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Abstract
Massive multiple-input multiple-output (mMIMO) 

is a critical component in upcoming 5G wire-
less deployment as an enabler for high data rate 
communications. mMIMO is effective when each 
corresponding antenna pair of the respective trans-
mitter-receiver arrays experiences an independent 
channel. While increasing the number of anten-
na elements increases the achievable data rate, at 
the same time computing the channel state infor-
mation (CSI) becomes prohibitively expensive. In 
this article, we propose to use deep learning via a 
multi-layer perceptron architecture that exceeds the 
performance of traditional CSI processing methods 
like least square (LS) and linear minimum mean 
square error (LMMSE) estimation, thus leading to 
a beyond fifth generation (B5G) networking par-
adigm wherein machine learning fully drives net-
working optimization. By computing the CSI of 
all pairwise channels simultaneously via our deep 
learning approach, our method scales with large 
antenna arrays as opposed to traditional estima-
tion methods. The key insight here is to design the 
learning architecture such that it is implementable 
on massively parallel architectures, such as GPU or 
FPGA. We validate our approach by simulating a 
32-element array base station and a user equipment 
with a 4-element array operating on millimeter-wave 
frequency band. Results reveal an improvement up 
to five and two orders of magnitude in BER with 
respect to fastest LS estimation and optimal LMMSE, 
respectively, substantially improving the end-to-end 
system performance and providing higher spatial 
diversity for lower SNR regions, achieving up to 4 
dB gain in received power signal compared to per-
formance obtained through LMMSE estimation.

Introduction
Large antenna arrays are revolutionizing wireless 
communications and sensing, with manifestations 
in programmable surfaces, gesture monitoring, 
and high rate data delivery through incorporation 
in the form of massive multiple-input multiple-out-
put (mMIMO) systems. Already envisaged as a key 
component of 5G, mMIMO utilizes a number of 
antennas that can be one to two orders of magni-
tude higher than the classical MIMO WiFi access 
points and LTE base stations (BSs) available today. 
However, despite the significant advances in edge 
computing capabilities, there are practical chal-
lenges in processing needs associated with such 
large antenna arrays. This article is motivated by 

our desire to decouple the scale of deployment 
with the limits of classical processing, especially as 
it pertains to the task of understanding the channel 
between a given antenna-receiver antenna-element 
pair for millimeter-wave (mmWave) communi-
cation. We accomplish this via training a deep 
learning (DL) architecture that offers the ability to 
produce a robust and high fidelity channel matrix 
between the mobile user and the mMIMO BS in 
a single forward pass. Since the overhead of the 
DL-based channel estimation becomes irrespective 
of the size of the antenna array, we believe this 
approach will enable a fundamental leap toward 
beyond 5G (B5G) standards where thousands of 
coordinated antennas will become the new norm. 
Emerging B5G networks are envisioned to support 
edge computing, which will enable rapid optimiza-
tion and reconfiguration of the network architec-
ture. This is a critical first step toward supporting 
requirements of emerging high-bandwidth and 
low-latency applications. Machine learning (ML) 
and artificial intelligence (AI) algorithms running 
at the edge computing servers help to (i) scale 
the optimization problem without proportional 
increase in complexity and (ii) enable fast response 
close to the BS, thus meeting strict demands of a 
time-varying wireless channel. We believe our use 
case of DL-enabled mmWave mMIMO demon-
strates the need for tightly integrating AI into 
emerging wireless standards, which remains a gap 
even in the ongoing 5G rollout today.

Challenge in Channel Estimation
Channel estimation is the first step in the larger 
processing chain associated with decoding the 
data packet. Its objective is to identify the com-
plex signal transformation imposed on the emitted 
wireless signal by the channel, and this is inferred 
via special information bits embedded in the pack-
et preamble. For a spatially multiplexed system, 
this complex transformation is captured via the 
so-called channel state information (CSI). Knowing 
the CSI allows the transmitter to perform addition-
al precoding functions that maximize the signal 
energy in the direction of interest. Thus, delayed 
computation of CSI, or worse, an incorrect com-
putation can quickly degrade the performance in 
systems like mMIMO, where the CSI computation 
needs to be repeated several dozen times.

In the context of the B5G use case we explore 
in this article, we consider time-division duplexing 
(TDD) for mMIMO and assume that the channel 
varies slowly (coherence time of 10–100 ms [1]). 
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In this regime of operation, two phases involving 
the BS and user equipment (UE) precede down-
link transmissions: Channel Sounding, in which 
the UE performs CSI estimation for the complete 
MIMO channel and sends it back to the BS, and 
Data Transfer, in which the BS uses the received 
CSI estimation to compute precoding weights for 
directional beams. Thus, the CSI estimation must be 
completed quickly in order to allow both the Chan-
nel Sounding and Data Transfer phases to be com-
pleted within the channel coherence time. Such a 
hard threshold on timeliness ensures that the BS 
can turn around its radio front-end and leverage 
channel reciprocity for the downlink transmission. 
Furthermore, by focusing on reducing the overhead 
associated with the CSI estimation step, it may be 
possible to reduce the Channel Sounding phase. 
This in turn will allow more data to be transferred 
in the given channel coherence time, ultimately 
increasing the overall throughput of the system. 

solutIon overvIeW
Our proposed approach of using DL aims to 
address the above issues by constructing a chan-
nel estimator that is able to obtain the complete 
MIMO channel matrix by processing the incoming 
preambles in a single forward pass, irrespective of 
the number of antenna elements involved in the 
system. For downlink, the BS sounds the channel 
by using a reference transmission, which allows 
the UE to estimate the channel using the proposed 
DL block. The UE transmits the channel estima-
tion information back to the BS for calculation of 
the precoding needed for the subsequent data 
transmission. We generate the dataset in MATLAB, 
which we also release along with the simulation 
code to accelerate further research on this topic.

the benefIt of deep leArnIng
Our goal is to leverage the massively parallel 
nature of a type of DL called deep neural net-
works (DNNs). Specifically, the key idea behind 
our proposed method is to estimate each of the 
sub-channels in the mMIMO channel matrix inde-
pendent from each other. We do so by exploit-

ing similarities in channel dynamics across spatial 
dimension and using an efficiently tuned DNN 
model whose weights are trained in order to be 
shared across the entire antenna array. Thus, we 
aim to retrieve the complete three-dimensional 
CSI matrix, where each dimension corresponds 
to the number of receiver antennas, the number 
of transmitter antennas, and the number of usable 
sub-carriers, by grouping all the received pream-
bles in a single batch and processing it in a sin-
gle forward step, as shown in Fig. 1. We design a 
compact multi-layer perceptron (MLP) with only 
three hidden layers to jointly exploit the hierarchi-
cal representational power of DNNs while keep-
ing the execution time associated to its forward 
step low. To further reduce the computational 
burden associated with channel estimation, we 
train our model by taking as input the received 
time-domain preamble sequence, avoiding com-
pletely the prior demodulation step in orthogonal 
frequency-division multiplexing (OFDM) systems. 
The model is trained in a regression fashion in 
order to predict for each mMIMO sub-channel 
the CSI in the frequency domain for the com-
plete set of OFDM pilot and data sub-carriers. 
This allows learning directly a mapping from the 
time-domain signal to its correspondent CSI in the 
frequency domain. The proposed DNN model 
architecture is presented later.

By training the model on true CSI values 
obtained at high signal-to-noise ratio (SNR) level, we 
observe that the proposed method generalizes well 
for low SNR scenarios and outperforms the practi-
cal least square (LS) estimation in terms of accura-
cy, while approaching or exceeding performance 
of linear minimum mean square error (LMMSE) and 
improving the end-to-end system performance in 
low SNR regimes, critical for frequencies above 6 
GHz band such as mmWave or THz bands.

Moreover, to fully take advantage of this 
data-driven approach and increase robustness 
of the DL pipeline, we add a denoising training 
step, in which we apply controlled additional white 
Gaussian noise on the training samples.

summAry of contrIbutIons
• We propose a deep-learning-based CSI estima-

tion method for mMIMO that incurs a fixed 
computational cost, irrespective of the number 
of antenna elements, by exploiting the inherent-
ly parallel nature of DNNs.

• We discuss the limitations of traditional esti-
mation techniques and compare the infer-
ence time complexity of the state of the art 
in DL-based channel estimation with the pro-
posed approach, demonstrating its suitability 
for edge applications.

• We validate the performance of CSI estimation 
by simulating downlink transmissions between 
a BS with NT = 32 uniform rectangular array 
(URA) antennas and a single UE equipped with 
NR = 4 uniform linear array (ULA) antennas.

• By focusing on low SNR conditions, our denois-
ing training approach allows better accuracy 
for CSI estimation, approaching or exceeding 
the end-to-end performance of an LMMSE esti-
mator. Thus, our method matches one of the 
most accurate estimators for this problem, but 
eliminates the computational burden that limits 
the deployment of LMMSE.

FIGURE 1. Overview of deep-learning-based channel estimation for B5G mas-
sive MIMO.

𝑁𝑁𝑅𝑅

Estimated CSI

Estimated CSI

mMIMO
Base Station

⋮

Channel 
sounding 

frame

OFDM 
Rx

OFDM 
Rx

Channel
Estimation

Channel
Estimation 𝐾𝐾

𝑁𝑁𝑅𝑅

⋮
⋮
⋮

Φ1

Φ𝑁𝑁𝑇𝑇

𝑁𝑁𝑇𝑇

𝐾𝐾

𝑁𝑁𝑅𝑅

Trad. Channel Estimation

Deep Learning Channel Estimation

Φ𝑛𝑛𝑇𝑇: Orthogonal sequence of length 𝑁𝑁𝑇𝑇 for 𝑛𝑛𝑇𝑇 − th transmit antenna
𝑇𝑇𝑃𝑃: Number of time domain samples in the channel sounding frame

𝐾𝐾

𝑁𝑁𝑇𝑇

1

𝑁𝑁𝑅𝑅

1

1

𝑁𝑁𝑇𝑇

𝐾𝐾: Number of subcarriers; 𝑁𝑁𝑇𝑇: Number of transmit antenna; 𝑁𝑁𝑅𝑅: Number of receive antennas;

𝑇𝑇𝑃𝑃

BELGIOVINE_LAYOUT.indd   20BELGIOVINE_LAYOUT.indd   20 4/14/21   2:29 PM4/14/21   2:29 PMAuthorized licensed use limited to: Northeastern University. Downloaded on July 28,2021 at 02:55:32 UTC from IEEE Xplore.  Restrictions apply. 



IEEE Wireless Communications • April 2021 21

Technology Limitations for B5G mMIMO
CSI characterizes how signals propagate through 
a wireless channel between the transmitter and 
receiver [2]. Thus, CSI matrices used in mMIMO 
capture the channel variations in the time and fre-
quency domains. We consider an mMIMO-OFDM 
system intended for mmWave communications. The 
mMIMO channel is computed not only for each 
of the NR  NT pairs, but also for every sub-carri-
er, during the explicit Channel Sounding stage 
provisioned within the 5G standard. Incorrect com-
putation of CSI matrices can degrade the beams 
formed between the mMIMO BS and UEs, resulting 
in increased bit error rate (BER) during data trans-
mission [2]. Moreover, if CSI matrices are not com-
puted in a timely manner (i.e., within the channel 
coherence time), it will adversely impact the follow-
ing data transfer because the channel coefficients 
used for beamforming are already outdated.

Using hybrid mMIMO beamforming [3], the 
BS transmits channel sounding frames in parallel 
over all the NT transmitter antennas. Each channel 
sounding frame, within the long-training field (LTF) 
sequence of the preamble, spans over L OFDM sym-
bols with additional orthogonal mapping sequences 
employed to avoid interference. The receiver esti-
mates the CSI matrix using the received signal, after 
OFDM demodulation and orthogonal demapping, 
using either LS estimation or LMMSE. LS estimation 
is a widely adopted channel estimator, as it requires 
only O(NTNRK) element-wise divisions for all antenna 
pairs, where K is the number of sub-carriers, and its 
computation is dominated by the OFDM demod-
ulation step, which relies on fast Fourier transform 
(FFT) operation having complexity O(KlogK). Unfor-
tunately, LS estimation suffers from noise distortion 
and high mean squared error (MSE), particularly at 
low SNR. LS estimation can be refined by computing 
the LMMSE [4] estimation, although it requires prior 
knowledge of channel and noise statistics and solv-
ing a linear system whose complexity grows as much 
as O(NTNRK3) for MIMO systems due to a matrix 
inversion step performed on the channel correlation 
matrix. Therefore, finding fast and accurate ways to 
perform CSI estimation is crucial in mMIMO, espe-
cially as the number of antennas may grow to the 
order of thousands in B5G networks.

Related Works for DL in mMIMO
While ML- and DL-based architectures have been 
traditionally deployed in the image, video, speech, 
natural language processing, and healthcare [5] 
domains, there have also been efforts in solving 
challenging tasks in the RF domain, such as mod-
ulation recognition, radio identification [6], and 
network resource allocation. In the area of chan-
nel estimation, [7] presents an end-to-end OFDM 
symbol decoding method using MLP by treating a 
single-input single-output (SISO) channel model as 
a black box. In the context of mMIMO, [8] propos-
es a compressive method for generating CSI feed-
back based on encoder-decoder DL architecture.

Applying DL-based approaches for CSI estima-
tion in mMIMO is still at a nascent stage. Due to 
the high dimensionality in mMIMO, especially when 
involving OFDM techniques, the majority of existing 
solutions use complex and deep architectures to esti-
mate large channel matrices. These solutions treat 
the multi-dimensional input signal as a single entity 

and often require additional prior or post-estimation 
steps. Although use of very deep architectures is a 
growing trend, their complexity usually limits use in 
edge devices that are typically constrained in power 
and processing capability. Reference [9] uses convo-
lutional neural networks (CNNs) to improve the qual-
ity of a coarse initial estimate of the channel matrix 
in a method called Tentative Estimation. To exploit 
adjacent sub-carrier frequency correlations, the 
coarse estimate matrices are concatenated in large 
input tensors and processed by a neural network 
consisting of 10 convolutional layers. Reference [10] 
proposes a 10-layer LDAMP architecture, based on 
the unfolding of an iterative D-AMP algorithm. As 
the estimated channel is treated as a noisy 2D image, 
each layer relies on an additional denoising CNN, 
which is 20 layers deep and used to update the 
channel estimated in the previous layer. Although 
CNNs are efficient in terms of number of parame-
ters, the resulting complexity poses a challenge for 
deep architectures when deployed on edge devices. 
Therefore, the large CNNs in both [9, 10] have lim-
itations in real-time implementations. In the context 
of single-carrier systems, [11] devises an uplink (UL) 
transmission for single-antenna users and multiple-an-
tenna BSs using a six-layer MLP to first estimate direc-
tion of arrival (DoA) and then determine the channel 
for each user, by expressing the channel estimate 
as a function of DoA and solving an additional lin-
ear system of equations. Recently, [12] described an 
online training method based on the Deep Image 
Prior scheme, using a 6-layer architecture based on 
1  1 convolutions and upsampling, which performs 
denoising of the received signal before a traditional 
LS estimation. Although the number of parameters is 
low, this method requires training the network during 
every transmission for thousands of epochs, without 
any guarantee that this step completes within the 
channel coherence time. For single-carrier solutions, 
K separate models should be trained and deployed 
to be applied in OFDM systems. Table 1 summarizes 
the time complexity of existing methods and com-
pares how our proposed approach results in a much 
simpler model that is suitable for edge architectures.

Deep Learning Solution for mmWave mMIMO
Model Architecture

We design a compact DNN model to keep compu-
tation time low and train it to learn a joint approx-
imation of OFDM demodulation and LS/LMMSE 
channel estimation methods. Figure 2 shows how 
the DNN model will replace the processing blocks 
associated with demodulation and channel estima-
tion in a typical mMIMO Channel Sounding pro-
cess. Different from the state of the art presented 
earlier, we design our training process to use the 
received time-domain waveform corresponding to 
the LTF obtained after synchronization as input to 
the model. This allows us to avoid completely the 
OFDM demodulation necessary for CSI estimation, 
further reducing the computation burden associat-
ed with this step for systems with large bandwidth 
that require a high number of sub-carriers. We let 
the model perform inference from the spectral com-
ponents of the received time-domain signal, without 
performing demodulation explicitly. Through this 
approach, we design a DNN that learns the map-
ping from the time-domain LTF waveform to the 
desired CSI estimation in the frequency domain. 

While ML- and 
DL-based architectures 

have been tradition-
ally deployed in the 

image, video, speech, 
natural language pro-

cessing, and healthcare 
domains, there have 

also been efforts in 
solving challenging 

tasks in the RF domain, 
such as modulation 

recognition, radio iden-
tification, and network 

resource allocation.
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In order to reduce the size of the input and cap-
ture the effect of channel on amplitude and phase 
components of the received signals, we choose 
to treat the real and imaginary component of the 
input independently; therefore, we create two iden-
tical and independent specialized models accepting 
the real and imaginary components, respectively, 
both in real valued format. The corresponding real 
valued output of each model is then recast back 
into a complex representation to produce the final 
channel estimation output. Since the two models 
are independent of each other, they could poten-
tially run in parallel; hence, for the sake of simplicity, 
we refer to both models as incurring a common 
temporal processing overhead in the rest of the 
article. For our experiments, we rely on an MLP 
architecture that accepts an input XnR,nT obtained 
by concatenating an LTF signal ynR arriving at a par-
ticular receiver antenna nR, and the orthogonal cod-
ing sequence FnT, known to both transmitter and 
receiver, associated with a given transmit antenna 
nT. The size of input tensor is [TP + TC  1], where 
TP is the number of symbols belonging to the LTF 
sequence in the time domain and TC is the length 
of the coding sequence. The reason we concat-
enate these additional features to the input is as 
follows: For an LTF signal received at a given receiv-
er antenna, we must recover all the channel states 
relative to each transmitter antenna. Without the 
orthogonal coding sequence, it would be impossi-
ble for the model to produce the channel states for 
a given nR receiver antenna, as well as all the other 
nT transmitter antenna pairs. This is because the 
input signal ynR would be completely identical for all 
these cases. On the other hand, the output of the 
proposed model ĤDNN   

nR,nT is a tensor of size [K  1], 
where K is the number of sub-carriers of the target 
system, and corresponds to the model prediction 
of the channel frequency response experienced 
between transmitter antenna nT and receiver anten-
na nR during propagation of the input LTF signal.

The configuration chosen for the MLP archi-
tecture has only 2 hidden layers, each with 1024 
neurons and ReLU activation function, and an out-
put layer using linear activation function for the 

regression task. We perform batch normalization 
after each hidden layer and add a Dropout layer 
with drop probability 15 percent between the first 
and second hidden layers to avoid overfitting. The 
proposed architecture is also depicted in Fig. 2. 
Therefore, to retrieve the complete MIMO chan-
nel matrix, it is possible to construct a single input 
batch of size NT  NR inputs to process in parallel 
all the necessary XnR,nT inputs and produce as out-
put the K  NT  NR channel matrix.

The choice of MLP over other architectures, 
such as CNN, is due to its forward step reduced 
complexity, that is, it requires less operations.

For instance, if we consider each channel pre-
diction independently, the computational complex-
ity of a single fully connected layer is dominated by 
matrix-vector multiplication, which has a serial com-
putation complexity of O(NiIi), where Ni is the num-
ber of neurons in the ith layer and Ii is the number 
of features input to it. On the other hand, convo-
lution complexity is O(WiHiFi

2Ni–1Ni) (for notation, 
see Table 1) that, depending on input and output 
features arrangement, would incur a much higher 
number of operations and output features to be 
processed by a fully connected regression layer, as 
in our case. Although MLP has a simpler forward 
step, it can be further accelerated by taking advan-
tage of massively parallel computing architectures  
— graphical processing units (GPUs) or field pro-
grammable gate arrays (FPGAs), so it is crucial to 
minimize Ni and Ii, besides the number of layers, in 
order to provide a fast and compact model.

Training Procedure
The MLP models are trained via a regression 
approach, using gradient descent optimization 
and MSE loss function in order to minimize the 
error between each individual CSI estimation 
predicted by the neural network and the perfect 
channel estimation for a given input signal, which 
we consider to be the output of a classic deter-
ministic channel estimator (either LS or LMMSE) 
under ideal noiseless conditions.

The neural network is trained using the Adam 
optimization method with a learning rate of 10–4, 

TABLE 1. A coarse computational complexity comparison between existing methods and proposed chan-
nel estimator. 

Method Type of DL model L Inference complexity OFDM
Additional 
comments

DOA estimation [11] MLP 6 O(SL
l=1NlIl + G) No

K models needed to 
operate on OFDM

Deep CNN [9] CNN 10 O(KT + NTNRSL
l=1FlNl–1Nl) Yes†

Beamspace mmWave [10] LDAMP + CNN 10 O(SL
l=1L + LS20

c=1WcHcFc
2Nc–1Nc) No

K models needed to 
operate on OFDM

Untrained DNN [12] CNN + upsampling 6 O(E(W1H1N0Nk + SL
l=22Wl–12Hl–1Nl–1Nk)) Yes† E has no upper 

bound

Proposed MLP 3 O(SL
l=1NlIl) Yes‡

Notation: NT = number of transmitter antennas, NR = number of receiver antennas, K = number of sub-carriers, L = number of hidden 
layers, Ii = number of input features of layer i, Ni = number of neurons (or kernels, in the case of CNNs) in the ith layer, Fi = kernel size 
of the ith convolutional layer (assuming square kernels), Wi = width of input volume for the ith convolutional layer, Hi = height of input 
volume of the ith convolutional layer, E = number of epochs, L = complexity of the LDAMP layer (linear system) in [10], T = complexity 
of Tentative Estimation (linear system, including matrix multiplications and inversions) in [9], G = complexity of additional linear system 
needed to compute complex channel coefficients from DOA estimation (requires matrix inversion) in [11]. †: method requires OFDM 
demodulation; ‡: method does not require OFDM demodulation.

In order to reduce the 
size of the input and 
capture the effect of 
channel on amplitude 
and phase components 
of the received signals, 
we choose to treat 
independently the real 
and imaginary compo-
nent of the input, and 
therefore we create 
two identical and inde-
pendent specialized 
models accepting the 
real and imaginary 
components respec-
tively, both in real  
valued format.
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which is reduced by another factor of 10 when 
validation loss reaches a plateau for more than 15 
epochs. Moreover, an early stopping criterion is 
adopted to terminate the training process if valida-
tion loss does not improve within the last 20 epochs.

denoIsIng ApproAch
As explained previously, since we want our model 
to be robust to noise variations at lower SNR lev-
els, we incorporate a denoising approach. Spe-
cifically, during each training epoch, for each 
random mini-batch of input signals generated 
from the dataset, we augment the input data by 
applying additive white Gaussian noise (AWGN) 
with an increasing noise variance, reflecting the 
intended SNR range of the deployment scenario. 
For our experiments, we choose SNR levels of 
[–20, –10, 0, 10, 20, 30] dB during training. A 
predefi ned noise power is associated with each of 
these noise levels, based on the average power of 
all the received signals in the training dataset.

In this way, by only collecting low noise input 
samples, we are able to augment the data during 
training to effectively make the model more 
robust to diff erent noise levels. The benefi t of this 
approach is that we force our model to produce 
an output channel estimation that is close to the 
ideal noiseless one. This reduces errors in end-to-
end transmissions due to poorly estimated chan-
nels under low SNR conditions.

dAtAset creAtIon for trAInIng/testIng
We use Communication Toolbox and Phased Array 
Toolbox within MATLABTM to set up an mMIMO 
transmitter/receiver scenario. Specifi cally, we simu-
late a downlink end-to-end transmission from a BS 

equipped with NT = 32 URA antennas and a UE 
with NR = 4 ULA antennas, resulting in a 32  4 
MIMO channel. Devices operate on a carrier fre-
quency of 28 GHz, using 100 MHz bandwidth and 
FFT size of 256, resulting in 234 usable sub-carriers. 
We use a geometric scattering channel model with-
out a line of sight (LoS) path with 100 scatterers 
that, for every transmission, are randomly placed 
on a spherical surface around the UE, which has 
a radius of 10 percent of the distance between 
UE and BS, while the position of UE and BS are 
assumed to be fixed, with a distance of 500 m. 
We generate Channel Sounding preamble frames, 
as explained earlier, having length L = NT OFDM 
symbols, and simulate transmission through a 
multi-path scattering channel model with Ns = 100 
scatterers, as well as adding thermal noise. Since 
mmWave signals experience orders of magnitude 
more path loss than the microwave signals, the CSI 
computed at the receiver is used to compute pre-
coding weights with orthogonal matching pursuit 
(OMP) [13], an algorithm that approximates opti-
mal unconstrained precoders and combiners for 
a geometric scattering channel model, such that it 
can be implemented in low-cost RF hardware and 
operate under very low SNR scenarios.

Quadrature phase shift keying (QPSK) modu-
lation is used at data transmission time. For train-
ing, we simulate 9000 complete transmissions, 
that is, including both Channel Sounding and Data 
Transfer phases, which are divided in 85 percent 
and 15 percent ratios for training and validation. 
In order to generate enough variation in channel 
realizations, we uniformly sample random seeds 
in the range U[1, 107], used to generate unique 
channel states. For each transmission, we store the 

FIGURE 2. Classical and proposed channel sounding architectures for B5G mMIMO.
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ynR received LTF preambles, after the channel and 
noise application at each nR receiver antenna and 
the relative channel estimation performed on the 
transmitter side, for all antennas and usable OFDM 
sub-carriers. In total, our training dataset consists of 
1,152,000 LTF preambles.

To test our model under different noise con-
ditions, we generate separate test datasets on a 
range of SNR levels, each composed of 500 trans-
missions. Due to the ability of the OMP precod-
ing method to operate on extremely low SNR, we 
consider SNR ranging from –22 up to 10 dB. Since 
we want to assess the robustness of our model to 
noise variation, we add different levels of AWGN 
during data generation according to the desired 
SNR levels under which we want to test our model. 
The entire dataset and the software related to the 
data generation pipeline will be released for further   
use by the research community.

Performance Evaluation
In this section, we evaluate the performance of 
the proposed DL-based CSI estimation technique. 
First, the normalized MSE (NMSE) is used to mea-
sure the accuracy of the channel estimation. Sec-
ond, the impact of model predictions is verified 
by means of bit error rate (BER) and beamforming 
gains, and later compared against traditional esti-
mation techniques. We also present a discussion 
on how the proposed approach decouples the 
CSI channel estimation overhead from the anten-
na array dimensions.

Prediction Accuracy
First, we wish to assess the quality of the proposed 
channel estimator model under unseen channel 
conditions, and compare it to the ones obtained 
through traditional methods. Figure 3 depicts the 
NMSE of channel estimations for each method with 
respect to perfect (i.e., noiseless) estimation. Our 
method not only generalizes well on unseen chan-
nel conditions, but provides a high-quality estima-
tion when the signal is corrupted by a large amount 
of noise power, approaching or even exceeding 
LMMSE accuracy in [–15, 10] dB SNR range, val-
idating the robustness of our denoising training 
method against blocking and jamming effects.

The quality of CSI estimation, usually assumed 
perfect in the literature, impacts directly on the qual-
ity of the Data Transfer phase, as it forms the initial 
information from which the BS will compute pre-
coding and combiner parameters. Hence, higher 
spatial diversity can be achieved when employing 
beamforming under accurate CSI estimation. Figure 
4 shows how the proposed method, despite present-
ing presumably a higher NMSE in the lowest SNR 
regions, still outperforms optimal LMMSE estima-
tion under all SNR levels considered, providing bet-
ter quality channel estimation. Finally, Fig. 5 further 
proves how the channel estimation provided by the 
proposed approach is superior to optimal LMMSE 
in terms of end-to-end performance, providing zero 
BER starting from –19 dB, where LMMSE shows simi-
lar performance only starting from –17 dB.

Scalability
As stated before, with the proposed method every 
NT  NR channel estimation is performed indepen-
dent from one another and using the same DNN 
model, by grouping the LTF incoming signal relative 

to each channel in a single input batch. This allows 
convenient scaling up to higher order mMIMO 
systems if massively parallel hardware accelera-
tors are employed at inference time. Moreover, 
for those instances where a single forward pass 
cannot fit all the batch samples, our system allows 
the arrangement of smaller batches that could be 
processed in parallel using independent accelera-
tors, that is, F accelerators provide a F speedup 
increase compared to conventional streamlined 
systems. To give an idea of the effectiveness of the 
proposed method, our system estimates a full 32  
4 mMIMO channel over 234 usable sub-carriers in 
5.985 · 10–4 s using an NVIDIA RTX 2080 Ti GPU, 
thus proving high accuracy and execution times 
below the envisioned channel coherence time for 
moderate mobility scenarios (i.e., 1–10 ms at 28 
GHz frequency range).

Open Research Challenges
Implementation of edge intelligence for emerging 
communication networks is still at the nascent 
stage with many open challenges:
•	 AI/ML-enabled channel estimation needs pub-

licly available, representative datasets, where 
different types of pilots, channel conditions, 
antenna configurations, and scenarios are con-
sidered holistically. Thus, new tools are need-
ed to generate and disseminate such datasets. 
The Platforms for Advanced Wireless Research 
(PAWR) [14] program has mMIMO BS installa-
tions that can be used for this.

•	 Real-time execution of channel estimation 
schemes need carefully designed edge com-
puting architectures in the form of FPGAs. 
Thus, when limited training is also done on site 
using GPUs, there needs to be an automated 
pathway that takes the trained models to gen-
erate and test compatible FPGA code without 
human intervention.

•	 The design of deep architectures cannot 
be divorced from impact on inference time. 
Recently, several works on joint training and 
compression via pruning [15] have been 
demonstrated for RF applications. Furthermore, 
quantization of the weights speeds up FPGA 
processing.

FIGURE 3. NMSE between each channel estima-
tion method and ideal channel estimation. 
Note that as noise power increases, LMMSE 
output coefficients are close to 0 due to a large 
amount of noise corrupting the samples, so 
NMSE approaches 1 as SNR tends to –∞.
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The quality of CSI 
estimation, usually 
assumed perfect in 
the literature, impacts 
directly on the quality 
of the Data Transfer 
phase, as it forms the 
initial information 
from which the BS will 
compute precoding 
and combiner param-
eters. Hence, higher 
spatial diversity can 
be achieved when 
employing beamform-
ing under accurate CSI 
estimation.
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•	 The overall wireless environment changes with 
time and location. Hence, use of transfer learn-
ing and federated learning are needed to cope 
with scenarios not encountered at training time, 
including hardware updates like addition of more 
antennas, or software changes, such as new pro-
tocols that require different pilot arrangements.

Conclusion
We present a DL-based CSI estimation technique 
for massive MIMO antenna arrays, which will facil-
itate faster channel sounding for beyond 5G wire-
less networks. It will also achieve higher throughput 
for extremely low SNR scenarios, as is generally 
also applicable for mmWave and THz bands. The 
proposed DNN uses two hidden MLP layers and 
a linear output layer to jointly perform the task of 
OFDM demodulation and CSI matrix generation 
for mMIMO downlink transmission. We substan-
tially improve the end-to-end system performance, 
achieving up to 5 and 2 orders of magnitude 
reduction in BER with respect to practical LS and 
optimal LMMSE, respectively, and higher spatial 
diversity for lower SNR regions, achieving up to 
4 dB gain in received power signal compared to 
performance obtained through LMMSE estimation. 
Finally, we discuss the importance of model com-
pression techniques to be applied on trained mod-
els in order to be easily deployed in edge devices, 
enabling higher data rates for edge computing 
over B5G mmWave communication.
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FIGURE 4. Gain in dB of received signal observed 
during Data Transfer phase (i.e., after beam-
forming) compared to signal power observed 
during Channel Sounding phase.
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FIGURE 5. BER measured over different SNR level 
for LS estimation and proposed DNN-based 
method. Value not showed results in BER = 0.
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The overall wireless 
environment changes 

with time and location. 
Hence, use of transfer 
learning and federated 
learning are needed to 

cope with scenarios 
not encountered at 

training time, includ-
ing hardware updates 
like addition of more 
antennas, or software 
changes, such as new 

protocols that requires 
different pilot arrange-

ments.
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