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ABSTRACT

Massive multiple-input multiple-output (mMIMO)
is a critical component in upcoming 5G wire-
less deployment as an enabler for high data rate
communications. mMIMO is effective when each
corresponding antenna pair of the respective trans-
mitter-receiver arrays experiences an independent
channel. While increasing the number of anten-
na elements increases the achievable data rate, at
the same time computing the channel state infor-
mation (CSI) becomes prohibitively expensive. In
this article, we propose to use deep learning via a
multi-layer perceptron architecture that exceeds the
performance of traditional CSI processing methods
like least square (LS) and linear minimum mean
square error (LMMSE) estimation, thus leading to
a beyond fifth generation (B5G) networking par-
adigm wherein machine learning fully drives net-
working optimization. By computing the CSI of
all pairwise channels simultaneously via our deep
learning approach, our method scales with large
antenna arrays as opposed to traditional estima-
tion methods. The key insight here is to design the
learning architecture such that it is implementable
on massively parallel architectures, such as GPU or
FPGA. We validate our approach by simulating a
32-element array base station and a user equipment
with a 4-element array operating on millimeter-wave
frequency band. Results reveal an improvement up
to five and two orders of magnitude in BER with
respect to fastest LS estimation and optimal LMMSE,
respectively, substantially improving the end-to-end
system performance and providing higher spatial
diversity for lower SNR regions, achieving up to 4
dB gain in received power signal compared to per-
formance obtained through LMMSE estimation.

INTRODUCTION

Large antenna arrays are revolutionizing wireless
communications and sensing, with manifestations
in programmable surfaces, gesture monitoring,
and high rate data delivery through incorporation
in the form of massive multiple-input multiple-out-
put (NMIMO) systems. Already envisaged as a key
component of 5G, mMIMO utilizes a number of
antennas that can be one to two orders of magni-
tude higher than the classical MIMO WiFi access
points and LTE base stations (BSs) available today.
However, despite the significant advances in edge
computing capabilities, there are practical chal-
lenges in processing needs associated with such
large antenna arrays. This article is motivated by

our desire to decouple the scale of deployment
with the limits of classical processing, especially as
it pertains to the task of understanding the channel
between a given antenna-receiver antenna-element
pair for millimeter-wave (mmWave) communi-
cation. We accomplish this via training a deep
learning (DL) architecture that offers the ability to
produce a robust and high fidelity channel matrix
between the mobile user and the mMIMO BS in
a single forward pass. Since the overhead of the
DL-based channel estimation becomes irrespective
of the size of the antenna array, we believe this
approach will enable a fundamental leap toward
beyond 5G (B5G) standards where thousands of
coordinated antennas will become the new norm.
Emerging B5G networks are envisioned to support
edge computing, which will enable rapid optimiza-
tion and reconfiguration of the network architec-
ture. This is a critical first step toward supporting
requirements of emerging high-bandwidth and
low-latency applications. Machine learning (ML)
and artificial intelligence (Al) algorithms running
at the edge computing servers help to (i) scale
the optimization problem without proportional
increase in complexity and (ii) enable fast response
close to the BS, thus meeting strict demands of a
time-varying wireless channel. We believe our use
case of DL-enabled mmWave mMIMO demon-
strates the need for tightly integrating Al into
emerging wireless standards, which remains a gap
even in the ongoing 5G rollout today.

CHALLENGE IN CHANNEL ESTIMATION

Channel estimation is the first step in the larger
processing chain associated with decoding the
data packet. Its objective is to identify the com-
plex signal transformation imposed on the emitted
wireless signal by the channel, and this is inferred
via special information bits embedded in the pack-
et preamble. For a spatially multiplexed system,
this complex transformation is captured via the
so-called channel state information (CSI). Knowing
the CSI allows the transmitter to perform addition-
al precoding functions that maximize the signal
energy in the direction of interest. Thus, delayed
computation of CSl, or worse, an incorrect com-
putation can quickly degrade the performance in
systems like mMIMO, where the CSI computation
needs to be repeated several dozen times.

In the context of the B5G use case we explore
in this article, we consider time-division duplexing
(TDD) for mMIMO and assume that the channel
varies slowly (coherence time of 10-100 ms [1]).
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FIGURE 1. Overview of deep-learning-based channel estimation for B5G mas-

sive MIMO.

In this regime of operation, two phases involving
the BS and user equipment (UE) precede down-
link transmissions: Channel Sounding, in which
the UE performs CSI estimation for the complete
MIMO channel and sends it back to the BS, and
Data Transfer, in which the BS uses the received
CSI estimation to compute precoding weights for
directional beams. Thus, the CSI estimation must be
completed quickly in order to allow both the Chan-
nel Sounding and Data Transfer phases to be com-
pleted within the channel coherence time. Such a
hard threshold on timeliness ensures that the BS
can turn around its radio front-end and leverage
channel reciprocity for the downlink transmission.
Furthermore, by focusing on reducing the overhead
associated with the CSI estimation step, it may be
possible to reduce the Channel Sounding phase.
This in turn will allow more data to be transferred
in the given channel coherence time, ultimately
increasing the overall throughput of the system.

SOLUTION OVERVIEW

Our proposed approach of using DL aims to
address the above issues by constructing a chan-
nel estimator that is able to obtain the complete
MIMO channel matrix by processing the incoming
preambles in a single forward pass, irrespective of
the number of antenna elements involved in the
system. For downlink, the BS sounds the channel
by using a reference transmission, which allows
the UE to estimate the channel using the proposed
DL block. The UE transmits the channel estima-
tion information back to the BS for calculation of
the precoding needed for the subsequent data
transmission. We generate the dataset in MATLAB,
which we also release along with the simulation
code to accelerate further research on this topic.

THE BENEFIT OF DEEP LEARNING
Our goal is to leverage the massively parallel
nature of a type of DL called deep neural net-
works (DNNs). Specifically, the key idea behind
our proposed method is to estimate each of the
sub-channels in the mMIMO channel matrix inde-
pendent from each other. We do so by exploit-

ing similarities in channel dynamics across spatial
dimension and using an efficiently tuned DNN
model whose weights are trained in order to be
shared across the entire antenna array. Thus, we
aim to retrieve the complete three-dimensional
CSI matrix, where each dimension corresponds
to the number of receiver antennas, the number
of transmitter antennas, and the number of usable
sub-carriers, by grouping all the received pream-
bles in a single batch and processing it in a sin-
gle forward step, as shown in Fig. 1. We design a
compact multi-layer perceptron (MLP) with only
three hidden layers to jointly exploit the hierarchi-
cal representational power of DNNs while keep-
ing the execution time associated to its forward
step low. To further reduce the computational
burden associated with channel estimation, we
train our model by taking as input the received
time-domain preamble sequence, avoiding com-
pletely the prior demodulation step in orthogonal
frequency-division multiplexing (OFDM) systems.
The model is trained in a regression fashion in
order to predict for each mMIMO sub-channel
the CSI in the frequency domain for the com-
plete set of OFDM pilot and data sub-carriers.
This allows learning directly a mapping from the
time-domain signal to its correspondent CSl in the
frequency domain. The proposed DNN model
architecture is presented later.

By training the model on true CSI values
obtained at high signal-to-noise ratio (SNR) level, we
observe that the proposed method generalizes well
for low SNR scenarios and outperforms the practi-
cal least square (LS) estimation in terms of accura-
cy, while approaching or exceeding performance
of linear minimum mean square error (LMMSE) and
improving the end-to-end system performance in
low SNR regimes, critical for frequencies above 6
GHz band such as mmWave or THz bands.

Moreover, to fully take advantage of this
data-driven approach and increase robustness
of the DL pipeline, we add a denoising training
step, in which we apply controlled additional white
Gaussian noise on the training samples.

SUMMARY OF CONTRIBUTIONS

* We propose a deep-learning-based CSI estima-
tion method for mMIMO that incurs a fixed
computational cost, irrespective of the number
of antenna elements, by exploiting the inherent-
ly parallel nature of DNNs.

+ We discuss the limitations of traditional esti-
mation techniques and compare the infer-
ence time complexity of the state of the art
in DL-based channel estimation with the pro-
posed approach, demonstrating its suitability
for edge applications.

+ We validate the performance of CSI estimation
by simulating downlink transmissions between
a BS with Ny = 32 uniform rectangular array
(URA) antennas and a single UE equipped with
Ng = 4 uniform linear array (ULA) antennas.

* By focusing on low SNR conditions, our denois-
ing training approach allows better accuracy
for CSI estimation, approaching or exceeding
the end-to-end performance of an LMMSE esti-
mator. Thus, our method matches one of the
most accurate estimators for this problem, but
eliminates the computational burden that limits
the deployment of LMMSE.
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TECHNOLOGY LimmATIONS FOR B5G MMIMO

CSI characterizes how signals propagate through
a wireless channel between the transmitter and
receiver [2]. Thus, CSI matrices used in mMIMO
capture the channel variations in the time and fre-
quency domains. We consider an mMIMO-OFDM
system intended for mmWave communications. The
mMIMO channel is computed not only for each
of the Nk x Ny pairs, but also for every sub-carri-
er, during the explicit Channel Sounding stage
provisioned within the 5G standard. Incorrect com-
putation of CSI matrices can degrade the beams
formed between the mMIMO BS and UEs, resulting
in increased bit error rate (BER) during data trans-
mission [2]. Moreover, if CSI matrices are not com-
puted in a timely manner (i.e., within the channel
coherence time), it will adversely impact the follow-
ing data transfer because the channel coefficients
used for beamforming are already outdated.

Using hybrid mMIMO beamforming [3], the
BS transmits channel sounding frames in parallel
over all the Ny transmitter antennas. Each channel
sounding frame, within the long-training field (LTF)
sequence of the preamble, spans over L OFDM sym-
bols with additional orthogonal mapping sequences
employed to avoid interference. The receiver esti-
mates the CSI matrix using the received signal, after
OFDM demodulation and orthogonal demapping,
using either LS estimation or LMMSE. LS estimation
is a widely adopted channel estimator, as it requires
only O(NNRK) element-wise divisions for all antenna
pairs, where K is the number of sub-carriers, and its
computation is dominated by the OFDM demod-
ulation step, which relies on fast Fourier transform
(FFT) operation having complexity O(KlogK). Unfor-
tunately, LS estimation suffers from noise distortion
and high mean squared error (MSE), particularly at
low SNR. LS estimation can be refined by computing
the LMMSE [4] estimation, although it requires prior
knowledge of channel and noise statistics and solv-
ing a linear system whose complexity grows as much
as O(N7NgK3) for MIMO systems due to a matrix
inversion step performed on the channel correlation
matrix. Therefore, finding fast and accurate ways to
perform CSI estimation is crucial in mMIMO, espe-
cially as the number of antennas may grow to the
order of thousands in B5G networks.

RELATED WoRKS FOR DL IN MMIMO

While ML- and DL-based architectures have been
traditionally deployed in the image, video, speech,
natural language processing, and healthcare [5]
domains, there have also been efforts in solving
challenging tasks in the RF domain, such as mod-
ulation recognition, radio identification [6], and
network resource allocation. In the area of chan-
nel estimation, [7] presents an end-to-end OFDM
symbol decoding method using MLP by treating a
single-input single-output (SISO) channel model as
a black box. In the context of mMIMO, [8] propos-
es a compressive method for generating CSI feed-
back based on encoder-decoder DL architecture.

Applying DL-based approaches for CSI estima-
tion in mMMIMO s still at a nascent stage. Due to
the high dimensionality in mMIMO, especially when
involving OFDM techniques, the majority of existing
solutions use complex and deep architectures to esti-
mate large channel matrices. These solutions treat
the multi-dimensional input signal as a single entity

and often require additional prior or post-estimation
steps. Although use of very deep architectures is a
growing trend, their complexity usually limits use in
edge devices that are typically constrained in power
and processing capability. Reference [9] uses convo-
lutional neural networks (CNNs) to improve the qual-
ity of a coarse initial estimate of the channel matrix
in a method called Tentative Estimation. To exploit
adjacent sub-carrier frequency correlations, the
coarse estimate matrices are concatenated in large
input tensors and processed by a neural network
consisting of 10 convolutional layers. Reference [10]
proposes a 10-layer LDAMP architecture, based on
the unfolding of an iterative D-AMP algorithm. As
the estimated channel is treated as a noisy 2D image,
each layer relies on an additional denoising CNN,
which is 20 layers deep and used to update the
channel estimated in the previous layer. Although
CNNs are efficient in terms of number of parame-
ters, the resulting complexity poses a challenge for
deep architectures when deployed on edge devices.
Therefore, the large CNNs in both [9, 10] have lim-
itations in real-time implementations. In the context
of single-carrier systems, [11] devises an uplink (UL)
transmission for single-antenna users and multiple-an-
tenna BSs using a sixlayer MLP to first estimate direc-
tion of arrival (DoA) and then determine the channel
for each user, by expressing the channel estimate
as a function of DoA and solving an additional lin-
ear system of equations. Recently, [12] described an
online training method based on the Deep Image
Prior scheme, using a 6-layer architecture based on
1 x 1 convolutions and upsampling, which performs
denoising of the received signal before a traditional
LS estimation. Although the number of parameters is
low, this method requires training the network during
every transmission for thousands of epochs, without
any guarantee that this step completes within the
channel coherence time. For single-carrier solutions,
K separate models should be trained and deployed
to be applied in OFDM systems. Table 1 summarizes
the time complexity of existing methods and com-
pares how our proposed approach results in a much
simpler model that is suitable for edge architectures.

DEEP LEARNING SOLUTION FOR MMWAVE MMIMO
MODEL ARCHITECTURE

We design a compact DNN model to keep compu-
tation time low and train it to learn a joint approx-
imation of OFDM demodulation and LS/LMMSE
channel estimation methods. Figure 2 shows how
the DNN model will replace the processing blocks
associated with demodulation and channel estima-
tion in a typical mMMIMO Channel Sounding pro-
cess. Different from the state of the art presented
earlier, we design our training process to use the
received time-domain waveform corresponding to
the LTF obtained after synchronization as input to
the model. This allows us to avoid completely the
OFDM demodulation necessary for CSI estimation,
further reducing the computation burden associat-
ed with this step for systems with large bandwidth
that require a high number of sub-carriers. We let
the model perform inference from the spectral com-
ponents of the received time-domain signal, without
performing demodulation explicitly. Through this
approach, we design a DNN that learns the map-
ping from the time-domain LTF waveform to the
desired CSI estimation in the frequency domain.

While ML- and
DL-based architectures
have been tradition-
ally deployed in the
image, video, speech,
natural language pro-
cessing, and healthcare
domains, there have
also been efforts in
solving challenging
tasks in the RF domain,
such as modulation
recognition, radio iden-
tification, and network
resource allocation.
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In order to reduce the
size of the input and
capture the effect of
channel on amplitude
and phase components
of the received signals,
we choose to treat
independently the real
and imaginary compo-
nent of the input, and
therefore we create
two identical and inde-
pendent specialized
models accepting the
real and imaginary
components respec-
tively, both in real
valued format.

Method Typeof DLmodel L Inference complexity ofpy  Additional
comments
. K models needed to
!
DOA estimation [11] MLP 6 OCEN+G) No e e
Deep CNN 3] CNN 10 OKT+ NS A ) Yes!
Beamspace mmWave [10]  LDAMP + CNN 10 OCL L+ L322 WHFNN,) No K models needed to

Untrained DNN [12] CNN + upsampling 6

Proposed MLP 3

OCGEN)

operate on OFDM

E has no upper

OEWRHN N + 22N Vst

Yest

Notation: Ny = number of transmitter antennas, Nl = number of receiver antennas, K = number of sub-carriers, L = number of hidden
layers, ;= number of input features of layer /, Nj; = number of neurons (or kernels, in the case of CNNs) in the ith layer, F; = kernel size
of the rth convolutional layer (assuming square kernels), I; = width of input volume for the jith convolutional layer, H; = height of input
volume of the ith convolutional layer, £ = number of epochs, £ = complexity of the LDAMP layer (linear system) in [10], 7= complexity
of Tentative Estimation (linear system, including matrix multiplications and inversions) in [9], G = complexity of additional linear system
needed to compute complex channel coefficients from DOA estimation (requires matrix inversion) in [11]. t: method requires OFDM

demodulation; : method does not require OFDM demodulation.

TABLE 1. A coarse computational complexity comparison between existing methods and proposed chan-

nel estimator.

In order to reduce the size of the input and cap-
ture the effect of channel on amplitude and phase
components of the received signals, we choose
to treat the real and imaginary component of the
input independently; therefore, we create two iden-
tical and independent specialized models accepting
the real and imaginary components, respectively,
both in real valued format. The corresponding real
valued output of each model is then recast back
into a complex representation to produce the final
channel estimation output. Since the two models
are independent of each other, they could poten-
tially run in parallel; hence, for the sake of simplicity,
we refer to both models as incurring a common
temporal processing overhead in the rest of the
article. For our experiments, we rely on an MLP
architecture that accepts an input A"R"T obtained
by concatenating an LTF signal y'® arriving at a par-
ticular receiver antenna ng, and the orthogonal cod-
ing sequence 0, known to both transmitter and
receiver, associated with a given transmit antenna
nt. The size of input tensor is [Tp + T x 11, where
Tp is the number of symbols belonging to the LTF
sequence in the time domain and Tc is the length
of the coding sequence. The reason we concat-
enate these additional features to the input is as
follows: For an LTF signal received at a given receiv-
er antenna, we must recover all the channel states
relative to each transmitter antenna. Without the
orthogonal coding sequence, it would be impossi-
ble for the model to produce the channel states for
a given ng receiver antenna, as well as all the other
ny transmitter antenna pairs. This is because the
input signal y"r would be completely identical for all
these cases. On the other hand, the output of the
proposed model Hif,\J is a tensor of size [K x 11,
where K is the number of sub-carriers of the target
system, and corresponds to the model prediction
of the channel frequency response experienced
between transmitter antenna ny and receiver anten-
na ng during propagation of the input LTF signal.
The configuration chosen for the MLP archi-
tecture has only 2 hidden layers, each with 1024
neurons and RelLU activation function, and an out-
put layer using linear activation function for the

regression task. We perform batch normalization
after each hidden layer and add a Dropout layer
with drop probability 15 percent between the first
and second hidden layers to avoid overfitting. The
proposed architecture is also depicted in Fig. 2.
Therefore, to retrieve the complete MIMO chan-
nel matrix, it is possible to construct a single input
batch of size Ny x Ng inputs to process in parallel
all the necessary A"R"T inputs and produce as out-
put the K x Ny x Ng channel matrix.

The choice of MLP over other architectures,
such as CNN, is due to its forward step reduced
complexity, that is, it requires less operations.

For instance, if we consider each channel pre-
diction independently, the computational complex-
ity of a single fully connected layer is dominated by
matrix-vector multiplication, which has a serial com-
putation complexity of O(Nil;), where N; is the num-
ber of neurons in the ith layer and /; is the number
of features input to it. On the other hand, convo-
lution complexity is O(W;H;F#N;_1N;) (for notation,
see Table 1) that, depending on input and output
features arrangement, would incur a much higher
number of operations and output features to be
processed by a fully connected regression layer, as
in our case. Although MLP has a simpler forward
step, it can be further accelerated by taking advan-
tage of massively parallel computing architectures
— graphical processing units (GPUs) or field pro-
grammable gate arrays (FPGAs), so it is crucial to
minimize N; and I;, besides the number of layers, in
order to provide a fast and compact model.

TRAINING PROCEDURE

The MLP models are trained via a regression
approach, using gradient descent optimization
and MSE loss function in order to minimize the
error between each individual CSI estimation
predicted by the neural network and the perfect
channel estimation for a given input signal, which
we consider to be the output of a classic deter-
ministic channel estimator (either LS or LMMSE)
under ideal noiseless conditions.

The neural network is trained using the Adam
optimization method with a learning rate of 1074,

2
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FIGURE 2. Classical and proposed channel sounding architectures for B5G mMIMO.

which is reduced by another factor of 10 when
validation loss reaches a plateau for more than 15
epochs. Moreover, an early stopping criterion is
adopted to terminate the training process if valida-
tion loss does not improve within the last 20 epochs.

DENOISING APPROACH

As explained previously, since we want our model
to be robust to noise variations at lower SNR lev-
els, we incorporate a denoising approach. Spe-
cifically, during each training epoch, for each
random mini-batch of input signals generated
from the dataset, we augment the input data by
applying additive white Gaussian noise (AWGN)
with an increasing noise variance, reflecting the
intended SNR range of the deployment scenario.
For our experiments, we choose SNR levels of
[-20, -10, 0, 10, 20, 30] dB during training. A
predefined noise power is associated with each of
these noise levels, based on the average power of
all the received signals in the training dataset.

In this way, by only collecting low noise input
samples, we are able to augment the data during
training to effectively make the model more
robust to different noise levels. The benefit of this
approach is that we force our model to produce
an output channel estimation that is close to the
ideal noiseless one. This reduces errors in end-to-
end transmissions due to poorly estimated chan-
nels under low SNR conditions.

DATASET CREATION FOR TRAINING,/TESTING
We use Communication Toolbox and Phased Array
Toolbox within MATLAB™ to set up an mMIMO
transmitter/receiver scenario. Specifically, we simu-
late a downlink end-to-end transmission from a BS

equipped with Ny = 32 URA antennas and a UE
with Ng = 4 ULA antennas, resulting in a 32 x 4
MIMO channel. Devices operate on a carrier fre-
quency of 28 GHz, using 100 MHz bandwidth and
FFT size of 256, resulting in 234 usable sub-carriers.
We use a geometric scattering channel model with-
out a line of sight (LoS) path with 100 scatterers
that, for every transmission, are randomly placed
on a spherical surface around the UE, which has
a radius of 10 percent of the distance between
UE and BS, while the position of UE and BS are
assumed to be fixed, with a distance of 500 m.
We generate Channel Sounding preamble frames,
as explained earlier, having length L = Ny OFDM
symbols, and simulate transmission through a
multi-path scattering channel model with Ny = 100
scatterers, as well as adding thermal noise. Since
mmWave signals experience orders of magnitude
more path loss than the microwave signals, the CSI
computed at the receiver is used to compute pre-
coding weights with orthogonal matching pursuit
(OMP) [13], an algorithm that approximates opti-
mal unconstrained precoders and combiners for
a geometric scattering channel model, such that it
can be implemented in low-cost RF hardware and
operate under very low SNR scenarios.
Quadrature phase shift keying (QPSK) modu-
lation is used at data transmission time. For train-
ing, we simulate 9000 complete transmissions,
that is, including both Channel Sounding and Data
Transfer phases, which are divided in 85 percent
and 15 percent ratios for training and validation.
In order to generate enough variation in channel
realizations, we uniformly sample random seeds
in the range U1, 1071, used to generate unique
channel states. For each transmission, we store the

Since we want our
model to be robust

to noise variations at
lower SNR levels, we
incorporate a denoising
approach. Specifically,
during each training
epoch, for each ran-
dom mini-batch of
input signals generated
from the dataset, we
augment the input
data by applying Addi-
tive White Gaussian
Noise (AWGN) with
an increasing noise
variance, reflecting the
intended SNR range
of the deployment
scenario.
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The quality of CSI
estimation, usually
assumed perfect in

the literature, impacts
directly on the quality
of the Data Transfer
phase, as it forms the
initial information
from which the BS will
compute precoding
and combiner param-
eters. Hence, higher
spatial diversity can
be achieved when
employing beamform-
ing under accurate CSI
estimation.

y'R received LTF preambles, after the channel and
noise application at each ng receiver antenna and
the relative channel estimation performed on the
transmitter side, for all antennas and usable OFDM
sub-carriers. In total, our training dataset consists of
1,152,000 LTF preambles.

To test our model under different noise con-
ditions, we generate separate test datasets on a
range of SNR levels, each composed of 500 trans-
missions. Due to the ability of the OMP precod-
ing method to operate on extremely low SNR, we
consider SNR ranging from -22 up to 10 dB. Since
we want to assess the robustness of our model to
noise variation, we add different levels of AWGN
during data generation according to the desired
SNR levels under which we want to test our model.
The entire dataset and the software related to the
data generation pipeline will be released for further
use by the research community.

PERFORMANCE EVALUATION

In this section, we evaluate the performance of
the proposed DL-based CSI estimation technique.
First, the normalized MSE (NMSE) is used to mea-
sure the accuracy of the channel estimation. Sec-
ond, the impact of model predictions is verified
by means of bit error rate (BER) and beamforming
gains, and later compared against traditional esti-
mation techniques. We also present a discussion
on how the proposed approach decouples the
CSI channel estimation overhead from the anten-
na array dimensions.

PREDICTION ACCURACY

First, we wish to assess the quality of the proposed
channel estimator model under unseen channel
conditions, and compare it to the ones obtained
through traditional methods. Figure 3 depicts the
NMSE of channel estimations for each method with
respect to perfect (i.e., noiseless) estimation. Our
method not only generalizes well on unseen chan-
nel conditions, but provides a high-quality estima-
tion when the signal is corrupted by a large amount
of noise power, approaching or even exceeding
LMMSE accuracy in [-15, 10] dB SNR range, val-
idating the robustness of our denoising training
method against blocking and jamming effects.

The quality of CSI estimation, usually assumed
perfect in the literature, impacts directly on the qual-
ity of the Data Transfer phase, as it forms the initial
information from which the BS will compute pre-
coding and combiner parameters. Hence, higher
spatial diversity can be achieved when employing
beamforming under accurate CSI estimation. Figure
4 shows how the proposed method, despite present-
ing presumably a higher NMSE in the lowest SNR
regions, still outperforms optimal LMMSE estima-
tion under all SNR levels considered, providing bet-
ter quality channel estimation. Finally, Fig. 5 further
proves how the channel estimation provided by the
proposed approach is superior to optimal LMMSE
in terms of end-to-end performance, providing zero
BER starting from =19 dB, where LMMSE shows simi-
lar performance only starting from -17 dB.

SCALABILITY
As stated before, with the proposed method every
Ny x Ng channel estimation is performed indepen-
dent from one another and using the same DNN
model, by grouping the LTF incoming signal relative

10° T T
—©—Ls
—&— LMMSE
Proposed
102k J
10" F
L
1%}
=
=z
10°
107
10.2 " " " " " "
-25 20 -15 -10 5 0 5 10
SNR (dB)

FIGURE 3. NMSE between each channel estima-
tion method and ideal channel estimation.
Note that as noise power increases, LMMSE
output coefficients are close to 0 due to a large
amount of noise corrupting the samples, so
NMSE approaches 1 as SNR tends to —c.

to each channel in a single input batch. This allows
convenient scaling up to higher order mMIMO
systems if massively parallel hardware accelera-
tors are employed at inference time. Moreover,
for those instances where a single forward pass
cannot fit all the batch samples, our system allows
the arrangement of smaller batches that could be
processed in parallel using independent accelera-
tors, that is, F accelerators provide a xF speedup
increase compared to conventional streamlined
systems. To give an idea of the effectiveness of the
proposed method, our system estimates a full 32 x
4 mMIMO channel over 234 usable sub-carriers in
5.985 - 10~* s using an NVIDIA RTX 2080 Ti GPU,
thus proving high accuracy and execution times
below the envisioned channel coherence time for
moderate mobility scenarios (i.e., 1-10 ms at 28
GHz frequency range).

OPEN RESEARCH CHALLENGES

Implementation of edge intelligence for emerging
communication networks is still at the nascent
stage with many open challenges:

+ Al/ML-enabled channel estimation needs pub-
licly available, representative datasets, where
different types of pilots, channel conditions,
antenna configurations, and scenarios are con-
sidered holistically. Thus, new tools are need-
ed to generate and disseminate such datasets.
The Platforms for Advanced Wireless Research
(PAWR) [14] program has mMIMO BS installa-
tions that can be used for this.

+ Real-time execution of channel estimation
schemes need carefully designed edge com-
puting architectures in the form of FPGAs.
Thus, when limited training is also done on site
using GPUs, there needs to be an automated
pathway that takes the trained models to gen-
erate and test compatible FPGA code without
human intervention.

+ The design of deep architectures cannot
be divorced from impact on inference time.
Recently, several works on joint training and
compression via pruning [15] have been
demonstrated for RF applications. Furthermore,
quantization of the weights speeds up FPGA
processing.

L
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FIGURE 4. Gain in dB of received signal observed
during Data Transfer phase (i.e., after beam-
forming) compared to signal power observed
during Channel Sounding phase.

+ The overall wireless environment changes with
time and location. Hence, use of transfer learn-
ing and federated learning are needed to cope
with scenarios not encountered at training time,
including hardware updates like addition of more
antennas, or software changes, such as new pro-
tocols that require different pilot arrangements.

CONCLUSION

We present a DL-based CSI estimation technique
for massive MIMO antenna arrays, which will facil-
itate faster channel sounding for beyond 5G wire-
less networks. It will also achieve higher throughput
for extremely low SNR scenarios, as is generally
also applicable for mmWave and THz bands. The
proposed DNN uses two hidden MLP layers and
a linear output layer to jointly perform the task of
OFDM demodulation and CSI matrix generation
for mMIMO downlink transmission. We substan-
tially improve the end-to-end system performance,
achieving up to 5 and 2 orders of magnitude
reduction in BER with respect to practical LS and
optimal LMMSE, respectively, and higher spatial
diversity for lower SNR regions, achieving up to
4 dB gain in received power signal compared to
performance obtained through LMMSE estimation.
Finally, we discuss the importance of model com-
pression techniques to be applied on trained mod-
els in order to be easily deployed in edge devices,
enabling higher data rates for edge computing
over B5G mmWave communication.
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