + S) + 2i

(
2a0a

2
1 − 2Sa1 + a0

)
κ̂1

+ 2iκ̂2a0 + i(2a0a1 − S)(αβ − κ̂1κ̂2)
]
λ + O(1). (5.10)

(ii) Asymptotic approximation for the coefficient for cosh µ cosh ν of Eq. (5.5) can be given in the form

B(λ) =
[
−2 + 2a1(̂κ1 − κ̂2) + 2(̂κ1κ̂2 − αβ)

]
λ2 −

[
−4ia0 + iS(̂κ1 − κ̂2)

]
λ + O(1). (5.11)

(iii) Asymptotic approximation for the coefficient for sinh µ cosh ν of Eq. (5.5) can be given in the form

C(λ) = −2i

√
1 − a2

1

√√
1 − a2

1 + ia1 β λ2.5

−
{ iβ[S(1 − 3a2

1) + 3i(Sa1 − 2a0)

√
1 − a2

1 + 4a0a1]

2
√

1 − a2
1

√√
1 − a2

1 + ia1

−
2iα

√
1 − a2

1√√
1 − a2

1 + ia1

}
λ1.5

+ O(
√

λ). (5.12)

(iv) Asymptotic approximation for the coefficient for sinh ν cosh µ of Eq. (5.5) can be given in the form

D(λ) = −2
√

1 − a2
1

√√
1 − a2

1 − ia1 β λ2.5

+
{β[S(1 − 3a2

1) − 3i(Sa1 − 2a0)

√
1 − a2

1 + 4a0a1]

2
√

1 − a2
1

√√
1 − a2

1 − ia1

−
2α

√
1 − a2

1√√
1 − a2

1 − ia1

}
λ1.5

+ O(
√

λ). (5.13)

(v) Asymptotic approximation for the free term of Eq. (5.5) can be given in the form

F(λ) =
[
−2

(
1 − 2a2

1

)
+ 2a1(̂κ1 − κ̂2) + 2(αβ − κ̂1κ̂2)

]
λ2

−
[
4i(Sa1 − a0) + iS(̂κ1 − κ̂2)

]
λ + 2γ − S2. (5.14)
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Proof. We present the detailed proof only for formula (5.10) for A(λ). The formulae (5.11)–(5.14) can
be proven by using similar techniques. According to (5.6), A(λ) can be represented as the sum

∑4
k=1 jk,

where

j1 = −µν
(
µ2 + ν2

)
, j2 = −iλκ1

µ4 + ν4

µν
,

j3 = 2iλκ2µν, j4 = λ2(αβ − κ1κ2)
µ2 + ν2

µν
.

(5.15)

Using formulae (5.1)(i) and (5.1)(ii), we obtain the following approximations when |λ| → ∞:

(i) j1 = −
√

−λ2 + 2ia0λ + γ (S + 2ia1λ) = 2a1λ
2 − i(2a0a1 + S)λ + O(1),

(ii) j2 = −iλ
2(1 − 2a2

1)λ
2 + 4i(Sa1 − a0)λ + S2 − 2γ√
−λ2 + 2ia0λ + γ

κ1

= 2
(
2a2

1 − 1
)
κ1λ

2 + 2i
(
2a0a

2
1 − 2Sa1 + a0

)
κ1λ + O(1),

(iii) j3 = 2iλ
√

−λ2 + 2ia0λ + γ κ̂2 = −2̂κ2λ
2 + 2iκ̂2a0λ + O(1),

(iv) j4 = λ2 S + 2ia1λ√
−λ2 + 2ia0λ + γ

(αβ − κ̂1κ̂2)

=
[
2a1λ

2 + i(2a0a1 − S)λ
]
(αβ − κ̂1κ̂2) + O(1).

(5.16)

Combining these four terms we get formula (5.10) for A(λ).
The proof is complete. �

Remark 5.4. Examining the expressions for the coefficients, one can see that the parameter β enters
the leading asymptotical terms in (5.10)–(5.14). This is the reason for our choice to consider the cases
β = 0 and β 6= 0 separately. In the present paper we discuss the spectral asymptotics for the case β = 0.
The case β > 0 will be considered in the forthcoming work.

To simplify further calculations, we notice that (i) for β = 0, the coefficients A(λ) and B(λ) in (5.6)
and (5.7) do not depend on α, and (ii) the parameter α enters the lower order asymptotical terms in the
coefficient C(λ), D(λ), and F(λ) in (5.8) and (5.9). It is likely that α will not have a strong effect on the
final result; however, calculations will be technically simpler for α = 0.

Therefore, asymptotical form of the spectral equation corresponding to the case α = β = 0 can be
given in the form

{[
a1 +

(
2a2

1 − 1
)
κ̂1 − κ̂2 − a1κ̂1κ̂2

]
+ i

λ

[
−

(
a0a1 + S

2

)
+

(
2a0a

2
1 − 2Sa1 + a0

)
κ̂1

+ κ̂2a0 +
(

a0a1 +
S

2

)
κ̂1κ̂2

]
+ O

(
1

λ2

)}
sinh µ sinh ν

+
{[

−1 + a1(̂κ1 − κ̂2) + κ̂1κ̂2

]
−

i

λ

[
−2a0 +

S

2
(̂κ1 + κ̂2)

]
+ O

(
1

λ2

)}
cosh µ cosh ν



26 M.A. Shubov / Spectral analysis of Euler–Bernoulli beam model

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

+
{[

−
(
1 − 2a2

1

)
+ a1(̂κ1 − κ̂2) − κ̂1κ̂2

]

−
i

λ

[
2(Sa1 − a0) +

S

2
(̂κ1 − κ̂2)

]
+ O

(
1

λ2

)}
= 0. (5.17)

In the sequel, we focus on Eq. (5.17).

6. Derivation of the spectral asymptotics

In Sections 6 and 7, without misunderstanding we omit "hat" over κ1 and κ2. Let us rewrite Eq. (5.17)
in the following form:

[
A0 +

iB0

λ
+ O

(
1

λ2

)]
sinh µ sinh ν +

[
A1 +

iB1

λ
+ O

(
1

λ2

)]
cosh µ cosh ν

+
[
A2 +

iB2

λ
+ O

(
1

λ2

)]
= 0, (6.1)

where Aj and Bj , j = 0, 1, 2, are given by

A0 = a1(1 − κ1κ2) −
(
1 − 2a2

1

)
κ1 − κ2,

B0 =
(

S

2
+ a0a1

)
κ1κ2 +

(
2a0a

2
1 + a0 − 2Sa1

)
κ1 + a0κ2 −

(
S

2
+ a0a1

)
;

(6.2)

A1 = κ1κ2 + a1(κ1 − κ2) − 1, B1 = −
[
S

2
(κ1 + κ2) − 2a0

]
; (6.3)

A2 = −
[
κ1κ2 − a1(κ1 − κ2) +

(
1 − 2a2

1

)]
, B2 = −

[
2(Sa1 − a0) +

S

2
(κ1 − κ2)

]
. (6.4)

For the rest of the paper, we assume that the parameters are such that A0 + A1 6= 0. As follows from
formulae (5.2(i)) and (5.2(ii)), the following approximations hold for µ and ν:

µ = m0

√
λ +

m1√
λ

+ O

(
1

λ3/2

)
, ν = im0

√
λ +

im1√
λ

+ O

(
1

λ3/2

)
, (6.5)

where

m0 =
√√

1 − a2
1 + ia1, m1 =

S

√
1 − a2

1 + i(Sa1 − 2a0)

4
√

1 − a2
1

√√
1 − a2

1 + ia1

. (6.6)



M.A. Shubov / Spectral analysis of Euler–Bernoulli beam model 27

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Using (6.5) and (6.6), we derive approximations for sinh µ, sinh ν, and cosh µ, cosh ν as |λ| → ∞.

We have

(i) sinh µ = sinh

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))
+ cosh

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)
,

(ii) cosh µ = cosh

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))
+ sinh

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)
.

(6.7)

(i) sinh ν = sinh

(
im0

√
λ +

im1√
λ

)(
1 + O

(
1

λ3

))
+ cosh

(
im0

√
λ +

im1√
λ

)
O

(
1

λ3/2

)

= i sin

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))
+ cos

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)
,

(ii) cosh ν = cos

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))
+ i sin

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)
.

(6.8)

Using formulae (6.7)(i) and (6.8)(i), we evaluate the approximation for the product of sinh µ sinh ν

sinh µ sinh ν = i sinh

(
m0

√
λ +

m1√
λ

)
sin

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))

+ sinh

(
m0

√
λ +

m1√
λ

)
cos

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)

+ cosh

(
m0

√
λ +

m1√
λ

)
sin

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)

+ cosh

(
m0

√
λ +

m1√
λ

)
cos

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3

)
. (6.9)

Using formulae (6.7)(ii) and (6.7)(iii) we evaluate the approximations for the product of cosh µ cosh ν

cosh µ cosh ν = cosh

(
m0

√
λ +

m1√
λ

)
cos

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))

+ cosh

(
m0

√
λ +

m1√
λ

)
sin

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)

+ sinh

(
m0

√
λ + m1√

λ

)
cos

(
m0

√
λ + m1√

λ

)
O

(
1

λ3/2

)

+ sinh

(
m0

√
λ + m1√

λ

)
sin

(
m0

√
λ + m1√

λ

)
O

(
1

λ3

)
. (6.10)
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Substituting (6.9) and (6.10) into Eq. (6.1), we obtain the following modification):

i

[
A0 +

iB0

λ
+ O

(
1

λ2

)]
sinh

(
m0

√
λ +

m1√
λ

)
sin

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))

+
[
A1 +

iB1

λ
+ O

(
1

λ2

)]
cosh

(
m0

√
λ +

m1√
λ

)
cos

(
m0

√
λ +

m1√
λ

)(
1 + O

(
1

λ3

))

+
[
A2 +

iB2

λ
+ O

(
1

λ2

)]
+ sinh

(
m0

√
λ +

m1√
λ

)
cos

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)

+ cosh

(
m0

√
λ +

m1√
λ

)
sin

(
m0

√
λ +

m1√
λ

)
O

(
1

λ3/2

)
= 0. (6.11)

Our next result is the following statement.

Lemma 6.1. The set of solutions of the spectral equation (4.23) is symmetric with respect to the imag-

inary axis on the complex λ–plane, i.e. if λ is the solution of Eq. (4.23), then (−λ) is the solution as

well.

Proof. We prove the result for the case α = β = 0. The proof for the case of arbitrary real parameters,
α, β, κ1, and κ2, can be done in a similar fashion. Let us introduce the following function:

F(λ) =
[(

µ4 + ν4
)
+ µν

(
µ2 + ν2

)
sinh µ sinh ν − 2µ2ν2 cosh µ cosh ν

]

+ iλκ1

[(
µ2 + ν2

)
(1 − cosh µ cosh ν) + µ4 + ν4

µν
sinh µ sinh ν

]

+ iλκ2

[(
µ2 + ν2

)
(−1 + cosh µ cosh ν) − 2µν sinh µ sinh ν

]

+ λ2κ1κ2

[
2(1 − cosh µ cosh ν) +

µ2 + ν2

µν
sinh µ sinh ν

]
. (6.12)

It is clear that Eq. (4.23) with α = β = 0 can be written in the form F(λ) = 0. Let us show that
F(−λ) = F(λ), which certainly means that if λ is a root of the afore equation, then (−λ) is the root as
well. Using formulae (4.7) for µ and ν, we obtain

(i) µ(−λ) =

√√√√
(

−iλa1 +
S

2

)
+

√
(λ)2

(
1 − a2

1

)
− iλ(Sa1 − 2a0) +

(
S2

4
− γ

)

= µ(λ);

(ii) ν(−λ) = ν(λ); (iii)
(
µ2 + ν2

)
(−λ) = S − 2iã1λ =

(
µ2 + ν2

)
(λ);

(iv) (sinh µ)(−λ) = − sinh µ(λ) = −(sinh µ)(λ), (sinh ν)(−λ) = −(sinh ν)(λ);

(v) (cosh µ)(−λ) = cosh µ(λ) = (cosh µ)(λ), (cosh ν)(−λ) = (cosh ν)(λ).

(6.13)
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Using these formulae, we obtain

(
µ2 + ν2

µν

)
(−λ) =

(
µ2 + ν2

µν

)
(λ),

(
µ4 + ν4

µν

)
(−λ) =

(
µ4 + ν4

µν

)
(λ). (6.14)

Based on (6.13) and (6.14), we immediately obtain that F(−λ) = 0.
The lemma is shown. �

Below we present the main result of this section, which is concerned with the location of the set of
eigenvalues of the operator L on the complex plane. Since the set of the eigenvalues is symmetric with
respect to the imaginary axis, it is convenient to denote this set by {λn}n∈Z′ , where Z

′ = Z \ {0}. Let
us introduce a new complex parameter w =

√
λ, with the branch being fixed by the requirement that√

λ > 0 for λ > 0. It is clear that if λ ∈ C, then w ∈ C+. (The set of points {wn =
√

λn}n∈Z′ is in fact
the set of solutions of the spectral equation (4.23).)

In what follows, it will be convenient to represent the set of eigenvalues of the operator L in the form
{λ+

n }n∈Z′ ∪ {λ−
n }n∈Z′ , where λ+

n is the notation for an eigenvalue located in the closed upper half–plane,
λ+

n ∈ C+, and λ−
n is the notation for an eigenvalue located in the open lower half–plane, λ−

n ∈ C
−. Due

to the symmetry of the set of eigenvalues of L with respect to the imaginary axis on the λ-plane, if λ±
n

is an eigenvalue then (−λ±
n ) is an eigenvalue as well. It can be easily seen that the set of eigenvalues

{λ+
n }n∈Z′ generates the set of complex points {w+

n =
√

λ+
n }n∈Z′ in the first coordinate angle of the w-plane

(w =
√

λ), which is symmetric with respect to its bisector. The set of eigenvalues {λ−
n }n∈Z′ generates

the set {w−
n =

√
λ−

n }n∈Z′ in the second coordinate angle of the w-plane, which is symmetric with respect
to its bisector.

In what follows, it is convenient to use new notation.

Definition 6.2. Let {ψn}n∈N+ and {χn}n∈N+ be two sequences of complex numbers. Then the relation

{
ψn

χn

}
= gn

(
1 + o(1)

)
, n → ∞, (6.15)

means that two different sequences {ψn}n∈N+ and {χn}n∈N+ can be approximated asymptotically by one
and the same sequence {gn}n∈N+ , i.e.,

lim
n→∞

∣∣∣∣
ψn

gn

− 1

∣∣∣∣ = 0 and lim
n→∞

∣∣∣∣
χn

gn

− 1

∣∣∣∣ = 0

(see Fedoryuk [9]; Murray [23]).

We conclude this section with the following statement.

Lemma 6.3. Under the condition A0 + A1 6= 0, there could be only a finite number of the purely

imaginary eigenvalues, i.e., there could a finite number of points {wm} located either on the bisector of

the first coordinate angle or on the bisector of the second coordinate angle.

Proof. Using contradiction argument, assume that there exists a sequence of roots of Eq. (6.11) located
on the bisector {w̃n}∞n=1 such that w̃n = xn + iyn = (1 + i)xn, and xn → ∞ as n → ∞. Taking
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into account that m0 =
√√

1 − a2
1 + ia1 = mr

0 + im
j

0, with mr
0 = cos( 1

2 tan−1( a1√
1−a2

1

)) and m
j

0 =

sin( 1
2 tan−1( a1√

1−a2
1

)), we obtain the following approximation:

m0w̃n =
(
mr

0 + im
j

0

)
(1 + i)xn =

√
2xn exp{iδ} =

√
2xn(cos δ + i sin δ),

with δ > 0 being defined as

δ =
1

2
tan−1

(
a1√

1 − a2
1

)
+

π

4
<

π

2
. (6.16)

One can readily check that the following asymptotic formulae are valid:

{
sinh(m0w̃n + m1

w̃n
)

cosh(m0w̃n + m1
w̃n

)

}
=

1

2
exp{

√
2xn cos δ + i

√
2xn sin δ}

(
1 + o(1)

)
, (6.17)

and also
{

i sin(m0w̃n + m1
w̃n

)

cos(m0w̃n + m1
w̃n

)

}
=

1

2
exp{

√
2xn sin δ + i

√
2xn cos δ}

(
1 + o(1)

)
. (6.18)

Combining (6.17) and (6.18), we immediately obtain





sinh(m0w̃n + m1
w̃n

) sin(m0w̃n + m1
w̃n

)

sinh(m0w̃n + m1
w̃n

) cos(m0w̃n + m1
w̃n

)

cosh(m0w̃n + m1
w̃n

) sin(m0w̃n + m1
w̃n

)

cosh(m0w̃n + m1
w̃n

) cos(m0w̃n + m1
w̃n

)





=





−i

1
−i

1





En

(
1 + o(1)

)
, (6.19)

where

En =
1

4
exp

{√
2(1 + i)(cos δ + sin δ)xn

}
. (6.20)

Substituting approximations (6.19) into Eq. (6.11), we obtain the following equation

{[
A0 +

iB0

w̃2
n

+ O

(
1

w̃4
n

)](
1 + o(1)

)
+

[
A1 +

iB1

w̃2
n

+ O

(
1

w̃4
n

)](
1 + o(1)

)}
En

+ EnO

(
1

w̃3
n

)
+

[
A2 + iB2

w̃2
n

+ O

(
1

w̃4
n

)]
= 0. (6.21)

However, since A0 + A1 6= 0 and mr
0 > 0, Eq. (6.21) does not hold for large enough n. The proof is

complete. �

As a consequence we obtain that the set {w+
n }n∈Z′ splits into two subsets symmetric with respect to the

bisector. The first subset is located strictly below the bisector and the second is strictly above.
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7. Eigenvalues

Based on Lemma 5.3, we can see that the set {w+
n }n∈Z′ splits into two infinite subsets and possibly one

finite subset located on the bisector of the first coordinate angle. The first of the aforementioned infinite

subsets is located strictly below the bisector, and the second one is strictly above. Since we are interested

in asymptotic approximations for the set {w+
n }n∈Z′ as |n| → ∞, without loss of generality, we assume

that there are only infinite subsets. It can be readily seen that the numeration can be introduced in such

a way, that the set {w+
n }−1

n=−∞ corresponds to the subset located above the bisector and the set {w+
n }∞n=1

corresponds to the subset located below the bisector. From Lemma 6.1, one gets that these subsets are

symmetric with respect to the bisector.

Let us derive the spectral asymptotics for the subset of the eigenvalues located in the first quadrant

below the bisector x = y. Let � be the notation for this part of the first quadrant, i.e. if w ∈ �, then

w = x + iy and 0 < y < x.

Lemma 7.1. Let ξ = m0w and τ = m0w with m0 being defined in (6.6). Then for w ∈ � the following

asymptotic approximation holds the spectral equation (6.11) as |w| → ∞:

iA0 sinh(ξ) sin

(
τ +

m0m1

τ

)[
1 + O

(
1

w2

)]

+ A1 cosh(ξ) cos

(
τ +

m0m1

τ

)[
1 + O

(
1

w2

)]

+ A2 + iB2

λ
+ O

(
1

λ2

)
+ cosh(ξ) sin

(
τ + m0m1

τ

)
O

(
1

w3

)

+ sinh(ξ) cos

(
τ +

m0m1

τ

)
O

(
1

w3

)
= 0, (7.1)

where m1 is given in (6.6), A0, A1, A2, and B2 are given in (6.2) and (6.4) respectively.

Proof. Let us modify Eq. (6.11) for the case when w ∈ �. The following approximations for the

hyperbolic functions hold when |w| → ∞, w ∈ �:

{
sinh(m0w + m1

w
)

cosh(m0w + m1
w

)

}

=
{

sinh(m0w) cosh(m1
w

) + cosh(m0w) sinh(m1
w

)

cosh(m0w) cosh(m1
w

) + sinh(m0w) sinh(m1
w

)

}

=
{

1
m1
w

}
sinh(m0w)

[
1 + O

(
1

w2

)]
+

{
m1
w

1

}
cosh(m0w)

[
1 + O

(
1

w2

)]
. (7.2)
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The following approximations for the trigonometric functions hold when |w| → ∞, w ∈ �:

{
sin(m0w + m1

w
)

cos(m0w + m1
w

)

}

=
{

sin(m0w)[1 + O( 1
w2 )] + cos(m0w)[m1

w
+ O( 1

w3 )]
cos(m0w)[1 + O( 1

w2 )] − sin(m0w)[m1
w

+ O( 1
w3 )]

}

=
{

1
−m1

w

}
sin(m0w)

[
1 + O

(
1

w2

)]
+

{
m1
w

1

}
cos(m0w)

[
1 + O

(
1

w2

)]
. (7.3)

It is convenient to rewrite formulae (7.2) and (7.3) in terms of ξ = m0w, and τ = m0w. We have

{
sinh(ξ + m0m1

ξ
)

cosh(ξ + m0m1
ξ

)

}

=
{

1
m0m1

ξ

}
sinh(ξ)

[
1 + O

(
1

ξ 2

)]
+

{m0m1
ξ

1

}
cosh(ξ)

[
1 + O

(
1

ξ 2

)]
, (7.4)

{
sin(τ + m0m1

τ
)

cos(τ + m0m1
τ

)

}

=
{

1
−m0m1

τ

}
sin(τ )

[
1 + O

(
1

τ 2

)]
+

{
m0m1

τ

1

}
cos(τ )

[
1 + O

(
1

τ 2

)]
. (7.5)

Based on the formulae (7.4) and (7.5), we obtain the asymptotic approximations for the products

1) sinh

(
ξ +

m0m1

ξ

)
sin

(
τ +

m0m1

τ

)

= sinh(ξ) sin(τ )

[
1 + O

(
1

w2

)]
+

m0m1

ξ
cosh(ξ) sin(τ )

[
1 + O

(
1

w2

)]

+
m0m1

τ
sinh(ξ) cos(τ )

[
1 + O

(
1

w2

)]

+ |m0m1|2

ξτ
cosh(ξ) cos(τ )

[
1 + O

(
1

w2

)]

= sinh(ξ) sin(τ )

[
1 + O

(
1

w2

)]
+

m0m1

ξ
cosh(ξ) sin(τ )

[
1 + O

(
1

w2

)]

+
m0m1

τ
sinh(ξ) cos(τ )

[
1 + O

(
1

w2

)]
+ cosh(ξ) cos(τ )O

(
1

w2

)
, (7.6)
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2) cosh

(
ξ +

m0m1

ξ

)
cos

(
τ +

m0m1

τ

)

= cosh(ξ) cos(τ )

[
1 + O

(
1

w2

)]
−

m0m1

τ
cosh(ξ) sin(τ )

[
1 + O

(
1

w2

)]

+ m0m1

ξ
sinh(ξ) cos(τ )

[
1 + O

(
1

w2

)]
+ sinh(ξ) sin(τ )O

(
1

w2

)
, (7.7)

3) sinh

(
ξ +

m0m1

ξ

)
cos

(
τ +

m0m1

τ

)

= sinh(ξ) cos(τ )

[
1 + O

(
1

w2

)]
−

m0m1

τ
sinh(ξ) sin(τ )

[
1 + O

(
1

w2

)]

+
m0m1

ξ
cosh(ξ) cos(τ )

[
1 + O

(
1

w2

)]
+ cosh(ξ) sin(τ )O

(
1

w2

)
, (7.8)

4) cosh

(
ξ +

m0m1

ξ

)
sin

(
τ +

m0m1

τ

)

= cosh(ξ) sin(τ )

[
1 + O

(
1

w2

)]
+ m0m1

τ
cosh(ξ) cos(τ )

[
1 + O

(
1

w2

)]

+
m0m1

ξ
sinh(ξ) sin(τ )

[
1 + O

(
1

w2

)]
+ sinh(ξ) cos(τ )O

(
1

w2

)
. (7.9)

Using formula (7.6) we evaluate the asymptotic approximation for the term of Eq. (6.11) containing the
product of sinh and sin functions and have:

[
A0 + iB0

λ
+ O

(
1

λ2

)]
sinh

(
m0w + m1

w

)
sin

(
m0w + m1

w

)[
1 + O

(
1

w6

)]

=
[
A0 +

iB0

λ

]
sinh

(
ξ +

m0m1

ξ

)
sin

(
τ +

m0m1

τ

)[
1 + O

(
1

w4

)]
. (7.10)

Taking into account that the accuracy of all formulae (7.6)–(7.9) is O(w−2), we proceed with the as-
sumed level of accuracy and represent (7.10) as follows:

A0 sinh

(
ξ + m0m1

ξ

)
sin

(
τ + m0m1

τ

)[
1 + O

(
1

w2

)]
. (7.11)

In a similar fashion, using formula (7.7) we obtain the asymptotic approximation for term of Eq. (6.11)
containing the product of cosh and cos functions

A1 cosh

(
ξ +

m0m1

ξ

)
cos

(
τ +

m0m1

τ

)[
1 + O

(
1

w2

)]
. (7.12)

Substituting (7.6)–(7.11) into Eq. (6.11) we obtain representation (7.1) for the spectral equation.
The lemma is shown. �
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Finally, we present the main result of the paper.

Theorem 7.2. The set of the eigenvalues {λn}∞n=−∞ is symmetric with respect to the imaginary axis on

complex λ-plane: λ−|n| = −λ|n|. Let {λn}∞n=1 be the subset of the set of the eigenvalues located in the

right half-plane and {λn}−1
n=−∞ be a symmetric subset. Under the assumption that A2

0 − A2
1 > 0, the

following asymptotic approximation is valid for λn as n → ∞:

λn =
(

πm0

|m0|2

)2

n2 + iπ

(
m0

|m0|2

)2

ln

(
A0 + A1

A0 − A1

)
n

−
[(

m0

2|m0|2

)2

ln2

(
A0 + A1

A0 − A1

)
+

2m0m1

|m0|2

]
+ O

(
1

n

)
, n → ∞, (7.13)

where m0 and m1 are defined in (6.6) and

A0 + A1

A0 − A1
=

(a1 − 1)(1 − κ1κ2) + (2a2
1 + a1 − 1)κ1 − (a1 + 1)κ2

(a1 + 1)(1 − κ1κ2) + (2a2
1 − a1 − 1)κ1 + (a1 − 1)κ2

. (7.14)

Proof. Let G(x, y) be a function defined by

G(x, y) =
1

2
exp

[(
mr

0x − m
j

0y
)
+ i

(
m

j

0x + mr
0y

)]
. (7.15)

Then since ξ = (mr
0x − m

j

0y) + i(m
j

0x + mr
0y), we obtain that

(
cosh(ξ)

sinh(ξ)

)
= G(x, y)

(
1 + O

(
exp

[
−2

(
mr

0x − m
j

0y
)]))

. (7.16)

Substituting (7.16) into (7.11) we obtain the following equation:

iA0G(x, y) sin

(
τ +

m0m1

τ

)[
1 + O

(
1

w2

)]

+ A1G(x, y) cos

(
τ +

m0m1

τ

)[
1 + O

(
1

w2

)]

+ A2 + G(x, y)

[
cos(τ )O

(
1

w3

)
+ sin(τ )O

(
1

w3

)]
= 0. (7.17)

Taking into account that |G(x, y)| → ∞ as x → ∞ (or |w| → ∞) one can see that Eq. (7.17) can be
represented in the form

iA0 sin

(
τ +

m0m1

τ

)[
1 + O

(
1

w2

)]
+ A1 cos

(
τ +

m0m1

τ

)[
1 + O

(
1

w2

)]

+ cos(τ )O

(
1

w3

)
+ sin(τ )O

(
1

w3

)
= O

(
exp

[
−

(
mr

0x − m
j

0y
)])

. (7.18)
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Since A0 6= A1, this equation can be reduced to

[−A0 + A1] exp

[
−i

(
τ +

m0m1

τ

)]
+

[
A0 + A1 + O

(
1

w2

)]
exp

[
i

(
τ +

m0m1

τ

)]

= O
(
exp

[
−

(
mr

0x − m
j

0y
)])

. (7.19)

Using an explicit formula −iτ = −m
j

0x + mr
0y, we obtain that

exp(−iτ )O
(
exp

[
−

(
mr

0x − m
j

0y
)])

= O
(
exp

[
−

(
mr

0 + m
j

0

)
(x − y)

])
,

which yields the following form of Eq. (7.19) (called the model equation):

exp

[
−2i

(
τ +

m0m1

τ

)]
=

A0 + A1

A0 − A1

[
1 + O

(
1

τ 2

)]
+ O

(
exp

[
−

(
mr

0 + m
j

0

)
(x − y)

])
. (7.20)

Solving the model equation Fedoryuk [9]; Evgrafov [8]:

exp

[
−2i

(
τ + m0m1

τ

)]
= A0 + A1

A0 − A1

[
1 + O

(
1

τ 2

)]
. (7.21)

Since |τ | → ∞ as x → ∞, we represent Eq. (7.21) in asymptotical form as

e−2iτ =
A0 + A1

A0 − A1

(
1 +

2im0m1

τ

)[
1 + O

(
1

τ 2

)]
. (7.22)

Consider a sequence of explicitly defined points

{
τ 0
n = πn + i ln

√
A0 + A1

A0 − A1
− m0m1

πn

}∞

n=1

. (7.23)

Using Rouche’s theorem, we show that the roots of Eq. (7.22) are located in small vicinities of the points
(7.23). To this end we introduce two functions F(τ ) and G(τ ), which are analytic in �. The function
F(τ ) is defined by

F(τ ) = exp{−2iτ } −
A0 + A1

A0 − A1

(
1 +

2im0m1

τ

)
(7.24)

and G(τ ) satisfies the estimate |τ 2
G(τ )| → Const as |τ | → ∞ within �. Equation (7.22) can be written

in form F(τ ) + G(τ ) = 0. Let us fix large enough positive integer n and introduce a circle centered at
the point τ 0

n of a small radius εn : Cεn
(τ 0

n ). Let us evaluate F(τ ) for τ ∈ Cεn
(τ 0

n ), i.e. τ = τ 0
n + εne

iϕ ,
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−π < ϕ 6 π . Evaluating exp{−2iτ } we obtain

exp{−2iτ } = exp

{
−2i

[
πn + i ln

√
A0 + A1

A0 − A1
−

m0m1

πn
+ εne

iϕ

]}

= exp

{
ln

A0 + A1

A0 − A1
+ 2im0m1

πn

}
exp

{
−2iεne

iϕ
}

=
A0 + A1

A0 − A1

[
1 +

2im0m1

πn
+ O

(
1

n2

)][
1 − 2iεne

iϕ + O
(
ε2
n

)]
. (7.25)

Based on the origins of the estimates O(n−2) and O(ε2
n) from (7.25), we claim that there exist two

absolute positive constants, C0 and C1, such that

C0

n2
6 O

(
1

n2

)
6

C1

n2
and C0ε

2
n 6 O

(
ε2
n

)
6 C1ε

2
n. (7.26)

Substituting (7.25) into (7.24) and taking into account (7.26) we obtain

F(τ )

∣∣∣∣
τ∈Cεn (τ 0

n )

= −2iεne
iϕ A0 + A1

A0 − A1

[
1 +

2im0m1

πn

]
+ O

(
1

n2

)
+ O

(
ε2
n

)
. (7.27)

Estimating the function G(τ ) for τ ∈ Cεn
(τ 0

n ), we claim that there exists an absolute constant C2 such
that |G(τ )| 6 C2/n2. Now we choose εn in such a way that

2(C1 + C2)

n2
6 2εn

∣∣∣∣
A0 − A1

A0 + A1

∣∣∣∣ 6
3(C1 + C2)

n2
.

With this choice of εn, one gets the relation between F(τ ) and G(τ ) needed for application of the
Rouche’s theorem, i.e., |F(τ )| > |G(τ )| for τ ∈ Cεn

(τ 0
n ), which means that for the roots of the model

equation (7.21), the following representation is valid:

τn = πn + i ln

√
A0 + A1

A0 − A1
−

m0m1

πn
+ O

(
1

n2

)
, n → ∞. (7.28)

Incorporation into the proof an exponentially decaying term from (7.20) can be done without difficulties.
Finally, let us represent the asymptotic distribution of the eigenvalues of the original problem {λn}.

Since τ = m0w, we have

wn =
m0

|m0|2
πn +

im0

|m0|2
ln

√
A0 + A1

A0 − A1
−

m1

πn
+ O

(
1

n2

)
, n → ∞, (7.29)

which yields the following formula for λn:

λn = w2
n =

[
m0

|m0|2

{
πn +

i

2
ln

A0 + A1

A0 − A1

}]2

− 2
m1

πn

m0

|m0|2

{
πn +

i

2
ln

A0 + A1

A0 − A1

}
+ O

(
1

n

)
.
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It can be easily checked that this formula implies (7.13).
The theorem is proven. �

Remark 7.3. For the case when a1 = S = 0, one gets m0 = 1, m1 = 0, and formula (7.13) coincides
with formula (3.17) of paper (Shubov and Kindrat [31]).
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