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Abstract
Robotic factory floors are transforming the 

manufacturing sector by delivering an unprec-
edented boost to productivity. However, such 
a paradigm raises questions on safety and coor-
dination, especially when in the presence of 
unexpected events. Time-critical communication 
messages for such industrial robots mandate the 
requirement of ultra-reliable low-latency com-
munication (URLLC). Classical WiFi-connected 
industrial robots often suffer from the traditional 
dense network problems prevalent in production 
WiFi networks, where transmission of an emer-
gency notification packet is “best effort,” devoid 
of time guarantees. In this work, we propose a 
machine-learning-based framework called ReLy 
that intelligently embeds the time-critical mes-
sages in the preamble of outgoing frames at the 
transmitter. These messages are inferred from the 
channel state information variations at the receiv-
er. As ReLy is implemented entirely at the physical 
layer, the transmitter is able to deliver information 
within 5 ms latency and ultra-high reliability of 
99 percent. We experimentally demonstrate the 
feasibility of achieving URLLC with moving robots 
in a busy workshop with a number of other peer 
robots, equipment, desks, and robotic arms, as 
expected in a typical factory setting.

Introduction
We are living in an exciting era of unprecedent-
ed connectivity, where tens of billions of sensors, 
devices, and machines will require rapid informa-
tion sharing and actuation. 5G wireless networks 
specifically call for latency on the order of a few 
milliseconds (< 10 ms) and ultra-high reliability (> 
99 percent) [1]. Many industries are transform-
ing themselves with complete automation in their 
daily operations, wherein tiny robots perform a 
plethora of manufacturing, testing, and packaging 
tasks. As an example, Amazon has deployed over 
200,000 robots to streamline warehouse tasks, 
totaling over ∼$40 million in investment [2].

Problem
A key requirement for these robots to work 
seamlessly is to have an efficient communication/
control plane. However, the focus of existing 
industries to provide necessary communication 
for automation is mostly on time-sensitive net-
working (TSN), which aims to bring industri-
al-grade robustness and reliability to Ethernet [3]. 
TSN is mainly designed to provide deterministic 

messaging on standard Ethernet networks and 
is part of the IEEE 802.11Q family of standards. 
Industrial Ethernet systems — such as PROFINET 
[4] and EtherCAT [5] — are designed for commu-
nicating with industrial equipment and capable 
of real-time control of robotic equipment. Unfor-
tunately, these systems require physical cabling 
where cables must be attached to machines 
and robots, increasing the risk of failure and the 
need for maintenance. Recent advances in 5G 
New Radio [6] in providing ultra-reliable low-la-
tency (URLLC) services have generated signifi-
cant interest in extending TSN capabilities over 
wireless [1, 7]. Unfortunately, establishing 5G 
infrastructure inside every factory warehouse is 
economically inviable for cellular operators as 
well as factory owners. On the contrary, WiFi 
access points (APs) are easier to deploy and 
maintain, and are scalable to a large number 
of devices, thereby making it the predominant 
choice for indoor environments. Furthermore, 
production WiFi deployments are commonplace 
in factory settings. Thus, we believe that any 
URLLC for robot–robot and robot–infrastruc-
ture communication in such cases must occur 
over WiFi. On the other hand, as robotic deploy-
ments become dense, the well-known problems 
related to contention and congestion that affect 
WiFi networks [8] cannot be neglected. As these 
factories of the future will work in the complete 
absence of human supervision, the WiFi network 
must ensure the robots have an always available 
association with the AP. Specifically, in an emer-
gency event, it becomes critically important to 
meet hard latency and reliability constraints for 
notifications. With default WiFi standards, meet-
ing both these constraints is a challenging task, 
but there could also be many legacy devices in 
the neighborhood that work perfectly with the 
current state of intermittent WiFi channel access. 
Thus, any solution that addresses URLLC must 
also be compatible with pre-existing links used 
by legacy WiFi devices.

Solution
We propose a novel approach called ReLy that 
neither requires a pre-established association with 
an AP nor suffers from low probability of chan-
nel access due to node density. For the specif-
ic URLLC use case of industrial automation with 
mobile robots, 5G demands end-to-end latency 
of < 1 ms and reliability of > 99.9999 percent [7]. 
ReLy has taken a step forward in this direction to 
meet the latency and reliability requirements for 
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sending the time-safety-critical messages in emer-
gency industrial communications.

ReLy uses an intelligent encoding scheme that 
embeds information by subtle distortions in the 
signal phases within the preamble of an outgo-
ing WiFi frame from the AP. In particular, ReLy 
exploits the legacy portion in the preamble to 
embed the information and thus supports its oper-
ation in all next-generation (IEEE 802.11ax/ac) as 
well as legacy (IEEE 802.11a/n) WiFi devices. Any 
ReLy receiver uses our proposed deep learning 
framework to decode the embedded informa-
tion from the changes in channel state informa-
tion (CSI). The bits encoded in the preamble are 
mapped to pre-defined emergency messages. 
Since the logic of data transfer is implemented 
entirely in the physical layer, it does not require 
upper-layer involvement or a priori active connec-
tion with the AP.

detAIled overvIew
The intuition behind ReLy is that the changes in 
CSI are observed at the client as part of the chan-
nel estimation process. CSI aids in capturing an 
aggregate eff ect of distortions caused due to fad-
ing, shadowing, and Doppler. To measure CSI 
in an orthogonal frequency-division multiplexing 
(OFDM)-based WiFi system, a transmitter sends 
long training symbols (LTFs) that include pre-de-

fined symbols for each OFDM subcarrier (Fig. 
1a). After receiving LTFs, the receiver estimates 
CSI using the received signals and original LTFs 
through conventional channel estimation meth-
ods.The legacy LTF (L-LTF) is pre-pended in out-
going physical layer frames of existing standards 
IEEE 802.11a/n/ac and even in the latest standard 
IEEE 802.11ax (marketed as WiFi 6) to support 
backward compatibility. Leveraging the manda-
tory channel estimation step and L-LTF for data 
transmission makes ReLy a standard-independent 
message delivery method. The AP, being the 
transmitter in this case, handles the ReLy encod-
ing module. Next, the client handles the ReLy 
decoding module post channel estimation. By vir-
tue of its principle of operation, carefully injected 
ReLy encodings can be a part of any outgoing 
frame from the AP, highlighting a crucial implicit 
advantage that time-critical message transmission 
neither needs to wait for its respective frame for 
transmission nor waste time in unnecessary pro-
tocol overheads. Together, these features result 
in reducing inessential transmission delays. How-
ever, an important consideration here is to ensure 
the bit error rate (BER) of these ongoing frames 
should not be hampered by these encodings. 
ReLy handles this case in a sophisticated manner. 
We explain the transmitter and receiver blocks in 
the rest of this article.

FIGURE 1. Illustrating the operation of ReLy. The AP or the transmitter modifies the preamble with introducing perturbations in phases. As an example, the information bits 010001 are mapped in subcar-
riers with indexes ranging from –22 to –15. First four bits 0100 indicate locations of the subcarrier, that is, the first and sixth subcarriers within the group of eight subcarriers. Subsequent bit 0 rep-
resents the phase shift of –20°, while bit 1 represents phase shift of +20° at the first and sixth subcarriers, respectively. The client or the robot decodes this information with a CNN. Each introduced 
pattern is mapped to a particular type of message being transmitted.
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We summarize the main contributions below:
•	 We design a novel encoding scheme to 

deliver fixed length emergency messages 
(within 5 ms latency bound) by modifying 
the preamble of WiFi frames.

•	 We propose a deep learning framework that 
decodes the emergency messages (with 
accuracy > 99 percent) at the client by learn-
ing CSI of the received signal.

•	 We show the proof-of-concept testbed on 
USRP-based AP and clients as mobile robots 
in a realistic robotic-indoor environment.

Encoding and Decoding Messages for URLLC
Modifying Transmissions through FIR Filters

ReLy modifies the L-LTF in real time using discrete 
causal finite impulse response (FIR) filters. There 
are several advantages here:
•	 Causal filters do not depend on future inputs, 

but only on past and present ones.
•	 They are represented as a weighted and finite 

term sum enabling accurate prediction of 
the output of the FIR for any given input. As 
L-LTF symbols are in the time domain, ReLy 
first converts the filter into its time domain 
impulse response using the inverse fast Fou-
rier transform (FFT) operation, and then con-
volves it with L-LTF symbols. 

The FIR filter has complex coefficients that only 
distort the phase of L-LTF symbols at the subcar-
rier level but not their amplitude. This is required, 
as amplitude distortion changes the average 
power of the transmitted signal, which adversely 
affects the ongoing communication. We explain 
this encoding procedure in detail below.

Format of Time-Critical Messages: The 
core innovation in ReLy is to map each of the 
deliberate, FIR-induced perturbations of the 
transmitted signals to emergency messages. 
ReLy generates these perturbations by intro-
ducing different levels of phase distortions on 
a per-subcarrier basis for any chosen group of 
subcarriers used in the legacy communication 
channel. Thus, the distinct combination of mes-
sage bits that is communicated via the L-LTF, 
indicated by the message on the left (trans-
mitter) side in Fig. 1a, determines how much 
distortion is introduced and in which subset of 
subcarriers. The number of distortion patterns 
(i.e., messages) depend on the number of bits 
used for encoding in the L-LTF. Specifically, the 
number of messages grow as exponential base 
two and number of bits at the exponent. A rep-
resentative set of 4 messages can be START, 
PAUSE, TURN-LEFT, and STOP for the mobile 
robot. Choosing the number of bits is a design 
choice, and we explain how it is done next.

Waveform Distortion via FIR Filter: We 
define a FIR filter with 64 complex coefficients, 
ensuring that ReLy matches the indexing scheme 
to that of 802.11 OFDM subcarrier mapping as 
the legacy preamble in 802.11ac/ax is always 
constructed using 64 subcarriers. The approach 
ensures backward compatibility in a 20 MHz 
OFDM channel. Each complex coefficient is 
defined as exponential of phase in degrees, 
ensuring its amplitude as one. L-LTF contains 
time-domain samples that are composed of 
two OFDM symbols. Each symbol is construct-

ed by mapping a known sequence of positive 
and negative ones into 52 out of 64 subcarriers 
in an inverse FFT (IFFT) operation, whereas the 
remaining 12 are null subcarriers. ReLy intention-
ally injects phase distortions in this sequence at 
the subcarrier level by carefully choosing coeffi-
cients of the FIR filter. Since any level of phase 
distortion in symbols positioned at null subcarri-
ers will have no impact in the observed CSI at 
the client, ReLy treats null subcarriers as don’t 
cares. In its current version, ReLy leverages 48 
out of remaining 52 subcarriers for choosing the 
FIR filter coefficients. To map a higher number 
of messages, additional four subcarriers can be 
used. These subcarriers are sequentially arranged 
into six groups with eight subcarriers per group, 
called slices. A distortion pattern is embedded 
within a slice with different phase shifts in vari-
ous subcarrier locations, such that the maximum 
number of subcarriers and phase distortions are 
within the allowed limits.

Keeping the BER of Ongoing Transmission 
under Control: A major goal of ReLy is to keep 
the BER of an AP’s ongoing transmission under 
control such that the frame is not corrupted. To 
achieve that, an optimal limit on the maximum 
number of subcarriers and the maximum amount 
of phase changes allowed is to be known. As we 
highlight later, this is an open research problem, 
ReLy’s current version empirically defines a stat-
ic value for maximum of number of subcarriers 
as 12 and phase changes as 20°. These values 
guarantee no significant change in BER observed 
at the associated client. We confirm this by mea-
suring BER at a USRP-based receiver placed in 
factory-similar lab settings. We compute the aver-
age of BER over 10,000 captured WiFi packets, 
where each packet is composed of 8192 bits. 
Despite variations in signal-to-noise ratio (SNR) 
and modulation and coding scheme (MCS), we 
observe that the increase in BER with FIR filtering 
varies between 0.000747 to 0.000902. This mini-
mal change in BER due to FIR filtering proves the 
minor impact of preamble modification on WiFi 
AP-client communication, even in real deploy-
ments.

In Fig. 1b, we illustrate the encoding scheme 
with an example. We choose a total of 12 subcar-
riers with two subcarriers in each slice, wherein 
ReLy intentionally injects phase distortion. The 
allowed amount of phase distortions range from 
negative to +20°. Next, we map the block of infor-
mation bits 010001 into subcarrier indexes and 
phase shifts. The first four bits decide the indexes 
of two subcarriers. For each selected subcarri-
er, we choose one bit to select the phase shift to 
be introduced in L-LTF symbols. Information bits 
0100 are mapped to the first and sixthsubcarrier 
indexes in the first slice. The next subsequent bit 
0 is mapped to phase shift of –20° for the sym-
bol of the first subcarrier, whereas the next 1 bit 
is mapped to phase shift of +20° for the symbol 
of the sixth subcarrier. The mapping logic stays 
in a mapping table, as shown in the figure. Cor-
respondingly, the FIR filter coefficients are varied 
from +20° to –20°. The remaining subcarriers are 
assigned zero degree phase shifts.

Enhancing Reliability: ReLy ensures reliabili-
ty through redundancy, that is, by repeating the 
encoding process in each slice. As shown in Fig. 

A major goal of ReLy is to 
keep the BER of an AP’s ongo-
ing transmission under con-

trol such that the frame is not 
corrupted. To achieve that, 

an optimal limit on the max-
imum number of subcarriers 
and the maximum amount of 
phase changes allowed need 

to be known.
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1b, we repeat the encoding of bits 010001 in the 
subsequent slices by selecting phase distortions of 
–20° in the first subcarrier and +20° in the sixth 
subcarrier of each slice.

Receiver Design with CNN-Based CSI Decoding
Visible Effect of Preamble Modification at CSI: 
For decoding the packet, recall that a WiFi client 
first estimates CSI using filtered L-LTF signal, as 
shown in Fig. 1c. Since ReLy perturbs only phase 
in L-LTF symbols, its effect is not visible in CSI 
amplitude. Therefore, we analyze the visuals of 
CSI phases only to show the effect of preamble 
modifications.

Visualizing the intentional modifications in the 
transmitted preambles at the receiver is a chal-
lenging task, given that the received CSI is non-
linear and discontinuous, as it varies periodically 
between positive and negative limits of 180°. A 
well-known process named “phase-unwrapping” 
helps in restoring the continuity in received CSI 
[9]. Phase unwrapping helps in observing the 
minor jumps — the “patterns” — in CSI phases at 
certain subcarriers. Figure 2 highlights the pat-
terns post unwrapped CSI phases. The presence 
of phase jumps indicate the indexes of the subcar-
riers where the L-LTF symbol is intentionally dis-
torted. Note that this operation is conducted only 
to visually demonstrate the distortion effect. ReLy 
does not specifically need to perform unwrap-
ping.

We first validate the hypothesis that the ReLy 
encoding module produces a unique pattern that 
is repeatable under varying channel conditions 
(channel-invariance) and second, that it creates 
distinct patterns even in similar channel condi-
tions (uniqueness). To demonstrate this, consider 
CSI phases collected at two different locations, 
as shown in Fig. 2, for two different patterns. 
CSI phase plots 1 and 2, indicated by Pattern 
1, Channel 1 and Pattern 1, Channel 2 show 
nearly similar patterns within CSI phases even 
when the channel is completely changed (i.e., 
Location 1 to Location 2). On the other hand, 
Pattern 2, Channel 1 shows a distinct pattern 
within CSI phases collected at the same location 
by selecting different FIR filters. This confirms 
our hypothesis of ReLy’s ability to introduce a 
unique pattern within CSI phases that are also 
channel-invariant.

Need for Learning CSI: While we clearly 
observe the distortion patterns in CSI phases, it is 
not always possible to get the clear, crisp patterns 
in mobile robots placed in an industrial environ-
ment in the presence of fading and shadowing 
with a multitude of blockages. Signal processing 
of CSI phases to decode the pattern is not hard, 
but has challenges in achieving high reliability 
of detection. On the other hand, deep learning 
[10], particularly the convolutional neural network 
(CNN), has shown remarkable performance in 
solving the pattern recognition problem in image 
and speech applications [11] and is steadily gain-
ing traction in applications within the wireless 
domain [12]. Furthermore, CNNs have proven 
to be useful in learning CSI for various sensing 
applications [13]. Varied use cases of CNN used 
for learning CSI motivated us to assess its appli-
cability in identifying the valid patterns embedded 
at the AP.

Input Preprocessing and Output Classes for 
CNN: The estimated CSI at the client consists of a 
series of complex values representing channel fre-
quency response for 52 subcarriers. ReLy process-
es raw CSI using a “slicing operation,” wherein it 
tries to recreate the slices of 48 subcarriers used 
in the encoding process as shown in Fig. 1c. Each 
slice is structured as a 2D real-valued tensor of 
size 2  8 and is fed as input to the CNN. Output 
classes for CNN are the distinct distorted patterns, 
represented with message bits that were encod-
ed at AP. In this article, we consider four distinct 
messages bits, Msg1, Msg2, Msg3, and Msg4, that 
are our output class labels.

CNN Classifier: We use the CNN architecture 
depicted in Fig. 1c, which consists of four layers, 
with two 2D convolution layers and two fully con-
nected layers. The input is fed to the first convolu-
tional layer (Conv2D), which consists of 50 filters, 
each of size 1  3.

Similarly, the second Conv2D layer has 50 
filters, each of size 2  3. Each Conv2D layer is 
followed by a rectified linear unit (ReLU) activa-
tion. Output of the second Conv2D layer is first 
flattened and then fed to the first fully connected 
(FC256) layer having 256 neurons. A second fully 
connected layer (FC80) is added to extract nonlin-
ear combinations of high-level features extracted 
from previous layers, which are finally passed to 
a Softmax classifier layer. Through cross-valida-
tion, we carefully choose the hyperparameters 
of CNN including the number of Conv2D filters 
and their size, as well as depth of the model to 
ensure its generalization. Our training set con-
sisted of 80,000 training, 10,000 validation, and 
10,000 testing examples. Thus, we were able to 
obtain less biased estimate of the performance of 
our model. Further, we set the dropout rate to 50 
percent at the fully connected layers to overcome 
overfitting. The model weights are trained using 
an Adam optimizer with a learning rate of 0.0001.

We predict the phase distortion pattern within 
CSI by following the methodology of “probability 
sum.” Essentially, Softmax layer generates prob-
ability outcome for each pattern for each input 
slice. We add these probabilities for each pattern 
across all slices and declare the predicated pat-
tern for which sum of probability quantity is max-
imum.

FIGURE 2. CSI phase patterns generated by two distinct FIR filters under 
the same or different channel conditions. Pattern 1 with Channel 1 and 
Channel 2 shows the channel-invariance of the patterns, while Patterns 
1 and 2 show uniqueness of the pattern with two distinct FIR filters 
under similar channel conditions as Channel 1.

-26 -16 -6 6 16 26
Subcarrier Index

20

40

60

80

100

120

140

C
SI

 P
ha

se
 (i

n 
de

gr
ee

)

Pattern 1, Channel 1
Pattern 1, Channel 2
Pattern 2, Channel 1

Visualizing the intentional 
modifications in the trans-

mitted preambles at the 
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CNN Training and Adapting to Unseen 
Environments: The accuracy of a deep learn-
ing model is known to improve with the amount 
of training data [14]. However, in the wireless 
domain, the channel has an inherent dynamism 
involved that makes it hard to port a machine 
learning model as it is, trained in a certain envi-
ronment to a new unseen environment. Thus, 
irrespective of the amount of data used for train-
ing in one environment, the model is not expect-
ed to perform at its best in another environment. 
More specifi cally, there are two related challeng-
es here:
a. Generating enough training data such that 

a decent training accuracy can be obtained
b. Adapting the learned model to the new and 

unseen channels such that the threshold for 
expected prediction accuracy can be met
We address challenge a by artificially creat-

ing a simulated dataset with the MATLAB WLAN 
Toolbox that allows creation of variations in chan-
nel for the latest WiFi standards with an instance 
of wlanTGacChannel. With this approach, we 
created a dataset with 200,000 channel variations 
in an indoor environment with NLoS signal propa-
gations and SNR ranging from 0 to 30 dB.

Next, we address challenge b by leveraging 
the machine learning approach of “domain adap-
tation” wherein a classifi er is partially trained with 
a diff erent but related dataset [15]. Our approach 
here is to transfer the knowledge learned with sim-
ulated channel environments to real and unseen 
channel environments. For this purpose, we use 
the popular supervised fine-tuning approach, 
wherein we freeze the fi rst l layers of the model 
that is trained with source data and retrain it with 
target data to fine-tune its last few layers using 
backpropagation. For ReLy, we fi rst train a CNN 
classifier with a large amount of simulated data 
and then freeze two convolution layers of the 
classifi er and fi ne-tune other layers by retraining 
with real data.

PerformAnce evAluAtIon
eXPerIment detAIls

Methodology: Our methodology to evaluate ReLy 
is largely governed by a robot in an industrial sce-
nario. The floor map of the experiment is shown 
in Fig. 3. The floor has the live WiFi network of a 
university with three APs per lab. We consider a 
robot as the WiFi client that can be either station-
ary or mobile. The environment in an industrial 
setting can have regions with and without obsta-
cles, resulting in line-of-sight (LoS) and NLoS signals 
from the AP. Accordingly, we cover four cases:
a. Client-1 is stationary and in LoS from the AP 

at a distance of 8 ft.
b. Client-2 is stationary and in NLoS from the 

AP at a distance of 12ft.
c. Client-3 is mobile in the fl oor covering both 

LoS and NLoS regions. To stress test ReLy’s 
performance in extreme cases of blockages 
with poor reception of WiFi signal, we con-
sider an additional case (Fig. 4).

d) Client-4 is stationary and in NLoS from the 
AP with many blockages and at a distance of 
nearly 30 ft.
In all cases, the AP continuously broad-

casts the four time-critical messages — Msg1 = 

“100000,” Msg2 = “010001,” Msg3 = “001010,” 
and Msg4 = “000111” — that are received by 
the clients. While transmission of these messag-
es encounter channel (CSI) variations in all four 
cases, case c has the most variations due to the 
mobility involved.

Metric Measurements: We evaluate the effi-
cacy of ReLy for two metrics: accuracy and laten-
cy. We report two metrics for accuracy: per-slice 
accuracy and per-CSI accuracy. We define per-
slice accuracy as the fraction of correctly predict-
ed patterns within slices to the actual patterns 
sent by the transmitter in those slices. Second, we 
evaluate ReLy’s reliability performance by defi n-
ing per-CSI accuracy as the fraction of correctly 
predicted patterns sent within the entire CSI (with 
repetition in slices) to the actual pattern sent by 
the transmitter. We defi ne latency as how much 
time it takes for a frame to be processed once it 
has been received at the receiver. We measure 
latency with respect to the packet reception pipe-
line at the receiver (i.e., time for CSI estimation 
and prediction with CNN). Note that we assume 
the typical propagation time will be negligible.

Device Confi guration: The setup, as shown in 
Fig. 3, has an AP and four clients: stationary and 
mobile clients in LoS and NLoS from the AP. We 
set up the AP with USRP X310 software defi ned 
radio (SDR) and the clients with USRP B210 
SDRs. The output power of the radio is set to 20 
dBm, the same as commercial off -the-shelf (COTS) 
WiFi APs. The AP transmits 802.11ac-compliant 
WiFi frames. The mobile client’s SDR is kept on 
an experiment cart that is moved through the 
fl oor aisles at human walking speed.

results
Accuracy: We first report the accuracy of the 
CNN model when it is trained and tested with 
the simulated data. In this case, we achieve a 
per-slice accuracy of 87.43 percent and per-CSI 
accuracy of 97.77 percent. The improvement in 

FIGURE 3. Floor map where the experiment was conducted showing the placement of AP, stationary, and mobile 
clients.
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per-CSI accuracy over per-slice accuracy empha-
sizes the importance of redundancy achieved 
with slicing operation. A reason for per-CSI 
accuracy below 99 percent is that the simulated 
dataset also includes data for extremely poor 
channel conditions that we included to improve 
the robustness of the trained model in realistic 
environments. We consider this accuracy as our 
baseline.

Next, we report the accuracy results after 
employing domain adaptation in the real exper-
iment setup. For case a, where the client is 
stationary and in LoS of the AP, the per-slice 
accuracy is 96.45 percent and per-CSI accuracy 
of 99.81 percent. For case b, where the client 
is stationary and in NLoS, the per-slice accuracy 
is 95.22 percent and per-CSI accuracy is 99.22 
percent. For case c, where the client is mobile, 
the per-slice accuracy is 94.55 percent and per-
CSI accuracy is 98.58 percent. Lastly, for case d, 
which covers the worst case performance, the 
per-slice accuracy and per-CSI accuracy drops to 
87 and 95.21 percent, respectively. Thus, ReLy 
achieves best case accuracy of 99.22 percent 
for the stationary LoS client and 98.58 percent 
for the mobile client. Accuracy drops for distant 
clients due to severe drop in SNR values; this 
problem needs further research for improving 
the accuracy.

For fi ne-tuning the trained CNN model, we use 
nearly 20,000 training examples, as compared to 
200,000, and thus need only 10 percent of the 
total training data used during simulation. This 
results in reduction of training time by 64 ms on 
average.

Latency: For default WiFi operation, the frame 
is fi rst processed completely at the physical layer 
for packet detection, channel estimation, equal-
ization, and decoding; then it is processed by the 
medium access control (MAC) layer, and later, 
upper layers. However, for ReLy, the processing 
ends immediately post channel estimation, and 
the message can be handled later by upper lay-
ers. In ReLy, the processing latency is incurred 
in estimating CSI and invoking a deep learning 
engine to identify a valid pattern. Our evaluation 
reports a processing latency of 4 ms for  ReLy as 
compared to the latency of 12.8 ms while pro-
cessing the entire receiver chain. Our setup of 
USRP devices is not an optimized one, thus intro-
ducing avoidable processing delays. An imple-
mentation with COTS devices would provide 
an optimized hardware and software configura-
tion that would prevent unnecessary processing 
delays. Given that CSI can now be decoded with 
COTS Android smartphones, we are working on 
developing an edge device capable of receiving 
messages over ReLy.

oPen reseArch chAllenges
need for securIty

While an AP is able to convey messages to cli-
ents, this stage is susceptible to replay attacks. 
Methods like RF fingerprinting, which detects a 
specific emitter using IQ samples, can be used 
to distinguish the authorized AP from rogue APs. 
However, this approach needs further validation 
as the fi ngerprint itself can be eclipsed by inten-
tional phase distortions at the transmitter side.

oPtImAl selectIon of uPPer bounds on 
number of subcArrIers And level of PhAse dIstortIon

In highly mobile scenarios, nonlinearity in the 
observed CSI phase can lower the ability to dis-
criminate small changes in the CSI due to inten-
tional distortions. This makes learning difficult. 
There is a trade-off  in increasing the level of dis-
tortions (which improves detection of the encod-
ed message) and the potential degradation in 
the ongoing communication of the other legacy 
clients. We need an optimization procedure to 
determine the number of subcarriers and levels 
of phase distortion to balance these contrary out-
comes.

dIstrIbuted leArnIng of csI At clIents
In ReLy, we train the CNN in a centralized fash-
ion, wherein CSIs are collected at the diff erent cli-
ents and trained separately in a central entity. This 
approach raises privacy concerns in the sharing of 
data used to train a CNN architecture. Federated 
learning can be a promising solution here, where-
in the CNN model is trained at the clients without 
sharing the raw data and then disseminated.

testIng In A reAl fActory envIronment
While we evaluated ReLy in our robotic lab under 
a suffi  ciently complex channel environment, it is 
crucial to test ReLy in a real factory environment 
that may have diff erent channel propagations. It 
will expose us to challenges that we have not per-
ceived yet and motivate us to fi nd solutions that 
are necessary to integrate into ReLy for its deploy-
ment in the real world.

conclusIon
We present ReLy, which reliably sends time-criti-
cal messages with very low latency for industrial 
robots. The transmitter intelligently embeds the 
information in the L-LTF field of the preamble. 
The receiver uses CNN and decodes the emer-
gency notifi cations from the changes in the CSI. 
We demonstrated the feasibility of ReLy with 
live experiments with mobile robots on a busy 
workshop fl oor. ReLy is able to transmit messag-

FIGURE 4. Confusion matrices for stationary, NLoS client, Client-3 placed in 
a live environment at a distance of 12 ft from AP. Prior to domain-adap-
tation, CNN achieves an overall per-CSI accuracy of 97.77 percent with 
simulation data. Post domain adaptation, it achieves per-CSI accuracy 
of 99.22 percent in a live environment. 

There is a trade-off  in 
increasing the level of 

distortions (which improves 
detection of the encoded 

message) and the potential 
degradation in the ongoing 
communication of the other 
legacy clients. We need an 
optimization procedure to 
determine the number of 
subcarriers and levels of 

phase distortion to balance 
these contrary outcomes.
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es within 5 ms with > 99 percent accuracy, thus 
validating its proposed use in industrial URLLC 
communications as defined by the existing 5G 
specifications in 3GPP Release 15.
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While we evaluated ReLy 
in our robotic lab under 

sufficiently complex channel 
environment, it is crucial to 

test ReLy in a real factory 
environment that may have 
different channel propaga-
tions. It will expose us to 

challenges that we haven’t 
perceive yet and motivate 

us to find solutions that are 
necessary to integrate into 
ReLy for its deployment in 

the real-world.
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