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ABSTRACT

Robotic factory floors are transforming the
manufacturing sector by delivering an unprec-
edented boost to productivity. However, such
a paradigm raises questions on safety and coor-
dination, especially when in the presence of
unexpected events. Time-critical communication
messages for such industrial robots mandate the
requirement of ultra-reliable low-latency com-
munication (URLLC). Classical WiFi-connected
industrial robots often suffer from the traditional
dense network problems prevalent in production
WiFi networks, where transmission of an emer-
gency notification packet is “best effort,” devoid
of time guarantees. In this work, we propose a
machine-learning-based framework called Rely
that intelligently embeds the time-critical mes-
sages in the preamble of outgoing frames at the
transmitter. These messages are inferred from the
channel state information variations at the receiv-
er. As Rely is implemented entirely at the physical
layer, the transmitter is able to deliver information
within 5 ms latency and ultra-high reliability of
99 percent. We experimentally demonstrate the
feasibility of achieving URLLC with moving robots
in a busy workshop with a number of other peer
robots, equipment, desks, and robotic arms, as
expected in a typical factory setting.

INTRODUCTION

We are living in an exciting era of unprecedent-
ed connectivity, where tens of billions of sensors,
devices, and machines will require rapid informa-
tion sharing and actuation. 5G wireless networks
specifically call for latency on the order of a few
milliseconds (< 10 ms) and ultra-high reliability (>
99 percent) [1]. Many industries are transform-
ing themselves with complete automation in their
daily operations, wherein tiny robots perform a
plethora of manufacturing, testing, and packaging
tasks. As an example, Amazon has deployed over
200,000 robots to streamline warehouse tasks,
totaling over ~$40 million in investment [2].

PROBLEM

A key requirement for these robots to work
seamlessly is to have an efficient communication/
control plane. However, the focus of existing
industries to provide necessary communication
for automation is mostly on time-sensitive net-
working (TSN), which aims to bring industri-
al-grade robustness and reliability to Ethernet [3].
TSN is mainly designed to provide deterministic

messaging on standard Ethernet networks and
is part of the IEEE 802.11Q family of standards.
Industrial Ethernet systems — such as PROFINET
[4] and EtherCAT [5] — are designed for commu-
nicating with industrial equipment and capable
of real-time control of robotic equipment. Unfor-
tunately, these systems require physical cabling
where cables must be attached to machines
and robots, increasing the risk of failure and the
need for maintenance. Recent advances in 5G
New Radio [6] in providing ultra-reliable low-la-
tency (URLLC) services have generated signifi-
cant interest in extending TSN capabilities over
wireless [1, 71. Unfortunately, establishing 5G
infrastructure inside every factory warehouse is
economically inviable for cellular operators as
well as factory owners. On the contrary, WiFi
access points (APs) are easier to deploy and
maintain, and are scalable to a large number
of devices, thereby making it the predominant
choice for indoor environments. Furthermore,
production WiFi deployments are commonplace
in factory settings. Thus, we believe that any
URLLC for robot-robot and robot-infrastruc-
ture communication in such cases must occur
over WiFi. On the other hand, as robotic deploy-
ments become dense, the well-known problems
related to contention and congestion that affect
WiFi networks [8] cannot be neglected. As these
factories of the future will work in the complete
absence of human supervision, the WiFi network
must ensure the robots have an always available
association with the AP. Specifically, in an emer-
gency event, it becomes critically important to
meet hard latency and reliability constraints for
notifications. With default WiFi standards, meet-
ing both these constraints is a challenging task,
but there could also be many legacy devices in
the neighborhood that work perfectly with the
current state of intermittent WiFi channel access.
Thus, any solution that addresses URLLC must
also be compatible with pre-existing links used
by legacy WiFi devices.

SoLurion

We propose a novel approach called Rely that
neither requires a pre-established association with
an AP nor suffers from low probability of chan-
nel access due to node density. For the specif-
ic URLLC use case of industrial automation with
mobile robots, 5G demands end-to-end latency
of <1 ms and reliability of > 99.9999 percent [7].
Rely has taken a step forward in this direction to
meet the latency and reliability requirements for
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FIGURE 1. llustrating the operation of ReLy. The AP or the transmitter modifies the preamble with introducing perturbations in phases. As an example, the information bits 010001 are mapped in subcar-
riers with indexes ranging from -22 to -15, First four bits 0100 indicate locations of the subcarrier, that is, the first and sixth subcarriers within the group of eight subcarriers. Subsequent bit 0 rep-
resents the phase shift of -20°, while bit 1 represents phase shift of +20° at the first and sixth subcarriers, respectively. The client or the robot decodes this information with a CNN. Each introduced
pattern is mapped to a particular type of message being transmitted.

sending the time-safety-critical messages in emer-
gency industrial communications.

Rely uses an intelligent encoding scheme that
embeds information by subtle distortions in the
signal phases within the preamble of an outgo-
ing WiFi frame from the AP. In particular, Rely
exploits the legacy portion in the preamble to
embed the information and thus supports its oper-
ation in all next-generation (IEEE 802.11ax/ac) as
well as legacy (IEEE 802.11a/n) WiFi devices. Any
Rely receiver uses our proposed deep learning
framework to decode the embedded informa-
tion from the changes in channel state informa-
tion (CSl). The bits encoded in the preamble are
mapped to pre-defined emergency messages.
Since the logic of data transfer is implemented
entirely in the physical layer, it does not require
upper-layer involvement or a priori active connec-
tion with the AP.

DETAILED OVERVIEW

The intuition behind Rely is that the changes in
CSI are observed at the client as part of the chan-
nel estimation process. CSI aids in capturing an
aggregate effect of distortions caused due to fad-
ing, shadowing, and Doppler. To measure CSI
in an orthogonal frequency-division multiplexing
(OFDM)-based WiFi system, a transmitter sends
long training symbols (LTFs) that include pre-de-

fined symbols for each OFDM subcarrier (Fig.
1a). After receiving LTFs, the receiver estimates
CSl using the received signals and original LTFs
through conventional channel estimation meth-
ods.The legacy LTF (L-LTF) is pre-pended in out-
going physical layer frames of existing standards
IEEE 802.11a/n/ac and even in the latest standard
IEEE 802.11ax (marketed as WiFi 6) to support
backward compatibility. Leveraging the manda-
tory channel estimation step and L-LTF for data
transmission makes Rely a standard-independent
message delivery method. The AP, being the
transmitter in this case, handles the Rely encod-
ing module. Next, the client handles the RelLy
decoding module post channel estimation. By vir-
tue of its principle of operation, carefully injected
Rely encodings can be a part of any outgoing
frame from the AP, highlighting a crucial implicit
advantage that time-critical message transmission
neither needs to wait for its respective frame for
transmission nor waste time in unnecessary pro-
tocol overheads. Together, these features result
in reducing inessential transmission delays. How-
ever, an important consideration here is to ensure
the bit error rate (BER) of these ongoing frames
should not be hampered by these encodings.
Rely handles this case in a sophisticated manner.
We explain the transmitter and receiver blocks in
the rest of this article.
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We summarize the main contributions below:

+ We design a novel encoding scheme to
deliver fixed length emergency messages
(within 5 ms latency bound) by modifying
the preamble of WiFi frames.

+ We propose a deep learning framework that
decodes the emergency messages (with
accuracy > 99 percent) at the client by learn-
ing CSI of the received signal.

+ We show the proof-of-concept testbed on
USRP-based AP and clients as mobile robots
in a realistic robotic-indoor environment.

ENCODING AND DECODING MESSAGES FOR URLLC
MODIFYING TRANSMISSIONS THROUGH FIR FiTeRs

Rely modifies the L-LTF in real time using discrete
causal finite impulse response (FIR) filters. There
are several advantages here:

+ Causal filters do not depend on future inputs,
but only on past and present ones.

+ They are represented as a weighted and finite
term sum enabling accurate prediction of
the output of the FIR for any given input. As
L-LTF symbols are in the time domain, ReLy
first converts the filter into its time domain
impulse response using the inverse fast Fou-
rier transform (FFT) operation, and then con-
volves it with L-LTF symbols.

The FIR filter has complex coefficients that only
distort the phase of L-LTF symbols at the subcar-
rier level but not their amplitude. This is required,
as amplitude distortion changes the average
power of the transmitted signal, which adversely
affects the ongoing communication. We explain
this encoding procedure in detail below.

Format of Time-Critical Messages: The
core innovation in Rely is to map each of the
deliberate, FIR-induced perturbations of the
transmitted signals to emergency messages.
Rely generates these perturbations by intro-
ducing different levels of phase distortions on
a per-subcarrier basis for any chosen group of
subcarriers used in the legacy communication
channel. Thus, the distinct combination of mes-
sage bits that is communicated via the L-LTF,
indicated by the message on the left (trans-
mitter) side in Fig. Ta, determines how much
distortion is introduced and in which subset of
subcarriers. The number of distortion patterns
(i.e., messages) depend on the number of bits
used for encoding in the L-LTF. Specifically, the
number of messages grow as exponential base
two and number of bits at the exponent. A rep-
resentative set of 4 messages can be START,
PAUSE, TURN-LEFT, and STOP for the mobile
robot. Choosing the number of bits is a design
choice, and we explain how it is done next.

Waveform Distortion via FIR Filter: We
define a FIR filter with 64 complex coefficients,
ensuring that ReLy matches the indexing scheme
to that of 802.11 OFDM subcarrier mapping as
the legacy preamble in 802.11ac/ax is always
constructed using 64 subcarriers. The approach
ensures backward compatibility in a 20 MHz
OFDM channel. Each complex coefficient is
defined as exponential of phase in degrees,
ensuring its amplitude as one. L-LTF contains
time-domain samples that are composed of
two OFDM symbols. Each symbol is construct-

ed by mapping a known sequence of positive
and negative ones into 52 out of 64 subcarriers
in an inverse FFT (IFFT) operation, whereas the
remaining 12 are null subcarriers. Rely intention-
ally injects phase distortions in this sequence at
the subcarrier level by carefully choosing coeffi-
cients of the FIR filter. Since any level of phase
distortion in symbols positioned at null subcarri-
ers will have no impact in the observed CSI at
the client, Rely treats null subcarriers as don’t
cares. In its current version, Rely leverages 48
out of remaining 52 subcarriers for choosing the
FIR filter coefficients. To map a higher number
of messages, additional four subcarriers can be
used. These subcarriers are sequentially arranged
into six groups with eight subcarriers per group,
called slices. A distortion pattern is embedded
within a slice with different phase shifts in vari-
ous subcarrier locations, such that the maximum
number of subcarriers and phase distortions are
within the allowed limits.

Keeping the BER of Ongoing Transmission
under Control: A major goal of Rely is to keep
the BER of an AP’s ongoing transmission under
control such that the frame is not corrupted. To
achieve that, an optimal limit on the maximum
number of subcarriers and the maximum amount
of phase changes allowed is to be known. As we
highlight later, this is an open research problem,
Rely’s current version empirically defines a stat-
ic value for maximum of number of subcarriers
as 12 and phase changes as 20°. These values
guarantee no significant change in BER observed
at the associated client. We confirm this by mea-
suring BER at a USRP-based receiver placed in
factory-similar lab settings. We compute the aver-
age of BER over 10,000 captured WiFi packets,
where each packet is composed of 8192 bits.
Despite variations in signal-to-noise ratio (SNR)
and modulation and coding scheme (MCS), we
observe that the increase in BER with FIR filtering
varies between 0.000747 to 0.000902. This mini-
mal change in BER due to FIR filtering proves the
minor impact of preamble modification on WiFi
AP-client communication, even in real deploy-
ments.

In Fig. 1b, we illustrate the encoding scheme
with an example. We choose a total of 12 subcar-
riers with two subcarriers in each slice, wherein
Rely intentionally injects phase distortion. The
allowed amount of phase distortions range from
negative to +20°. Next, we map the block of infor-
mation bits 010001 into subcarrier indexes and
phase shifts. The first four bits decide the indexes
of two subcarriers. For each selected subcarri-
er, we choose one bit to select the phase shift to
be introduced in L-LTF symbols. Information bits
0100 are mapped to the first and sixthsubcarrier
indexes in the first slice. The next subsequent bit
0 is mapped to phase shift of -20° for the sym-
bol of the first subcarrier, whereas the next 1 bit
is mapped to phase shift of +20° for the symbol
of the sixth subcarrier. The mapping logic stays
in a mapping table, as shown in the figure. Cor-
respondingly, the FIR filter coefficients are varied
from +20° to -20°. The remaining subcarriers are
assigned zero degree phase shifts.

Enhancing Reliability: Rely ensures reliabili-
ty through redundancy, that is, by repeating the
encoding process in each slice. As shown in Fig.

A'major goal of Rely is to
keep the BER of an AP's ongo-
ing transmission under con-
trol such that the frame is not

corrupted. To achieve that,
an optimal limit on the max-
imum number of subcarriers
and the maximum amount of

phase changes allowed need

to be known.
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Visualizing the intentional
modifications in the trans-
mitted preambles at the
receiver is a challenging
task, given that the received
CSlis nonlinear and discon-
tinuous, as it varies period-
ically between positive and
negative limits of 180°. A

well-known process named

“phase-unwrapping" helps
in restoring the continuity
in received CS.

1b, we repeat the encoding of bits 010001 in the
subsequent slices by selecting phase distortions of
-20° in the first subcarrier and +20° in the sixth
subcarrier of each slice.

RecEIVER DEsIGN witH CNN-BASED CSI DECODING

Visible Effect of Preamble Modification at CSI:
For decoding the packet, recall that a WiFi client
first estimates CSl using filtered L-LTF signal, as
shown in Fig. Tc. Since Rely perturbs only phase
in L-LTF symbols, its effect is not visible in CSI
amplitude. Therefore, we analyze the visuals of
CSl phases only to show the effect of preamble
modifications.

Visualizing the intentional modifications in the
transmitted preambles at the receiver is a chal-
lenging task, given that the received CSl is non-
linear and discontinuous, as it varies periodically
between positive and negative limits of 180°. A
well-known process named “phase-unwrapping”
helps in restoring the continuity in received CSlI
[9]. Phase unwrapping helps in observing the
minor jumps — the “patterns” — in CSI phases at
certain subcarriers. Figure 2 highlights the pat-
terns post unwrapped CSI phases. The presence
of phase jumps indicate the indexes of the subcar-
riers where the L-LTF symbol is intentionally dis-
torted. Note that this operation is conducted only
to visually demonstrate the distortion effect. Rely
does not specifically need to perform unwrap-
ping.
We first validate the hypothesis that the Rely
encoding module produces a unique pattern that
is repeatable under varying channel conditions
(channel-invariance) and second, that it creates
distinct patterns even in similar channel condi-
tions (uniqueness). To demonstrate this, consider
CSI phases collected at two different locations,
as shown in Fig. 2, for two different patterns.
CSI phase plots 1 and 2, indicated by Pattern
1, Channel 1 and Pattern 1, Channel 2 show
nearly similar patterns within CSI phases even
when the channel is completely changed (i.e.,
Location 1 to Location 2). On the other hand,
Pattern 2, Channel 1 shows a distinct pattern
within CSI phases collected at the same location
by selecting different FIR filters. This confirms
our hypothesis of Rely’s ability to introduce a
unique pattern within CSI phases that are also
channel-invariant.

Need for Learning CSI: While we clearly
observe the distortion patterns in CSI phases, it is
not always possible to get the clear, crisp patterns
in mobile robots placed in an industrial environ-
ment in the presence of fading and shadowing
with a multitude of blockages. Signal processing
of CSI phases to decode the pattern is not hard,
but has challenges in achieving high reliability
of detection. On the other hand, deep learning
[10], particularly the convolutional neural network
(CNN), has shown remarkable performance in
solving the pattern recognition problem in image
and speech applications [11] and is steadily gain-
ing traction in applications within the wireless
domain [12]. Furthermore, CNNs have proven
to be useful in learning CSI for various sensing
applications [13]. Varied use cases of CNN used
for learning CSI motivated us to assess its appli-
cability in identifying the valid patterns embedded
at the AP.
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FIGURE 2. CSI phase patterns generated by two distinct FIR filters under
the same or different channel conditions. Pattern T with Channel 1and
Channel 2 shows the channel-invariance of the patterns, while Patterns
Tand 2 show uniqueness of the pattern with two distinct FIR filters
under similar channel conditions as Channel 1,

Input Preprocessing and Output Classes for
CNN: The estimated CSI at the client consists of a
series of complex values representing channel fre-
quency response for 52 subcarriers. RelLy process-
es raw CSI using a “slicing operation,” wherein it
tries to recreate the slices of 48 subcarriers used
in the encoding process as shown in Fig. 1c. Each
slice is structured as a 2D real-valued tensor of
size 2 x 8 and is fed as input to the CNN. Output
classes for CNN are the distinct distorted patterns,
represented with message bits that were encod-
ed at AP. In this article, we consider four distinct
messages bits, Msg1, Msg2, Msg3, and Msg4, that
are our output class labels.

CNN Classifier: We use the CNN architecture
depicted in Fig. 1c, which consists of four layers,
with two 2D convolution layers and two fully con-
nected layers. The input is fed to the first convolu-
tional layer (Conv2D), which consists of 50 filters,
each of size 1 x 3.

Similarly, the second Conv2D layer has 50
filters, each of size 2 x 3. Each Conv2D layer is
followed by a rectified linear unit (ReLU) activa-
tion. Output of the second Conv2D layer is first
flattened and then fed to the first fully connected
(FC256) layer having 256 neurons. A second fully
connected layer (FC80) is added to extract nonlin-
ear combinations of high-level features extracted
from previous layers, which are finally passed to
a Softmax classifier layer. Through cross-valida-
tion, we carefully choose the hyperparameters
of CNN including the number of Conv2D filters
and their size, as well as depth of the model to
ensure its generalization. Our training set con-
sisted of 80,000 training, 10,000 validation, and
10,000 testing examples. Thus, we were able to
obtain less biased estimate of the performance of
our model. Further, we set the dropout rate to 50
percent at the fully connected layers to overcome
overfitting. The model weights are trained using
an Adam optimizer with a learning rate of 0.0001.

We predict the phase distortion pattern within
CSlI by following the methodology of “probability
sum.” Essentially, Softmax layer generates prob-
ability outcome for each pattern for each input
slice. We add these probabilities for each pattern
across all slices and declare the predicated pat-
tern for which sum of probability quantity is max-
imum.
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CNN Training and Adapting to Unseen
Environments: The accuracy of a deep learn-
ing model is known to improve with the amount
of training data [14]. However, in the wireless
domain, the channel has an inherent dynamism
involved that makes it hard to port a machine
learning model as it is, trained in a certain envi-
ronment to a new unseen environment. Thus,
irrespective of the amount of data used for train-
ing in one environment, the model is not expect-
ed to perform at its best in another environment.
More specifically, there are two related challeng-
es here:

a. Generating enough training data such that

a decent training accuracy can be obtained
b. Adapting the learned model to the new and

unseen channels such that the threshold for

expected prediction accuracy can be met

We address challenge a by artificially creat-
ing a simulated dataset with the MATLAB WLAN
Toolbox that allows creation of variations in chan-
nel for the latest WiFi standards with an instance
of wlanTGacChannel. With this approach, we
created a dataset with 200,000 channel variations
in an indoor environment with NLoS signal propa-
gations and SNR ranging from 0 to 30 dB.

Next, we address challenge b by leveraging
the machine learning approach of “domain adap-
tation” wherein a classifier is partially trained with
a different but related dataset [15]. Our approach
here is to transfer the knowledge learned with sim-
ulated channel environments to real and unseen
channel environments. For this purpose, we use
the popular supervised fine-tuning approach,
wherein we freeze the first | layers of the model
that is trained with source data and retrain it with
target data to fine-tune its last few layers using
backpropagation. For Rely, we first train a CNN
classifier with a large amount of simulated data
and then freeze two convolution layers of the
classifier and fine-tune other layers by retraining
with real data.

PERFORMANCE EVALUATION
EXPERIMENT DETAILS

Methodology: Our methodology to evaluate Rely
is largely governed by a robot in an industrial sce-
nario. The floor map of the experiment is shown
in Fig. 3. The floor has the live WiFi network of a
university with three APs per lab. We consider a
robot as the WiFi client that can be either station-
ary or mobile. The environment in an industrial
setting can have regions with and without obsta-
cles, resulting in line-of-sight (LoS) and NLoS signals
from the AP. Accordingly, we cover four cases:

a. Client-1 is stationary and in LoS from the AP
at a distance of 8 ft.

b. Client-2 is stationary and in NLoS from the
AP at a distance of 12ft.

c. Client-3 is mobile in the floor covering both
LoS and NLoS regions. To stress test Rely’s
performance in extreme cases of blockages
with poor reception of WiFi signal, we con-
sider an additional case (Fig. 4).

d) Client-4 is stationary and in NLoS from the
AP with many blockages and at a distance of
nearly 30 ft.

In all cases, the AP continuously broad-
casts the four time-critical messages — Msg1 =

4 stationary, LOS Client-1
A\ stationary, NLOS Client-2
0 Moving Client-3

‘\ @ stationary, NLOS Client-4

-

oo

FIGURE 3. Floor map where the experiment was conducted showing the placement of AP, stationary, and mobile
clients.

“100000,” Msg2 = “010001,” Msg3 = “001010,”
and Msg4 = “000111” — that are received by
the clients. While transmission of these messag-
es encounter channel (CSI) variations in all four
cases, case ¢ has the most variations due to the
mobility involved.

Metric Measurements: We evaluate the effi-
cacy of Rely for two metrics: accuracy and laten-
cy. We report two metrics for accuracy: per-slice
accuracy and per-CSI accuracy. We define per-
slice accuracy as the fraction of correctly predict-
ed patterns within slices to the actual patterns
sent by the transmitter in those slices. Second, we
evaluate Rely’s reliability performance by defin-
ing per-CSl accuracy as the fraction of correctly
predicted patterns sent within the entire CSI (with
repetition in slices) to the actual pattern sent by
the transmitter. We define latency as how much
time it takes for a frame to be processed once it
has been received at the receiver. We measure
latency with respect to the packet reception pipe-
line at the receiver (i.e., time for CSI estimation
and prediction with CNN). Note that we assume
the typical propagation time will be negligible.

Device Configuration: The setup, as shown in
Fig. 3, has an AP and four clients: stationary and
mobile clients in LoS and NLoS from the AP. We
set up the AP with USRP X310 software defined
radio (SDR) and the clients with USRP B210
SDRs. The output power of the radio is set to 20
dBm, the same as commercial off-the-shelf (COTS)
WiFi APs. The AP transmits 802.11ac-compliant
WiFi frames. The mobile client’s SDR is kept on
an experiment cart that is moved through the
floor aisles at human walking speed.

RESuLTS

Accuracy: We first report the accuracy of the
CNN model when it is trained and tested with
the simulated data. In this case, we achieve a
per-slice accuracy of 87.43 percent and per-CSl
accuracy of 97.77 percent. The improvement in
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There i a trade-off in
increasing the level of
distortions (which improves
detection of the encoded
message) and the potential
degradation in the ongoing
communication of the other

legacy clients. We need an
optimization procedure to
determine the number of

subcarriers and levels of
phase distortion to balance
these contrary outcomes.

per-CSl accuracy over per-slice accuracy empha-
sizes the importance of redundancy achieved
with slicing operation. A reason for per-CSl
accuracy below 99 percent is that the simulated
dataset also includes data for extremely poor
channel conditions that we included to improve
the robustness of the trained model in realistic
environments. We consider this accuracy as our
baseline.

Next, we report the accuracy results after
employing domain adaptation in the real exper-
iment setup. For case a, where the client is
stationary and in LoS of the AP, the per-slice
accuracy is 96.45 percent and per-CSI accuracy
of 99.81 percent. For case b, where the client
is stationary and in NLoS, the per-slice accuracy
is 95.22 percent and per-CSl accuracy is 99.22
percent. For case ¢, where the client is mobile,
the per-slice accuracy is 94.55 percent and per-
CSl accuracy is 98.58 percent. Lastly, for case d,
which covers the worst case performance, the
per-slice accuracy and per-CSI accuracy drops to
87 and 95.21 percent, respectively. Thus, Rely
achieves best case accuracy of 99.22 percent
for the stationary LoS client and 98.58 percent
for the mobile client. Accuracy drops for distant
clients due to severe drop in SNR values; this
problem needs further research for improving
the accuracy.

For fine-tuning the trained CNN model, we use
nearly 20,000 training examples, as compared to
200,000, and thus need only 10 percent of the
total training data used during simulation. This
results in reduction of training time by 64 ms on
average.

Latency: For default WiFi operation, the frame
is first processed completely at the physical layer
for packet detection, channel estimation, equal-
ization, and decoding; then it is processed by the
medium access control (MAC) layer, and later,
upper layers. However, for Rely, the processing
ends immediately post channel estimation, and
the message can be handled later by upper lay-
ers. In Rely, the processing latency is incurred
in estimating CSI and invoking a deep learning
engine to identify a valid pattern. Our evaluation
reports a processing latency of 4 ms for Rely as
compared to the latency of 12.8 ms while pro-
cessing the entire receiver chain. Our setup of
USRP devices is not an optimized one, thus intro-
ducing avoidable processing delays. An imple-
mentation with COTS devices would provide
an optimized hardware and software configura-
tion that would prevent unnecessary processing
delays. Given that CSI can now be decoded with
COTS Android smartphones, we are working on
developing an edge device capable of receiving
messages over Rely.

OPEN RESFARCH CHALLENGES

NEED FOR SECURITY

While an AP is able to convey messages to cli-
ents, this stage is susceptible to replay attacks.
Methods like RF fingerprinting, which detects a
specific emitter using 1Q samples, can be used
to distinguish the authorized AP from rogue APs.
However, this approach needs further validation
as the fingerprint itself can be eclipsed by inten-
tional phase distortions at the transmitter side.
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FIGURE 4. Confusion matrices for stationary, NLoS client, Client-3 placed in
alive environment at a distance of 12 ft from AP, Prior to domain-adap-
tation, CNN achieves an overall per-CSI accuracy of 97.7 percent with
simulation data, Post domain adaptation, it achieves per-CSI accuracy
0f99.22 percent in a live environment,

OPTIMAL SELECTION OF UPPER BOUNDS ON
NUMBER OF SUBCARRIERS AND LEVEL OF PHASE DISTORTION

In highly mobile scenarios, nonlinearity in the
observed CSI phase can lower the ability to dis-
criminate small changes in the CSI due to inten-
tional distortions. This makes learning difficult.
There is a trade-off in increasing the level of dis-
tortions (which improves detection of the encod-
ed message) and the potential degradation in
the ongoing communication of the other legacy
clients. We need an optimization procedure to
determine the number of subcarriers and levels
of phase distortion to balance these contrary out-
comes.

DISTRIBUTED LEARNING OF CSI AT CLIENTS

In Rely, we train the CNN in a centralized fash-
ion, wherein CSls are collected at the different cli-
ents and trained separately in a central entity. This
approach raises privacy concerns in the sharing of
data used to train a CNN architecture. Federated
learning can be a promising solution here, where-
in the CNN model is trained at the clients without
sharing the raw data and then disseminated.

TESTING IN A REAL FACTORY ENVIRONMENT

While we evaluated Rely in our robotic lab under
a sufficiently complex channel environment, it is
crucial to test Rely in a real factory environment
that may have different channel propagations. It
will expose us to challenges that we have not per-
ceived yet and motivate us to find solutions that
are necessary to integrate into Rely for its deploy-
ment in the real world.

CONCLUSION

We present Rely, which reliably sends time-criti-
cal messages with very low latency for industrial
robots. The transmitter intelligently embeds the
information in the L-LTF field of the preamble.
The receiver uses CNN and decodes the emer-
gency notifications from the changes in the CSI.
We demonstrated the feasibility of Rely with
live experiments with mobile robots on a busy
workshop floor. Rely is able to transmit messag-
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es within 5 ms with > 99 percent accuracy, thus
validating its proposed use in industrial URLLC
communications as defined by the existing 5G
specifications in 3GPP Release 15.

ACKNOWLEDGMENTS

This work is supported by the Office of Naval
Research under grant N0OO0141612651 and NSF
award CNS 1923789.

REFERENCES

[11Y. Kim et al., “New Radio (NR) and Its Evolution Toward
5G-Advanced,” IEEE Wireless Commun., vol. 26, no. 3, June
2019, pp. 2-7.

[2] “Amazon Now Has 200,000 Robots Working in Its Ware-
houses,” Jan. 2020; https://roboticsandautomationnews.
com/2020/01/21/ amazon-now-has-200000-robots-work-
ing-in-its-warehouses/28840/, accessed 21 June 2020.

[3] J. L. Messenger, “Time-Sensitive Networking: An Introduc-

tion,” IEEE Commun. Standards Mag., vol. 2, no. 2, 2018,

pp. 29-33.

R. Pigan and M. Metter, Automating with PROFINET: Industri-

al Communication Based on Industrial Ethernet, Wiley, 2008.

D. Jansen and H. Buttner, “Real-Time Ethernet: The EtherCAT

Solution,” Computing and Control Engineering, vol. 15, no.

1, 2004, pp. 16-21.

3GPP, “Study on Scenarios and Requirements for Next Gen-

eration Access Technologies.” TSG RAN TR38.913 R14,

June 2017.

[7]1 G. Brown, “Ultra-Reliable Low-Latency 5G for Industrial
Automation,” Qualcomm tech. rep., vol. 2, 2018, p. 5206~
5394.

[8] L. Ho and H. Gacanin, “Design Principles for Ultra-Dense
Wi-Fi Deployments,” Proc. IEEE Wireless Commun. and Net-
working Conf., 2018, pp. 1-6.

[9] J. Tribolet, “A New Phase Unwrapping Algorithm,” IEEE
Trans. Acoustics, Speech, and Signal Processing, vol. 25, no.
2,1977, pp. 170-77.

[4

[5

[6

[10] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning,
MIT Press, 2016.

[11] W. Liu et al., “A Survey of Deep Neural Network Architec-
tures and Their Applications,” Neurocomputing, vol. 234,
2017, pp. 11-26.

[12] S. Riyaz et al., “Deep Learning Convolutional Neural Net-
works for Radio Identification,” IEEE Commun. Mag., vol. 56,
no. 9, Sept. 2018, pp. 146-52.

[13]1 Y. Ma, G. Zhou, and S. Wang, “WiFi Sensing with Channel
State Information: A Survey,” ACM Computing Surveys, vol.
52, no. 3, 2019, pp. 1-36.

[14] X. Zhu et al., “Do We Need More Training Data?” Int’l. J.
Computer Vision, vol. 119, no. 1, 2016, pp. 76-92.

[15] M. Wang and W. Deng, “Deep Visual Domain Adaptation:
A Survey,” Neurocomputing, vol. 312, 2018, pp. 135-53.

BIOGRAPHIES

KUNAL SANKHE is currently pursuing a Ph.D. degree in computer
engineering at Northeastern University under the supervision of
Prof. K. Chowdhury. His current research efforts are focused on
implementing deep learning in the wireless domain and devel-
oping a cross-layer communication framework for the Internet
of Things.

DHERYTA JAISINGHANI is an assistant professor at the University of
Northern lowa, Cedar Falls. Prior to that she was a postdoctoral
research associate at Northeastern University, Boston, Massa-
chusetts. She received her Ph.D. from IIT-Delhi, India, in 2019
and her Master’s degree from llIT-Bangalore, India, in 2012. Her
research interests are in the areas of pervasive and ubiquitous
computing with particular focus on networked systems, large-
scale WiFi networks, software-defined-networks, and mobile
computing.

KAUSHIK ROY CHOWDHURY [M’09, SM’15] is a professor at
Northeastern University. His current research interests involve
systems aspects of networked robotics, machine learning for
agile spectrum sensing/access, wireless energy transfer, and
large-scale experimental deployment of emerging wireless tech-
nologies.

While we evaluated Rely
in our robotic lab under
sufficiently complex channel
environment, it is crucial to
test Rely in a real factory
environment that may have
different channel propaga-
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