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Few-shot learning learns to classify unseen data with few training samples in hand and has attracted 

increasing attentions recently. In this paper, we propose a novel Temperature Network to tackle few-shot 

learning tasks motivated by three crucial factors that are seldom considered in the existing literature. 

First, to encourage compact intra-class distribution, a general improvement for prototype-based methods 

is proposed to ensure compact intra-class distribution and the effectiveness is theoretically and exper- 

imentally validated. Second, the proposed Temperature Network can implicitly generate query-specific 

prototypes and thus enjoys a more effective distribution-aware metric. Third, to further strengthen the 

generalization ability of the proposed model, a novel and simple large-margin based method is devel- 

oped by leveraging the temperature function and we gradually tune the learning temperature to stabilize 

the training process. Moreover, we note that the commonly used datasets in few-shot learning are actu- 

ally contrived from large-scale datasets, and thus may not represent a real few-shot problem. We propose 

a real-life few shot problem, i.e., Dermnet skin disease , to comprehensively evaluate the performance of 

few-shot learning methods. Experiments conducted on conventional datasets as well as the proposed skin 

disease dataset demonstrate the superiority of the proposed method over other state-of-the-art methods. 

The source code of our method is available. 1 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Recently, deep neural networks show superior performance in 

he fields of machine learning, computer vision, and natural lan- 

uage processing, etc . However, conventional deep neural networks 

re prone to overfitting, and thus generally requires a large num- 

er of labelled data [1,2] . However, it is usually difficult or even 

rohibitive to collect a large and labeled dataset in real life appli- 

ations ( e.g., medical images). The limited dataset size poses great 

hallenges to the generalization ability of the conventional meth- 

ds [3] , and thus initiates the development of few-shot learning 

echniques [4] . There are mainly three types of few-shot learn- 

ng methods, including metric-learning based methods (“learning 

o compare”) [5–9] , meta-learning based methods (“learning to 

earn”) [10–12] , and hallucination based methods (“learning to aug- 

ent”) [13–15] . Among them, metric-learning based methods at- 

ract wide interests due to their simplicity and effectiveness. Its 
∗ Corresponding author. 

E-mail addresses: zwvews@gmail.com (W. Zhu), liwenbin.nju@gmail.com (W. Li), 

aofu.liao@rochester.edu (H. Liao), jluo@cs.rochester.edu (J. Luo). 
1 https://github.com/zwvews/TemperatureNetwork.git 
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asic idea is to learn a metric space that has large inter-class and 

mall intra-class distance. 

Despite the great success of the metric-learning methods, exist- 

ng approaches have several limitations. First, classical prototype- 

ased methods [6,7,16] oversimplify the distance calculation be- 

ween the query and categories by representing each category with 

 center point. Then the distance between the query and the cate- 

ory is calculated by the distance between the query and the cen- 

er point. However, this oversimplified approach cannot guarantee 

ompact intra-class distributions. To address this issue, we make 

 simple yet effective improvement to punish the scatter distribu- 

ions. Specifically, we alternatively calculate the distance between 

he query and the category using the average distance between the 

uery and the category’s support samples. The effectiveness of the 

mprovement is theoretically and empirically validated. 

Second, most of the metric learning-based methods only gen- 

rate a single prototype for each category by treating all support 

amples of this category equally. Given a query sample, the support 

amples that are closer to the query are more likely to contain rel- 

vant and important information with regarding to the query and 

hus should contribute more to its classification. This intuition is 

onsistent with many classical methods, such as k -Nearest Neigh- 

https://doi.org/10.1016/j.patcog.2020.107797
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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or classifier, RBF-Network, RBF SVM, and so on [17] . In terms of 

etric learning, the idea is even more popular and the local met- 

ic usually performs better than the global metric according to the 

ow-dimensional manifold assumption [18–20] . A few methods try 

o capture the relevant information by an attention-based network. 

or instance, Matching Net [5] introduces full context embeddings 

FCE) and utilizes a LSTM [21] with read-attention to filter related 

nformation contained in support samples. Similarly, simple neu- 

al attentive learner (SNAIL) [22] proposes a soft-attention strat- 

gy [23] to extract relevant information. Ideally, such methods are 

ossible to extract query-specific information while eliminating ir- 

elevant information contained in support samples. However, we 

ote that it is potentially unpractical and ineffective especially in 

he scenario of few-shot learning. In this paper, we propose a Tem- 

erature Network by taking advantage of the temperature function 

o implicitly generate query-specific prototypes. We make best use 

f the prior knowledge to re-weight the support samples automat- 

cally based on their distances to the query. We find this leads to 

 more effective distribution-aware local metric. 

Moreover, due to the fact that the generalization ability is cru- 

ial for few-shot learning with extremely scarce training samples 

vailable, in this paper, an effective lar ge-mar gin training strat- 

gy is proposed to further enhance the proposed Temperature Net- 

ork. The basic idea is that, during training, we intentionally make 

uery samples that are not close enough to the positive cate- 

ory harder to be correctly classified. Therefore, the learned met- 

ic space is forced to be more discriminative in order to mini- 

ize the classification loss. This actually works similarly to clas- 

ical large-margin methods [24–27] , which also have been intro- 

uced to few-shot learning recently [28] . However,the proposed 

ethod is superior to conventional large-margin regularized few- 

hot methods [28] in several ways. First, we directly enhance the 

earned distance metric and do not complicate the loss function 

ith additional large-margin regularization terms. Moreover, our 

ethod does not require additional construction of the triplets or 

airs which are essential and crucial to conventional large-margin 

ased methods [28–30] . Moreover, instead of setting different tem- 

erature for different categories at the very beginning, we gradu- 

lly tune the temperature to make the training process hard which 

nables the proposed method to progressively refine the learned 

etric. The proposed training strategy can also be regarded as a 

ovel type of self-paced learning with respect to the similar mo- 

ivations, i.e., learning from easy to hard [31,32] . Experimental re- 

ults also show that it is not proper to directly train with hard 

etric which may make the network hard to converge, please re- 

er to Table 2 for detail. 

Another crucial issue for current few-shot learning meth- 

ds is that they are all evaluated on contrived datasets ( e.g., 

ini ImageNet [33] ) and their performance in real-life problems 

annot be fairly compared. Therefore, we propose to address a 

eal few-shot learning problem, i.e., Dermnet skin disease classi- 

cation 

2 , to comprehensively evaluate the performance of the ex- 

sting methods. Also, this new real dataset can work as a bench- 

ark dataset in the future. Details of this dataset is provided in 

ppendix A . 

The main contributions of this paper are as follows: 

1. A simple and general approach is proposed to enhance the 

prototype-based few-shot learning methods, which can the- 

oretically lead to compact intra-class distributions. 

2. We propose the Temperature Network which can implic- 

itly generate query-specific prototypes. Moreover, in order 

to best utilize limited training samples, we further propose 
2 https://www.dermnet.com 

t

p

l

2 
to train in a “hard mode” to exhaustively mine the large- 

margin metric. 

3. We conduct comprehensive experiments on several public 

available datasets as well as the proposed Dermnet skin dis- 

ease dataset to validate the proposed method. 

. Related work 

.1. Few-shot learning 

Metric-learning based methods is motivated by the success of 

eep metric learning. Existing metric learning methods are derived 

rom embedding-based losses, e.g., contrastive loss [24] , triplet loss 

34] , and margin loss [35] , etc. Besides the intermediate appli- 

ations including face verification [36] , person re-identification 

37–39] , and information retrieval [40] , metric learning is also 

idely applied to address the few-shot learning problem. 

Generally, metric-learning based few-shot learning methods try 

o learn a metric embedding space that can transfer the common 

epresentations. For example, Matching network [5] adopts cosine 

imilarity to calculate the similarity between queries and support 

ategories. Prototypical network [6] first obtains the center of each 

ategory as its prototype and then calculates an Euclidean distance 

etween the prototype and the query sample. Sung et al. pro- 

ose Relation net [7] to directly learn the embedded metric space. 

raph Neural Network is also applied to few-shot learning to learn 

he similarity between query and support samples [16,41] . Covari- 

nce Metric Network (CovaMNet) [42] adopts the covariance ma- 

rix to exploit the second-order information. However, the metric 

pace learned by these methods only restrain a large inter-class 

istance constraint but cannot guarantee compact intra-class dis- 

ribution. Moreover, most of these methods treat support samples 

qually and the obtained universal metric may not be suitable for 

arious queries. 

Meta-learning based methods are trained to directly learn an 

ptimizer or initialization over a batch of tasks. Model-Agnostic 

eta-Learning (MAML) proposed by Finn et al. [10] aims at learn- 

ng a good model initialization which allows the network to deal 

ith the scenario of limited training samples. Another representa- 

ive work, LSTM-based meta learnerd [11] tries to learn to emulate 

tochastic gradient descent algorithm which then can be directly 

sed to optimize new coming tasks. Recently, Rusu et al. [12] pro- 

ose a latent embedding optimization algorithm to learn a latent 

epresentation which can be used to perform gradient descent. 

Hallucination based methods learn the rules to augment data 

ccording to the auxiliary set. Most of these methods are based on 

uto-encoders [43] or generative adversarial networks [44] . Clearly, 

allucination based methods can be jointly utilized with other 

ew-shot learning methods, and are thus usually not compared 

ith metric-learning based and meta-learning based methods in 

he literature. [13] proposes a data augmentation GAN to gener- 

te new samples for one-shot learning. [15] uses a hallucinator to 

enerate new samples which are then fed into a meta learner com- 

ined with the original data [15] . Schwartz et al. [14] utilize an 

uto-encoder to learn the transformation between samples from 

he same category to augment the data [14] . 

Other related few-shot learning methods are also included 

ere for completeness. Semi-supervised few-shot learning, first 

tudied by Ren et al. [8] , differs from conventional few-shot learn- 

ng by utilizing all query samples within each episode. Ren et al. 

ropose to use unlabelled data to facilitate the calculation of 

he prototypes [8] . Liu et al. [45] recently propose a transductive 

ropagation network by formulating the semi-supervised few-shot 

earning as a label propagation problem. 

https://www.dermnet.com
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.2. Knowledge distillation network 

Our method is also inspired by the knowledge distillation net- 

ork in terms of exerting the superior properties of the expo- 

ential function [46] . The essence of distillation network is that, 

hen we increase the temperature, the differences between pos- 

tive and negative categories can be eliminated to some extent, 

nd the network is thus forced to learn more discriminative rep- 

esentations. [47] conducts omni-supervised learning by distilling 

nowledge from labelled data. [48] directly distills the dataset to 

btain representative samples. [49] proposes to learn features from 

ifferent compactness levels with different temperatures. However, 

he proposed method is different from all of these works. First, we 

une the temperature in our metric learning layer instead of the 

oftmax layer. Second, during training, we set different tempera- 

ures for positive and negative categories respectively, which en- 

bles us to obtain a large-margin metric. Moreover, we propose to 

radually tune the temperatures to progressively refine the learned 

etric which can also stabelizes the training process. 

.3. Mining hard samples 

Hard sampling is a general strategy to strengthen the model’s 

bility [50] . For example, inspired by the importance sampling, 

51] proposes to focus on hard samples to speedup the training 

rocess. Harwood et al. propose to construct triplets of close neg- 

tive and far positive samples with respect to the selected anchors 

52] . Zhao et al. [53] propose to generate hard triplets by adver- 

arial learning. In this paper, instead of constructing hard training 

amples, we assign different temperatures to different categories to 

ough the training process. 

. Our method 

.1. Problem formulation 

For few-shot learning, we are given a support set S, a query 

et X, and an auxiliary set A, where S contains B different cat- 

gories and each of them has K training samples, i.e., B -way K- 

hot. Generally, few-shot learning methods are tested on 5-way 1- 

hot and 5-way 5-shot scenarios. Clearly, training a classifier solely 

n the support set hardly achieves reasonable performance with 

ew labeled samples. Therefore, it is crucial to learn and transfer 

nowledge from the auxiliary set A to support set S, although A 

hares no common categories either in S or X . At first sight, trans- 

er learning or domain adaption methods may properly handle the 

ask [54,55] . However, as pointed by Snell et al. [6] , the essential

roblem of transfer learning based methods is that the training 

ondition is different from that of the testing, which will degrade 

he performance. Snell et al. [6] proposes a novel episode training 

echanism, which is validated to be effective by recent papers. In 

pisode training, we generate episodes by drawing some samples 

rom the auxiliary set A, with some of them regarded as support 

amples S train , others as query samples X train . At each iteration, we 

rain the model with the constructed episodes. 

.2. Improved prototypical network 

The Prototypical Network is a well-known few-shot learning 

ethod. Given a query sample x ∈ R d and a certain category C =
 c 1 , c 2 , . . . , c � } , c i ∈ R d , where � is the number of support samples

f the category, a Prototypical Network calculates the distance D 1 

etween query x and category C as 

 1 (x, C) = M p (x, 
1 

� 

� ∑ 

i =0 

c i ) (1) 
3 
here M p (·, ·) denotes the Minkowski distance with order p > 1 . 

learly, the Prototypical Network, i.e., Eq. (1) , cannot guarantee 

ompact intra-class distribution. To alleviate the problem, we pro- 

ose a new formulation as follows 

 2 (x, C) = 

1 

� 

� ∑ 

i =0 

M p (x, c i ) . (2) 

e call this Improved Prototypical Network which has the follow- 

ng property. 

emma 1. For a Minkowski distance with order p > 1 , D 1 (x, C) ≤
 2 (x, C) and the equality holds if and only if c i = 

1 
� 

∑ � 
i =0 c i for any

 ∈ { 1 , 2 , . . . , � } . 
Detailed proof is provided in Appendix B , and is based on the 

act that the Minkowski distance, except the Manhattan distance 

here p = 1 , can be derived by a strictly convex � p vector norm.

or the Manhattan distance, c i = 

1 
� 

∑ � 
i =0 c i is only a sufficient but 

ot necessary condition for the equality since the � 1 norm is not 

trictly convex. To give an intuitive understanding of Lemma 1 , 

aking the original Prototypical Network as an example where the 

inkowski distance is an Euclidean distance M 2 , we have 

D 2 (x, C) − D 1 (x, C) = v ar(c i ) , (3) 

here the variance of category C is 

 ar(c i ) = 

1 

� 

� ∑ 

i =1 

‖ c i − E(c i ) ‖ 

2 
2 ≥ 0 (4) 

etailed derivation is shown in Appendix C . The equality, i.e., 

 1 (x, C) = D 2 (x, C) , holds if and only if v ar(c i ) = 0 . Therefore, given

wo different distributions with the same center, D 1 (s, C) will con- 

ider them as identical while D 2 (s, C) will favor the compact one 

hose v ar(c i ) is smaller. In other words, D 2 (s, C) punishes large

ntra-class scatter and thus leads to a compact distribution. 

.3. Temperature network for few-shot learning 

The Temperature Network is proposed to alleviate several limi- 

ations of existing metric learning-based methods. First of all, our 

ethod can generate query-specific prototypes. Moreover, a novel 

arge margin-based method is proposed to train the model on 

harder” scenarios for better generalization ability. An overview of 

he proposed Temperature Network is shown in Fig. 1 . An intu- 

tive illustration to show the superiority of the proposed method 

s present in Fig. 2 . 

.3.1. Temperature network with query-specific prototypes 

For a B -way K-shot task, we are given a query sample and a 

upport set. The support set consists of B different categories and 

ach category contains K samples, where K usually ranges from 1 

o 5. The feature map extracted from a convolutional neural net- 

ork is W × H × d, where W is the width, H is the height, and d is 

he number of channels. We follow Li et al. [42] to extract local de- 

criptors to perform few-shot learning. The Cth category is repre- 

ented by C = { c 1 , c 2 , . . . , c � } , where category C is among the total

 categories, c i ∈ R d is the i th local descriptor and � = K × H × W .

hen, given a query sample X ∈ R W ×H×d = { x 1 , x 2 , . . . , x W ×H } after

eature extraction, we first calculate the similarity between local 

escriptor x i and c j as follows 

 (x i , c j ) = f (d(x i , c j )) = exp (− d(x i ,c j ) 

T 
) , (5) 

here T denotes the temperature which is fixed as 10 in our 

xperiments otherwise stated, and d(x i , c j ) denotes the distance 

easurement between x i and c j , e.g., order p Minkowski dis- 

ance M p (·, ·) . It is worth noting that f (d(x i , c j )) has several good
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Fig. 1. An overview of Temperature Network. We take the proposed Dermnet skin disease dataset as an example. Different temperature is assigned for positive and negative 

categories during training, and the same temperature is set during testing. 

Fig. 2. Illustration of the similarity measurements of different methods. We denote the orange diamonds as the queries, stars as the generated prototypes and others as 

support samples. (a) Prototypes generated by Prototypical Network are fixed for different queries; (b) Prototypes implicitly generated by the Temperature Network are 

query-specific; (c) Temperature Network with the same temperature for all the categories may not be able to make a max-margin metric; (d) Large-margin metric could be 

obtained with class-specific temperatures during training for better test (generalization) performance. 
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roperties: (1) 0 < f (d(x i , c j )) ≤ 1 ; (2) with finite temperature T ,

f (d(x i , c j )) = 1 if and only if d(x i , c j ) = 0 ; (3) f (d(x i , c j )) is mono-

onically decreasing; (4) the gradient norm of f (d(x i , c j )) is mono- 

onically decreasing. 

Then, the similarity between x i and the Cth category can be cal- 

ulated by averaging the point-wise similarity as 

 mean (x i , C) = 

1 
� 

∑ � 
j=1 s (x i , c j ) . (6) 

The Temperature function, i.e., the Gaussian kernel function 

f (d(x i , c j )) = exp (− d(x i ,c j ) 

T ) , is used to simultaneously calculate 

he similarity and re-weight the support samples based on their 

istances to the query sample to generate query-specific proto- 

ypes. To see how Temperature function works, according to Fig. 3 , 

ince the gradient norm of f (d(x i , c j )) decreases monotonically, 

o make the similarity s (x i , C) large, our method will put more

eights on c j ’s that are close to x i . That is, the support samples are

utomatically re-weighted according to their distance to x i which 

ventually lead to query-specific prototypes. We note that temper- 

ture T can control the extent of the specific and locality of the 

enerated prototypes. To make it clear, considering following two 

xtreme cases, if T approaches infinity, s (x i , c j ) will approach 1

or any x i and c j , and thus s mean (x i , C) will be influenced almost

qually by all x i , c j pairs. On the other hand, if T approaches zero,

 mean (x i , C) is only influenced by c j corresponding to the largest 

 (x i , c j ) . Therefore, high/low temperature takes more/less support 
4 
amples into consideration. We will further utilize this property in 

ection 3.3.2 to boost out model. 

Note that, unlike the Prototypical Network [6] , our method does 

ot explicitly generate prototypes. In contrast, the mean similarity 

 (x i , C) calculated by Eq. (6) can be seen as the distance between x

nd a virtual query-specific prototype as shown in Fig. 2 (b). More- 

ver, the formulation of Eq. (6) provides convenience for other 

tatistic calculation. For example, the standard deviation can be 

alculated as 

 std (x i , C) = ( 1 
� 

∑ � 
j=1 (s (x i , c j ) − s mean (x i , C)) 2 ) 

1 
2 . (7) 

hen, we can jointly utilize the mean and standard deviation to 

alculate the similarity metric between x i and C as 

 (x i , C) = s mean (x i , C) ∗ (s std (x i , C)) ρ, (8)

here ρ > 0 is a hyper-parameter. Basically, according to Eq. (8) , 

he similarity s (x i , C) is large when the average similarity 

 mean (x i , C) is large and the standard deviation s std (x i , C) is large. 

 large standard deviation means that some local descriptors x i 
re relatively closer to c j than others, and in other words, some 

ocal descriptors x i would be extremely close to c j with a large av- 

rage similarity. It is worth mentioning that this does not conflict 

ith Lemma 1 which forces the distribution of C to be compact, 

ince s std (x i , C) exerts influences on the similarity between x i and 

 j . Although superior performance could be obtained by tuning the 
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Fig. 3. Our method makes advantage of the temperature function in terms of function value and gradient norm. To generate query-specific prototypes, the support samples 

are automatically re-weighted based on their distance to query by exerting the monotonically decreasing property of the gradient norm of f (d(x i , c j )) as shown in (a). For 

the category-specific temperature setting, since T P ≤ T N , to have high similarity for positive category, based on (b), positive support samples are required to be much closer 

to the query. 
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Algorithm 1 Temperature network for few shot learning. 

Input: Initialization Temperature T P = T N = 10 , temperature step 

size δP = 0 . 5 and δN = 1 . 5 , ρ = 1 ; 

1: for each episode do 

2: STEP 1: Feature Embedding 

3: Extract features for query X ∈ { x 1 , x 2 , . . . , x W ×H } and support 

samples of each category; 

4: STEP 2: Metric Learning 

5: for each category C do 

6: for each local descriptor x i of query do 

7: Calculate the similarity s (x i , c j ) between local descrip- 

tor x i and c j with T P and T N by Eq. (9), where c j is the 

jth local descriptor of support category; 

8: Calculate s mean (x i , C) by Eq. (6); 

9: Calculate s std (x i , C) by Eq. (7); 

10: The final similarity s (x i , C) between x i and category C 

is obtained by Eq. (8); 

11: end for 

12: Calculate the final similarity between X and C by 

a weighted sum of local descriptor-based similarity 

{ s (x 1 , C) , s (x 2 , C) , . . . , s (x � , C) } ; 
13: end for 

14: STEP 3: Classification 

15: Conduct Classification via softmax loss and backpropagation 

to update all parameters end-to-end; 

16: STEP 4: Temperature Tuning 

17: Tune Temperature every r episode as 

18: T P = T P ∗ δP 

19: T N = T N ∗ δN 

20: end for 

t

a

c

w

l

f

w

s

v

4

e

t

alue of hyper-parameter ρ, we fix ρ = 1 in our experiments un- 

ess otherwise stated. 

.3.2. Class-specific temperature 

As mentioned earlier, the scarcity of training samples in few- 

hot learning poses huge challenges to the generalization ability 

f learning models. It turns out that a simple modification on 

q. (5) can greatly enhance the performance. During training, we 

anually specify different temperatures for the positive and nega- 

ive categories respectively. For detail, given a query sample x be- 

onging to the C x th category, s (x i , c j ) is calculated by 

 (x i , c j ) = 

{ 

exp (− d(x i ,c j ) 

T P 
) , C = C x 

exp (− d(x i ,c j ) 

T N 
) , C � = C x , 

(9) 

here T P is the temperature for the positive category, i.e., the 

round-truth category, and T N is that for other categories, and 

 P ≤ T N . According to Eq. (9) , given a positive category C P and a

egative one C N , even though every d(x i , c 
P 
j 
) is just slightly smaller

han d(x i , c 
N 
j 
) , we still have s (x i , C 

P ) ≤ s (x i , C 
N ) considering T P ≤ T N 

see Fig. 3 (b)), and thus will have large losses and potentially lead 

o misclassification of the query sample. That is, during training, 

ur model will push the query much closer to the positive cate- 

ory, i.e., making d(x i , c 
P 
j 
) significantly smaller than d(x i , c 

N 
j 
) . This

onsequently leads to a large-margin metric and will enhance the 

eneralization performance. As for the implementation, we first set 

ame temperature for both positive and negative categories, and 

hen gradually decrease and increase temperature respectively to 

nable our method to progressively refine the learned metric. It 

s also experimentally validated that this can stabilize the training 

rocess compared with setting different temperatures at the very 

eginning, see Table 2 for detailed results. In practice, the temper- 

ture is initialized as 10 for both T P and T N and will be gradually

uned every 5 n 
3 episodes. 

Once s (X, C) = { s (x 1 , C) , s (x 2 , C) , . . . , s (x � , C) } is obtained, the

verall similarity between the query sample X = { x 1 , x 2 , . . . , x W ×H }
nd the Cth category is obtained by a weighted sum as w 

T s (X, C) .

ext, a softmax layer with cross-entropy loss is used to perform 

he final classification. We summarize the proposed method in 

lgorithm 1 . 

.4. Network architecture 

The proposed Temperature Network contains two modules, in- 

luding one CNN feature extraction module and one temperature 

etric learning module. For fairness, the adopted feature extrac- 

ion module contains 4 convolution blocks with each containing 
5 
he sequence of a convolutional layer with 64 filters of size 3 × 3 , 

 batch normalization and a Leaky ReLU layer. The first two blocks 

ontain an extra 2 × 2 max-pooling layer, respectively. Similar net- 

ork architectures are commonly adopted by most of few-shot 

earning methods as a benchmark to test the effectiveness of the 

ollowing metric learning module. For the metric learning module, 

e choose d(x, y ) as Euclidean distance, and when calculating the 

tandard deviation, we add a small constant (i.e., 1 × 10 −7 ) to pre- 

ent the gradients from NaN. 

. Experiments 

We validate the effectiveness of the proposed method on sev- 

ral benchmark datasets including the popular few-shot classifica- 

ion dataset mini ImageNet, two fine-grained datasets, i.e., Stanford 
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ogs and Stanford Cars, and the proposed Dermnet skin disease 

ataset. 

.1. Datasets and settings 

We briefly describe the used datasets as follows: 

1. mini Imagenet [33] contains 100 categories that are selected 

from ImageNet [56] , and each category consists of 600 im- 

ages [5] . We follow the popular splits proposed by Ravi and 

Larochelle [11] , i.e., 64 categories for training, 16 for valida- 

tion, and 20 for testing. For fine-grained datasets, 

2. Stanford Dogs dataset [57] consists of 20580 images and 

120 categories and 70, 20, and 30 categories are used for 

training, validation, and testing. 

3. Stanford Cars dataset [58] has 16185 images from 196 cate- 

gories and we follow [42] to make 130, 17, 49 categories for 

training, validation, and testing. 

4. Dermnet skin disease dataset contains 20230 images and 

334 categories. We manually split 186 categories for train- 

ing, 74 for validation and testing respectively. For detail de- 

scription, please refer to Appendix A . 

Experimental settings are same and fixed for all dataset other- 

ise stated. We conduct 5-way 1-shot and 5-way 5-shot tasks on 

ll datasets. 30 0,0 0 0 episodes are constructed to train our model 

nd each episode contains 5 categories and each category has ad- 

itional 15 query samples. We adopt Adam algorithm with the ini- 

ial learning rate of 0.001 which will be cut by 0.1 for every 5 n 
3 

pisodes. The temperature T P and T N is initialized as 10 for all 

xperiments otherwise stated and is multiplied by δP = 0 . 5 and 

N = 1 . 5 for positive and negative categories every 5 n 
3 episode re- 

pectively, where δP and δN are the positive and negative tempera- 

ure step size respectively. Moreover, ρ is default set as ρ = 1 . For 

esting, the temperature is set as T p . We report the mean classifi- 

ation accuracy by constructing 600 episodes from the testing set. 

.2. Compared methods 

To fully demonstrate the superior performance of the proposed 

ethod, ten state-of-the-art few-shot learning methods in addition 

o K-NN are bench-marked. These methods are briefly shown as 

ollows: 

1. Matching Net FCE [5] utilizes cosine similarity-based metric 

to perform few-shot learning. Furthermore, Full Context Em- 

beddings(FCE) is introduced to filter and integrate support 

information which leads to better performance. 

2. Meta-Learner LSTM [11] is proposed to directly learn the op- 

timization algorithm from auxiliary set which then can be 

directly used to train meta-tasks. 

3. Model-Agnostic Meta-Learning (MAML) [10] aims to learn 

a good initialization for meta-tasks. Few training iterations 

need to be conducted on the meta-tasks with proper initial- 

ization. 

4. Prototypical Net (PN) [6] proposes to directly learn proto- 

types for each category which intuitively lead to better gen- 

eralization ability. 

5. Graph Neural Network [16] is proposed recently and is val- 

idated to be effective for various node classification tasks. 

The few-shot learning is explained as a label propagation 

task and thus can be directly tackled by GNN. 

6. Simple Neural Attentive Learner (SNAIL) [22] utilizes tempo- 

ral convolution and soft attention which works similarly as 

the FCE used in Matching Net. The temporal convolution in- 

tegrates information of support data which the useful infor- 

mation is then selected by soft attention. 
6 
7. Large-margin Prototypical Net (L-PN) [28] equips large- 

margin regularization terms to Prototypical Net. The method 

needs additional triplet construction similar as triplet loss 

and we select cosine distance for its better performance ac- 

cording to Wang et al. [28] . 

8. Large-margin Graph Neural Network (L-GNN) [28] adopts 

Normface Loss as large-margin terms to enhance GNN. The 

method also requires additional triplet construction and in- 

troduces several hyper-parameters needed to be tuned. 

9. Relation Net [7] contains a neural network-based relation 

module. That is, the metric is obtained through a learnable 

network. 

10. Covariance Metric Net (CovaMNet) [42] takes the second or- 

der information into consideration and obtains the similarity 

through Covariance Metric. 

We do not include PN results with the high way trick reported 

n the original work for fairness and its results are courtesy of 

42] (Stanford Dogs and Stanford Cars) and [59] ( mini ImageNet), 

espectively. The first baseline, K-NN, is conducted on the features 

xtracted by a well-trained CNN network. For the methods pro- 

osed in this paper, the improved PN denotes the improved Pro- 

otypical Network described in Section 3 and the configuration of 

emperature Network is demonstrated previously. Temp Net w/ 

emp = 10 denotes Temperature Network with fixed temperature 

or both T N and T P . All of these methods are trained with similar 4

onvolutional modules without residual connection and dropout to 

rovide a fair comparison. For detail network architecture, please 

efer to supplementary materials. We here do not adopt advanced 

ackbones, e.g., ResNet and Wide ResNet, since all compared meth- 

ds are based on 4 convolutional backbone model. Moreover the 

arious deep backbones used by existing literatures also bring dif- 

culties for fair comparison. 

.3. Classification results on commonly-used datasets 

The results of mini ImageNet, Stanford Dogs, and Stanford Cars, 

re shown in Table 1 . We conclude following interesting points. 

irst, the improved PN does boost the performance of conventional 

N in most cases and the amelioration proposed in Section 3.2 is 

hus potentially able to enhance other PN-based methods. Sec- 

nd, the proposed Temperature Network achieves superior perfor- 

ance on almost all datasets compared with the existing meth- 

ds. Specifically, the Temperature Network achieves 0 . 25% , 1 . 22% , 

 . 79% improvements over the best existing methods in terms of 

-way 1-shot learning for these three datasets, respectively. For 5- 

ay 5-shot, the Temperature Network obtains 0 . 33% , 2 . 51% , 0 . 24%

mprovements over the state-of-the-arts methods. The better per- 

ormance of the proposed methods should be contributed to fol- 

owing points. First, the proposed Temperature Net implicitly gen- 

rate query-specific prototypes which naturally lead to local and 

istribution-aware metric. Second, by class-specific temperatures, 

ur method is able to learn a large-margin metric and thus obtains 

etter generalization ability. Moreover, as mentioned, the initial- 

zed temperature T for our Temperature Net is meaningful and can 

e tuned easily for better performance. For example, higher tem- 

erature, i.e., large T , allow us to take more support samples into 

onsideration which is thus suitable for high shot tasks. Similarly, 

ow temperature allows us to focus on the core samples and is thus 

roper for low-shot tasks. Experimental results show that Temper- 

ture Net can achieve 52 . 39% for 5-way 1-shot on mini ImageNet. 

.4. Ablation studies 

In this section, we conduct ablation studies to show the influ- 

nce of different parts of Temperature Net for final performance. 
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Table 1 

5-way accuracy of all methods on three datasets. ‡ denotes Large-margin PN with cosine distance for 

its better performance. † denotes Large-margin GNN using Normface loss with s = 10 , λ = 1 , m = 0 . 5 . § 

denotes that results of this dataset are retrieved from Li et al. [42] . � denotes results are retrieved from 

Chen et al. [59] . £ denotes the experiments are exactly same as PN which we omit here. Other results 

are retrieved from their original work. 

Method 

Stanford Dogs § Stanford Cars § miniImageNet 

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 

Baseline k-NN 26 . 14 43 . 14 23 . 50 34 . 45 27.23 49 . 29 

Meta-Learner [11] - - - - 43 . 44 60 . 60 

MAML [10] - - - - 48.70 63.11 

SNAIL [22] - - - - 45 . 10 55.20 

Matching Net [5] 35.80 47.50 34 . 80 44 . 70 43 . 56 55.31 

L-PN(Cosine) ‡ [28] - - - - 50.10 66 . 94 

GNN [16] 46 . 98 62.27 55 . 85 71.25 49.02 63 . 50 

L-GNN 

† [28] - - - - 51 . 60 67.25 

Relation Net † [7] - - - - 50.44 65.32 

CovaMNet [42] 49 . 10 63.04 56.65 71.33 51.17 67.65 

PN [6] 37 . 59 48.19 40.90 52.93 44 . 42 � 64 . 24 � 

Improved PN (ours) - £ 52.53 - £ 58.73 - £ 63.20 

Temp Net with fixing Temp 10 (ours) 48.82 61.78 53.37 69.24 51.51 66.52 

Temperature Net (ours) 49 . 35 63 . 37 57 . 87 73 . 84 52 . 39 67 . 89 

Table 2 

Results of different variants of the proposed Temperature Net on mini Ima- 

geNet for 5-way 1-shot learning. 

Method Temp 10 w/o std Temp 5/15 w/o std Temp 10 w/ std 

ACC (%) 51.22 50.77 51.51 

Method Temp 5/15 w/ std Temp Net 

ACC (%) Not converge 52.39 

Table 3 

Results with different initial temperature T P and T N and temperature 

step δP and δN . We set the initial T P = T N as shown in the first row 

and vary δP and δN from the pairs shown in the first column. 

(δP , δN ) (T P , T N ) (1,1) (5,5) (10,10) (15,15) (20,20) 

(1,1) 51.15 51.32 51.51 51.86 51.84 

(0.8,1.2) 51.64 51.59 52.17 51.98 52.30 

(0.5,1.5) 51.60 51.61 52.39 52.17 51.98 

(0.5,2) 50.57 52.40 52.57 51.99 51.87 

(0.2,5) 50.76 51.25 51.64 52.01 52.02 

Table 4 

Results with different ρ for similarity calculation in Eq. (8) . 

ρ 0.1 0.2 0.5 1 2 5 10 

ACC(%) 51.72 51.87 52.48 52.39 50.33 49.15 38.10 
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ll experiments are conducted on mini ImageNet for 5-way 1-shot 

ase. We first briefly study the effectiveness of the different parts 

f TempNet in Table 2 and give more detail experiments on the 

nfluence of the hyper-parameters in Tables 3 and 4 . 

We separately test the performance of different variants of our 

ethod, including fixed temperature T = 10 without the standard 

eviation (Temp 10 w/o std), fixed temperature T = 10 with the 

tandard deviation (Temp 10 w/ std), fixed category-specific tem- 

erature ( T N = 15 and T P = 5) without standard deviation (Temp 

/15 w/o std), fixed category-specific temperature ( T N = 15 and T P 
 5) with standard deviation (Temp 5/15 w/ std), and the Tem- 

erature Net (Temp Net). The results are shown in Table 2 and we 

onclude following points. First, the naive Temperature Net with 

xed temperature still achieves state-of-the-art performance; sec- 

nd, it is improper to directly set different temperatures at the be- 

inning as the network is hard to converge; third, the inclusion of 

he standard deviation can improve the performance of our model; 
7 
ast, gradually increasing the difficulty of training strengthens the 

eneralization ability of our model and stabilize the training pro- 

ess. 

To investigate the performance of different settings of the 

lass-specific temperature, we vary the initial temperature T P = 

 N from { 1 , 5 , 10 , 15 , 20 } and the temperature step pair (δP , δN )

rom { (1 , 1) ; (0 . 8 , 1 . 2) ; (0 . 5 , 1 . 5) ; (0 . 5 , 2) ; (0 . 2 , 5) } . The results also

hown in Table 3 . According to the results, note that (δP = δN = 

) means fixed temperature, better performance could almost al- 

ays be obtained when using the proposed class-specific tempera- 

ure training strategy by gradually changing the temperature. This 

hould be attributed to the large margin metric induced by our 

ethod. Moreover, it is more desirable to moderately change the 

emperature, and dramatic changing of the temperature may hurt 

he performance in practice. We thus set the default temperature 

tep pairs as (δP , δN ) = (0 . 5 , 1 . 5) . We’d like to emphasize that this

trategy could be directly applied for other tasks to boost their per- 

ormance. At last, it is desirable to have a large initial temperature 

y comparing different choices of initial temperature and we set 

he default initial temperature as T P = T N = 10 for all datasets. 

We also investigate the influence of ρ in Eq. (8) and the results 

re shown in Table 4 . According to the results, excessively large 

will lead to significant performance degradation, and better per- 

ormance could be obtained with ρ ≤ 1 . It is thus reasonable to set 

= 1 for real life application. It is thus reasonable to set ρ = 1 in

ractical applications. 

.5. Skin disease classification 

The skin disease dataset is collected from Dermnet atlas web- 

ite and contains 20230 images and 334 categories in total. The 

xperimental settings are exactly same as mini ImageNet except we 

hange the number of query samples for each category from 15 to 

, since the smallest category contain only 10 iamges. Please refer 

o supplementary materials for detail description of the dataset. 

The resutls are shown in Table 5 . PN(E)denotes Prototype Net- 

ork with Euclidean distance and PN(C) denotes Prototype Net- 

ork with cosine similarity. We also implement large-margin pro- 

otypical network as L − P N(C) and L − P N(E) for Euclidean dis- 

ance and Cosine similarity respectively. We can conclude that 

he proposed method outperforms other state-of-the-arts meth- 

ds a lot in the real-life scenario. For detail, the Temperature Net 

chieves 4.57% improvements for 5-way 1-shot compared with Re- 

ation Net, and obtains 3.32% improvements for 5-way 5-shot com- 
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Table 5 

Classification results on skin disease datasets (ACC %). 

Methods Baseline Matching Net PN(E) PN(C) L-PN(E) 

5-way 1-shot 25.56 44.50 48.57 48.62 48.92 

5-way 5-shot 29.16 60.03 66.80 64.20 67.20 

Methods L-PN(C) GNN Relation Net SNAIL Temp Net 

5-way 1-shot 49.27 48.61 48.89 48.25 53.84 

5-way 5-shot 64.90 68.10 62.37 67.89 71.42 
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Fig. A1. The category distribution of Dermnet datasets. 
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ared with the second best model GNN. It is interesting to note 

hat Relation Net does not outperform Prototypical Network in this 

ataset. The reason may be that the Relation Net benefits from 

arge number of query samples in conventional settings (15 im- 

ges per categories) by using batch normalization for relation met- 

ic module [7,60] . However, there are only 5 query samples avail- 

ble per category for the proposed Dermnet skin disease dataset 

hich may thus essentially harm the learning process for Relation 

et. By contrast, the proposed methods is robust to the number of 

ueries and always achieves superior performance. 

. Conclusions and future work 

In this paper, we address several limitations for existing few- 

hot learning methods. First, we propose a general improvement 

or the popular prototype-based methods which can theoretically 

ead to compact intra-class distribution. We then propose Tem- 

erature Net for few-shot learning. Temperature Net can implic- 

tly generate query-specific prototypes and thus results in local 

nd distribution-aware metric. To further strengthen the general- 

zation ability of the learned metric, we set different temperature 

or different categories to penalize query samples that are not close 

nough to their belonging categories. Unlike conventional large- 

argin metric learning, our method introduces no additional regu- 

arization term and also does not need extra triplet/pair construc- 

ions. Experiments on benchmark datasets including the proposed 

kin disease dataset validate the superiority of the method. The 

deas adopted by this paper potentially benefit other tasks. For 

xample, besides the general improvements for prototype-based 

ethods, when performing hard sample mining, further improve- 

ents are likely obtained by training the network with increasing 

ifficulties. Also, the query-specific metric may also be beneficial 

o other metric learning-based applications especially for retrieval- 

ased tasks. We will continue our work on these topics in the fu- 

ure. 
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ppendix A. Skin disease classification 

For the skin dataset, we collect the dermatology photos from 

ermnet atlas website. For detail, we obtain 20230 photos in to- 

al which belong to 334 different categories. The category distri- 

ution is highly imbalanced. The largest category “seborrheic ker- 

toses ruff” contains 516 photos and the smallest one only has 10 

amples. Please refer to Fig. A.4 for detail. To perform few-shot 
8 
earning, we discard categories with less than 10 samples which 

re necessary to the 5-way 5-shot setting. The data are manually 

plit into 186 categories for training, 74 for validation and another 

4 for testing respectively. Moreover, to better simulate the sce- 

ario of few-shot learning, we deliberately make the categories 

ith more than 120 samples (38 categories in total) as training. 

lease refer to Fig. 1 or the Dermnet Website for sample images. 

ppendix B. Proof for Lemma 1 

emma 1. For the Minkowski distance, except the Manhattan dis- 

ance, D 1 (x, C) ≤ D 2 (x, C) with equality holds if and only if c =
1 
� 

∑ � 
i =0 c i for any i ∈ { 1 , 2 , . . . , � } . 

roof. The main idea for the proof is that Minkowski distance can 

e induced by � p -norm. Given two vectors x and y, we denote 

 x − y ‖ p as � p -norm of vector x − y and is also the Minkowski dis-

ance between x and y with the corresponding p be definition, 

here p ≥ 1 . If p < 1 , the so-called � p -norm and p Minkowski dis-

ance are no longer norm and distance metric respectively due to 

he violation of triangle inequality. 

Then, according to above definition, we have 

 1 (x, C) − D 2 (x, C) = ‖ x − 1 

� 

� ∑ 

i =0 

c i ‖ p − 1 

� 

� ∑ 

i =0 

‖ x − c i ‖ p 

= ‖ 

1 

� 

� ∑ 

i =0 

(x − c i ) ‖ p − 1 

� 

� ∑ 

i =0 

‖ x − c i ‖ p 

≤ 1 

� 

� ∑ 

i =0 

‖ x − c i ‖ p − 1 

� 

� ∑ 

i =0 

‖ x − c i ‖ p 

= 0 (B.1) 

ere we used the fact that � p -norm is convex and thus satisfies 

ensen’s inequality with p ≥ 1 as shown in Fig B.5 . Moreover, if p >

 , � p -norm is strictly convex and and the equality can be fulfilled 

f and only if c i = 

1 
� 

∑ � 
i =0 c i for any i ∈ { 1 , 2 , . . . , � } . If we choose

p = 1 , i.e., using Manhattan distance, the equality clearly always 
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Fig. B1. Illustration of � p -norm. 

A

t

N

p

D

w

t

b

D

W

D

w

C

R

 

 

 

 

 

 

 

 

[  

[

[  

[  

[  

[  

[

[  

[  

[  

 

[  

[  

[

[  

[

[  

[  

[  

[  

[  

[

[  

[  

[

ppendix C. Derivation for Eq. (3) 

With the square Euclidean distance adopted by original Proto- 

ypical Network, the distance D 1 (x, C) defined by the Prototypical 

etwork is obtained by the distance between query and the center 

oint as 

 1 (x, C) = x T x + 

1 

� 2 
( 

� ∑ 

i =0 

c i ) 
T ( 

� ∑ 

i =0 

c i ) −
2 

� 
x T 

� ∑ 

i =0 

c i 

= x T x + (E(c i )) 
T E(c i ) − 2 x T E(c i ) , (C.1) 

here E(c i ) = 

1 
� 

∑ � 
i =0 c i is the center of category C. Similarly, for 

he proposed metric, i.e., Eq. (2) , we calculate the average distance 

etween query and support samples as 

 2 (x, C) = x T x + 

1 

� 
( 

� ∑ 

i =0 

c T i c i ) −
2 

� 
x T 

� ∑ 

i =0 

c i 

= x T x + E(c T i c i ) − 2 x T E(c i ) . (C.2) 

e then have 

 2 (x, C) − D 1 (x, C) = E(c T i c i ) − (E (c i )) 
T E (c i ) 

= v ar(c i ) , (C.3) 

here v ar(c i ) = 

1 
� 

∑ � 
i =1 ‖ c i − E(c i ) ‖ 2 2 

≥ 0 is the variance of category 

. 
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