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Fig. 1. Fairness diagnosis of InFORM (a debiased ranking model) on Weibo social network data. (A) The analyst selects the top-50
ranked nodes. (B) The analyst defines the gender and fans attributes as protected classes of interest in the attributes setting panel.
(C) The attributes view shows that in the top-50 ranked nodes, the gender attribute (female/male) is equally distributed. The view
also shows the distribution of the gender attribute across the entire dataset (C.1), where it can be observed that females make up a
larger portion of the entire dataset. The parallel sets portion of the attributes view (C.2) shows that nodes with more than 16 million
followers make up the largest component of the top-50 nodes. (D) Selected nodes are grouped by the gender and fans attributes.
(E) The rank mapping view shows that ranked nodes are clustered (E.1) based on similar ranking scores and the ranking result of
the target model tends to have more similar ranking scores of top-k nodes than those of the base model. The view also supports
comparison between ranking algorithms by mapping the change (E.2) in each node’s rank between the two ranking algorithms being
explored. The group proportion view (E.3) shows few proportional changes when comparing the original ranking algorithm to the
InFORM model. The group shift view (E.4) shows that the average ranking of the with attributes of male and followers under
10 thousand has increased by 2 positions, which may indicate that the InFORM model has indirectly created a group preference.

Abstract—Graph mining is an essential component of recommender systems and search engines. Outputs of graph mining models
typically provide a ranked list sorted by each item’s relevance or utility. However, recent research has identified issues of algorithmic
bias in such models, and new graph mining algorithms have been proposed to correct for bias. As such, algorithm developers need
tools that can help them uncover potential biases in their models while also exploring the impacts of correcting for biases when
employing fairness-aware algorithms. In this paper, we present FairRankVis, a visual analytics framework designed to enable the
exploration of multi-class bias in graph mining algorithms. We support both group and individual fairness levels of comparison. Our
framework is designed to enable model developers to compare multi-class fairness between algorithms (for example, comparing
PageRank with a debiased PageRank algorithm) to assess the impacts of algorithmic debiasing with respect to group and individual
fairness. We demonstrate our framework through two usage scenarios inspecting algorithmic fairness.
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Algorithmic fairness has become increasingly important in data mining
and machine learning. This has led to a proliferation of algorithmic
enhancements to address potential fairness issues that can occur in
black-box models. Although researchers have been developing methods
to guarantee the fairness of data-driven models [2,4,7,18,28,31,32,36,
37], it has been reported that biases can still be observed even after the
Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication ~ fairness algorithms are applied [30]. The essential reason behind this
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group fairness [24,25], where individual fairness focuses on whether
similar individuals are treated consistently and group fairness focuses



on whether or not members of a protected class have the same prob-
ability of being assigned a positive outcome (for example, the same
probability of receiving a housing loan). Difficulties arise due to the
fact that the sensitive attributes! vary from task to task. Sensitive at-
tributes may have commonalities across tasks, and there may be legally
protected classes that need to be considered when measuring fairness.
However, there is no single universal definition of fairness, and different
applications of an algorithm may need to alter the definition of fairness
depending upon the task at hand. Furthermore, recent work [3] has
found that controlling for group fairness may lead to issues in individual
fairness, and it is critical to understand the various implications and
trade-offs of fairness-aware machine learning tools.

Even when the task at hand has clear and explicit legal definitions
of fairness, machine learning algorithms may still struggle. Take for
example legal definitions of fairness that focus on gender and ethnicity
attributes of the data. Here, numerous algorithms have been proposed
to correct for single attribute biases. However, as noted by Wang et
al. [32], algorithms might be subject to indirect discrimination, where
a protected class attribute might be correlated to another feature in the
dataset, for example, location attributes such as ZIP Code might have
implicit racial information as the distribution of ethnicity is geographi-
cally unbalanced. Thus, fairness solutions that only adjust for a single
data attribute can still suffer from algorithmic biases. Given such issues,
it is difficult to balance algorithmic results under potentially con-
flicting definitions of fairness, and recent work [7, 11,20] has even
discussed an impossibility theorem for fairness noting that it may be
impossible to guarantee fairness that satisfies all constraints.

Such challenges seem to necessitate a human-in-the-loop approach,
where analysts can audit various definitions of fairness. Recent work in
the visual analytics community has explored the development of sys-
tems for auditing machine learning algorithms with respect to fairness
in classification [7,32] and ranking [2]. However, these systems tend
to focus on single attribute fairness at the group level and do not pro-
vide support for exploring the impacts of multi-attribute group fairness
and individual fairness. To overcome such limitations, we have devel-
oped FairRankVis, a visual analytics framework designed to enable the
exploration of multi-class bias in graph mining algorithms. The pro-
posed framework is model agnostic, supports both group and individual
fairness levels of comparison, and consists of a suite of interactive visu-
alizations for investigating node attributes and topological features of
graph elements to explore algorithmic fairness. Contributions include:
* A visual analytics framework that supports analysts in exploring

multi-class bias in human-guided fairness definitions at both the

group and individual levels.

* Interactive methods for auditing fairness between machine learning
algorithms to help analysts diagnose model trade-offs under different
fairness definitions.

2 RELATED WORK

In this section, we review recent work in graph ranking, algorithmic
fairness, and fairness in visual analytics.

2.1 Graph Ranking

Ranking is a fundamental task in graph mining and has been employed
in various application domains including search engines [23], social
network mining [23, 33], biology [29], and neuroscience [9]. PageR-
ank [23], one of the most widely-used algorithms, was originally de-
vised to retrieve relevant web pages on the Internet through hyperlinks
between web pages, where the web pages were considered to be nodes
and hyperlinks edges in a graph. The essential contribution of PageR-
ank is to utilize the topological structures of the graph elements, i.e.,
nodes and edges, to calculate the importance of nodes:

r=cAr+(1—-o)t, (1)

where r is the ranking score vector for each node with size n where n
represents the number of nodes. The matrix A denotes the adjacency

ISensitive attributes are generally defined to be traits of an individual which
should not correlate with the algorithmic outcome, e.g., gender, ethnicity, age.

matrix of the graph, and ¢ the teleportation vector is initialized as %l.
The equation is computed iteratively and converges to a stationary
distribution where values in r represent the importance of the nodes.

Successful applications of PageRank in web search engines have
encouraged the development of numerous variants in other related re-
search disciplines. These variants typically follow the same mechanism
as PageRank but utilize extra information to enhance the traditional
teleportation process. For example, a modified version of PageRank for
recommendation systems, IltemRank [13], was proposed to rank items
based on expected user’s preferences by changing the adjacency matrix
to a correlation matrix of the graph. IsoRank [29] improves the origi-
nal version of PageRank by transforming the task of correspondence
between nodes as an eigenvalue problem. In ranking short texts and
documents, TwitterRank [33] utilizes a transition probability matrix
to measure similarities between twitterers to discover influential users,
and TopicRank [6] employs semantic relationships between topics as
a ranking factor. AttriRank [16] differs from the previous methods by
leveraging the attributes on the nodes to enhance the ranking results.
However, PageRank, and its initial variations, do not consider issues of
algorithmic fairness in their ranking schemes.

2.2 Fairness in Graph Mining

In order to account for potential algorithmic bias, numerous iterations
of fairness-aware graph mining algorithms have been developed focus-
ing on individual fairness and group fairness. Kamishima et al [17]
employ regularization-based collaborative filtering which minimizes
the average ratings among different groups to control for potential bias.
In graph-based clustering, Kleindessner et al. [21] propose a fairness
notion to balance the number of elements in each cluster based on
different demographic groups. Bose et al. [4] employ an adversarial
framework to achieve statistical parity for the learned embedding results
across sensitive attributes. Kang et al. [18] study the individual fairness
problem in graph mining models and propose an optimization-based
framework for diagnosing and debiasing graph mining models by three
individual approaches: debiasing data, debiasing model as well as debi-
asing result. However, these approaches only guarantee group fairness
or individual fairness without considering whether applying constraints
for group fairness affects individual fairness or vice versa. As such,
tools that can support fairness auditing between variations of graph
mining algorithms are critical for identifying algorithmic fairness.

2.3 Fairness in Visual Analytics

Given the fact that definitions of fairness can be highly task-dependent,
recent work in the visual analytics community has begun exploring
methods for human-in-the-loop fairness auditing and exploration. Cabr-
era et al. [7] propose a visual analytics framework (FairVis) for dis-
covering intersectional bias by inspecting machine learning models’
performance on different groups, where a group is defined with respect
to a set of potential sensitive attributes. The analyst can select the
performance metric, e.g., accuracy, F1 score, true positive rate, etc.
Ahn et al. [2] propose a general visual analytics framework (FairSight)
for diagnosing the fairness of top-k ranking results by considering both
nodes and groups. The framework provides metrics for diagnosing
both individual fairness and group fairness in terms of a single sensitive
attribute. However, multi-attribute fairness diagnosis was unexplored.
Wang et al. (Discrilens) [32] also investigated issues of fairness in
classification tasks by visualizing the unbalanced proportion between
user-defined groups with respect to a single sensitive attribute. These
approaches demonstrate the effectiveness of visual analytics in reveal-
ing and analyzing fairness-related problems. However, there are also
limitations to the current approaches. FairVis only supports diagnos-
ing biases in supervised binary classification tasks, and DiscrilLens
only supports exploring a single sensitive attribute. FairSight explores
trade-offs between the group and individual fairness in ranking results,
but multigroup fairness remains unexplored. Furthermore, none of
these previous systems support model comparison as a mechanism for
explaining the impacts of algorithmic debiasing.
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Fig. 2. The FairRankVis Framework consists of two stages: (A) the identification of target nodes and groups stage, and (B) the diagnosis of biases in
ranking results stage. In stage (A), the analyst can select the base model and the target model to be inspected. The ranking results will be generated
after model selection. The analyst then defines a range of nodes, either the top-k nodes or nodes who have similar ranking scores, and then defines
the groups based on selected attributes. (B) The analyst can then explore and inspect both individual-level and group-level bias. The framework also
supports modifying the definition of fairness at any time during the analysis process.

3 DESIGN OVERVIEW

From our literature review on fairness in graph ranking and visualiza-
tion, we have identified several research challenges and gaps in the
literature. These challenges were then evaluated with three data mining
researchers who specialize in debiasing algorithms for graph learning
models (two of which serve as co-authors on this paper). After iterative
discussions with the experts, two major research challenges for auditing
fairness in graph mining algorithms were identified:

Task-oriented Definitions of Groups. In conventional debiasing
approaches, the definitions of protected groups may vary across appli-
cations. Typical examples include personal attributes associated with
discrimination, such as gender, ethnicity, age, etc. However, identifying
sensitive attributes and characterizing protected groups is a non-trivial
task and demands expert knowledge to identify potential discrimina-
tion [32]. As such, there is a need for methods that can interactively
define fairness, incorporate this definition into a debiasing method, and
audit the impacts of the debiasing. In this paper, we use the term group
to denote the protected groups characterized by sensitive attributes.

Trade-offs Between Group and Individual Fairness. Ideally, fair-
ness adjustments to a machine learning model will maintain fairness
between groups of nodes with similar attribute values. However, con-
flicting concepts of group and individual fairness [3] can lead to cases
where an algorithm that has been debiased at the group level now
introduces bias at the individual level. Consider an employment recom-
mendation system that meets the criteria for group fairness. Applicants
in protected groups may receive more competitive rankings in order to
keep statistical parity on selected attributes (such as gender or ethnicity).
However, other candidates with similar abilities may now be de-ranked
in order to ensure group fairness. Thus, it is crucial that algorithm
designers have the means to explore individual and group fairness.

3.1

We have also identified common ranking analysis and fairness auditing
tasks that could benefit from a visual analytics approach. These tasks
were refined through discussions with our co-authors who are the lead
developers of several recent fairness aware graph mining algorithms.

Analytical Tasks

T1: Define Target Nodes and Groups. Analysts should be able to
specify sensitive attributes and inspect protected groups by defining:
e T1.1: Which portion of nodes are the most important, and;

¢ T1.2: Which attributes are critically important for fairness.

T2: Reveal the Impact of Topological Structures and Attributes
on Ranking Fairness. Analysts should be able to diagnose the algo-
rithmic fairness of graph ranking models by understanding the impacts

of their topological structures and attributes on ranking fairness. Since
the ranking results have no ground truth and are sensitive to changes in
the graph structure [34], a base model is needed as a reference in order
to explain the debiasing impact of a target model. Additionally, group
fairness and individual fairness may have conflicting rule sets. When
comparing models, analysts want to explore:

e T2.1: Which nodes are advantaged/disadvantaged by the model?

e T2.2: Which groups are advantaged/disadvantaged by the model?

T3: Diagnose Content Bias in Ranking Results. Display space is a
bottleneck for showing all individual rankings. For example, Google
searches list approximately 20 records per page, and the higher the
rank, the more clicks. However, records listed on later pages may have
similar relevance to the top ranked pages. This phenomenon has been
studied by Pitoura et al. [26] which noted that content bias may occur
when information is displayed in different ways. There two major
analytical questions when diagnosing content bias:

e T3.1: Which nodes have similar relevance (ranking scores)?

» T3.2: What is each node’s position in the ranking result, and how

likely is it that content bias has occurred in similar nodes?

3.2 Design Requirements

Based on the analytical tasks, we engaged in an agile design process
involving multiple iterations of the FairRankVis framework in collab-
oration with our domain experts. We have identified several design
requirements and mapped different analytic tasks to each requirement.

D1: Visualize the Attribute Compositions of Target Nodes. The
system should support the selection of target nodes from the graph
(T1.1). To enable the inspection of node attributes, the system should in-
teractively visualize the composition of attribute values among selected
nodes and visualize necessary metrics to assist analysts in selecting
attributes for future diagnosis (T1.2).

D2: Visualize the Algorithmic Bias and Content Bias. The system
should visualize both algorithmic bias (T2) and content bias (T3) for
selected nodes and attributes with the following views:

* D2.1: Rank Mapping View, which integrates ranking results that are
mapped from the base model to the target model (T2.1) as well as
the summary of nodes that have similar ranking scores. (T3.1, T3.2)

e D2.2: Group Proportion View, which compares the proportional
difference in terms of analyst-defined groups. The view should
support a global proportion overview and a pair-wise proportion
difference in terms of each group. (T2.2)

e D2.3: Group Shift View, which shows how analyst-defined group
rankings shift from the base model to the target model. (T2.2)



4 VISUAL ANALYTICS FRAMEWORK

Based on the analytic tasks and design requirements, we have developed
a visual analytics framework (Figure 2) to support fairness auditing in
graph-based ranking algorithms. The framework is designed to first
load the graph data and then compute the ranking results using the
analyst selected targeted model and base ranking model (Figure 2 A).
Then the analyst can interactively define the target attributes for fairness
auditing (Figure 2 B). As the definition of group and target nodes are
updated by the analyst, the ranking results are updated across all views
to support bias inspection. Analysts can modify the group definitions
at any time to explore issues of algorithmic fairness.

The framework supports two major functionalities: 1) identifying the
target nodes and groups, and 2) diagnosing potential ranking biases. By
identifying the target nodes and groups, the analyst can select a portion
of nodes according to their specific analytical goals and explore the
attribute distributions. The selected nodes are automatically categorized
by the analyst-defined groups. The analyst can also explore the ranking
results of both the base ranking model and the target ranking model
to explore group/node shifts, proportions, and distributions of similar
nodes. The analyst can flexibly modify the definition of a group at any
time to explore both single and multi-attribute fairness. Our modular
design enables analysts to freely integrate any graph-based ranking
models for use as the target or base model. For demonstration purposes,
we apply PageRank as the base model and AttriRank and a debiased
PageRank (InFoRM) as the target models.

4.1 Background of Graph Ranking Models

AttriRank [16] is a PageRank-based model that uses the topological
information and node attributes to compute the ranking vector r:

r=cQr+(1—c)Pt @
where
6%’ if directed edge(j,i) € E Sij
Pij=q %.if8;=0 0ij = ErevSkj ®

0, otherwise

d; denotes the out-degree of node j, and s;; the degree of similarity with
respect to the attribute values of the nodes. In AttriRank, the Radial
Basis Function (RBF) kernel is defined as the similarity measure:

—x:|12
sij= e~ Nhi—xjl[3 4)

where 7y denotes the distance influence. In this way, external attribute
values are integrated into the ranking procedure which is more robust
for handling nodes that have missing edge information.

InFoRM [18] is a generic individual fairness framework for quanti-
tatively measuring the potential bias in graph mining tasks including
graph ranking, clustering and graph embedding. The InFoRM frame-
work can perform three types of debiasing methods including (1) debi-
asing the input graph, (2) debiasing the graph mining model, and (3)
debiasing the mining result. We employ InFoRM to debias the ranking
results of PageRank to simulate a situation where the debiased model
does not have access to the input data and the model. Mathematically,
this process is realized with the following objective function:

Y* =argminJ = ||Y — ?||% + aTr(YTLsY) Q)
Y

where Y* denotes the debiased ranking result, ¥ denotes the original
ranking result. o > 0 is the regularization parameter, and Lg is the
Laplacian matrix of the similarity matrix $2. This equation minimizes
the sum of the squared Frobenius distance between ranking results and
the regularized tethnicity of the matrix produced by Y7 Lg¥ so that both
the difference of the ranking results before and after debiasing (Y and
¥) and the bias (defined as Tr(Y'T LgY)) are minimized.

2The similarity matrix S uses cosine similarity and Jaccard similarity.

Group data by a single attribute Group data by multiple attributes

Male 50 Male & Ethnicity 1 16
Female 50 Female & Ethnicity 1 34
or
Ethnicity 1 50 Male & Ethnicity 2 34
Ethnicity 2 50 Female & Ethnicity 2 16

Fig. 3. Different group definitions can lead to different fairness insights.
Suppose there are 100 nodes who have similar ranks. If we group
the nodes only by ethnicity or gender, the proportions are equal, which
might imply that the outcome is fair in terms of both ethnicity and gender.
However, if we group the nodes by both ethnicity and gender, we may
find potential inequalities at the intersection of the two attributes.

4.2 Identifying the Target Nodes

Our framework is designed to enable a flexible definition of ranks
and attributes to be considered when diagnosing fairness. Recent
research [8, 35, 37] emphasizes that the top-k elements will receive
more attention, and ranking bias is typically explored with respect
to the top-k ranks. In our proposed framework, a data setting panel
(Figure 1.A) is configured to enable the analyst to select the top-k
nodes. This is facilitated by the Ranking Score Density Histogram
(Figure 1.A.1), which shows the ranking score distribution for the target
ranking model. The analyst can interactively modify the number of bins
by clicking the gear icon, and the histogram supports brush selection to
select a specific ranking range (T1.1). For example, if the analyst cares
about potential biases of nodes who have similar ranking scores, then
the analyst can brush a particular bin on the histogram and all the nodes
within that ranking score range are selected. If the analyst wishes to
select a specific ranking position, a slider is configured to enable the
analyst to select nodes from rank m to n. In this way, the analysts can
explore how attributes are distributed for any specific range of ranks.

4.3 Defining Groups

Once a range of nodes is selected, the analyst is able to explore attribute
information and define groups through the attribute setting panel (Fig-
ure 1.B) and attribute view (Figure 1.C). Recent work [10, 19] suggests
that a general fairness principle is based on whether similar nodes will
have a similar ranking. In other words, defining a group means defining
individuals that are similar. Wang et al. [32] note that the definition of
similarity is not easy to obtain and may vary from task to task. The
wrong definition of similar nodes can lead to wrong conclusions with
respect to bias and fairness. Figure 3 shows a simple example of this
phenomenon: nodes who have similar ranks are distributed evenly if
we only group them by either ethnicity or gender. However, the data
reflects a disproportionate distribution when we group the nodes by
ethnicity and gender. Our framework enables analysts to explore all
available attributes and across combinations of attributes. In our frame-
work, the analyst selects one or more categorical attributes, and each
combination of category is now considered a group. From the example
in Figure 3, if the analyst selects gender and ethnicity, there would be
four groups to be audited for fairness.

Attributes View. To support the interactive definition of groups (T1.2),
we have designed an attribute setting panel (Figure 1.B) and an attribute
view panel (Figure 1.C). The attributes view panel employs a paral-
lel set where each selected attribute is visualized with multiple bars.
Selected nodes are encoded as curves with different widths. Both the
height of bars and the width of the curves encode the number of nodes
mapping to a specific attribute value. Additionally, the distribution of
attributes across the selected nodes is visualized with a histogram (Fig-
ure 1.C.1). We use a light grey color to show the attribute distribution
for the entire dataset, and the dark grey color histogram shows the dis-
tribution of attributes for the selected nodes. The attribute setting panel
(Figure 1.B) enables the flexible selection of one or more attributes
by clicking on the multiple selection area (Figure 1.B.1). All corre-
sponding views including the attributes view (Figure 1.C), the group
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Fig. 4. Final design of the rank mapping view (top). The ranking results of
the base and target model are listed separately. Small squares represent
nodes and are colored with respect to the analyst-defined groups. These
squares are organized into large rectangles, and each rectangle repre-
sents a cluster that contains nodes with similar ranking scores. From top
to bottom, the nodes are ranked from m to n (in the example m =1 and
n =30), and, in a cluster, the nodes’ ranks from high to low are mapped
from left to right. Each cluster from the base model is connected to a
corresponding cluster in the target model by a grey line when they share
the same node(s). Alternative design (bottom). Each rectangle is a node
ranked from m to n displayed vertically. The left column shows the ranking
results of the base model, and the right column shows the ranking results
of the target model. Each node is connected to its counterpart by a grey
line to illustrate how the ranking changes between models. The color
of the bar maps to the analyst-defined group. The pie chart shows the
proportion of groups in a cluster containing nodes with similar ranking
scores and is proportional to the number of nodes.

table view (Figure 1.D), the rank mapping view (Figure 1.E), the group
proportion view (Figure 1.E.3) and the group shift view (Figure 1.E.4)
are automatically updated as the selected attributes are changed. Since
group fairness is most often based on categorical attribute values, we
also include a customization feature that allows analysts to categorize
attributes that may have continuous values. For example, protected
classes for age are often grouped into ranges, e.g. under 18, 65+, etc..

We also provide another histogram (Figure 1.B.3) to facilitate the
comparison of distribution similarities on selected attributes between
selected nodes and the entire dataset. The metric for measuring dis-
tribution similarities can be customized based on the analysts’ needs.
Currently, the framework supports Kullback-Leibler divergence for
demonstration purpose. The height of the bars are mapped to the dif-
ferences of the between the distributions of the selected nodes and the
entire dataset on a specific attribute.

4.4 Diagnosing the Ranking Biases

Once the nodes are selected and sensitive attributes defined, the cor-
responding groups are automatically generated, assigned a label and
unique color, and displayed in the group table (Figure 1.D). Once
groups are defined, the fairness audit can begin. Here, it is important
to note that biases in machine learning models can arise due to issues
with the Data and/or issues with the Model.

Diagnosing Data Bias. Real-world data can be either insufficiently
sampled or reflect existing prejudices. Thus, it is inappropriate to ask

Algorithm 1 Clustering Similar Ranking Scores

—

: Inputs: similarity threshold §; selected nodes V;

2: Outputs: clusters C with maximum ranking score difference d < &
3: for k in range (1, V.length) do

4 C < kmeans (k7 V)

5: if d. <= 6,Vc € C then

6: return C

7: end if

8: end for

9: Return C

models to be fair when being optimized on biased data. In terms of
graph ranking, it is critical to understand how groups are distributed
prior to applying a debiased ranking model. Our system first ranks
the data with what we refer to as the base model. For demonstration
purposes, we employ PageRank as the base model. Exploring the base
model can help reveal the underlying topological features of the data.
What we are interested in is if there are already signs showing dispro-
portional distributions for each group. From the base model ranking,
we can explore whether certain groups have higher ranking scores than
others. For example, if the base model (PageRank) shows that when
evaluating node ranking based on gender, nodes that are marked as male
are ranked relatively higher than female nodes, then other PageRank-
based models are very likely to observe a similar distribution between
the male group and the female group. In this case, the gender bias is
not inherited from the model but the data.

Diagnosing Model Bias. Our framework supports diagnosing three

types of bias: Content (T3.2), Group (T2.2) and Individual Bias (T2.1).

1. Content Bias. In real-world applications, a full ranking of millions
of items simply cannot be displayed, and is typically culled to some
top-k rank. In this setting, even the nodes who have the same ranking
scores can have a large difference in ranking positions, and this
problem is referred to as content bias. For example, imagine a list
of items where the second through the seventh item have identical
ranking scores. The method of display implies inequality in ranking
even though ranks two through seven have equal ranking scores.
Here, the implicit ordering can lead to significant differences in their
exposure rates. To help analysts explore this phenomenon, we group
nodes into clusters based on their ranking scores (T3.1). Algorithm 1
shows the k-means-based clustering algorithm. The idea of the
clustering algorithm is to group as many nodes as possible into a
cluster such that the maximum difference between ranking scores
in this cluster is less than the analyst-defined similarity threshold.
The algorithm outputs the minimum number of clusters to satisfy
the analyst-defined rules of similar ranking scores. The analyst can
inspect the cluster for signs of possible content bias.

2. Group Bias. Many fairness metrics have been proposed for mea-
suring group fairness [10, 14]. These methods attempt to measure
the degree of discrimination or bias [27]. However, there is no
single term that universally represents bias. We denote group bias
as the bias that reflects the ability of the model to achieve statistical
parity between groups, where a group is defined with respect to
the analysts’ selected sensitive attributes. The goal of the frame-
work is to enable analysts to audit whether the ranking results of
a model exhibit direct or indirect preferences towards one or more
groups, resulting in lower ranking scores for the disadvantaged
groups. Compared with the content bias, where disadvantages can
be due to display constraints, group bias can be mitigated algorith-
mically. To observe the impact on groups’ ranking between the base
and the target model, we formalize the ranking changes for each
group by computing the average ranking position change (T2.2):

1
Ag = ;EVEVV,vEg(r{;*”vL (6)

where A, is the average ranking change of group g among selected
nodes Vj, 7, is the ranking position of node v in the target model,
ry is the ranking position in the base model, and #n is the number of
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Fig. 5. Final design of the group proportion view (top). The bar chart on
the top shows the average ranking change of each group. The color of
the bar encodes the identity of the group. The bar chart on the bottom
shows the distribution of group members in the base and target model.
The x-axis maps to the ranking position of selected nodes. Alternative
design (bottom). Two axes on the left and right represent the group
proportion of the base and target model colored by group.

nodes in both the selected nodes and group g.

3. Individual Bias. Individual bias represents how the model guaran-
tees that nodes with similar attributes will receive similar rankings.
It is important to understand if individual nodes have been “sacri-
ficed” or privileged by the model in order to reduce group bias. To
help analysts explore the individual biases among selected nodes, we
label the selected nodes as advantaged/disadvantage nodes accord-
ing to their ranking position changes (increase/decrease) between
the base and target model (T2.1).

Rank Mapping View. The rank mapping view (Figure 4 (top)) consists
of two columns of stacked rectangles, where the left column shows
the ranking results of the base model, and the right column shows the
ranking results of the target model. For each column, small squares that
represent nodes of the analyst-defined groups are organized into large
rectangles, where each rectangle represents a cluster (from Algorithm
1) that contains nodes with similar ranking scores (T3.1, T3.2). From
top to bottom, the nodes are ranked from m to n, and in a cluster, the
nodes are mapped from left to right according to their rank (high to
low). Each cluster from the base model is connected to a corresponding
cluster from the target model by a grey line when they share the same
node(s), which illustrates how the ranking of this node changes between
models (T2.1). The color of the square maps to the analyst-defined
groups. In this example, we can observe that members in group 1 have
a relatively higher rank position than those in group 2 from the top-1
to top-10 ranks, In Figure 4 (top), we can observe that there are four
nodes belonging to a cluster with a ranking score from the base model
ranging from 0.123 to 0.124. Three of the nodes are in group 1, while
only one is in . The node from has been ranked in the
sixth position. This means that even though their ranks are functionally
equivalent, the node belonging to will likely have a lower
exposure rate than equivalent nodes in group 1, indicating that content
bias may occur. An alternative design is shown in Figure 4 (bottom).

Such phenomena can be significant when the size of the cluster
is larger. Imagine a cluster with 30 nodes whose ranking scores are
functionally equivalent. The 30th node is so far below the 1st node of
this cluster that the differences in exposure are extremely uneven. Such
content bias is inevitable given the traditional ranked list displays in
real-world applications; however, the analyst should at least be aware
of any content bias and can consider modifications to the display list
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Fig. 6. Final design of the group shift view (top). The bar chart on the left
shows the average ranking change of each group. The color of the bar
encodes the identity of the group. The bar chart on the right shows the
distribution of group members in the base model and target model, where
the x-axis maps to the ranking position of selected nodes. Alternative
design (bottom). We employ two box plots to show the ranking distribution
in the base model and the target model respectively. A colored rectangle
highlights the distributed nodes from the first quartile to the third quartile,
where the color is encoded as an analyst-defined group. We link the
median of the distribution of a given group from the base model to the
target model and color the line with light green/red if the median rank
increases/decreases.

to adjust for such biases. There are also switch buttons that allow the
analyst to highlight advantaged/disadvantaged nodes (Figure 1.E.5),
and analysts can hover on a single node to see the same node in the
ranking result of another model. The tooltip is used to show node
attributes on mouseover. If analysts click on a single node, the view will
highlight all nodes in the corresponding cluster and their corresponding
ranking positions in the debiased model.

Group Proportion View. The group proportion view is designed to
illustrate the target ranking model’s effects on each group’s proportion
(T2.2). The group proportion view consists of two sets of bars and each
set shows the composition of selected nodes sorted by both ranking
models respectively (Figure 5 (top)). To facilitate inspection, we sup-
port switching the view mode between the proportion mode and the
comparison mode. The proportion mode displays the stacked bars to
summarize the overall group distribution of the selected nodes, while
the comparison mode supports a direct comparison of group propor-
tions between models. In other words, the comparison mode helps
analysts perform pair-wise comparisons of the same group proportions
between different models. Analysts can toggle between the proportion
and comparison mode by using the switch button on the right side of the
title bar of the rank mapping view (Figure 1.E). An alternative design
(that was ultimately discarded) is shown in Figure 5 (bottom).

Group Shift View. The group shift view (Figure 6 (top)) is designed
to inspect both group bias (T2.2) and individual bias (T2.1). For group
bias, the bar chart on the left shows the average ranking change of each
group. The color of the bar encodes the identity of the group. The
bar chart on the right shows the distribution of group members in the
base model and target model, and the analyst can diagnose group shifts
in selected nodes to understand the corresponding fairness trade-offs
between models. For individual bias, analysts can hover on the squares
of the ranking mapping view to trigger the highlighting of that node on
the right side of the group shift view. This can help analysts explore if
individual bias occurs when applying debiased algorithms to achieve
group fairness. An alternative design is shown in Figure 6 (bottom).



Interactions. Our framework employs multiple coordinated views to
allow analysts to inspect group, individual, and content biases. These
views are supported by a set of rich interactions. The selection of data
in the data summary view (Figure 1.A) directly updates the content
of the attribute view (Figure 1.C) and the rank mapping view area
which includes the group proportion view and the group shift view
(Figure 1.E). The attribute view (Figure 1.C) is dynamically updated
based on selected attributes in the attribute setting panel (Figure 1.B),
and selections in the attribute setting panel also updates the colors of
the entire system as the colors encode the analyst-defined groups. For
the rank mapping view (Figure 1.E), analysts can adjust the similarity
threshold slide bar to define how nodes are clustered based on the
ranking scores, and analysts can toggle advantaged/disadvantage nodes
to highlight nodes that have the rank increase/decrease. Analysts can
also hover over squares in the rank mapping view to highlight and
locate the node’s position in both the vanilla and debiased algorithm,
and tooltips are used to provide details of the node attributes. Along
with hovering, analysts can also click on a node to show how the
ranking positions of all nodes in the cluster change from the base model
to the target model. Finally, analysts can toggle the comparison model
to enable pairwise comparison between models, Figure 1.E.5.

5 USAGE SCENARIOS AND EXPERT REVIEW

In this section, we present two usage scenarios to demonstrate how
our framework supports fairness audits in graph-based ranking mod-
els. We first show how graph ranking model developers analyze the
potential bias in AttriRank model. Next, we illustrate how fair ranking
model developers inspect the trade-off by applying a debiased ranking
model (InFoRM). Finally, we report on an expert review of the system
conducted with four domain experts.

5.1 AttriRank Bias Inspection on Facebook

In social network analysis, ranking algorithms utilize an account’s
topological structure and demographic information for a variety of
tasks including link prediction [12], advertising [15] and recommen-
dation [13]. Biases in rankings can have a huge impact with regard to
content exposure, personal opportunities, and business strategies. As
such, auditing the ranking algorithms used in such systems can help
analysts understand whether the ranking results can comprehensively
be considered to be unbiased under a variety of fairness definitions.
For example, in the recommendation-based social network application,
if accounts of male users are more likely to be recommended than
female users, those male users will have more opportunities for content
exposure and networking opportunities. Even in the case where male
and female users have equal rankings, their level of exposure might
still be affected by the ranking position arrangement. Here, content
bias can effectively drive more clicks to the top-1 account, when, in
reality, the top-10 account may have an equal ranking. Furthermore,
when exploring group-level fairness, single attribute fairness audits
may show that results are balanced. However, the intersection of sensi-
tive attributes, e.g. gender, ethnicity, age, might reveal further biases
in the rankings as it is possible for a ranking model to learn biased
patterns both implicitly or explicitly so that certain groups are treated
with advantages while others are disadvantaged. In this usage scenario,
we audit AttriRank [16] when applied to a Facebook social network
dataset [22]. The data is subsampled to a subgraph with 734 nodes
and 74254 edges. Each node has 24 attributes that describe the demo-
graphics of a user. All identifiable information is anonymized and some
attribute values are suppressed. In this usage scenario, we assume that
the model developers have no prior knowledge about the data.

Identifying the Target Nodes and Groups (T1): The data setting
view displays the ranking score density distribution (Figure 7.1.a). The
majority of the nodes have a ranking score ranging from 0.0017 to
0.0020. The analyst selects the top-25 nodes to explore the results
of AttriRank. The analyst inputs 25 into the right-hand input box of
the ranking range section, and the bottom of the data setting view
shows the information of the selected nodes. Next, the analyst explores
the attribute distributions in the attributes view and see that attributes

political and region have been suppressed for the majority the nodes.
The analyst chooses to remove such attributes from the analysis. Among
the top-25 nodes, the analyst finds that there are two attributes with
heavily non-uniform distributions: (1) the ratio of the gender value,
which has two classes - feature 78 and feature 77, and the ratio
between the two classes is 88% to 12% respectively. (2) The locale has
five classes, and the selected nodes with the locale value of feature
127 make up a greater portion of the dataset than other locale values
(Figure 7.3). The analyst then select gender and locale to serve as the
sensitive attributes that form the basis of our fairness audit.

Diagnosing the Ranking Biases (T2): After selecting gender and
locale as the criteria for defining target groups, all possible groups are
generated and displayed in the groups view as shown in Figure 7.4.
Among the 6 generated groups, the analyst identified that group 78127
(gender value feature 78 and locale value feature 127) has 16
members in the top-25 ranks, thereby occupying the majority of the
top-k ranks. Given the disproportionate representation by group 78127,
the analyst decides to further explore the effects that AttriRank had on
the ranking distributions compared with the base model (PageRank).
By exploring the group proportion view (Figure 7.5.a), the analyst
observes that group 78127 was also disproportionately favored in the
top-25 rankings by the base model, PageRank. This indicates that
the reason that the nodes in group 78127 have a higher rank is due
to their topological features as opposed to the attribute rank based
adjustments from AttriRank. The group proportion view also shows that
the proportion for each group in the top-25 rankings saw no significant
changes between the PageRank and AttriRank rankings, with only
and group 78127 seeing small changes in representation.
Next, the analyst inspects for content bias in the ranking results
(Figure 7.6). Here, the analyst considers nodes with ranking scores
that are within € = 0.0005 of each other to have the same rank and sets
this threshold number as the similarity threshold. By inspecting the
rank mapping view, the analyst observes that the top-25 nodes can be
grouped into 5 clusters for both PageRank and AttriRank. The top-3
nodes have substantially different rankings and form 3 unique clusters
in both ranking models. For the remaining clusters, two clusters (the
fourth ones) of both models in Figure 7.6.a and Figure 7.6.b cover
the same ranking score range from 0.0024 to 0.0027. In other words,
nodes in these clusters have approximately the same relevance or utility.
However, their ranking positions range from 4th to 9th in PageRank
and 4th to 10th in AttriRank, indicating that content bias is occurring
and it is slightly more pronounced in AttriRank than PageRank.
Finally, the analyst inspects the effect of AttriRank’s behavior on the
top-25 nodes. By exploring nodes of rank mapping view (Figure 7.6.c),
the analyst finds that node 1199 experiences a significant ranking drops
from 11th to 21, which indicates that the AttriRank sacrifices the node
during the ranking process, which may lead to individual bias. From
the group shift view (Figure 7.5) the analyst also observes that the
group 78127 is the only group that has an average ranking decrease.
AttriRank is designed to adjust rankings such that nodes with similar
attributes have similar ranking scores; however, this optimization may
bias the results towards specific groups. Thus, auditing tools, such as
FairRankVis, can help analysts evaluate tradeoffs between algorithms,
inspect for biases, and audit fairness definitions.

5.2 InFoRM Bias Inspection on Sina Weibo

In the second usage scenario, the analyst compares a debiased rank-
ing model (InFoRM [18]) to the vanilla version (PageRank [23]) and
explores tradeoffs between individual and group fairness. Overempha-
sizing group fairness can propagate issues of individual fairness, and
it is difficult to balance the ranking positions to guarantee both group
fairness and individual fairness. As such, it is necessary for model
developers to understand the trade-offs of a debiased ranking model
when applied to a given dataset. Here, the analyst explores a social net-
work dataset collected from Weibo [1] where each node consists of four
social attributes (gender, fans, account level, and location) about the
demographic information of a Weibo user. For demonstration purposes,
we subsampled the data down to 781 nodes and 2315 edges. Again, the
analyst has no prior knowledge about the dataset.
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Fig. 7. AttriRank Bias Inspection on Facebook. (1) We select the top-25 nodes with ranking scores ranging from 0.002105 to 0.005230. (2) We avoid
selecting attributes that are suppressed for most nodes, and choose to use gender and locale as our sensitive attributes to divide nodes into groups.
(3, 4) We notice that the group 78127 in which members have gender value feature 78 and locale value feature 127 has the largest proportion,
and (5) the group proportion view shows that a large portion of group 78127 is found in the top-k ranking results from both models. (6) From rank
mapping view, we find that cluster (6.a) and (6.b) contains nodes with similar ranking scores from 0.0024 to 0.0027, while these nodes have different
ranking positions the difference in ranking scores is less than the analyst-defined threshold € = 0.0005, which has implications for content bias. (6.c)
Finally, we find that node 1199 experiences a large ranking drop from 11th to 21st, which has potential implications for individual fairness. For group
bias, we find that group 78127 in the group shift view (6.c) was negatively influenced by AttriRank, with the average ranking and top-k proportion

decreasing when compared to their rankings from PageRank.

Identifying the Target Nodes and Groups (T1): After the models
and the dataset are loaded, the analyst inspects the Ranking Score Den-
sity Histogram and observes that the nodes are concentrated at a ranking
score of around 0.0073 (Figure 1.A.1). The analyst is interested in how
top-k nodes with different ranking scores are affected by InFoRM. The
analyst selects the top-50 nodes as the target nodes. In the data setting
view (Figure 1.A.2), it can be observed that most of the ranking scores
for the selected nodes lie in the range between 0.004025 and 0.055131.
Then, the analyst explores the attributes in the attributes view. Here,
the analyst observes that the proportions of males and females are
nearly identical, i.e., 50%:50% (Figure 1.C.2). However, the global
gender distribution on the entire dataset shows a completely different
pattern where the proportion of females is larger than males (Fig-
ure 1.C.1). Next, when inspecting the attribute fans, which describes
the number of followers for the user, the attributes view shows that
the majority of users (88%) have over 10 thousand followers, resulting
in mismatched distributions between the selected group and the entire
dataset (Figure 1.C.2). Since these two attributes show contrasting
proportions between the full dataset and the top-50 nodes, the analyst
decides to explore the ranking effects of nodes who have the same
gender class and the same fans class. The group table view shows that
there are 8 groups generated by this split, and the analyst finds that
the nodes with more than 10 million followers have the largest
population in the top-50 rankings (Figure 1.D). Furthermore, most of
the female users (82.61%) and the male users (55.56%) who have
more than 10 million followers appear in the top-50 user list.

Diagnosing the Ranking Biases (T2): To further understand how
groups are affected by a debiased ranking model which focuses on
maintaining individual fairness, the analyst first inspects how groups
are distributed among the top-k nodes. By exploring the group shift
view (Figure 1.E.6), the analyst observes that the group 13 (representing
female users who have more than 10 million followers) tends to
have higher rankings than (representing male users who have
more than 10 million followers). The analyst wonders whether

it is the target model that favors group 13 by increasing the ranking
scores of the nodes in group 13. By observing rank mapping view
(Figure 1.E.2), the analyst finds the group 13 also has higher rankings
than the when nodes are ranked by the PageRank model. This
indicates that group 13 is not favored by the target model.

The analyst further inspects the changes of the group’s proportions
in the group proportion view (Figure 1.E.3), and the analyst observes
the proportion of groups are quite similar between ranking results in
PageRank and those in InFoRM. By toggling the comparison mode
to enable pair-wise comparison, the analyst finds that the proportion
of group 13 has slightly increased, and the proportion of group 00
(representing male users who have followers between 10 thousand and
1 million) slightly decreased. Other groups distribution across the top-
50 rankings maintain relatively the same proportion. When observing
the group shift view, the analyst finds that ’s average ranking
decreased by 1 position and (representing male users who
have less than 10 thousand followers) increased by 2 positions.

Here, the analyst wants to inspect the content bias of the ranking
results from the target model. By tweaking the similarity threshold,
the analyst finds that given the similarity threshold 0.0035, the top-50
nodes are clustered into 6 clusters (Figure 1.E.1) and each cluster has
relatively more nodes compared with clusters of the base model. This
indicates that the debiased ranking results tend to manipulate nodes to
have similar ranking scores and reduce the potential for individual bias.
However, this results in a larger content bias.

5.3 Expert Review

To further evaluate our framework, we conducted an interview with our
collaborators (EO, E1), two domain experts (E2, E3) in graph mining
and two domain experts (E4, E5) in machine learning and artificial
intelligence. For the interview, we first introduced our system by
describing the analytical tasks supported in the framework. We then
demonstrate the components of our framework by walking through one
of the two usage scenarios described in Section 5.1 and 5.2. Finally,
the experts were allowed to freely explore the two datasets in the usage



scenarios. The duration of the interview was approximately 90 to 100
minutes. On average, experts spent approximately 7 to 10 minutes
to master the system and were able to explore bias information based
on their own. All experts were able to fully understand the major
functionalities of the system by asking a few questions during the
exploration phase. After the free exploration stage was finished, we
collected feedback from the experts using the following questions:

1. How well are the proposed analytical tasks supported? (Q1)

2. What are the traditional ways of addressing such tasks in conven-
tional fairness audits of graph mining models? (Q2)

3. How effective is this framework in supporting fairness audits? (Q3)

4. How would the framework fit into your development circle? (Q4)

5. Rate the user experience from 1 to 5 (poor to good) considering the
views, interactions and effectiveness of the workflow. (Q5)

Framework: We received positive feedback on the overall design of
the framework. The experts noted that it is necessary to have such
a framework to explore and identify fairness issues in graph mining
models. EO and E1 considered that the flexibility in defining target
nodes and groups vastly facilitates the task-oriented analysis by swap-
ping the nodes and groups on the fly. E1 appreciated the design of
the rank mapping view, especially the support for individual-level bias
inspection. “Usually, only an aggregated measure is reported for the
individual biases on all the nodes in a graph, and we also have to
visualize the biased result for each node to fully obtain the information
of individual bias (Q2). With the help of interactive visualizations,
we can clearly observe the biases for each node in a detailed manner,
which benefits the in-depth analysis and reasoning of fairness issues
in different ranking algorithms. (Q3)” E2 and E5 appreciated that
the framework fits the general process of fairness auditing since the
fairness issues have attracted much attention; however, the definition
of fairness is subjective and context-dependent. Thus, by enabling an
interactive definition of sensitive attributes, this framework can support
a quick reanalysis of fairness under different constraints. (Q4)
Visualizations: The experts all agreed on the effectiveness of the
visualization design in our framework (Q1). They noted that the combi-
nation of rank mapping view, group proportion view and group shift
view can illustrate the impact of the ranking models on defined groups
and nodes. E2 noted that the two modes of the group proportion
view can reveal information in both group proportions and group-wise
comparisons between models. E3 appreciated the design of the rank
mapping view which depicts both individual bias and group bias si-
multaneously. “This view could assist us in checking how effective the
debiasing methods can be. The result can be easily observed in the rank
mapping view.” The average score for the user experience question is 4
out of 5 (with the lowest score being a three and the highest a 5) (Q5).
Experts agreed that the workflow is clear and were enthusiastic about
the ability to flexibly define protected groups.

Limitations: The experts also offered several suggestions for improve-
ments to the framework. EQ discussed the possibility of supporting
comparisons between more than two models. “This can speed up the
fairness-oriented model selection procedure if a number of models can
be compared and analyzed at once.”. E2 recommended that for groups
in the rank mapping view, the details of the advantaged and disadvan-
taged nodes can be queried. For example, the analyst would like to
highlight specific nodes in a group. E3 and E4 found the interface to be
initially challenging, and these experts required the longest amount of
time for training (10 minutes). They also often needed a reintroduction
to views, and ES commented that the framework has a relatively high
learning curve for analysts who are not in the field of graph mining. ES
suggested adding information panels for each view may, and we have
updated the system to incorporate this. Each view now contains a small
question mark that provides a description of the view on mouse-over.
Scalability: Other limitations include the scalability with respect to
computational complexity, visual elements and color encoding.
Computational Complexity: Our framework utilizes pre-computed data
to show the analytical results. The pre-processing time varies as the
data is computed by different ranking models and the time complexity
depends on the linear system solver. In the usage scenarios described

in this paper, pre-processing took 3 minutes for the Weibo dataset and
4 minutes for the Facebook dataset. Although the framework is able to
support larger-sized data, we chose to subsample all data in our usage
scenarios to be compatible with the limited memory configurations
of a generic desktop. Another computational bottleneck occurs in the
clustering algorithm (Algorithm 1) applied in our Rank Mapping View
(Figure 4). The overall complexity of Algorithm 1 is O(n3), where 7 is
the number of selected nodes. Although the clustering algorithm is only
applied to the selected data, the performance will suffer if the number
of selected nodes becomes large. However, most ranking audits are
primarily concerned with a relatively small number of the top-k ranks
as beyond a certain k, nodes typically remain unexplored in practice.
Number of Visible Elements: Since the analyst can define the range of
ranking scores to audit, this could result in hundreds of nodes being
selected. Although we provide a cluster-level abstraction with Algo-
rithm 1, it could still result in an extremely long list that exceeds the
canvas size of the rank mapping view. A possible solution is to further
aggregate the nodes in the same cluster into a glyph. A similar issue
occurs in the group creation as well, where the combination of sensitive
attributes used to define a group could result in hundreds of groups.
This would ultimately affect the rank mapping view where too many
groups segment the axes into many tiny pieces and cause visual clutter.
Interactive filtering on the attribute axes can be adopted to temporarily
remove the inessential value ranges. Given that most ranking results
on the web show a top-10 or top-20 group, our current design seems
reasonable for auditing fairness within the top-ranked elements.

Color Encoding: The categorical color encoding is shared between all
the views in our framework to represent different groups. One issue is
that due to the limit of available colors in the color scheme, the max-
imum number of displayed groups may not exceed 10. However, for
groups, as the number of sensitive attributes chosen expands, the num-
ber of nodes that belong to a specific group becomes very small, and
issues of fairness at this level may be artifacts of under-representation
in the data. After discussing with our experts, general practice is to start
with one sensitive attribute (e.g., gender), explore issues of fairness.
Switch to another sensitive attribute (e.g., ethnicity), and then explore
the combination of these two attributes. Our experts greatly appreci-
ated the ability of our framework to support a multi-class definition
of fairness. They did note that the number of groups being audited
could quickly become unwieldy; however, they felt this design likely
would fall into the 80% solution category, where the majority of fair-
ness definitions would not be covering hundreds of protected groups.
One feasible way to reduce the number of visible groups is to provide
an extra list for preliminary group filtering and selection.

6 CONCLUSIONS

In this work, we propose a visual analytics framework for exploring
and diagnosing algorithmic fairness in graph mining models. The visu-
alization components of the framework are implemented with D3.js [5].
The backend is supported by the NetworkX library 3 and Python Flask*.
The source code is currently available on Github®. In the future, we
plan to extend our framework to reveal potential fairness issues in other
types of graph mining models, such as graph embedding, clustering,
and classification. We also plan to support the comparisons of ranking
results between the base model and more than one target model to
facilitate fairness-oriented model selection.
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