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Classifying UAVs With Proprietary Waveforms via
Preamble Feature Extraction and Federated Learning

Guillem Reus-Muns

Abstract—Small unmanned aerial vehicles (UAVs) are deployed
in a number of different emerging market segments as well as for
recreational hobby flying. Driven by their ubiquitous availability,
a large number of manufacturers offer UAV models in different
form factors, control and load carrying capacities. This paper
proposes a deep learning method to detect the type/model of the
UAYV using the transmitted RF signals, even when these signals
follow proprietary medium access protocols whose headers cannot
be decoded. The main contributions are as follows: (i) We show how
the preamble portion of the packet is better suited for learning sub-
tle protocol-specific differences, instead of randomly selecting any
subset of the transmitted packet, (ii) we propose a pre-processing
scheme that generates cross-correlation feature maps to enhance
the classification accuracy, (iii) we develop a deep convolutional
neural architecture that can be trained in data collected from
static scenarios and then tested in practical hovering conditions
with 98.2% accuracy of UAV model classification, demonstrating
robustness to channel variations, and (iv) we extend this model
towards a federated learning paradigm where sensors send indi-
vidually trained models back to a central controller that combines
them, without any appreciable loss of accuracy. Our evaluations
are performed on an 8.9 GB dataset collected from static and flying
UAVs, which we also release as part of the technical contributions
of the work.

Index Terms—UAV classification, deep learning, federated
learning.

1. INTRODUCTION

NMANNED aerial vehicles (UAVs) are ushering in a
U revolutionary transformation in telecommunications, agri-
culture, surveillance and construction sectors. Recent market
analysis suggests that the UAV market will increase to 63.6
billion USD by 2025 [1]-[3]. However, the easy availability of
small form factor UAVs, driven by business and hobby needs,
raises concerns over malicious UAV usage. Some examples
of such undesirable activity include privacy intrusion [4] and
weaponized attacks [5]-[7]. Thus, developing competent UAV
identification mechanisms that can detect the arriving UAVs in
flight will help to take preemptive measures. The overarching
goal of this paper is to detect the make/model of the hovering
UAV using its RF control and data signaling, assuming a general
case that the UAVs transmit proprietary waveforms that cannot

Manuscript received October 1, 2020; revised February 15, 2021; accepted
April 22, 2021. Date of publication May 17, 2021; date of current version July
20,2021. This work was supported by the NSF award CNS 1923789. The review
of this article was coordinated by Dr. Yue Gao. (Corresponding author: Guillem
Reus-Muns.)

The authors are with the Institute for the Wireless Internet of Things, North-
eastern University, Boston, MA 02115 USA (e-mail: greusmuns @coe.neu.edu;
krc@ece.neu.edu).

Digital Object Identifier 10.1109/TVT.2021.3081049

and Kaushik Roy Chowdhury, Senior Member, IEEE

Federated Averaging

W\ =

E@ Pre-processing &= Training

((‘l’)) Data collection &= Local/Averaged
and local training w9 [ty

device model weights
sharing

Fig. 1. A set of distributed devices train independent UAV classification
models using their locally collected data and the cross-correlation based feature
extraction. All models are combined into one at the cloud through Federated
Averaging and shared back to each independent device for continuous training
and testing.

be decoded. A combination of passive and active methods have
been previously proposed to detect and classify UAVs, both in
the RF and non-RF domains [3], [8], [9].

In-flight UAVs and the ground-based radio controllers (RCs)
are in constant communication to exchange control and teleme-
try signals. Thus, using these RF signals is an opportunity to pas-
sively identify unique signatures for each UAV. Our key insight
here is that even when proprietary communication protocols
are used, physical layer (PHY) frames always contain specific
preambles at the beginning of each frame. These preambles are
used to carry out time/frequency synchronization and channel
estimation tasks. While the preambles themselves may serve as
discriminating features for different UAV models, we choose to
operate at the I/Q sample-level, with no a priori knowledge
of the transmission rate, modulation scheme, or bit pattern
that composes each preamble. However, since the preambles
occur repeatedly in transmitted packets and are more robust
to wireless channel effects, we wish to leverage its inherent
cross-correlation properties. Towards this aim, we generate a
feature map using the preambles and show how this enables
successful UAV make/model detection, which we define as the
task of classification. Since the format of the transmitted frame is
unknown, we try to coarsely estimate the location of the pream-
ble within the received I/Q samples, partition the entire stream
into different slices, and analyze the cross-correlation properties
for each slice independently. We note that our objective is not to
detect a specific emitter of the same model UAV (what is known
as RF fingerprinting), but instead, to detect a specific model (e.g.,
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a DJI M100 versus a DJI Mavic Pro 2). We use deep learning
for learning the model ID, specifically, 3D convolutional neural
networks (CNN), which have proven to be remarkably success-
ful in a number of image processing tasks [10]-[12], and more
recently for RF fingerprinting [13]-[18].
Given that new UAV models are continuously entering the
market, it is impractical to assume that a central dataset is
always updated with signal collections from these new models.
Thus, training a single classifier over the entire dataset poses
a challenge. Furthermore, users are not incentivized to provide
such data to the central entity, given that the signals transmitted
by UAVs may contain audiovisual data or location information
in the form of GPS coordinates. As the collected data format
is I/Q samples, it is difficult to extract out the coordinates
before sharing with other third parties. Thus, users may be more
comfortable allowing signal collection by a local, trusted entity,
with assurance that the dataset itself will not be ported elsewhere.
Hence, we consider a federated learning scenario for training
our model [19], where independent neural networks are trained
independently at local entities with local data. These trained
architectures are then combined in the cloud, while the raw data
always remains at the local level [20].
Finally, we consider an extreme case of non-IID (Independent
and Identically Distributed) data, where data from a single class,
i.e., UAV model, is only available at a very small number of
data collection locations. This assumption is relevant in cases
where a particular model enters a country-specific market, is
less widespread in use due to supply/distribution issues, or is
simply a new entrant in the market. We start from the approach
in [21], where a small IID set is shared with all users. We train
each model locally using a weighted categorical cross-entropy
to compensate for the non-IID data. Indeed, we see an accuracy
improvement of up to 68% compared to the baseline approach
in [21].
Our contributions in context of classification of generalized
UAV make/models are summarized as follows:
® We propose a novel pre-processing scheme that generates
a cross-correlation-based feature map in order to highlight
the preamble properties for the classification task. (Sec-
tion IV-A). Furthermore, we empirically demonstrate the
benefits of using PHY preambles for UAV classification
(Sec. III-C).

® We consider a federated learning scenario with non-IID
data across users, which combines the data-sharing ap-
proach in [21] with a weighted categorical cross-entropy
loss. Our experiments show faster convergence time during
training and higher accuracy during testing (Sec. V).

® We thoroughly evaluate our approach through experimen-
tal data under both similar and totally different channel
conditions to showcase its robustness. We comprehensively
study the cost-benefits of federated learning during perfor-
mance evaluation. Finally, we generate a dataset of raw IQ
samples from stock UAV transmissions deploying 4 UAV
models. To support independent investigations beyond this
work, we make this dataset publicly available.

The paper is organized as follows: Sec. II summarizes
the relevant related work in the field. Sec. III analyzes the
downlink/uplink UAV technology, describes the dataset and
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motivates the use of PHY preamble data for classification tasks.
Sec. IV describes the cross-correlation based approach and
tackles the new device detection problem. Sec. V evaluates the
approach using federated learning and improves its performance
for non-1ID data. We conclude the paper in Sec. VI.

II. RELATED WORK

In this section, we review the state-of-the-art in UAV detec-
tion/classification, with a focus on passive RF-based methods.
Also, we summarize the work in federated learning with non-IID
data.

A. Passive RF

Most off-the-shelf UAVs continuously exchange data and
control with an RC or other ground-based controllers. We pro-
vide experimental evidence and examples of such downlink
communication in Sec. III-A. Since these links are bidirectional,
it is also possible to similarly leverage uplink RC transmissions.
Different UAV classification approaches have been proposed
that leverage RC and/or UAV signals.

The authors in [26] propose a system based on three hand-
picked features from the received RF signals and use an artifi-
cial neural network classifier to detect the presence/absence of
UAVs. This is a precursor to the classification problem, which
we denote as a detection problem. Similarly, a UAV detection
solution based on Gaussian Mixture Model (GMM) is proposed
in [27]. Another approach is to detect the presence of UAVs
by passively eavesdropping on the RF communications and
examining the physical characteristics of the drone, such as
vibrations in its physical frame [24].

UAV manufacturers often customize RF technology for their
uplink/downlink signaling, and waveforms may differ in terms
of the frame interval or signal strength. Early attempts for UAV
classification use such features [28], [29]. Customized headers
or preambles containing vendor-specific information can be
leveraged to distinguish the make of UAVs at the physical layer
or at the MAC layer via the MAC address. Such features are
exploited for classification in [23], where the authors extract a
Hash Fingerprint from preamble data and develop a classifier
using a distance-based support vector data description (SVDD).
However, this approach is only tested indoors and shows low
performance under Gaussian noise.

UAV classification based on the uplink RC transmissions is
proposed in [22], where multiple signals are captured with a
spectrum analyzer and processed via wavelet decomposition. In
addition, the authors implement and compare the performance of
multiple classification algorithms. A similar scenario is consid-
ered in [25], this time under the interference of Wi-Fi/Bluetooth
signals. However, in realistic scenarios, the RC maybe far away
from the actual flight path of the UAV, and thus, capturing
the RC signals for analysis might be unfeasible. In addition,
multiple UAVs coexisting in the same spectrum may employ
FHSS (as seen in the popular DJI family of UAVs), which makes
it impossible to isolate signals from different sources. As we
explain in Sec. III-A, our scenario involves a UAV selecting a
distinct, non-overlapping downlink channel. Hence, we design
a downlink-based UAV classifier in this paper.
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Fig. 2. FHSS pattern captured from a DJI M600 RC (top) and a DJI Mavic
Pro 2 (bottom).

B. Federated Learning for Non-I1ID Data

Federated Learning, first introduced by Google, proposes a
privacy-preserving approach were multiple models are trained
locally at different devices and combined at the cloud [19], [30],
[31].

Instead of transmitting potentially sensitive data to a central-
ized entity (cloud), privacy is maintained by training indepen-
dent models at each edge device, which only share the updated
model weights.

Many novel solutions have been proposed in the field [32]—
[34].

Non-IID data poses an added challenge to federated learning,
since assuming IID data across different devices may become
unrealistic in many scenarios. The authors in [35] proposed
an algorithm that provides faster convergence than federated
averaging, even for non-1ID data. [36] proposed a method where
a generative model is used at each edge device to generate
extra data under a non-IID setting. [21] proposed a data-sharing
strategy to tackle the non-IID training problem, where a small
portion of the locally obtained dataset is shared with all the users
in order to reduce the weight divergence. We adopt this approach
in this paper to demonstrate highly accurate UAV classification,
even with class imbalances across the different data collection
entities.

III. PRELIMINARY EXPERIMENTS

A. COTS UAV Signal Analysis

We first study RF signaling on several UAV models belonging
to the DJI family, to analyze the uplink/downlink signal char-
acteristics. We note that these waveforms are all proprietary, so
no decoding is possible. We gather measurements in a static
environment using the Tektronix RSA507 A spectrum analyzer.

1) Uplink: Several models from the DJI-made COTS UAVs
employ FHSS for the RC to UAV uplink. For instance, in Fig. 2
we show the RF spectrum of captured transmissions from two
different DJI controllers in the 5.725-5.825 GHz band. The RC
uses spread spectrum of 70 MHz bandwidth with hops of 5 MHz
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Fig. 3.  Downlink transmission of two DJI M600 UAVs (top). Spectrogram
visualization of the downlink bursty transmissions (bottom).

(M600) and 2 MHz (Mavic Pro 2). The 2.4 GHz band is also
utilized, where we observe a bandwidth of up to 80 MHz and
a minimum hopping distance of 2 MHz between subcarriers.
These numerical values are of relevance for the discussion
conducted in the following subsections.

2) Downlink: UAVs communicate periodically with the RC
to report telemetry data, battery level or relay application traffic
such as video streaming. Based on the application, such trans-
missions may vary in bandwidth and transmission periodicity.
Consider next the characterization of the downlink of a DJI
M600 UAV: These devices transmit in the 2.401GHz-2.481 GHz
band, choosing one out of eight 10 MHz channels, based on a
proprietary interference analysis algorithm. In Fig. 3, we show a
spectrum visualization of two DJI 600 transmissions. In contrast
to what happens in the uplink, where different UAVs share the
same band, we observe that the downlink transmissions do not
overlap. Moreover, we also observe that the UAV accesses the
medium at a fixed periodicity (=50 Hz), as we show in the
spectrogram in Fig. 3. Based on our experiments, the DJI M100
and DJI Phantom 3 employ the same downlink technology. The
DIJI Mavic Pro 2 may also use channels of up to 20 MHz, if
required, to support its video streaming capabilities.

B. Data Collection

We create our own dataset with 4 different COTS DJI UAV
models, with more than one UAV of the same model in some
cases: 2 DJI M100, 2 DJI M600, 1 DJI Phantom 3 and 1
DIJI Mavic Pro 2. As mentioned in Sec. II and summarized in
Table. I, other UAV classification works used data from FHSS
uplink transmissions under the assumption that only a single
UAV is present at a time. In contrast, we collect downlink
data only, where different UAVs transmit in different bands to
avoid mutual interference (Sec. III-A2). Thus, collecting data for
every independent UAV is possible under multi-UAV scenarios.
However, multiple FHSS transmissions from independent UAV's

Authorized licensed use limited to: Northeastern University. Downloaded on August 14,2021 at 17:19:45 UTC from IEEE Xplore. Restrictions apply.



6282

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 7, JULY 2021

TABLE I
SUMMARY OF RELATED WORK ON PASSIVE RF UAV CLASSIFICATION/DETECTION
Work Data Collection Static/Hovering | Multi-UAV Source Results
[22] 1/Q samples from different UAV RCs. | Static No UAV Uplink 97.1% classification ac-
Only indoors scenario is considered. curacy
[23] 1/Q samples from different UAV/WLAN | Both No UAV  Downlink and | UAV detection. 86.5%
routers WLAN router rejection rate  for
802.11b.
[24] 1/Q samples from a UAV-mounted SDR | Hovering No UAV-mounted SDR 96.7% Accuracy, 95.9%
Precision and 97.3%
Recall.
[25] 1/Q samples from different UAV RCs | Static No UAV Uplink 98.13% accuracy using
under WiFi and Bluetooth interference. a kNN classifier.
Only indoors scenario is considered.
[26] RF Data for UAV and non-UAV pres- | Hovering No UAV Uplink/Downlink UAV vs non-UAV clas-
ence is collected at different distances. sification accuracy of
Both indoors and outdoors are consid- up to ~97%.
ered.
[27] Data for both RC and UAV RF trans- | Static No UAV Uplink/Downlink 97.48% UAV signal de-
missions in an indoors lab scenario. tection accuracy.
The authors used an Agilent9404 os-
cilloscope and a directional antenna to
collect data.
This paper UAV downlink stock transmission col- | Both Yes UAV Downlink 99.97%
lected indoors and outdoors
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Fig. 4. Data collection overview. The process represented in this figure is
repeated for each UAV and distance.

coexist in the same band and only single-UAV scenarios can be
considered.

We use an Ettus USRP B210 and MATLAB running on
an Ubuntu machine for data collection. We fly each UAV in-
dividually at different distances from the receiver (4 ft, 7 ft,
10 ft, 13 ft) and collect multiple streams of 1Q samples for
each UAV and location. The software defined radio (SDR) is
tuned to receive only in the specific channel where the UAV is
transmitting, as described in Sec. III-A2. As shown in Fig. 4,
we collect 4 sets of 2 seconds of data for each UAV-location
pair. Each set is collected with a separation of ~10 seconds.
As presented in Fig. 3 and explained in Sec. III-A2, downlink
communication occurs in periodically. Thus, each set contains a
number of interleaved short periods of UAV-transmitted frames
and noise. This data collection process, represented in Fig. 4, is
repeated for each different UAV and distance. In order to capture
data under different channel conditions, we collect two different
datasets following the previously described methodology. The
first dataset is collected in an indoors/lab scenario, where the
UAVs are static on the ground. The second dataset is collected

unknown due to the proprietary MAC protocol.

outdoors, with the UAVs hovering in the air. These two different
datasets test the robustness of our approach under different
wireless channel conditions.

C. PHY Preamble for Classification

Without loss of generality, we assume that preambles are
added at the start of physical layer (PHY) frames to achieve
synchronization and perform channel estimation tasks, amongst
others. Since there is no standard globally adopted for all UAVs,
most vendors use their own proprietary protocol. Our hypothesis
is that these preambles differ sufficiently to enable accurate UAV
classification. As shown in Fig. 5, the preambles in a PHY frame
are always located at the very start.

Next, we aim to validate the hypothesis that using the PHY
preamble increases UAV classification accuracy, as opposed to
using any set of contiguous IQ samples randomly selected from
the payload. To do so, we empirically compare the classifica-
tion accuracy of both approaches. The classification accuracy
is computed as the quotient between the number of correctly
classified inputs and the number of elements in the dataset.

We use the data of 2 different UAV models (2 DJI M100 and
2 DJI M600), i.e., four UAVs in total. To guarantee the deep
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learning model learns UAV-model-specific instead of device-
dependant features, we test the performance of our model with
different UAVs used for testing. In particular, one of each DJI
M100/M600 are used for training and different DJI M 100/M600
are used for testing. In order to study the potential effect of the
UAV hovering, we consider two different scenarios where (i)
the UAVs are placed at a static location on the ground and (ii)
the UAVs are hovering in the air. Given that the PHY frame
structure is defined by the proprietary protocol, the exact length
and location of the preambles present is unknown. For this work,
we subtract the first 5 k IQ samples of every frame. We justify
the choice of this value later in Sec. IV-Al.

We train a neural network with the architecture shown in
Fig. 6(a). The complex-valued 1Q samples are split and fed
into the neural network in two different columns, as shown
in Fig. 9. This experiment is conducted for the two scenarios
mentioned earlier in this subsection. In Fig. 7, we show the
obtained accuracy for each studied setup.

We observe that when the UAVs are static, an accuracy of
61.5% and 85.88% is obtained for the cases pertaining to using
payload 1Q samples and preamble IQ samples, respectively.
Moreover, the performance drops considerably under hovering
conditions, with the corresponding accuracy values falling to
56.75% and 63.24%.
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Thus, we identify that (i) there is meaningful information in
the preambles transmitted by the UAVs that enhance the classi-
fication accuracy, and (ii) the intrinsic stochastic properties of
the wireless channel under UAV hovering conditions dominate
the potential discriminating features of the preamble. In the
next section, we propose a cross-correlation based approach
that exploits the preamble features independent of the wireless
channel conditions.

IV. PREAMBLE-BASED UAV CLASSIFICATION

The wireless channel changes in sub-second intervals under-
ing hovering conditions. This, in turn, lowers the probability
of correct UAV classification. Here, we propose a classification
method based on the cross-correlation properties intrinsic in the
PHY preamble, which is present in every transmitted frame.

A. Cross Correlation Based Classification

We wish to obtain discriminating features that can be gen-
eralized for different data collection scenarios, and ultimately,
facilitate UAV classification in unknown deployment environ-
ments. Since the exact location of each preamble within a frame
is unknown, we propose to create a feature map based on the
cross-correlation of different slices within the first N samples of
each frame.

We collect one set of N samples for each of the UAVs 1,
i=1,2,...,1, referred as p;, which becomes the reference for
computing the cross-correlation (R) for every received frame.

First, we define the cross-correlation as:

ny [m] = E{xn—kmy;} (D

where —oo < n < 0o, E{} denotes the expected value operator,
the asterisk denotes the conjugate and = and y are two random
sequences. As we are working with finite length sequences, R
can be expressed as:

* R; . [-m] m <0

Then, we define the vector Cy, [m] as:

Cyylm] =Ryym—L|, m=L-1,L,...,2L—1. (3)

where L is the length of each sequence. In this work, we investi-
gate the properties of the cross-correlation between a sequence
of captured 1Q samples, c¢;, and a set of pre-stored sequences
Di, Vi, for classification purposes. However, the location of such
discriminating features is unknown, which may be embedded in
certain sub-sequences within these preambles.

Without loss of generality, let us define p? as a sub-sequence
of p; with length L. < N and starting index b,0 < b < N — L.
Similarly, be also define c?- as a sub-sequence of c;. The sub-
indices 7 and j indicate the UAV model or class:

i,7 = {M100, M600, Phantom3, Mavic2Pro}

1) Sequence Length L: We investigate C[m] for different
p? and ¢;, in order to set the sequence length N that will be
subtracted from the beginning of each received frame. In partic-
ular, we define the peak-to-average ratio for the cross-correlation
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_ Vpre, V]

Vppe, [b] = T (6)
Yo = max(Yye.,) Vi @)
where Fpbe, is the average cross-correlation between p? and c;j
(Cpoe,[m ]) Vpbe, 1] is the peak-to-average cross-correlation ra-

tio between the sequences p? and ¢;. For visualization purposes,
Vpre, [b] is normalized (.., [b]) to values between 0 and 1 after
applying the normalization factor 7. For ease of notation, we
eXpress Vb, as Yij, where 7 and j indicate the UAV model for
p and c, respectively. Then, 7;; represents the normalized peak-
to-average ratio for the cross-correlation between p? and c;.
Intuitively, 7 is used as a relative measure to quantify how big the
correlation peak is in comparison to the whole cross-correlation
sequence. While the generated cross-correlation feature space
does not rely on simple peak detection, we define 7;; to quan-
titatively measure whether the two sequences have meaningful
cross-correlation properties. 7;;[b] is a sequence of 7;; values for
different starting indices b for the sequence p?. Thus, we will set
N to the smallest value such that meaningful cross-correlation
properties are captured, which we express as:

N = b+ L 3 7i;[bi] >~ 7ij[bn], 3

where b; is the smallest b value such that 7;; stays constant even
if b increases.

We present in Fig. 8 the evolution of 7, ;[b] over b for sequences
captured for different UAV models (M 100, M600). The length of
the sequence p? is set to L = 2000. We observe how ¥;;[b] varies
distinctly with b for different ¢, j pairs. The curves present multi-
ple inflection points due to the different cross-correlation proper-
ties of the sub-sequences present within the analyzed sequences.
Thus, each peak corresponds to two matching sub-sequences,
in contrast to low Ve, [b] values, which we interpret as two
sub-sequences with low cross-correlation properties. However,
we observe that for b >3000, 7;; [b] stabilizes and therefore, no

Vb L bp, Vi, j
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meaningful cross-correlation information is available. Since the
condition in (8) is fulfilled for b >3000, we set N to 5000 for
the rest of the paper.

2) Generating Feature Maps: Next, we empirically inves-
tigate the cross-correlation properties for different pb-c; pairs
in order to motivate its importance for our classification task. In
Fig. 10, we plot different cases of Cp})CJ}», with¢ = {M100, M600,
Phantom3, Mavic2Pro} and j = {Phantom3 (10(a)-10(d)),
M100(10(e)-10(h))}. As expected, we observe how C[m] shows
different shapes based on what sub-frames are used. In some
cases, certain cross-correlation contours can only be observed
for specific p? and c? combinations.

For instance, CPIC; A shows a very similar pattern, with
peaks around m = 5000, for all UAVs expect the Mavic2Pro.
In contrast, C pE000¢s000 with ¢ = M600 (Fig. 10(b)) is clearly
distinguishable from the i = {M100, Phantom3} cases, with
clear correlation peaks for m = 5000 (Fig. 10(a) and Fig. 10(c),
respectively). A similar analysis can be done for Cpilc}wmg,
where certain features seem to be only present for specific
cross-correlation sub-sequence pairs.

However, finding the specific value pairs for ¢ and b that
achieve the best classification performance is not straight for-
ward. In addition, different UAVs might require different values
for these variables. Thus, we propose a general framework that
aims to generate a cross-correlation-based feature map that will
highlight all the potential classification features, regardless of
prior knowledge of the UAVs under study.

In Fig. 11, we show how we generate such feature maps. For
a certain incoming sequence c;, we generate a number of sub-
sequences c?» with length L and a sliding window w. Similarly,
a previously stored sequence p; is chopped into sub-sequences
p?. Then, each sub-sequence c? is cross-correlated with every
sub-sequence p? following Eq. (3), obtaining Cp]bcs [m]. We con-
catenate all the computed C'[m] into a matrix with dimensions
L x B, with B = L . The same process is repeated for all
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1 values, ultimately generating a 3D matrix of dimension L x
Bx I.

B. Evaluation

We train a neural network with the architecture presented in
Fig. 6(b) with generated feature maps represented as a 3D matrix.
We design the architecture in Fig. 6(b) using 3D convolutional
layers under the premise that different C'[m] do not share any
spatial features. Thus, the filters of size (F,1,1) search for relevant
features across each independent cross-correlation. It is not until
the last convolutional layer where the size of the filters allows
the different computed features for each UAV to be combined,
before the fully-connected layers. We use PyTorch for our im-
plementation and train the model with Adam optimizer using a

TABLE II
CLASSIFICATION ACCURACY RESULTS

| Training | Testing | Classification Accuracy |
Static Static 100%
Static Hovering 98.2%
Hovering Static 100%
Hovering | Hovering 99.97%

learning rate of 0.001. The hyperparameters of the model, such
as filter size, number of filters and the depth of the model are
chosen carefully through cross validation.

In Fig. 9 we show the processing pipeline. The receiver device
collects the raw I1Q samples used to compute the feature map, as
shown in Fig. 11, which we use as the input to the neural network.
As part of the comparison study in Sec. I1I-C, we train a classifier
on the same dataset with only 2 UAVs and we show the results
obtained in Fig. 7. Our method is able to achieve near-perfect
accuracy for both the static (indoor) and the hovering (outdoor)
scenarios.

In order to study the robustness of our approach, we extend
the evaluation to 4 different UAV models with the two datasets
described in Sec. III-B. We partition them into train, valida-
tion and testing datasets, following an 80/10/10 distribution.
Furthermore, we empirically evaluate the robustness of our
method under unseen channel conditions, we train two models
independently with static and hovering data. Next, we test each
model with data collected under both seen and unseen scenarios.
Thus, we evaluate the performance of the static-data-trained
model with both static and hovering data, separately. Similarly,
we use static and hovering data to test the model trained with
hovering data only. We present the results in Table II. We observe
that the worst performing case (static training, hovering testing),

Authorized licensed use limited to: Northeastern University. Downloaded on August 14,2021 at 17:19:45 UTC from IEEE Xplore. Restrictions apply.



6286

M100 M100 SRS

M600 M600

True label
True label

Phantom 3 Phantom 3

Mavic Pro 2 Mavic Pro 2

W e

w® e
o
Predicted label

(a)

3 2
et w“‘“w

Predicted label
(b)

Fig. 12. Confusion matrix after training and testing on hovering data (a),
training on static data and testing on hovering data (b).

achieves an accuracy of 98.2%, whereas we see near-perfect
accuracy for other scenarios. These results reveal that a model
trained with data collected in a controlled environment can be
subsequently deployed in more realistic scenarios. The channel
conditions and the noise level in these unseen environments are
likely completely different. We observe near-perfect accuracy
for most of the training-testing combinations, except for the
static-hovering case, where we expect a small accuracy reduction
due to the unseen hovering conditions during training.

In Fig. 12 we show the confusion matrices for two different
training-testing pairs, which supports our claim of channel-
independent and generalized UAV classification.

C. New UAV Detection

If a trained network is tested with data from a new UAVY, it
inevitably classifies the input unit as one of the known classes.
To discriminate this prediction from a “correct” old device
prediction, we consider the Euclidean distance to the predictions
for set of known devices in order to label each unknown test unit
as “old” or “new”. This problem is commonly referred in the
literature as novelty detection.

1) Overview of the Approach: Distance-based metrics for
novelty detection have been widely explored in the research
community [37]-[41], where a data point is considered to be
from an unknown class if it is far from its neighbours. While
multiple distance metrics have been explored, Euclidean dis-
tance is the most popular choice for univariate and multivariate
continuous attributes. To use the distance-based approach for
new UAV detection, the softmax scores s for a set with known
labels (old) are computed and kept as a reference. Assume the
reference set has K samples each indexed with k = 1,.., K-1.
Then, the Euclidean distance to the closest point within the
reference set (d;) is computed for each incoming datapoint with
softmax scores sy, which can be expressed as:

d; = min \/ S (k- st)z)

Additionally, we average the metric d; from multiple indepen-
dent predictions (d) to take a single novelty detection decision:

1 T
dr = di

t=

(€))

(10)
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Fig. 13.  Anomaly detection rate over 7"

where 7' is the number of averaged samples. Notice that that the
transmission rate for UAVs is typically around 50 Hz (Sec. III-
A2). Thus, collecting enough data for computing multiple pre-
dictions is feasible in fractions of a second. Next, the computed
distance metric is used to discriminate whether a certain signal
belongs to the known set of UAVs or is a new unknown device.
The threshold is selected though exhaustive exploration for
multiple values.

new dp > thresh
old otherwise

Yo = an

2) Evaluation: We test the “new” UAV detection approach
on the same dataset described in Sec. III-B. We use the trained
model in Sec. IV-B and collect data for a fifth UAV (DJI Air 2),
which will be used as the new device.

In this case, the new UAV detection accuracy is defined as
the number of correctly detected “new” devices (y; = new),
divided by the size of the dataset. Without loss of generality,
we select the DJI Air 2 as the new device, and the other four as
old devices. Additionally, we evaluate the performance with the
number of averaged samples 7" in Fig. 13. By taking a single
sample (T = 1), we obtain a new device detection accuracy
(true positive) of 84.52% with less than 0.5% of old devices
incorrectly classified as new (false positive). This shows that
> 99.5% of the samples are correctly classified as old UAVs.
Furthermore, we achieve a new device detection accuracy of
99.7% and a true negative rate of 98.51% with T = 4.

V. IMPACT OF FEDERATED LEARNING

A. Scenario Description

The work described in the previous sections proposes a solu-
tion to the UAV classification problem under the assumption
that the complete dataset is available at a centralized entity
during training, and could only be deployed across different lo-
cations/devices during the testing phase. However, sharing data
with potential personal or private information poses multiple
privacy concerns.

To avoid sharing raw IQ samples between data collection
devices and a central entity, we next consider a setup where
the raw data is kept at each data collection receiver. Moreover,
each receiver trains a UAV classification model locally and only
will share the weights of this model with the centralized entity.
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During training, each user computes the class representation and weights the
loss accordingly.

Notice that this ensures that the data itself will not be shared
outside the data collection device. This system architecture is
commonly referred as federated learning. Typically, federated
learning involves a cloud entity and multiple users, and its
operation can be described into three steps:

First, the central entity or cloud shares a copy of the model
with the latest weight updates with all the users. We interchange-
ably use the term ‘user’ with a RF data collection device with
computation resources to train a neural network in the following
part of the paper. Second, each user updates the received model
independently using its own data and shares it back to the central
entity.

Finally, the different models trained by each user are com-
bined into a process commonly referred as federated averag-
ing [31].

The above three steps are collectively referred to as feder-
ated iteration. We summarize the federated learning process in
Fig. 14. Furthermore, we define the following parameters:

® Local Epochs: Number of training epochs computed before

the model weights are shared back with the central entity
for model averaging.
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e Dataset Distribution: defines whether the user-stored data

is IID or non-IID.

® Number of Users: Total number of users.

® Percentage of Users: Percentage of the total number of

users active per federated iteration.

In the rest of this section, we describe the challenges of work-
ing with a non-IID dataset for federated learning. We describe
and evaluate our approach to improve accuracy and speed of
convergence.

B. UAV Classification With Non-1ID Data

The class distribution across devices is a critical factor that
impacts the performance of a model or its convergence time
during training. For instance, the authors in [21] analyze the
weight divergence of a trained model under different non-IID
conditions.

We consider a scenario where a certain user/device is able
to collect data from a single UAV model and does not have
full access to the data collected by other devices. Thus, this
represents the most extreme non-IID case, since every locally
stored dataset at each device only contains data from a single
class. As summarized in Sec. II-B, different approaches have
been proposed in the literature to facilitate training under non-
IID conditions. Here, similarly to the work in [21], we consider
that the centralized entity shares a small part of the dataset across
all different users in order to we relax the non-IID constraint and
facilitate the learning.

Then, we combine the data-sharing strategy with a weighted
loss based on the uneven class distribution [42], [43], which
scales the loss of each training unit according to the class distri-
bution. We note that while both techniques have been proposed
previously by the machine learning community, they have never
been jointly investigated in a federated learning setting. We
summarize our overall approach in Fig. 15.

We choose the categorical cross-entropy as the loss function,
which has been widely adopted by the research community and
is a standard choice for multi-label classification tasks [44]—[46].
Its weighted version (£,,) can be expressed as:

I
Ly == wiy;logy; (12)

i=1
where [ is the number of classes, i is the class index, y and gy
are the one-hot vector representation of the true and predicted
class, respectively. One-hot encoding is a vector representation
of the class label i, whose all / elements take value O except the
ith one, that takes value 1. w; the normalized weight for class i,
which is computed as:

13)
(14)

where D, represents the number of elements for class i. Next,
we show that by employing a weighted categorical cross entropy
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loss function with the weights defined as in Eq. 13, we improve
both performance and speed of convergence under non-IID
settings.

C. Evaluation

We adopt the data-sharing approach in [21] to relax the non-
IID constraint. Notice that this approach does not conflict with
the privacy issue that federated learning tries to tackle, since only
a small percentage of the overall dataset is shared. For instance,
data collected at a disclosed location can be used as the shared
set, while the rest of the collected data would remain private at
each independent user/device.

Next, we analyze how the percentage of total shared data and
the weighted categorical cross entropy impacts the system per-
formance. While we aim to optimize the speed of convergence
and the classification accuracy, the size of the shared dataset
introduces an overhead in memory usage and network bandwidth
that should be minimized.

For evaluation purposes, we implement a federated learning
framework using Python and PyTorch. The overall dataset is
divided among all the users, following a certain data distribu-
tion (IID, Non-IID, etc). In every federated iteration, a certain
percentage of users (Percentage of Users) update the weights of
their models for a number of epochs, defined as Local Epochs.
After every federated iteration, the users that recently updated
their models share their weights back with the central entity
for federated averaging. The users involved in each federated
iteration are chosen randomly. If the data-sharing approach is
used, a small percentage of the dataset is shared among all
users.
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In Fig. 16, we observe that by sharing a 0.5% of the overall
dataset, in combination with the weighted loss approach, we
achieve a testing accuracy of 99.28%. In contrast, training does
not converge for the same data-sharing strategy if the weighting
term w in (12) is not applied (unweighted). Thus, the combi-
nation of both techniques provides a performance improvement
over the standalone method in [21]. Similarly, we also observe
an improvement in convergence time, which we analyze in terms
of the required federated iterations for convergence. As shown
in Fig. 16(b), the number of required iterations decreases when
the shared dataset size increases. Additionally, the weighted loss
approach improves the convergence time for all the cases, for as
much as 51.4% with 1% of shared data.

In Fig. 17, we analyze the validation accuracy per itera-
tion under different data distributions (IID, non-IID) and train-
ing strategies (shared set, weighted loss) for 20 and 40 users
(Fig. 17(a)-17(b), respectively). We observe how the weighted
loss approach shows the best speed of convergence, even better
than the IID case. This is expected, given that the IID dataset is
split by randomly sampling from it, which causes some classes to
be more represented than others at certain devices, increasing the
number of iterations needed for convergence. Also as expected,
the non-IID case does not converge, since the weight divergence
in each independent model makes it impossible to obtain good
performance through the classic federated averaging. We ob-
serve a disparity in performance on the data-sharing case for
different number of users. With 40 users, the same accuracy as
the IID with the weighted case is achieved, although it takes a
longer number of iterations. In contrast, when only 20 users are
involved in training, the accuracy does not exceed ~32%. This is
justified, given that the local share of data is bigger for a smaller
number of users, since the data is split evenly among all the
users. Then, for the non-I1ID case with 40 users, the shared data
size is proportionally smaller than the single-class locally-stored
data, which is not enough to compensate for the class bias. For
instance, if 1% of data is shared across users and there are 20
users in total, each device will store 4.95% of the total data.
Considering that this will be only data from the same UAV and
that the commonly shared dataset will also contain data from that
single UAV, that class will be ~21 times more represented than
the other ones. Such an outcome will impact the neural network
with a severe bias towards that particular class. By doubling the
number of users, this ratio is halved, which facilitates training
under such severe non-IID conditions. Similarly, increasing the
shared dataset size is expected to have an equivalent effect.

In summary, we achieve an accuracy of 99.28% and 99.51%
on the UAV classification task while sharing as little as 0.5%
and 1% of the overall data among all the devices, respectively.

VI. CONCLUSION

In this paper, we addressed the UAV classification problem
using proprietary RF waveforms. We proposed a method that
leverages from the cross-correlation properties intrinsic in the
PHY preambles and we empirically demonstrate its superior
performance over other approaches that work directly with raw
IQ samples. Additionally, we show its resiliency to varying
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channel conditions, showcasing the train once deploy anywhere
paradigm. We achieve an overall accuracy of 99.97% when
training and testing with hovering UAV data and 98.2% when
the model is trained from static UAV transmissions instead.
Moreover, we consider a federated learning scenario where the
dataset is collected at different locations/devices and cannot be
shared due to privacy reasons. Thus, the whole dataset is not
accessible at a centralized entity. Furthermore, we assume the
class representation at each device to be unbalanced (non-IID)
and we propose a weighted categorical cross-entropy approach
to counteract the class imbalances. We thoroughly evaluate its
performance and show how it improves over the unweighted data
sharing strategy. We obtain an accuracy as high as 99.51%, with
a marginal decrease in performance compared to the centralized
training approach. In summary, our UAV classification approach
mitigates security and safety concerns, resulting in enhanced
protection with privacy via our federated learning training ap-
proach.
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