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Abstract— In this paper, we study tracking by language that
localizes the target box sequence in a video based on a language
query. We propose a framework called GTI that decomposes
the problem into three sub-tasks: Grounding, Tracking, and
Integration. The three sub-task modules operate simultaneously
and predict the box sequence frame-by-frame. “Grounding”
predicts the referred region directly from the language query.
“Tracking” localizes the target based on the history of the
grounded regions in previous frames. “Integration” generates
final predictions by synergistically combining grounding and
tracking. With the “integration” task as the key, we explore how
to indicate the quality of the grounded regions in each frame and
achieve the desired mutually beneficial combination. To this end,
we propose an “RT-integration” method that defines and predicts
two scores to guide the integration: 1) R-score represents the
Region correctness whether the grounding prediction accurately
covers the target, and 2) T-score represents the Template quality
whether the region provides informative visual cues to improve
tracking in future frames. We present our real-time GTI imple-
mentation with the proposed RT-integration, and benchmark the
framework on LaSOT and Lingual OTB99 with highly promising
results. Moreover, we produce a disambiguated version of LaSOT
queries to facilitate future tracking by language studies.

Index Terms— Tracking by language, visual grounding,
vision+language, object tracking.

I. INTRODUCTION

G IVEN a video and a language query, tracking by lan-
guage [1] is the task of predicting the box sequence

of the referred object based on the input language query,
as shown in Figure 1 (a). The grounded box sequences
are predicted sequentially in each frame of the input video.
Compared to specifying the target by drawing a box as
in object tracking [2]–[5], providing a language query is a
natural way of human-computer interaction. The language
specification provides the clear semantic meaning of the target
and thus alleviates certain failures in object tracking caused
by appearance changes, occlusion, box drifting, etc. Tracking
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Fig. 1. Tracking by language aims to localize the tubelet specified by a
language query. We propose a GTI framework that decomposes the problem
into three sub-tasks: grounding, tracking, integration. This study focuses on
the key “integration” task.

by language also opens up applications such as starting at
an arbitrary time-step and searching in a video corpus in
parallel. In addition, good tracking by language model benefits
various related research problems, such as language-based
video retrieval [6] and video QA [7].

Naturally, two kinds of information are available in tracking
by language. On the one hand, the language query con-
tains target specifications in all frames. On the other hand,
the history of the grounded image patches in previous frames
provides cues for the target. Therefore, tracking by language
can be approached either from language referring (“ground-
ing”) or visual patch matching (“tracking”) perspectives. For
the first perspective, “grounding” approaches the problem by
processing each frame independently. However, “grounding”
methods frequently fail in frames of degraded visual qualities.
The grounded regions also tend to be inconsistent throughout
time, as “grounding” alone exploits no neighboring frame
similarities in videos. For the second perspective, “tracking”
localizes the region based on a given box in previous frames.
When initialized with an ideal given box (by grounding),
“tracking” generally provides tubelets of better qualities than
“grounding”. However, ‘tracking” suffers from bad initializa-
tion when the language grounded region either refers to the
incorrect object or does not contain informative visual cues of
the target for tracking.

This study builds on the understanding that neither “ground-
ing” nor “tracking” alone solves the tracking by language
problem, while the combination can compensate for each
other’s weaknesses. “Tracking” has the potential to correct
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“grounding” failures based on the information from adjacent
frames, whereas “grounding” could improve “tracking” by re-
initializing the tracker with better language grounded regions.

In this study, we propose a GTI framework, where we
decompose the tracking by language task into three sub-
tasks: Grounding, Tracking and Integration. Given a frame,
“grounding” localizes the region directly from the input lan-
guage query. “Tracking” predicts by using the history of
grounded regions as tracking templates, i.e., the “tracking”
predicted region should be visually similar to the region
in tracking templates. “Integration” combines the two per-
spectives in a mutually beneficial way to obtain better final
predictions. As shown in Figure 1 (b), “integration” selects
whether “grounding” or “tracking” is more important in each
frame, and generates the final box prediction accordingly.
In frames where “grounding” is assigned higher importance,
the language grounded region is included in the region history
to help “tracking” in future frames. The three modules function
simultaneously to generate tubelet predictions frame-by-frame.

A. Criteria for Integration

While a wide range of “grounding” [8]–[11] and “track-
ing” [12]–[14] methods exist, the “integration” problem is
unique in tracking by language and we are not aware of any
proper method that can be directly applied. “Integration” with
pre-defined rules or fixed weights in all frames [1] gener-
ally shows limited performance. Because such naive methods
operate independently of the per-frame context and grounded
regions, they neither manage to correct grounding failures with
tracking results nor strengthen future tracking with selected
grounded regions. Instead, the “integration” module should
operate adaptively in each frame by referencing the corre-
sponding visual input, language query, and grounded region.
To be specific, a good “integration” module should satisfy
the following criteria: 1) The module should predict if the
grounded region accurately covers the target, and assign higher
importance to “grounding” in such frames. 2) The module
should predict if the grounded region contains informative
visual cues of the target that could improve the tracker, and
include such region into the object history. 3) The module
should be light-weighted and fast.

B. Mechanism for Integration

We propose a new paradigm for the “integration” problem
named RT-integration. In each frame, we predict two scores
to guide the “integration”. R-score reflects the Region cor-
rectness, i.e., whether the grounded region accurately covers
the language referred object. T-score reflects the Template
quality, i.e., whether the grounded region contains discrim-
inative visual cues to help “tracking”. High RT-scores indi-
cate the high importance of “grounding”. In such frames,
we take “grounding” predictions both as the outputs and
future tracking templates, whereas in the remaining frames,
the “tracking” prediction is adopted as the outputs to correct
possible grounding failures. We derive the ground-truth RT-
scores from box annotations and train a separate module for
RT-score prediction.

Finally, we present our real-time implementation of the
GTI framework with the proposed RT-integration. We bench-
mark the proposed framework on LaSOT [15] and Lingual
OTB99 [1] with highly promising results. As the original
language queries in LaSOT can be ambiguous [15], we clean
the dataset by replacing the ambiguous queries with new
annotations. Our contributions are:
• We propose a Grounding-Tracking-Integration (GTI)

framework for tracking by language.
• We propose “RT-integration” that adaptively integrates

grounding and tracking with the region correctness score
and template quality score predicted in each frame.

• Our real-time implementation of the GTI framework
shows highly promising results on multiple datasets.

• We clean up the ambiguous queries in LaSOT [15] to
facilitate future tracking by language studies.

II. RELATED WORK

A. Tracking With Box Specifications

Tracking returns the tubelet of the specified object in a
video. Our study is related to the traditional object track-
ing [2]–[5], where the ground-truth box in the first frame (the
tracking template) specifies the object of interest. Correlation
filter based methods [16]–[18] show good efficiency and
accuracy on the task. Recently, the Siamese network based
trackers [13], [14], [19] also show promising performance.
In this study, we study the problem of using language queries
to replace boxes as the target specification.

B. Tracking With Language Cues

Several previous studies explore tracking with language
cues [1], [15], [20], [21]. Wang et al. [21] adopt language
queries as the extra information alongside with boxes for
tracking. LaSOT [15] is a recently proposed large scale
tracking dataset that has auxiliary language query annotations.
Li et al. [1] first introduce the tracking by language task and
propose a Lingual Specification Attention Network (LSAN).
The authors encode the region history and language query
as the parameters for two independent dynamic filters, and
generate per-frame tracking and grounding predictions accord-
ingly. The predictions are then fused with a fixed weight in all
frames. We later show that LSAN is a special case of the GTI
framework with a naive integration module. Feng et al. [22]
propose to solve tracking by language with the tracking by
detection approach, and the tracking prediction is fed into the
detectors to refine the detection results.

C. Visual Grounding

Visual grounding [8], [11], [23] is the task of localizing
the referred region in an image given a language query. Most
previous methods [10], [24]–[27] follow a two-stage pipeline,
where a number of region candidates are first detected, fol-
lowed by a language-based ranking stage to find the most
relevant region. The recently proposed one-stage methods [9],
[28], [29] conduct visual-textual fusion at image level and
improve both the accuracy and inference speed. Recent stud-
ies [30], [31] explore the visual grounding problem in videos.
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D. Self-Evaluation Scores

Our proposed “RT-integration” module is related to previous
studies [32]–[35] on learning self-evaluation scores. In object
tracking, ATOM [32] predicts the Intersection over Union
(IoU) between the tracking output and the ground-truth target
by taking tracking templates as references. Our method is more
relevant to IoU prediction in object detection [33] and instance
segmentation [35], where no template references are available.
IoU-Net [33] proposes an IoU prediction module on top of the
detection backbone [36] to predict the localization confidence.
MS R-CNN [35] extends the idea for instance segmentation.

Previous studies in video object detection [37], [38] explore
the similar idea of score-based integration. Tang et al. [38]
propose to generate accurate and reliable object tubelet predic-
tion by linking short tubelets based on the temporal overlap.
Kang et al. [37] show better video object detection can be
achieved by combining the confidence score of a per-frame
object detector and a tracker. Going beyond self-evaluation
score prediction based on the objectiveness, the “integra-
tion” task in tracking by language poses extra requirements
of 1) predicting visual-textual similarity, 2) predicting template
quality, and 3) being fast.

III. GROUNDING-TRACKING-INTEGRATION

Given a natural language query for a video, we hope to
return the box sequence of the referred object. Different from
object tracking [13], [14], the references are specified by a
language query instead of the ground-truth bounding box in
the first frame. We propose a Grounding-Tracking-Integration
(GTI) framework to approach the problem. As shown in Fig-
ure 2, the three modules operate simultaneously and generate
box predictions frame-by-frame. In each frame, “grounding”
takes the frame and language query as input for object local-
ization. “Grounding” operates independently in each frame
and does not accumulate errors. However, it may fail due
to the errors of grounding methods. “Tracking” predicts the
box based on the history of language grounded regions. When
provided a correct region in nearby frames as the template,
“tracking” generally generates better box predictions than
“grounding.” However, “tracking” often accumulates the error
from the given template, and decreases in performance when
the temporal distance between the template and current frame
increases. “Integration” looks at both grounding and tracking
predictions, and generates the final prediction.

IV. RT-INTEGRATION

We investigate the “integration” task in the GTI framework.
The goal of this sub-task is to combine “grounding” and
“tracking” in a mutually beneficial and overall synergistic way
to generate better final predictions. In frames where “ground-
ing” predictions are of good quality, including such grounded
regions into tracking templates strengthens the tracker for
future frames. In frames where “grounding” is likely to
fail, adopting the “tracking” prediction generally leads to
better final predictions. To achieve such a mutually beneficial
combination, “integration” should predict when “grounding”

Fig. 2. The block diagram of the GTI framework with our proposed RT-
integration.

Fig. 3. Example frames with low region correctness scores (top row) and
low template quality scores (bottom row). Blue/ yellow boxes are grounding
predictions [9]/ ground-truth, respectively.

is of good quality or likely to fail, and adjust the grounding-
tracking importance in each frame accordingly.

The core idea of our proposed RT-integration is to represent
the grounding and tracking importance in each frame as
two scores, namely the RT-scores, where higher score values
indicate the better quality and thus higher importance of
“grounding.” The R-score reflects if the grounded region pre-
cisely covers the target, and the T-score shows if the grounded
region contains visual cues that can improve the tracker. In
frames with high RT-scores, the “grounding” prediction is
selected as the output and used to update the tracker, whereas
the remaining frames are processed by “tracking.” This study
focuses on how to properly define and precisely predict the
RT-scores.

A separate module is trained in a fully supervised way to
predict the RT-scores, as shown in Figure 2. The input to the
module is the visual-textual feature and the language grounded
region in a frame. The output is the corresponding RT-score
prediction, as shown in Figure 4. During training, the ground-
truth RT-scores are derived from the box annotations and
are used to train the module. Essentially, “integration” can
be regarded as a self-judge process for the framework to
examine whether the language grounded region in a frame is
valid as the output and new template. Section IV-A introduces
the definition of the derived RT-scores. Section IV-B presents
the details of the module architecture and training procedure.
During inference, RT-scores are predicted with the trained
module in each frame, and guide the adaptive integration that
synergistically combines grounding and tracking to generate
final predictions. Section IV-C introduces the RT-score-guided
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Fig. 4. The network architecture for RT-scores prediction. The backbone grounding method [9] is shown in translucent colors outside the red box. Feature
pyramid heads are used in the grounding method. For visualization purpose, we only show one head.

adaptive integration in each frame. A complete inference
pipeline of the GTI framework is presented in Section V.

A. RT-Scores

Two factors are essential for an ideal “integration.” First,
“integration” should predict if the language grounded region
accurately covers the target. The state-of-the-art grounding
method [9] commonly fails in frames with multiple objects
of the same kind, tiny targets, and limited visual qualities
(e.g., the top row in Figure 3), when “tracking” should be
adopted to correct the errors. Second, “integration” should
predict if the grounded region contains visual cues that can
strengthen the tracker to help future frames. The bottom
row in Figure 3 shows negative examples with limited frame
qualities or improper target statuses.

We propose to model the two factors with two scores respec-
tively, namely the RT-scores. The R-score (Region correctness)
models how accurately the grounded box covers the target.
In frames with low R-scores, grounding is likely to be failed
and can be corrected by tracking. We define the R-score
as the Intersection over Union (IoU) between the language
grounded region and the ground-truth box. We collect the per-
frame visual-textual feature and grounded region pairs with a
visual grounding method [9] and calculate the R-score in each
sample accordingly. The T-score (Template quality) models
how well the target image patch in a frame serves as the
tracking template, i.e., if purely relying on the visual similarity
between the target image patch (the tracking template) and
the candidates in future frames, how accurate the localization
results will be. In frames with high T-scores, the grounding
predictions contain informative visual cues that could improve
tracking, while some patches have low T-scores and do not
benefit tracking (as shown in Figure 3 (b)). In our study,
we obtain the ground-truth T-score by conducting tracking
with a fixed tracker [13]. To be specific, we initialize the
tracker with the ground-truth target region in a given frame,
and conduct tracking in all remaining frames. With the fixed
tracker and the almost identical tracking video (except the
given template frame itself), only the template patch quality
influences the tracking performance. Therefore, the obtained

mean IoU reflects the desired template quality and is adopted
as the ground-truth T-score.

B. Score Prediction

We next introduce the proposed module for RT-scores
prediction. In each frame, the module refers to the frame,
query, and grounded box to generate the RT-score predic-
tion. We re-use the fused feature from “grounding” as the
per-frame visual-textual representation to boost the inference
speed. As shown in Figure 4, the proposed module takes
the grounded region and the fused visual-textual feature from
“grounding” [9] as inputs and predicts the scores for the
grounded region. The module consists of three stand-alone
1× 1 convolutional layers. The RT-scores in the same spatial
location as the top-1 “grounding” prediction is output as the
final score prediction.

The score prediction module is trained separately from
“grounding” and “tracking.” We model the R- and T-score
predictions as two separate regression problems trained by
the smoothed-L1 loss [39]. With a pre-trained grounding
model [9], we generate training samples by collecting the
triplets of visual-textual features, grounded regions, and
derived RT-scores. During training, we filter out the samples
with a grounding confidence score of less than 0.5. Such
grounded regions are likely to be incorrect and can be well
identified by grounding confidences. We find the filtering
simplifies the score prediction problem and empirically leads
to better performances. During inference, we consider such a
region incorrect and directly set the R-score to 0.

C. Adaptive Integration

In each frame, adaptive integration updates the tracking
template and generates the final prediction based on the per-
frame scores, instead of pre-defined rules or fixed weights.
With the RT-scores predicted, there exist multiple ways of
generating the final prediction and updating the template based
on the score, e.g., score-guided soft weighted fusion, or hard
switching between grounding and tracking. We observe that
the quality of the score prediction instead of the exact integra-
tion method influences the performance the most. Therefore,
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Algorithm 1 Our Implementation of GTI
Input: Video V = {v1, . . . , vn} and Query Q

Function G is the “grounding” module.
Function T is the “tracking” module.
Function I is the RT-score prediction module.
S is the saved score for the current template T .
bg is the per-frame grounding prediction.
st is the RT-scores for the grounding prediction.
λ is the decay rate of the saved score S.

Output: Per-frame object boxes B = {b1, . . . , bn}
bg ← G(v1, Q) // Grounding
s1 ← I(v1, Q, bg) // Initial RT-scores
b1, S, T ← bg, s1, bg // Output, init tracker
for t in 2, . . . , n do

bg ← G(vt , Q)
st ← I(vt , Q, bg) // Predicted RT-scores
/* If grounding is more important */
if S < st then

bt , S, T ← bg, st , bg

/* If tracking is more important */
else

bt ← T(vt , T )
S ← S ∗ λ

end
end

we present a vanilla version of hard switching as follows, and
defer the introduction and experiments of the alternatives to
Section VI-G. First, the R- and T-scores are multiplied in each
frame to obtain a combined score that guides “integration.” We
consider “grounding” more important whenever the predicted
combined score is higher than the previously saved highest
value. In such frames, we adopt “grounding” as the output
and update the template. Otherwise, we output tracking pre-
dictions.

With the same set of importance scores, we observe that
the exact score-guided adaptive integration method, e.g., soft
weighted fusion or hard switching, has no significant influence
on the final performance. Instead, for “integration,” we find
it important to accurately define and predict the importance
scores based on the per-frame context. We detail the analyses
and experiments in Section VI-G.

V. IMPLEMENTATION OF GTI

In this section, we present our real-time implementation of
the GTI framework. We introduce the adopted “grounding”
and “tracking” modules, as well as the overall pipeline.

A. Grounding

Given a frame, the “grounding” module predicts a region
based on the language query. We adopt the one-stage visual
grounding [9] as the grounding module because of its
state-of-the-art accuracy and real-time inference speed. The
grounding method merges language and spatial features into
YOLOv3 [40] for visual grounding. DarkNet-53 [40] and
feature pyramid network [36] are used to encode the visual
feature. With an input resolution of 256 × 256, the three

feature pyramid heads have the spatial resolutions of 8 × 8,
16× 16 and 32× 32, respectively. Similar to one-stage object
detection [40], the grounding method outputs multiple box
predictions at each of the 8× 8+ 16× 16+ 32× 32 = 1344
locations. With three anchor boxes predicted at each location,
the method outputs 3 × 1344 = 4032 grounding predictions
per frame. Each predicted region consists of five values, i.e.
the relative position, width, height and the confidence score.
The prediction with the highest confidence score is output as
the final grounded region in each frame.

B. Tracking

Given a frame, the “tracking” module localizes the target
based on the language grounded region history in previous
frames. We adopt the SiamRPN++ [13] as the tracker in
our implementation while various other object tracking meth-
ods [32], [41] can also be directly applied, as shown in ablation
studies. SiamRPN++ is a Siamese network based tracker that
models tracking as the feature cross-correlation between the
tracking template and current frame.

C. Inference

We then present the inference pipeline on a testing video
in Algorithm 1. Given no region history is available in the
first frame, the “grounding” result is directly adopted as the
output and used to initialize “tracking.” The predicted RT-
scores are also saved. In all the following frames, the three
modules operate simultaneously. “Integration” predicts the RT-
scores in a frame and compare it to the saved value. Whenever
a higher score appears, we adopt “grounding” as the output,
and update tracking template T and saved score S accordingly.
In remaining frames, “tracking” is adopted as the output.

VI. EXPERIMENTS

A. Datasets

1) Disambiguated LaSOT: LaSOT [15] contains
1,400 videos with auxiliary language queries. We follow the
split [15] that uses 1,120 videos for training and 280 videos
for testing. The averaged video length is around 2,500 frames.

The original LaSOT dataset [15] contains auxiliary language
queries that might provide ambiguous target specifications.
For example, in Figure 5 (a), the referred glass can not be
distinguished based on the original query. To facilitate tracking
by language studies, we clean the LaSOT queries by replacing
the ambiguous queries with new annotations. As the first
step, annotators are presented with the video, target tubelet,
and the original language query in LaSOT, and are asked to
label if the target can be distinguished based on the original
query. The collected annotations show that 322 out of the
1,400 original video queries are ambiguous. Annotators then
generate new queries that have clear target specifications. Extra
descriptions of the target’s location, color, size, relationships
are included in the cleaned queries. In the end, we verify
the quality of the generated queries. Among the 322 updated
queries, 80 queries are still ambiguous, i.e., at least one out
of two annotators can not distinguish the target based on the
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Fig. 5. Examples of the disambiguated queries in LaSOT. The first three rows show the disambiguated queries, and the last row presents the samples that
annotators find difficult to refer by language.

new query. We fail to generate precise queries for all targets
because some videos contain visually identical objects and are
not proper for tracking by language studies (e.g., Figures 5 (g)
and (h)).

We provide representative examples of the updated queries
in Figure 5. Figures 5 (a) and (b) add extra location descrip-
tions to disambiguate the query. Figures 5 (c) and (d) include
color and entity descriptions to provide the target specification.
Figures 5 (e) and (f) provide relationships and other detailed
descriptions to generate a precise target specification. After the
manual annotation, a small portion of samples is still ambigu-
ous because the language query alone can not generate a clear
specification for the given target. For example, in Figures 5
(g) and (h), visually similar objects exist and make language
referring difficult.

2) Lingual OTB99: Lingual OTB99 [1] augments the
OTB100 object tracking dataset [3], [42] with natural language
descriptions. One query is annotated per target object. We fol-
low the training/ testing split [1] that uses the OTB51 videos
for training and the remaining 48 videos for testing. The
averaged video length is around 600 frames.

3) Lingual ImageNet Videos: The Lingual ImageNet videos
dataset [1] augments the ImageNet Video Object Detection
dataset [43] with one query per target object. We follow the
same split [1] that uses 50 videos for training and the other
50 for testing. The averaged video length is around 270 frames.

The targets and videos in the Lingual ImageNet videos
dataset [1] used in previous studies [1] are far from real and
oversimplify the problem, and thus are not suitable for study.
We show the analyses in Section VI-D.

B. Implementation Details

1) Evaluation Criteria: We evaluate the methods with pre-
cision and success scores [4]. The precision score reflects

the percentage of frames where the estimated location falls
within a given threshold of 20 pixels with the target. The
success plot shows the ratio of success frames under an
IoU threshold ranging from 0 to 1. The Area Under Curve
(AUC) of the success plot represents the averaged success rates
with different sampled thresholds and is used for evaluation.
We follow the online tracking setting that the method only
observes the previous and current frames for prediction.

2) Training Details: We train the score prediction module
in RT-integration separately from the grounding and tracking
modules. The three convolutional layers in the score prediction
module have D = 512, 256, 6 output channels, respectively.
We train the model with RMSProp [44] and use a batch
size of 32. The initial learning rate is 10−4 and follows a
linear schedule. We fine-tune the grounding module [9] pre-
trained on Flickr30K Entities [8] with training set videos.
For the tracking module, we use the models released by
SiamRPN++ [13] and fix the weights. The decay rate in
Algorithm 1 is set to 0.998.

C. Experiment Protocols

Table I reports the tracking results on LaSOT [15] and
Lingual OTB99 [1]. One-stage grounding [9] is used for
“grounding” and SiamRPN++ [13] is used for “tracking”
in all reported results expect the original LSAN [1]. We list
in the “Integration guidance” column the different integra-
tion methods. The top portion of Table I contains naive
integration with either pre-defined scheduling rules or fixed
fusion weights. Frame indexes such as “all,” “first,” and “fixed
interval” indicate pre-defined scheduling is adopted and on
which frames grounding is assigned higher importance. The
bottom portion of the table contains the results of our
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TABLE I

TRACKING BY LANGUAGE RESULTS ON LASOT [15] AND LINGUAL OTB99 [1]

adaptive integration methods. The types of adopted importance
scores are listed in “Integration guidance.”

Various baselines and state-of-the-art methods are experi-
mented and compared. To be specific, we systematically study
the following settings:
• Visual grounding. One could attempt to approach track-

ing by language by processing each frame independently
by grounding. One-stage visual grounding [9] is adopted
for the experiment.

• First frame tracking. By taking the grounded region
in the first frame as the tracking template, tracking by
language is converted to a object tracking problem. This
baseline is referred to as “First frame tracking.”

• Middle/ Last/ Random frame tracking. We initialize the
tracker with the grounded region in the middle, last or one
random sampled frame.

• Fixed interval tracking. In this baseline, “grounding”
is assigned a higher importance with a fixed temporal
interval. We design the fixed interval to be similar to the
averaged frequency of our adaptive integration.

• LSAN/ LSAN++. We compare to the state-of-the-art
tracking by language method LSAN [1]. For a fair com-
parison, we strength LSAN with stronger grounding [9]
and tracking [13] backbones used in other experiments,
and refer to it as “LSAN++.”

• Ours-Grounding/ R/ RT scores. We experiment with
different variations of our methods. “Ours-” indicates that
the GTI implementation in Section V is adopted, with
different importance score selections.

D. Tracking by Language Results

1) Lingual OTB99: As the single module baseline, we first
benchmark the “grounding” and “tracking” modules adopted
in all following experiments. “Grounding” alone generates a
success score of 0.442, and “tracking” obtains a comparable
success score of around 0.434, as shown in “Visual ground-
ing” and “First/ middle/ last/ random frame tracking.”

“Integration” aims to improve the tracking by language
performance by synergistically combining the two modules.
The top portion of Table I shows several simple combi-
nations. Fixed temporal scheduling is one possible solution

that switches between grounding and tracking with a fixed
interval. “Fixed interval tracking” obtains a success score of
0.449 and slightly outperforms the single module baseline.
“LSAN” [1] fuses the two modules’ predictions with a fixed
weight applied in all frames. With the strengthened backbones,
“LSAN++” generates a success score of 0.449. In short,
we observe limited improvements of less than 0.01 over
the single module baseline on all simple integration methods.
The limited improvements confirm that the “integration” task
is nontrivial, and that the simple combination methods are
ineffective.

Our first contribution is proposing the new GTI framework,
where we address “integration” as a score-guided self-judging
process. The comparison between the top and bottom por-
tions of Table I shows the importance of guiding integration
with the scores predicted from the corresponding frame,
language query, and box. One natural choice of the score is
the grounding confidence. “Ours-Grounding score” reports a
success score of 0.532, which is significantly better than
the grounding baseline (0.442) and the simple integration
(0.449). The improvements show the advantage of score-
guided integration instead of the simple combinations.

Our second contribution is proposing better integration
scores. As shown in the bottom portion of Table I, the “Ours-
R score” achieves a success score of 0.565, compared to
0.532 by “Ours-Grounding score,” 0.449 by “LSAN++,”
and 0.449 by “fixed interval tracking.” By jointly considering
the template quality score, we further improve the success
score. T-score alone does not work well because of the loss
of region correctness information.

2) LaSOT: “Grounding” provides a baseline success score
of 0.416. The tracking baseline has a lower performance
of 0.361. “Tracking” performs relatively worse on LaSOT
than OTB99 because the longer averaged video length in
LaSOT makes tracking more challenging. For the same reason,
updating the template multiple times performs better than a
single template frame (cf. different intervals in “Fixed interval
tracking”). To eliminate the influence of the template update
frequency, we design “Fixed interval tracking” to have a
similar frequency as our RT-integration, which ranges from
5 to 20 frames. “Ours-Grounding/ R/ RT score” updates

Authorized licensed use limited to: UNIVERSITY OF ROCHESTER. Downloaded on October 10,2021 at 21:51:16 UTC from IEEE Xplore.  Restrictions apply. 



3440 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 31, NO. 9, SEPTEMBER 2021

the template every 17.0/20.6/23.5 frames on LaSOT and
7.9/13.8/16.6 frames on Lingual OTB99. By eliminating the
influence of the template update frequency, we show our
adaptive integration performs better purely by more effective
combining grounding and tracking.

We draw from LaSOT largely the same observation on
“integration” as from Lingual OTB99. The simple integration
methods such as “LSAN++” and “fixed interval tracking”
show limited improvements over the single module baseline,
while our adaptive integration significantly improves the per-
formance. Our RT-integration achieves a success score of
0.478, compared to 0.404 by LSAN++ and 0.423 by
fixed interval tracking. Clearly, the improvement shows the
importance of score-guided integration and the effectiveness
of our RT-integration.

The experiments in Table I are conducted on the disam-
biguated LaSOT dataset, except the original LSAN [1] and
Feng et al. [22]. To examine the benefit of LaSOT query
cleaning, we compare our full model “Ours-RT score” to
the one trained on original LaSOT queries. “Ours-RT score”
trained and tested with the original LaSOT queries generates
a success score of 0.475 and precision score of 0.469.
Compared to the performance of 0.478 and 0.476 after
cleaning, the improvement is marginal. We expect the pro-
vided disambiguated queries open up the possibility of further
improving tracking by language in future studies.

3) Lingual ImageNet Videos: We find that the Lingual
ImageNet videos dataset is a special easy case, where cur-
rent visual grounding methods already performs better than
tracking by boxes (“Visual grounding” success score: 0.864,
“SiamRPN++ [13]”: 0.768]). In Lingual ImageNet videos,
the target objects are mostly in the center of the frame with few
distracting objects exist, which makes the task easy for visual
grounding. Despite the good results on this specific dataset,
such videos are far from real and oversimplify the tracking by
language problem.

4) Inference Speed: A fast inference speed is important
for tracking by language. We evaluate the inference speed
of our GTI implementation on a desktop with Intel Core i9-
9900K@3.60GHz and NVIDIA 1080TI. Our framework runs
at around 20 fps, where the grounding module takes 20ms and
the tracking module takes 30ms. The proposed RT-integration
module takes less than 1ms by reusing the visual-textual
features from grounding.

E. Qualitative Results Analyses

In this section, we compare the success and failure cases
of the methods with naive integration modules as well as
ours, to show the significance of our proposed RT-integration.
We show representative examples in Figure 6. First, our
method (silver boxes) are more stable and accurate when
compared to per-frame visual grounding outputs (blue boxes).
Including “tracking” (dark grey boxes) generates more sta-
ble results by exploiting the cross-frame visual similarity.
However, the grounded region for tracker initialization in a
randomly selected frame might be incorrect and thus fails
“tracking” in the following frames. Figures 6 (a) and (b) show

TABLE II

ORACLE ANALYSES OF TRACKING BY LANGUAGE OR GT BOXES

failure cases for the “First frame tracking” that our method can
solve. Figures 6 (c) and (d) present challenging cases where
“grounding” fails in most frames. When all compared methods
fail, our RT-integration successfully combines grounding and
tracking to provide mostly correct tracking results throughout
the video. Overall, our proposed approach performs better by
more effectively integrating grounding with tracking.

Despite the effectiveness of our proposed integration, when
grounding fails on all frames, there is no hope to get correct
results (cf. Figure 6 (e)). RT-score estimation may also be
incorrect. Figure 6 (f) shows an example that could be cor-
rected, while our method fails to predict the correct RT-scores
and correct the errors. Such failures are the cause of the gap
from the oracles in Table II.

Furthermore, we experiment with referring to the same
object with different language queries. We generate additional
testing queries that describe different aspects of the target, e.g.,
color, location, or the relationship with other objects. Figure 7
shows good qualitative results that the method generalizes well
onto free-form referring queries.

F. Oracle Analyses

Tracking by language is generally more challenging than the
conventional tracking by gt box setting and tends to perform
worse on the same video [1]. The proposed RT-integration
greatly improves the tracking by language performance. How-
ever, the score prediction module meanwhile introduces new
errors and potentially limits the overall performance. In this
section, we examine the upper bound of the GTI framework
that has an ideal “integration” model, given the status quo of
grounding [9] and tracking [13]. We compare the oracles to
both tracking by language and by gt box results, specifically
the following settings:

• Tracking by gt box. With the same dataset split, tracking
by ground-truth box [12]–[14], [19], [47], [48] serves as
an upper bound of tracking with ideal target specifica-
tions.

• Ours-R-oracle. We design two oracle analyses with the
same GTI implementation in Section V. The R-score in
the oracle analyses is calculated with the ground-truth
box at each frame instead of predicted.

• Ours-RT-oracle. “Ours-RT-oracle” considers both the
region correctness and template quality scores.

As shown in Table II, the GTI framework with an ideal inte-
gration module achieves comparable (on shorter videos [1]) if
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Fig. 6. Representative success cases (top two rows) and failures (bottom row) of our method. Figure (b), (d) are from LaSOT and the others are from Lingual
OTB99. Best viewed in color and zoomed in.

Fig. 7. Qualitative examples of referring to the same object with different language queries at inference.

not better (on longer videos [15]) performance than the state-
of-the-art tracker [13]. The good oracle performance implies
the possibility of tracking by language to achieve comparable
results to tracking by gt box, despite the more challenge
setting. Meanwhile, the existing gap between the performance
of the oracle GTI and our implementation shows that the
integration problem is non-trivial, and motivate us to develop
better integration methods in future studies. Finally, with
the continuously improving grounding and tracking methods,
we expect the future GTI frameworks with stronger modules
to further improve the tracking by language performances.

G. Ablation Study

In this section, we conduct ablation studies to understand
our method better. We first compare alternative adaptive inte-
gration methods to the hard switch approach introduced in
Section IV-C. We then show that our proposed “integration”
module’s importance and effectiveness hold under different
“grounding” and “tracking” backbones.

1) Adaptive Integration: Given the obtained scores for
integration, there are alternative methods to the hard switch
approach described in Section IV-C. We experiment with other
adaptive integration methods to examine their influences on
the performance. We conduct the ablation studies on adaptive
integration with the oracle RT-scores detailed in Section VI-F
to eliminate the influence of score prediction quality.

Given the predicted tracking results, grounding results, and
integration scores, the final step is to integrate the tracking
and grounding prediction with the predicted scores for both
tracking template update and current frame prediction. We first

explore three alternative ways of updating the tracking tem-
plate. Our adopted “greedy update” option outputs the
grounding prediction and updates the tracking template when-
ever a higher score appears. “Improvement threshold”
follows the same greedy update protocol with a tuned score
improvement threshold of 20% included. “Fixed weight
update” consists of a memory module and updates the
template’s visual feature with a fixed update rate of 0.9 [49].
“Score weighted update” further adopts the predicted
scores as the update rate.

Table III shows the success and precision scores of the
compared adaptive integration methods. Our adopted approach
generates a success score of 0.672, which is comparable
to the best score of 0.675. We observe no significant gain
by more complex alternatives and thus choose the simple yet
effective “greedy update” as the adopted approach.

Other than the tracking template update, the adaptive inte-
gration method also generates the final prediction at each
frame. Our adopted “hard switch” method that outputs either
tracking or grounding results based on the integration scores.
As an alternative, we experiment with the “soft fusion”
used by previous studies [1], where the output fusion is
computed as a weighted sum of the grounding and track-
ing heatmaps with the predicted per-frame integration score.
We observe the “hard switch” outperforms the “soft fusion”
and thus adopt the “hard switch” approach for output fusion.

2) GTI Backbones: We then experiment with the influence
of “integration” with different “grounding” and “tracking”
backbones. We replace the backbones with relatively weaker
(but faster) modules and benchmark the corresponding GTI
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TABLE III

TRACKING BY LANGUAGE RESULTS WITH DIFFERENT ADAPTIVE INTE-
GRATION METHODS ON LINGUAL OTB99. THE “GREEDY UPDATE”

AND “HARD SWITCH” RESULT SHOWN IN THE FIRST ROW IS

THE APPROACH WE ADOPTED. WE HIGHLIGHT THE BEST

THE SECOND-HIGHEST SCORES BY BOLD AND UNDERLINE,
RESPECTIVELY

TABLE IV

TRACKING BY LANGUAGE RESULTS WITH DIFFERENT GROUNDING AND

TRACKING BACKBONES ON LINGUAL OTB99. COMPARING DIFFER-
ENT INTEGRATION METHODS WITH THE SAME GROUNDING AND

TRACKING MODULE, THE EFFECTIVENESS OF THE PROPOSED

“OURS-RT SCORES” HOLDS UNDER DIFFERENT BACK-
BONES

implementations. We replace the adopted SiamRPN++ [13]
with SiamRPN [14], and one-stage visual grounding [9] with
a lighter version Onestage-light [9].

Table IV shows the obtained results. In short, better ground-
ing and tracking modules generally lead to better tracking by
language performances. More importantly, our proposed “RT-
Integration” brings significant success score improvements
with different backbones (cf. “Fixed interval tracking ” and
“Ours-RT scores” with the same backbone). The consistent
improvements of 0.179, 0.109, 0.132 over the simple combi-
nation baseline indicate that “RT-integration” is effective under
different grounding and tracking backbones. With the contin-
uously improving grounding and tracking methods, we expect
future GTI implementations to further improve the tracking by
language performance.

VII. CONCLUSION

We have proposed a new GTI framework for tracking
by language where we decompose the task into three sub-
tasks: grounding, tracking, and integration. We focus on the
key sub-task of “integration” that synergistically combines
grounding and tracking, and propose an RT-integration module
that defines two scores to guide integration in each frame.
The R-score represents the region correctness, and the T-score
represents the template quality. We benchmark our real-time
implementation of the GTI framework on LaSOT and Lingual
OTB99 to demonstrate highly promising results.
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