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ABSTRACT

Few-shot learning learns to classify unseen data with few training samples in hand and has attracted
increasing attentions recently. In this paper, we propose a novel Temperature Network to tackle few-shot
learning tasks motivated by three crucial factors that are seldom considered in the existing literature.
First, to encourage compact intra-class distribution, a general improvement for prototype-based methods
is proposed to ensure compact intra-class distribution and the effectiveness is theoretically and exper-
imentally validated. Second, the proposed Temperature Network can implicitly generate query-specific
prototypes and thus enjoys a more effective distribution-aware metric. Third, to further strengthen the
generalization ability of the proposed model, a novel and simple large-margin based method is devel-
oped by leveraging the temperature function and we gradually tune the learning temperature to stabilize
the training process. Moreover, we note that the commonly used datasets in few-shot learning are actu-
ally contrived from large-scale datasets, and thus may not represent a real few-shot problem. We propose
a real-life few shot problem, i.e., Dermnet skin disease, to comprehensively evaluate the performance of
few-shot learning methods. Experiments conducted on conventional datasets as well as the proposed skin
disease dataset demonstrate the superiority of the proposed method over other state-of-the-art methods.

The source code of our method is available.’

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, deep neural networks show superior performance in
the fields of machine learning, computer vision, and natural lan-
guage processing, etc. However, conventional deep neural networks
are prone to overfitting, and thus generally requires a large num-
ber of labelled data [1,2]. However, it is usually difficult or even
prohibitive to collect a large and labeled dataset in real life appli-
cations (e.g., medical images). The limited dataset size poses great
challenges to the generalization ability of the conventional meth-
ods [3], and thus initiates the development of few-shot learning
techniques [4]. There are mainly three types of few-shot learn-
ing methods, including metric-learning based methods (“learning
to compare”) [5-9], meta-learning based methods (“learning to
learn”) [10-12], and hallucination based methods (“learning to aug-
ment”) [13-15]. Among them, metric-learning based methods at-
tract wide interests due to their simplicity and effectiveness. Its
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basic idea is to learn a metric space that has large inter-class and
small intra-class distance.

Despite the great success of the metric-learning methods, exist-
ing approaches have several limitations. First, classical prototype-
based methods [6,7,16] oversimplify the distance calculation be-
tween the query and categories by representing each category with
a center point. Then the distance between the query and the cate-
gory is calculated by the distance between the query and the cen-
ter point. However, this oversimplified approach cannot guarantee
compact intra-class distributions. To address this issue, we make
a simple yet effective improvement to punish the scatter distribu-
tions. Specifically, we alternatively calculate the distance between
the query and the category using the average distance between the
query and the category’s support samples. The effectiveness of the
improvement is theoretically and empirically validated.

Second, most of the metric learning-based methods only gen-
erate a single prototype for each category by treating all support
samples of this category equally. Given a query sample, the support
samples that are closer to the query are more likely to contain rel-
evant and important information with regarding to the query and
thus should contribute more to its classification. This intuition is
consistent with many classical methods, such as k-Nearest Neigh-
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bor classifier, RBF-Network, RBF SVM, and so on [17]. In terms of
metric learning, the idea is even more popular and the local met-
ric usually performs better than the global metric according to the
low-dimensional manifold assumption [18-20]. A few methods try
to capture the relevant information by an attention-based network.
For instance, Matching Net [5] introduces full context embeddings
(FCE) and utilizes a LSTM [21] with read-attention to filter related
information contained in support samples. Similarly, simple neu-
ral attentive learner (SNAIL) [22] proposes a soft-attention strat-
egy [23] to extract relevant information. Ideally, such methods are
possible to extract query-specific information while eliminating ir-
relevant information contained in support samples. However, we
note that it is potentially unpractical and ineffective especially in
the scenario of few-shot learning. In this paper, we propose a Tem-
perature Network by taking advantage of the temperature function
to implicitly generate query-specific prototypes. We make best use
of the prior knowledge to re-weight the support samples automat-
ically based on their distances to the query. We find this leads to
a more effective distribution-aware local metric.

Moreover, due to the fact that the generalization ability is cru-
cial for few-shot learning with extremely scarce training samples
available, in this paper, an effective large-margin training strat-
egy is proposed to further enhance the proposed Temperature Net-
work. The basic idea is that, during training, we intentionally make
query samples that are not close enough to the positive cate-
gory harder to be correctly classified. Therefore, the learned met-
ric space is forced to be more discriminative in order to mini-
mize the classification loss. This actually works similarly to clas-
sical large-margin methods [24-27], which also have been intro-
duced to few-shot learning recently [28]. However,the proposed
method is superior to conventional large-margin regularized few-
shot methods [28] in several ways. First, we directly enhance the
learned distance metric and do not complicate the loss function
with additional large-margin regularization terms. Moreover, our
method does not require additional construction of the triplets or
pairs which are essential and crucial to conventional large-margin
based methods [28-30]. Moreover, instead of setting different tem-
perature for different categories at the very beginning, we gradu-
ally tune the temperature to make the training process hard which
enables the proposed method to progressively refine the learned
metric. The proposed training strategy can also be regarded as a
novel type of self-paced learning with respect to the similar mo-
tivations, i.e., learning from easy to hard [31,32]. Experimental re-
sults also show that it is not proper to directly train with hard
metric which may make the network hard to converge, please re-
fer to Table 2 for detail.

Another crucial issue for current few-shot learning meth-
ods is that they are all evaluated on contrived datasets (e.g.,
minilmageNet [33]) and their performance in real-life problems
cannot be fairly compared. Therefore, we propose to address a
real few-shot learning problem, ie., Dermnet skin disease classi-
fication?, to comprehensively evaluate the performance of the ex-
isting methods. Also, this new real dataset can work as a bench-
mark dataset in the future. Details of this dataset is provided in
Appendix A.

The main contributions of this paper are as follows:

1. A simple and general approach is proposed to enhance the
prototype-based few-shot learning methods, which can the-
oretically lead to compact intra-class distributions.

2. We propose the Temperature Network which can implic-
itly generate query-specific prototypes. Moreover, in order
to best utilize limited training samples, we further propose

2 https://www.dermnet.com
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to train in a “hard mode” to exhaustively mine the large-
margin metric.

3. We conduct comprehensive experiments on several public
available datasets as well as the proposed Dermnet skin dis-
ease dataset to validate the proposed method.

2. Related work
2.1. Few-shot learning

Metric-learning based methods is motivated by the success of
deep metric learning. Existing metric learning methods are derived
from embedding-based losses, e.g., contrastive loss [24], triplet loss
[34], and margin loss [35], etc. Besides the intermediate appli-
cations including face verification [36], person re-identification
[37-39], and information retrieval [40], metric learning is also
widely applied to address the few-shot learning problem.

Generally, metric-learning based few-shot learning methods try
to learn a metric embedding space that can transfer the common
representations. For example, Matching network [5] adopts cosine
similarity to calculate the similarity between queries and support
categories. Prototypical network [6] first obtains the center of each
category as its prototype and then calculates an Euclidean distance
between the prototype and the query sample. Sung et al. pro-
pose Relation net [7] to directly learn the embedded metric space.
Graph Neural Network is also applied to few-shot learning to learn
the similarity between query and support samples [16,41]. Covari-
ance Metric Network (CovaMNet) [42] adopts the covariance ma-
trix to exploit the second-order information. However, the metric
space learned by these methods only restrain a large inter-class
distance constraint but cannot guarantee compact intra-class dis-
tribution. Moreover, most of these methods treat support samples
equally and the obtained universal metric may not be suitable for
various queries.

Meta-learning based methods are trained to directly learn an
optimizer or initialization over a batch of tasks. Model-Agnostic
Meta-Learning (MAML) proposed by Finn et al. [10] aims at learn-
ing a good model initialization which allows the network to deal
with the scenario of limited training samples. Another representa-
tive work, LSTM-based meta learnerd [11] tries to learn to emulate
stochastic gradient descent algorithm which then can be directly
used to optimize new coming tasks. Recently, Rusu et al. [12] pro-
pose a latent embedding optimization algorithm to learn a latent
representation which can be used to perform gradient descent.

Hallucination based methods learn the rules to augment data
according to the auxiliary set. Most of these methods are based on
auto-encoders [43] or generative adversarial networks [44]. Clearly,
hallucination based methods can be jointly utilized with other
few-shot learning methods, and are thus usually not compared
with metric-learning based and meta-learning based methods in
the literature. [13] proposes a data augmentation GAN to gener-
ate new samples for one-shot learning. [15] uses a hallucinator to
generate new samples which are then fed into a meta learner com-
bined with the original data [15]. Schwartz et al. [14] utilize an
auto-encoder to learn the transformation between samples from
the same category to augment the data [14].

Other related few-shot learning methods are also included
here for completeness. Semi-supervised few-shot learning, first
studied by Ren et al. [8], differs from conventional few-shot learn-
ing by utilizing all query samples within each episode. Ren et al.
propose to use unlabelled data to facilitate the calculation of
the prototypes [8]. Liu et al. [45] recently propose a transductive
propagation network by formulating the semi-supervised few-shot
learning as a label propagation problem.
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2.2. Knowledge distillation network

Our method is also inspired by the knowledge distillation net-
work in terms of exerting the superior properties of the expo-
nential function [46]. The essence of distillation network is that,
when we increase the temperature, the differences between pos-
itive and negative categories can be eliminated to some extent,
and the network is thus forced to learn more discriminative rep-
resentations. [47] conducts omni-supervised learning by distilling
knowledge from labelled data. [48] directly distills the dataset to
obtain representative samples. [49] proposes to learn features from
different compactness levels with different temperatures. However,
the proposed method is different from all of these works. First, we
tune the temperature in our metric learning layer instead of the
softmax layer. Second, during training, we set different tempera-
tures for positive and negative categories respectively, which en-
ables us to obtain a large-margin metric. Moreover, we propose to
gradually tune the temperatures to progressively refine the learned
metric which can also stabelizes the training process.

2.3. Mining hard samples

Hard sampling is a general strategy to strengthen the model’s
ability [50]. For example, inspired by the importance sampling,
[51] proposes to focus on hard samples to speedup the training
process. Harwood et al. propose to construct triplets of close neg-
ative and far positive samples with respect to the selected anchors
[52]. Zhao et al. [53] propose to generate hard triplets by adver-
sarial learning. In this paper, instead of constructing hard training
samples, we assign different temperatures to different categories to
tough the training process.

3. Our method
3.1. Problem formulation

For few-shot learning, we are given a support set S, a query
set X, and an auxiliary set A, where S contains B different cat-
egories and each of them has K training samples, ie., B-way K-
shot. Generally, few-shot learning methods are tested on 5-way 1-
shot and 5-way 5-shot scenarios. Clearly, training a classifier solely
on the support set hardly achieves reasonable performance with
few labeled samples. Therefore, it is crucial to learn and transfer
knowledge from the auxiliary set A to support set S, although A
shares no common categories either in S or X. At first sight, trans-
fer learning or domain adaption methods may properly handle the
task [54,55]. However, as pointed by Snell et al. [6], the essential
problem of transfer learning based methods is that the training
condition is different from that of the testing, which will degrade
the performance. Snell et al. [6] proposes a novel episode training
mechanism, which is validated to be effective by recent papers. In
episode training, we generate episodes by drawing some samples
from the auxiliary set A, with some of them regarded as support
samples S;4in, Others as query samples X4, At each iteration, we
train the model with the constructed episodes.

3.2. Improved prototypical network

The Prototypical Network is a well-known few-shot learning
method. Given a query sample x € RY and a certain category C =
{c1.co,.. ., c¢}.c; € RY, where ¢ is the number of support samples
of the category, a Prototypical Network calculates the distance D
between query x and category C as

Dy(x.C) = My(x, 3 3 1) (1)
i=0
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where Mp(.,-) denotes the Minkowski distance with order p > 1.
Clearly, the Prototypical Network, i.e., Eq. (1), cannot guarantee
compact intra-class distribution. To alleviate the problem, we pro-
pose a new formulation as follows

4
Dy(x,C) = %ZMP(X, ). (2)
i=0

We call this Improved Prototypical Network which has the follow-
ing property.

Lemma 1. For a Minkowski distance with order p > 1, D;(x,C) <
Dy (x,C) and the equality holds if and only if ¢; = %Zf:o ¢; for any
ief{l,2,..., e}

Detailed proof is provided in Appendix B, and is based on the
fact that the Minkowski distance, except the Manhattan distance
where p =1, can be derived by a strictly convex ¢, vector norm.
For the Manhattan distance, ¢; = %Zf:o ¢; is only a sufficient but
not necessary condition for the equality since the ¢; norm is not
strictly convex. To give an intuitive understanding of Lemma 1,
taking the original Prototypical Network as an example where the
Minkowski distance is an Euclidean distance M,, we have

D, (x,C) — Dy (x,C) = var(c;), (3)

where the variance of category C is
1 4
var(c) = 5> llci —E(@)|3 = 0 (4)
i=1

Detailed derivation is shown in Appendix C. The equality, i.e.,
Dq(x,C) = Dy (x,C), holds if and only if var(c;) = 0. Therefore, given
two different distributions with the same center, D; (s, C) will con-
sider them as identical while D,(s,C) will favor the compact one
whose var(c;) is smaller. In other words, D,(s,C) punishes large
intra-class scatter and thus leads to a compact distribution.

3.3. Temperature network for few-shot learning

The Temperature Network is proposed to alleviate several limi-
tations of existing metric learning-based methods. First of all, our
method can generate query-specific prototypes. Moreover, a novel
large margin-based method is proposed to train the model on
“harder” scenarios for better generalization ability. An overview of
the proposed Temperature Network is shown in Fig. 1. An intu-
itive illustration to show the superiority of the proposed method
is present in Fig. 2.

3.3.1. Temperature network with query-specific prototypes

For a B-way K-shot task, we are given a query sample and a
support set. The support set consists of B different categories and
each category contains K samples, where K usually ranges from 1
to 5. The feature map extracted from a convolutional neural net-
work is W x H x d, where W is the width, H is the height, and d is
the number of channels. We follow Li et al. [42] to extract local de-
scriptors to perform few-shot learning. The Cth category is repre-
sented by C = {cq.cy,..., ¢}, where category C is among the total
B categories, ¢; € R4 is the ith local descriptor and ¢ =K x H x W.
Then, given a query sample X € RV*Hxd =[x, x, ... xy .y} after
feature extraction, we first calculate the similarity between local
descriptor x; and c; as follows

s(xi, ¢j) = F(d(x;, ¢j)) = exp (— 1%y, (5)

where T denotes the temperature which is fixed as 10 in our
experiments otherwise stated, and d(x;, c;) denotes the distance
measurement between x; and c;, eg, order p Minkowski dis-
tance Mp(-,-). It is worth noting that f(d(x;,c;)) has several good



W. Zhu, W. Li, H. Liao et al.

Support set Query images

Pattern Recognition 112 (2021) 107797

Support Set
[ o) —
Local Features|{{" °
LW [ J
of Query . .
( 4
@)
[ J
°
T [ ]
([ J
® \
I L
: 0.2
L . > 0.1
( 4
T, (]
-l
[ J
[ J
IS
([ J
[ ]
p—
[ ]
[ J
[ ]
( 4
U
Metric Learning Softmax

Fig. 1. An overview of Temperature Network. We take the proposed Dermnet skin disease dataset as an example. Different temperature is assigned for positive and negative

categories during training, and the same temperature is set during testing.
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Fig. 2. Illustration of the similarity measurements of different methods. We denote the orange diamonds as the queries, stars as the generated prototypes and others as
support samples. (a) Prototypes generated by Prototypical Network are fixed for different queries; (b) Prototypes implicitly generated by the Temperature Network are
query-specific; (c) Temperature Network with the same temperature for all the categories may not be able to make a max-margin metric; (d) Large-margin metric could be
obtained with class-specific temperatures during training for better test (generalization) performance.

properties: (1) 0 < f(d(x;,¢c;)) < 1; (2) with finite temperature T,
f(d(x;, cj)) =1if and only if d(x;, ¢;) = 0; (3) f(d(x;, ¢j)) is mono-
tonically decreasing; (4) the gradient norm of f(d(x;, ¢;)) is mono-
tonically decreasing.

Then, the similarity between x; and the Cth category can be cal-
culated by averaging the point-wise similarity as

Smean (Xi, C) = % Z?:l s(x;, Cj)~ (6)

The Temperature function, i.e., the Gaussian kernel function

fldx;,¢j)) =exp(—M), is used to simultaneously calculate
the similarity and re-weight the support samples based on their
distances to the query sample to generate query-specific proto-
types. To see how Temperature function works, according to Fig. 3,
since the gradient norm of f(d(x;,c;)) decreases monotonically,
to make the similarity s(x;,C) large, our method will put more
weights on c;’s that are close to x;. That is, the support samples are
automatically re-weighted according to their distance to x; which
eventually lead to query-specific prototypes. We note that temper-
ature T can control the extent of the specific and locality of the
generated prototypes. To make it clear, considering following two
extreme cases, if T approaches infinity, s(x;, c;) will approach 1
for any x; and c;, and thus Smeqn(x;,C) will be influenced almost
equally by all x;, ¢; pairs. On the other hand, if T approaches zero,
Smean (X;, C) is only influenced by c; corresponding to the largest
s(x;, ¢j). Therefore, high/low temperature takes more/less support

samples into consideration. We will further utilize this property in
Section 3.3.2 to boost out model.

Note that, unlike the Prototypical Network [6], our method does
not explicitly generate prototypes. In contrast, the mean similarity
s(x;,C) calculated by Eq. (6) can be seen as the distance between x
and a virtual query-specific prototype as shown in Fig. 2(b). More-
over, the formulation of Eq. (6) provides convenience for other
statistic calculation. For example, the standard deviation can be
calculated as

Sed (®1.C) = (2 X251 (S(Xi. €}) — Smean (%1, €))?) 2. (7)

Then, we can jointly utilize the mean and standard deviation to
calculate the similarity metric between x; and C as

5(Xi, C) = Smean (Xi, C) * (S¢q (X3, )7, (8)

where p > 0 is a hyper-parameter. Basically, according to Eq. (8),
the similarity s(x;,C) is large when the average similarity
Smean (X;, C) is large and the standard deviation sy, (x;,C) is large.
A large standard deviation means that some local descriptors x;
are relatively closer to ¢; than others, and in other words, some
local descriptors x; would be extremely close to c; with a large av-
erage similarity. It is worth mentioning that this does not conflict
with Lemma 1 which forces the distribution of C to be compact,
since Sq4(x;, C) exerts influences on the similarity between x; and
¢;j. Although superior performance could be obtained by tuning the
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Fig. 3. Our method makes advantage of the temperature function in terms of function value and gradient norm. To generate query-specific prototypes, the support samples
are automatically re-weighted based on their distance to query by exerting the monotonically decreasing property of the gradient norm of f(d(x;,c;)) as shown in (a). For
the category-specific temperature setting, since Tp < Ty, to have high similarity for positive category, based on (b), positive support samples are required to be much closer

to the query.

value of hyper-parameter p, we fix p =1 in our experiments un-
less otherwise stated.

3.3.2. Class-specific temperature

As mentioned earlier, the scarcity of training samples in few-
shot learning poses huge challenges to the generalization ability
of learning models. It turns out that a simple modification on
Eq. (5) can greatly enhance the performance. During training, we
manually specify different temperatures for the positive and nega-
tive categories respectively. For detail, given a query sample x be-
longing to the C*th category, s(x;, ;) is calculated by

C=C
C#£C*,

exp (- %) Gy,

exp (— 200,

where Tp is the temperature for the positive category, i.e., the
ground-truth category, and Ty is that for other categories, and
Tp < Ty. According to Eq. (9), given a positive category C* and a
negative one CVN, even though every d(x;, cg.’) is just slightly smaller
than d(x;, c?’), we still have s(x;, C?) < s(x;, CN) considering Tp < Ty
(see Fig. 3(b)), and thus will have large losses and potentially lead
to misclassification of the query sample. That is, during training,
our model will push the query much closer to the positive cate-
gory, i.e., making d(x;, c?) significantly smaller than d(x;, c?’). This
consequently leads to a large-margin metric and will enhance the
generalization performance. As for the implementation, we first set
same temperature for both positive and negative categories, and
then gradually decrease and increase temperature respectively to
enable our method to progressively refine the learned metric. It
is also experimentally validated that this can stabilize the training
process compared with setting different temperatures at the very
beginning, see Table 2 for detailed results. In practice, the temper-
ature is initialized as 10 for both Tp and Ty and will be gradually
tuned every % episodes.

Once s(X,C) ={s(x1.0),s(x5,C),...,s(x,,C)} is obtained, the
overall similarity between the query sample X = {x{, X2, ..., XwxH}
and the Cth category is obtained by a weighted sum as w’s(X, C).
Next, a softmax layer with cross-entropy loss is used to perform
the final classification. We summarize the proposed method in
Algorithm 1.

s(x;, ¢j) =

(9)

3.4. Network architecture

The proposed Temperature Network contains two modules, in-
cluding one CNN feature extraction module and one temperature
metric learning module. For fairness, the adopted feature extrac-
tion module contains 4 convolution blocks with each containing

Algorithm 1 Temperature network for few shot learning.
Input: Initialization Temperature Tp = Ty = 10, temperature step
size p=0.5and Sy =15 p =1,
1: for each episode do

2:  STEP 1: Feature Embedding
3:  Extract features for query X € {xq,X3, ..., Xw«y} and support
samples of each category;
4:  STEP 2: Metric Learning
5. for each category C do
6: for each local descriptor x; of query do
7: Calculate the similarity s(x;, c;) between local descrip-
tor x; and ¢; with Tp and Ty by Eq. (9), where c; is the
jth local descriptor of support category;
8: Calculate spmean (x;, C) by Eq. (6);
9: Calculate sg4(x;, C) by Eq. (7);
10: The final similarity s(x;,C) between x; and category C
is obtained by Eq. (8);
11: end for
12: Calculate the final similarity between X and C by

a weighted sum of local descriptor-based similarity
{s(x1.0).5(x2,0),....5(x¢.O};

13:  end for

14:  STEP 3: Classification

15:  Conduct Classification via softmax loss and backpropagation

to update all parameters end-to-end;

16:  STEP 4: Temperature Tuning

17: Tune Temperature every r episode as

18: Tp = Tp * (Sp

19: TN = TN * 81\]

20: end for

the sequence of a convolutional layer with 64 filters of size 3 x 3,
a batch normalization and a Leaky ReLU layer. The first two blocks
contain an extra 2 x 2 max-pooling layer, respectively. Similar net-
work architectures are commonly adopted by most of few-shot
learning methods as a benchmark to test the effectiveness of the
following metric learning module. For the metric learning module,
we choose d(x,y) as Euclidean distance, and when calculating the
standard deviation, we add a small constant (i.e., 1 x 10~7) to pre-
vent the gradients from NaN.

4. Experiments
We validate the effectiveness of the proposed method on sev-

eral benchmark datasets including the popular few-shot classifica-
tion dataset minilmageNet, two fine-grained datasets, i.e., Stanford
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Dogs and Stanford Cars, and the proposed Dermnet skin disease
dataset.

4.1. Datasets and settings

We briefly describe the used datasets as follows:

1. minilmagenet [33] contains 100 categories that are selected
from ImageNet [56], and each category consists of 600 im-
ages [5]. We follow the popular splits proposed by Ravi and
Larochelle [11], i.e., 64 categories for training, 16 for valida-
tion, and 20 for testing. For fine-grained datasets,

2. Stanford Dogs dataset [57] consists of 20580 images and
120 categories and 70, 20, and 30 categories are used for
training, validation, and testing.

3. Stanford Cars dataset [58] has 16185 images from 196 cate-
gories and we follow [42] to make 130, 17, 49 categories for
training, validation, and testing.

4. Dermnet skin disease dataset contains 20230 images and
334 categories. We manually split 186 categories for train-
ing, 74 for validation and testing respectively. For detail de-
scription, please refer to Appendix A.

Experimental settings are same and fixed for all dataset other-
wise stated. We conduct 5-way 1-shot and 5-way 5-shot tasks on
all datasets. 300,000 episodes are constructed to train our model
and each episode contains 5 categories and each category has ad-
ditional 15 query samples. We adopt Adam algorithm with the ini-
tial learning rate of 0.001 which will be cut by 0.1 for every 53—"
episodes. The temperature Tp and Ty is initialized as 10 for all
experiments otherwise stated and is multiplied by dp = 0.5 and
Sy = 1.5 for positive and negative categories every 53—” episode re-
spectively, where 8p and Sy are the positive and negative tempera-
ture step size respectively. Moreover, p is default set as p = 1. For
testing, the temperature is set as Tp. We report the mean classifi-
cation accuracy by constructing 600 episodes from the testing set.

4.2. Compared methods

To fully demonstrate the superior performance of the proposed
method, ten state-of-the-art few-shot learning methods in addition
to K-NN are bench-marked. These methods are briefly shown as
follows:

1. Matching Net FCE [5] utilizes cosine similarity-based metric
to perform few-shot learning. Furthermore, Full Context Em-
beddings(FCE) is introduced to filter and integrate support
information which leads to better performance.

2. Meta-Learner LSTM [11] is proposed to directly learn the op-
timization algorithm from auxiliary set which then can be
directly used to train meta-tasks.

3. Model-Agnostic Meta-Learning (MAML) [10] aims to learn
a good initialization for meta-tasks. Few training iterations
need to be conducted on the meta-tasks with proper initial-
ization.

4. Prototypical Net (PN) [6] proposes to directly learn proto-
types for each category which intuitively lead to better gen-
eralization ability.

5. Graph Neural Network [16] is proposed recently and is val-
idated to be effective for various node classification tasks.
The few-shot learning is explained as a label propagation
task and thus can be directly tackled by GNN.

6. Simple Neural Attentive Learner (SNAIL) [22] utilizes tempo-
ral convolution and soft attention which works similarly as
the FCE used in Matching Net. The temporal convolution in-
tegrates information of support data which the useful infor-
mation is then selected by soft attention.
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7. Large-margin Prototypical Net (L-PN) [28] equips large-
margin regularization terms to Prototypical Net. The method
needs additional triplet construction similar as triplet loss
and we select cosine distance for its better performance ac-
cording to Wang et al. [28].

8. Large-margin Graph Neural Network (L-GNN) [28] adopts
Normface Loss as large-margin terms to enhance GNN. The
method also requires additional triplet construction and in-
troduces several hyper-parameters needed to be tuned.

9. Relation Net [7] contains a neural network-based relation
module. That is, the metric is obtained through a learnable
network.

10. Covariance Metric Net (CovaMNet) [42] takes the second or-
der information into consideration and obtains the similarity
through Covariance Metric.

We do not include PN results with the high way trick reported
in the original work for fairness and its results are courtesy of
[42] (Stanford Dogs and Stanford Cars) and [59] (minilmageNet),
respectively. The first baseline, K-NN, is conducted on the features
extracted by a well-trained CNN network. For the methods pro-
posed in this paper, the improved PN denotes the improved Pro-
totypical Network described in Section 3 and the configuration of
Temperature Network is demonstrated previously. Temp Net w/
Temp=10 denotes Temperature Network with fixed temperature
for both Ty and Tp. All of these methods are trained with similar 4
convolutional modules without residual connection and dropout to
provide a fair comparison. For detail network architecture, please
refer to supplementary materials. We here do not adopt advanced
backbones, e.g., ResNet and Wide ResNet, since all compared meth-
ods are based on 4 convolutional backbone model. Moreover the
various deep backbones used by existing literatures also bring dif-
ficulties for fair comparison.

4.3. Classification results on commonly-used datasets

The results of minilmageNet, Stanford Dogs, and Stanford Cars,
are shown in Table 1. We conclude following interesting points.
First, the improved PN does boost the performance of conventional
PN in most cases and the amelioration proposed in Section 3.2 is
thus potentially able to enhance other PN-based methods. Sec-
ond, the proposed Temperature Network achieves superior perfor-
mance on almost all datasets compared with the existing meth-
ods. Specifically, the Temperature Network achieves 0.25%, 1.22%,
0.79% improvements over the best existing methods in terms of
5-way 1-shot learning for these three datasets, respectively. For 5-
way 5-shot, the Temperature Network obtains 0.33%, 2.51%, 0.24%
improvements over the state-of-the-arts methods. The better per-
formance of the proposed methods should be contributed to fol-
lowing points. First, the proposed Temperature Net implicitly gen-
erate query-specific prototypes which naturally lead to local and
distribution-aware metric. Second, by class-specific temperatures,
our method is able to learn a large-margin metric and thus obtains
better generalization ability. Moreover, as mentioned, the initial-
ized temperature T for our Temperature Net is meaningful and can
be tuned easily for better performance. For example, higher tem-
perature, i.e., large T, allow us to take more support samples into
consideration which is thus suitable for high shot tasks. Similarly,
low temperature allows us to focus on the core samples and is thus
proper for low-shot tasks. Experimental results show that Temper-
ature Net can achieve 52.39% for 5-way 1-shot on minilmageNet.

4.4. Ablation studies

In this section, we conduct ablation studies to show the influ-
ence of different parts of Temperature Net for final performance.
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Table 1
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5-way accuracy of all methods on three datasets. { denotes Large-margin PN with cosine distance for
its better performance. 7 denotes Large-margin GNN using Normface loss with s =10,A =1,m =0.5. §
denotes that results of this dataset are retrieved from Li et al. [42]. » denotes results are retrieved from
Chen et al. [59]. £ denotes the experiments are exactly same as PN which we omit here. Other results

are retrieved from their original work.

Stanford Dogs$

Stanford Cars$ minilmageNet

Method

1-shot  5-shot  1-shot  5-shot  1-shot  5-shot
Baseline k-NN 26.14 43.14 23.50 34.45 27.23 49.29
Meta-Learner [11] - - - - 43.44 60.60
MAML [10] - - - - 4870  63.11
SNAIL [22] - - - - 45.10 55.20
Matching Net [5] 35.80 47.50 34.80 44.70 43.56 55.31
L-PN(Cosine)t [28] - - - - 50.10  66.94
GNN [16] 46.98 62.27 55.85 71.25 49.02 63.50
L-GNN T [28] - - - - 51.60  67.25
Relation Net T [7] - - - - 50.44 65.32
CovaMNet [42] 49.10 63.04 56.65 71.33 51.17 67.65
PN [6] 37.59 48.19 40.90 52.93 44.42* 64.24*
Improved PN (ours) £ 52.53 £ 58.73 £ 63.20
Temp Net with fixing Temp 10 (ours)  48.82 61.78 53.37 69.24 51.51 66.52
Temperature Net (ours) 49.35 63.37 57.87 73.84 52.39 67.89

Table 2
Results of different variants of the proposed Temperature Net on mini Ima-
geNet for 5-way 1-shot learning.

Method Temp 10 w/o std Temp 5/15 wjo std  Temp 10 w/ std
ACC (%) 51.22 50.77 51.51

Method  Temp 5/15 w/ std  Temp Net

ACC (%) Not converge 52.39

Table 3

Results with different initial temperature T, and Ty and temperature
step dp and dy. We set the initial Tp = Ty as shown in the first row
and vary 8p and 8y from the pairs shown in the first column.

(6p,8n) (Tp, Ty)  (1,1) (5,5) (10,10)  (15,15)  (20,20)
(1,1) 51.15 5132 51.51 51.86 51.84
(0.8,1.2) 51.64 51.59 52.17 51.98 52.30
(0.5,1.5) 51.60 51.61 52.39 52.17 51.98
(0.5,2) 50.57 5240 52.57 51.99 51.87
(0.2,5) 50.76  51.25 51.64 52.01 52.02
Table 4
Results with different p for similarity calculation in Eq. (8).
P 0.1 0.2 0.5 1 2 5 10
ACC(%) 51.72 51.87 5248 5239 5033 49.15 38.10

All experiments are conducted on minilmageNet for 5-way 1-shot
case. We first briefly study the effectiveness of the different parts
of TempNet in Table 2 and give more detail experiments on the
influence of the hyper-parameters in Tables 3 and 4.

We separately test the performance of different variants of our
method, including fixed temperature T = 10 without the standard
deviation (Temp 10 w/o std), fixed temperature T = 10 with the
standard deviation (Temp 10 w/ std), fixed category-specific tem-
perature (Ty = 15 and Tp = 5) without standard deviation (Temp
5/15 w/o std), fixed category-specific temperature (Ty = 15 and Tp
= 5) with standard deviation (Temp 5/15 w/ std), and the Tem-
perature Net (Temp Net). The results are shown in Table 2 and we
conclude following points. First, the naive Temperature Net with
fixed temperature still achieves state-of-the-art performance; sec-
ond, it is improper to directly set different temperatures at the be-
ginning as the network is hard to converge; third, the inclusion of
the standard deviation can improve the performance of our model;

last, gradually increasing the difficulty of training strengthens the
generalization ability of our model and stabilize the training pro-
cess.

To investigate the performance of different settings of the
class-specific temperature, we vary the initial temperature Tp =
Ty from {1,5,10, 15,20} and the temperature step pair (Sp,dy)
from {(1,1); (0.8, 1.2); (0.5, 1.5); (0.5, 2); (0.2, 5)}. The results also
shown in Table 3. According to the results, note that (5p =y =
1) means fixed temperature, better performance could almost al-
ways be obtained when using the proposed class-specific tempera-
ture training strategy by gradually changing the temperature. This
should be attributed to the large margin metric induced by our
method. Moreover, it is more desirable to moderately change the
temperature, and dramatic changing of the temperature may hurt
the performance in practice. We thus set the default temperature
step pairs as (8p, y) = (0.5,1.5). We'd like to emphasize that this
strategy could be directly applied for other tasks to boost their per-
formance. At last, it is desirable to have a large initial temperature
by comparing different choices of initial temperature and we set
the default initial temperature as Tp = Ty = 10 for all datasets.

We also investigate the influence of p in Eq. (8) and the results
are shown in Table 4. According to the results, excessively large
p will lead to significant performance degradation, and better per-
formance could be obtained with p < 1. It is thus reasonable to set
p =1 for real life application. It is thus reasonable to set p =1 in
practical applications.

4.5. Skin disease classification

The skin disease dataset is collected from Dermnet atlas web-
site and contains 20230 images and 334 categories in total. The
experimental settings are exactly same as minilmageNet except we
change the number of query samples for each category from 15 to
5, since the smallest category contain only 10 iamges. Please refer
to supplementary materials for detail description of the dataset.

The resutls are shown in Table 5. PN(E)denotes Prototype Net-
work with Euclidean distance and PN(C) denotes Prototype Net-
work with cosine similarity. We also implement large-margin pro-
totypical network as L—PN(C) and L — PN(E) for Euclidean dis-
tance and Cosine similarity respectively. We can conclude that
the proposed method outperforms other state-of-the-arts meth-
ods a lot in the real-life scenario. For detail, the Temperature Net
achieves 4.57% improvements for 5-way 1-shot compared with Re-
lation Net, and obtains 3.32% improvements for 5-way 5-shot com-
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Table 5
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Classification results on skin disease datasets (ACC %).

Methods Baseline ~ Matching Net
5-way 1-shot  25.56 44,50
5-way 5-shot  29.16 60.03
Methods L-PN(C) GNN
5-way 1-shot  49.27 48.61
5-way 5-shot  64.90 68.10

PN(E) PN(C)  L-PN(E)
48.57 48.62  48.92
66.80 64.20  67.20
Relation Net ~ SNAIL ~ Temp Net
48.89 48.25  53.84
62.37 67.89 7142

pared with the second best model GNN. It is interesting to note
that Relation Net does not outperform Prototypical Network in this
dataset. The reason may be that the Relation Net benefits from
large number of query samples in conventional settings (15 im-
ages per categories) by using batch normalization for relation met-
ric module [7,60]. However, there are only 5 query samples avail-
able per category for the proposed Dermnet skin disease dataset
which may thus essentially harm the learning process for Relation
Net. By contrast, the proposed methods is robust to the number of
queries and always achieves superior performance.

5. Conclusions and future work

In this paper, we address several limitations for existing few-
shot learning methods. First, we propose a general improvement
for the popular prototype-based methods which can theoretically
lead to compact intra-class distribution. We then propose Tem-
perature Net for few-shot learning. Temperature Net can implic-
itly generate query-specific prototypes and thus results in local
and distribution-aware metric. To further strengthen the general-
ization ability of the learned metric, we set different temperature
for different categories to penalize query samples that are not close
enough to their belonging categories. Unlike conventional large-
margin metric learning, our method introduces no additional regu-
larization term and also does not need extra triplet/pair construc-
tions. Experiments on benchmark datasets including the proposed
skin disease dataset validate the superiority of the method. The
ideas adopted by this paper potentially benefit other tasks. For
example, besides the general improvements for prototype-based
methods, when performing hard sample mining, further improve-
ments are likely obtained by training the network with increasing
difficulties. Also, the query-specific metric may also be beneficial
to other metric learning-based applications especially for retrieval-
based tasks. We will continue our work on these topics in the fu-
ture.
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Appendix A. Skin disease classification

For the skin dataset, we collect the dermatology photos from
Dermnet atlas website. For detail, we obtain 20230 photos in to-
tal which belong to 334 different categories. The category distri-
bution is highly imbalanced. The largest category “seborrheic ker-
atoses ruff” contains 516 photos and the smallest one only has 10
samples. Please refer to Fig. A.4 for detail. To perform few-shot
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Fig. Al. The category distribution of Dermnet datasets.

learning, we discard categories with less than 10 samples which
are necessary to the 5-way 5-shot setting. The data are manually
split into 186 categories for training, 74 for validation and another
74 for testing respectively. Moreover, to better simulate the sce-
nario of few-shot learning, we deliberately make the categories
with more than 120 samples (38 categories in total) as training.
Please refer to Fig. 1 or the Dermnet Website for sample images.

Appendix B. Proof for Lemma 1

Lemma 1. For the Minkowski distance, except the Manhattan dis-
tance, D;(x,C) < D,(x,C) with equality holds if and only if c=
ISt gciforanyie{1,2,... ¢}

Proof. The main idea for the proof is that Minkowski distance can
be induced by ¢,-norm. Given two vectors x and y, we denote
lx — yllp as ¢p-norm of vector x —y and is also the Minkowski dis-
tance between x and y with the corresponding p be definition,
where p > 1. If p < 1, the so-called ¢,-norm and p Minkowski dis-
tance are no longer norm and distance metric respectively due to
the violation of triangle inequality.
Then, according to above definition, we have

1 3 1 3
Di(x,C) =Dy (x,C) = llx = > cillp— 5 D Ik —cill,
i=0 i=0

1< 1<
||zZ(X—Ci)||p - ZZ lIx —cillp
i—0 i—0

1< 1<
ZZ lIx = cill, = 5 > lx=cillp
i=0 i=0
=0 (B.1)

IA

Here we used the fact that ¢p-norm is convex and thus satisfies
Jensen’s inequality with p > 1 as shown in Fig B.5. Moreover, if p >
1, ¢p-norm is strictly convex and and the equality can be fulfilled
if and only if ;= 1Y ¢ for any ie{1,2,...,¢}. If we choose
p =1, i.e, using Manhattan distance, the equality clearly always
holds. O
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Fig. B1. Illustration of ¢,-norm.

Appendix C. Derivation for Eq. (3)

With the square Euclidean distance adopted by original Proto-
typical Network, the distance D;(x,C) defined by the Prototypical
Network is obtained by the distance between query and the center
point as

14 14 12
Di(x,C) = x"x+ glz(z )" Q) - %xT e
i=0 i=0 i=0
= x"x+ (E(¢;)))TE(c;) — 2X"E(cy), (C1)

where E(¢;) = 1 Y{_o¢; is the center of category C. Similarly, for
the proposed metric, i.e., Eq. (2), we calculate the average distance
between query and support samples as

1,¢ 2 ;o
Dy(x,C) = x"x + Z(Z ce) - ZXT e
i=0 i=0
= xTx +E(cl¢;)) — 2X"E(¢y). (c2)

We then have
D>(x,C) — D1(x.C) = E(c] ¢;) — (E(c;))"E(cy)
= var(c;), (C3)

where var(c;) = %Zfﬂ lle; — E(c,-)ll% > 0 is the variance of category
C.
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