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NONLINEAR CONSTITUTIVE MODELS FOR NANO-SCALE HEAT
CONDUCTION\ast 

WEIQI CHU\dagger AND XIANTAO LI\ddagger 

Abstract. We present a first-principle based approach that leads from a many-particle descrip-
tion to a nonlinear, stochastic constitutive relation for the modeling of transient heat conduction
processes at the nano-mechanical scale. By enforcing statistical consistency, in that the statistics of
local energy is consistent with that from an all-atom description, we identify the driving force as well
as the model parameters in these generalized constitutive models. The connections to established
generalized constitutive relations, including Cattaneo--Vernotte-type models, will be demonstrated.
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1. Introduction. Heat conduction is a fundamental process that occurs in most
mechanical and biological systems. Thermal properties in nano-mechanical systems
have particularly significant impacts on the performances of nanodevices. However,
on such scales, the transport of thermal energy exhibits a wide variety of phenomena
that are different from macroscopic observations, as documented in many recent pub-
lications. Examples include, but are not limited to, the size dependence of thermal
conductivity, heat pulse propagation, and delay phenomena [3, 46, 1, 7]. In particular,
there are overwhelming experimental observations that indicate the breakdown of the
conventional model of heat conduction [34, 3].

At the phenomenological level, a remarkable advancement in modeling non-Fourier
behavior is the Cattaneo--Vernotte (CV) model [6, 63], which eliminates the paradox
of the infinite speed of temperature propagation. Further generalizations, e.g., the
Guyer--Krumhansl (GK) model [23], the Tzou model [62], and the extended thermo-
dynamics models [1], all involve auxiliary equations for heat flux. Other extensions
include nonlinear heat conduction models, where heat conductivity is temperature-
dependent, which may give rise to traveling wave solutions [51], and stochastic heat
equations, which have been studied extensively in the area of stochastic PDEs [52, 65].

The availability of molecular dynamics (MD) models has encouraged a great deal
of effort to simulate and understand heat conduction problems directly at the nano-
mechanical scale as an alternative to conventional methods. MD simulations can be
done either at equilibrium, from which the heat conductivity is estimated from the
Green--Kubo formula [60], or under a nonequilibrium setting, where the temperature is
controlled at the boundary, and upon reaching a steady state, the heat conductivity
can be estimated from the average heat fluxes. The literature on the subject is
abundant, and we only refer the reader to the studies [18, 8, 27, 31, 39, 38, 44, 45, 64]
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and the references therein.
Meanwhile, it is still not understood, even at the conceptual level, how the MD

models, a many-particle and time-reversible description, would conspire to the afore-
mentioned generalized heat conduction models. In addition to its theoretical signif-
icance, bridging the two descriptions is also of practical importance. For example,
unlike the Green--Kubo formula [60] for heat conductivity, the microscopic definitions
of the parameters in the CV, GK, or Tzou models have not been established.

This paper presents a first-principle based derivation of generalized, nonlinear,
stochastic heat conduction models, aiming to understand the passage from the atomic
level to a larger scale description. We try to identify the transient processes of local
energies by solving these reduced heat conduction models, without implementing full
MD simulations, recording trajectories of all particles and computing energies from
velocities and displacements at each step. We formulate generalized constitutive re-
lations for non-Fourier heat conduction processes, in the form of closed stochastic
equations of energy or heat flux. We attempt to identify the motivation for the non-
linear form, seek the origin of the random noise, and make connections to the CV and
GK models.

To derive such a stochastic model from full MD, we will employ the Mori--
Zwanzig (MZ) projection formalism [48, 72], which has been quite successful in de-
riving coarse-grained models [9, 15, 26, 28, 30, 58, 21, 25, 71]. For example, a lot
of effort has been made to construct efficient approximations of the memory inte-
gral [15, 25, 42, 53, 69, 70, 50]. For the current problem, to arrive at a nonlinear
constitutive relation, we propose a new projection procedure, to be referred to as an
entropy-based projection. The main departure from Mori's conventional projection
is that the current projection procedure results in a nonlinear driving force in the
reduced models with which modeling non-Gaussian statistics is more straightforward.
An added advantage is that the new projection leads to a linear convolution for the
memory integral, which makes our models easier to handle than the state-dependent
form from Zwanzig's projection.

Furthermore, a systematic approximation, similar to Mori's continued-fraction
approach [47], can be constructed to approximate the memory term, which subse-
quently leads to the generalized heat conduction models. Our current approximation
eliminates the memory by introducing auxiliary variables in a self-consistent manner.
The motivation is threefold: First, it drastically simplifies the calculation of the mem-
ory integral and can be viewed as a fast summation method. Second, this procedure
enables a simple alternative to model the random noise in such a way that the mar-
ginal density is preserved. Finally, with such an approximation, the models can be
compared directly to some of the existing generalized constitutive relations.

The last part of the paper examines the statistics associated with the stochastic
models. We demonstrate that the stochastic models can reproduce the one- and two-
point statistics of the local energy from the full MD model. This paper, however, will
not address some other issues, including the existence of a traveling wave [51], the
dependence of the heat conduction properties on the system size and geometry, and
the rigorous continuum limits of the stochastic models [24].

The rest of the paper is organized as follows. Section 2 presents a new projection
formalism that leads to a reduced description of the local energy. This constitutes
the basis for modeling energy transport. In addition, by introducing local approxima-
tions, we derive a hierarchy of generalized heat conduction models that can be readily
compared to existing models. In section 3, we validate the approach by examining
the statistics from the reduced models.
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2. The derivation of heat conduction models.

2.1. Numerical observations. We start with observations from some numer-
ical experiments. The first example is a 1D Fermi--Pasta--Ulam (FPU) model, with
potential given by

(2.1) V =
\sum 
j

\ell (xj+1  - xj), \ell (u) =
1

2
u2 +

1

4
u4,

which has been studied extensively in statistical physics, e.g., [40]. The second ex-
ample is a single-wall carbon nanotube, with interactions modeled by the Tersoff
potential [59]. In terms of heat conduction process, both systems can be viewed as
one-dimensional or quasi one-dimensional chain structures, even though atoms in the
nanotube system move in a three-dimensional space.

In both examples, the chain structures are divided into blocks geographically
\{ \Omega i\} , as shown in Figure 1, in order to define local energies (denoted by \bfita ) associated
with them.

Ωi−1

Ωi

Ωi+1

Fig. 1. Diagram of a quasi-1D chain system with partition. \Omega i indicates the domain of the ith
block.

The ith component of \bfita represents the energy associated with the ith block,
consisting of the sum of potential energy and kinetic energy of atoms in the ith block.
When the potential energy involves two atoms from two different blocks, the energy
will be divided equally into the two blocks. For example, in the nearest-neighbor
interaction models, the local energy is defined as

(2.2) ai =
\sum 
j\in \Omega i

1

2
m| \bfitv j | 2 +

1

2
\ell (\bfitx j+1  - \bfitx j) +

1

2
\ell (\bfitx j  - \bfitx j - 1),

where \bfitx j ,\bfitv j \in \BbbR d are the displacement and velocity of the jth atom and \ell (\cdot ) is the
pair potential. In the FPU chain example d = 1 and in the nanotube example d = 3.
The general scheme for energy partition, especially for multibody interactions, has
been studied in [66].

We observe the statistics of local energies generated from a direct MD simulation
under the canonical ensemble (NVT), f(\bfitx ,\bfitv ) = e - \beta E(\bfitx ,\bfitv )/Z, where \beta = 1/kBT is the
inverse temperature and E is the energy of the whole system. Two ending blocks of
the chain are connected with Nos\'e--Hoover thermostats [49] at the same temperature
in order to force the whole system to arrive in an NVT ensemble. For the numerical
methods, a sixth-order symplectic integrator is used to solve the Nos\'e--Hoover model,
where the integrator is constructed based on a second-order operator-splitting method
[61], followed by an extrapolation scheme [68]. After the system reaches a steady state,
the thermostats are removed and periodic boundary conditions are imposed on both
ends, i.e., the left-end block is connected to a block cell in the left, which behaves
exactly the same as the right-end block, and vice versa. Unless otherwise mentioned,
atomic units are used throughout the paper.
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536 WEIQI CHU AND XIANTAO LI

For the FPU chain, we consider a system of a total of 500 atoms with one block
containing 10 atoms. The equilibrium temperature is set to be 1.5 a.u. For the
nanotube example, the whole system has 1920 atoms with each block containing 16
atoms. The temperature is set to 300K, which is converted to atomic units in the
simulations. The displayed values of the energy follow the atomic units used in the
Tersoff potential (eV).

We run MD simulations long enough to ensure that the system reaches a steady
state and observe the probability density function (PDF) of the local energy ai, as
shown in Figure 2. The energy has been shifted to have a zero mean.

−10 −5 0 5 10 15
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Fig. 2. The PDFs of shifted local energy of the 5th block are compared with fitting Gaussian
and Gamma distributions. We collect energy trajectories in a total of nT steps from direct MD
simulations, after reaching its equilibrium state. The stepsize is \Delta t = 0.02 a.u. The true PDFs are
normalized histograms of the data, which fits into Gamma f(x) = 1

Z
(x+\mu )\alpha  - 1 exp ( - \eta (x+ \mu )) , \mu =

\alpha /\eta , and Gaussian f(x) = 1
Z

exp
\bigl( 
 - x2/2\sigma 2

\bigr) 
distributions with correct mean and variance. The left

plot shows the FPU chain example with a total number of steps nT = 107. The right plot shows
the nanotube example, with nT = 4 \times 106. The Gamma distribution property is observed for the
local energy in each block, which is expected due to the periodic property of the system. For the
FPU chain example, fitting parameters are \alpha = 9.8006, \eta = 0.7076, and \sigma = 4.4476. For the carbon
nanotube example, fitting parameters are \alpha = 62.6716, \eta = 43.0849, and \sigma = 0.1837.

One interesting finding is that the statistics of the energy in such a regime is
non-Gaussian. The PDF actually fits better to a shifted Gamma distribution,

(2.3) \rho (ai) \propto (ai + \mu )\alpha  - 1e - \eta (ai+\mu ).

It has also been observed, with two-dimensional histogram plots, that the local energy
is almost independent among the blocks. A reasonable ansatz for the joint PDF is
given by

(2.4) \rho (\bfita ) \propto 
nblock\prod 
i=1

(ai + \mu )\alpha  - 1e - \eta (ai+\mu ).

Here (\alpha , \eta ) are the parameters in the Gamma-distribution which can be determined
according to numerical data or empirical theories, and \mu = \alpha /\eta represents the shift
to ensure a zero mean of the energy. The independence in the local energy has also
been observed for macromolecules [22].

For systems consisting of identical particles, as the block size increases, the local
energies tend to exhibit a Gaussian property. Due to the central limit theorem, a
non-Gaussian statistics emerges when the block size remains at the nano-mechanical
scale. However, for complex systems with multiple types of particles, such as macro-
molecules, proteins, etc., non-Gaussian statistics has been observed at a larger scale
[57].
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In the following, we start from the MD setting and present a first-principle based
method which is able to model the non-Gaussian processes and ensure the correct
statistics at equilibrium.

2.2. A new Mori--Zwanzig projection formalism. The MZ formalism [48,
72] has recently re-emerged as a powerful tool to derive coarse-grained models based
on a full atomistic description---the molecular dynamics model involving the position
\bfitx (t) and the velocity \bfitv (t) of atoms:

(2.5) \.\bfitx = \bfitv , m \.\bfitv =  - \nabla V (\bfitx ),

where \bfitx ,\bfitv \in \BbbR 3N and N is the number of atoms. V is the total potential energy.
Given the trajectories of all the atoms,

\bigl( 
\bfitx (t),\bfitv (t)

\bigr) 
, a preselected quantity of interest,

(2.6) \bfita (t) := \bfitphi (\bfitx (t),\bfitv (t)),

serves as the coarse-grain (CG) variables whose dimension M is much less than the
original dimension 6N . The MZ formalism is designed to derive a reduced equation
for \bfita (t). The implicit dependence of \bfita (t) on the initial state,

\bigl( 
\bfitx 0,\bfitv 0

\bigr) 
, will not be

invoked unless necessary.
More specifically, the MZ formalism yields an exact equation,

(2.7) \.\bfita (t) = et\scrL \scrP \scrL \bfita (0) +
\int t

0

e(t - \tau )\scrL \scrP \scrL \bfitF (\tau )d\tau + \bfitF (t).

Here \scrL is the Liouvillian, \scrP is a projection operator, and \scrQ = \scrI  - \scrP is the comple-
mentary projection operator. \bfitF (t) = et\scrQ \scrL \scrQ \scrL \bfita (0) is typically regarded as a noise.
The second term on the right-hand side indicates the history-dependence as a result
of eliminating the excessive degrees of freedom. Interested readers are referred to
[11, 9] for the mathematical derivations. What distinguishes the Mori and Zwanzig
approaches is the choice of the projection operator \scrP [9]. More specifically, Mori [48]
formulated the problem in a Hilbert space and defined \scrP as the projection onto the
subspace spanned by \bfita (0). With this projection, the first term on the right-hand side
of (2.7) is a linear function of \bfita (t), namely,

(2.8) et\scrL \scrP \scrL \bfita (0) = \Omega \bfita (t).

In addition, the memory term can be written as a linear convolution,

(2.9)

\int t

0

e(t - \tau )\scrL \scrP \scrL \bfitF (\tau )d\tau =

\int t

0

\theta (t - \tau )\bfita (\tau )d\tau ,

which can be conveniently approximated by Mori's continued-fraction method [47], or
a general rational function approximation. However, due to the linearity of the model,
it is difficult to obtain non-Gaussian statistics, unless nontrivial approximations are
introduced for the random noise [13]. Ciccotti and Ryckaert [14] proposed applying
Mori's projection, but to a different quantity. The procedure yields a generalized
Langevin equation with nonlinear force. However, the relation between the random
noise and the memory kernel is quite complicated.

On the other hand, nonlinear models can be obtained from Zwanzig's approach
[72], where the projection operator is defined as a conditional expectation that pro-
vides the optimal prediction in the L2 norm. With this approach, the first term on
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538 WEIQI CHU AND XIANTAO LI

the right-hand side of (2.7) can often be related to the mean force associated with
the CG variable \bfita [15], which is regarded as an advantage from the perspective of
ensuring correct statistics. However, the main difficulty in Zwanzig's formulation is
the treatment of the memory term. In general, the integral cannot be written as a
convolution and the continued-fraction approach breaks down. Short-time approxi-
mations, such as t-models [11, 12], as well as renormalization techniques to ensure
long-time accuracy [53], have demonstrated some success for the reduction of some
PDE models. Such approximations are difficult to implement for MD models, since
the procedure involves high order derivatives of the potential energy, for which explicit
forms are often not available. It is also not clear how the random noise can be treated
within the framework of t-models.

In this paper, we propose another projection formalism in order to reconcile the
two approaches. First, to ensure the consistency with the true statistics, we first write
the PDF as

(2.10) \rho (\bfita ) =
exp[ - W (\bfita )]\int 
exp[ - W (\bfita )]d\bfita 

.

W (\bfita ) is uniformly determined by the PDF up to a constant.
Based on our observation from the Gamma-distribution (2.4), we can define the

corresponding W (\bfita ) as

(2.11) W (\bfita ) =

nblock\sum 
i=1

w(ai),

where

(2.12) w(\xi ) = \eta (\xi + \mu ) - (\alpha  - 1) ln(\xi + \mu ).

An example of w(\cdot ) that corresponds to the shifted Gamma-distribution is depicted
in Figure 3.

−8 −6 −4 −2 0 2 4 6 8 10
−13

−12.5

−12

−11.5

−11

−10.5

−10

−9.5

ξ

w
(ξ

)

Fig. 3. The function w(\xi ) defined in (2.12), when \alpha = 10, \eta = 0.8, and \mu = \alpha /\eta .

We then define \bfitb (t) := \bfitpsi 
\bigl( 
\bfita (t)

\bigr) 
as the driving force of energy transport or heat

conduction,

(2.13) \bfitpsi (\bfita ):= - \delta W (\bfita )

\delta \bfita 
.

One can interpret W (\bfita ) as the local entropy and \bfitb as the inverse temperature. It also
relates the dynamics of \bfita with its intrinsic distribution, which will be elaborated on
in subsection 2.4.
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We now propose extending the original MZ procedure by defining the projection

(2.14) \scrP \bfitf := \langle \bfitf , \bfitb \intercal \rangle \langle \bfitb , \bfitb \intercal \rangle  - 1\bfitb ,

where \bfitb := \bfitb (0) for the sake of brevity and \langle \cdot , \cdot \rangle stands for the covariance matrix
at the canonical ensemble. When the energy is quadratic, or equivalently when \bfita (t)
follows a Gaussian distribution, the function \bfitpsi (\cdot ) is linear, and the projection will
be reduced to Mori's projection. Nevertheless, in general, these two projections are
different. We will refer to this projection as an entropy-based projection.

Combined with (2.7), the formalism yields a generalized Langevin equation (GLE)
written as

(2.15) \.\bfita (t) = \Omega \bfitb (t) +

\int t

0

\theta (t - s)\bfitb (s)ds+ \bfitF (t),

where \Omega is a constant matrix \Omega = \langle \scrL \bfita (0), \bfitb \intercal \rangle \langle \bfitb , \bfitb \intercal \rangle  - 1 and \theta is the memory kernel
\theta (t) = \langle \scrL \bfitF (t), \bfitb \intercal \rangle \langle \bfitb , \bfitb \intercal \rangle  - 1. The first term in the general MZ equation (2.7) can be
shown to be equal to zero due to symmetry if \bfita is chosen as the local energy [13]. The
GLE yields a memory term that is in a linear convolution form, while maintaining
the nonlinearity of the model. As we will see in the next section, we use the GLE to
directly describe the dynamics of the local energy, and it is quite straightforward to
impose the random noise to ensure the correct statistics of the solution.

Incorporating fluctuations in the constitutive relation has already been suggested
by Landau and Lifshitz [32]. Our viewpoint is along the same line as in the extended
thermodynamics formalism (cf. Chapter 5) [29]. Namely, fluctuations in the constitu-
tive relation, when supplemented to the energy equation, should lead to a stochastic
model, rather than a deterministic one, which results in fluctuations in physical ob-
servables. Of our particular interest is the statistics of the energy (2.10), whose PDF
is related to the entropy [22]: W (\bfita ) = ln \rho (\bfita ) + const. The entropy extracted from
the statistics can then be used to determine the deterministic part of the constitutive
relation. Our projection formalism, together with the GLE (2.15), helps to reveal
such subtle relations.

2.3. Local stochastic models via Markovian embedding. The GLE is non-
local, which looks quite different from the conventional and extended models. To draw
connections, we approximate the kernel function via its Laplace transform:

(2.16) \Theta (\lambda ) :=

\int +\infty 

0

\theta (t)e - t/\lambda dt.

We denote the statistics of the energy by

(2.17)
M(t) =\langle \bfita (t),\bfita (0)\intercal \rangle ,
N(t) =\langle \bfitb (t),\bfita (0)\intercal \rangle ,

whose Laplace transforms are denoted as \widetilde M(\lambda ) and \widetilde N(\lambda ),

(2.18) \widetilde M(\lambda ) =

\int +\infty 

0

M(t)e - t/\lambda dt, \widetilde N(\lambda ) =

\int +\infty 

0

N(t)e - t/\lambda dt.

Meanwhile, we assume that the short-time statistics can be extracted, e.g., from
equilibrium MD simulations,

(2.19) Mj = \langle \bfita (j)(0),\bfita (0)\intercal \rangle , Nj = \langle \bfitb (j)(0),\bfita (0)\intercal \rangle .
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The superscripts j indicate the time derivative, j \geq 0. For example, we have that
M0 is the covariance matrix of \bfita . With direct calculations, one can also verify that
M1 = 0, N0 =  - I.

With these statistics, the Laplace transforms \widetilde M(\lambda ) and \widetilde N(\lambda ) can be expanded
around 0+ [5],

(2.20)
\widetilde M(\lambda ) = \lambda M0 + \lambda 2M1 + \lambda 3M2 + \cdot \cdot \cdot ,\widetilde N(\lambda ) = \lambda N0 + \lambda 2N1 + \lambda 3N2 + \cdot \cdot \cdot .

For long-time statistics, we define

(2.21) N\infty = lim
\lambda \rightarrow +\infty 

\widetilde N(\lambda ) = lim
\varepsilon \rightarrow 0+

\int +\infty 

0

e - \varepsilon tN(t)dt.

One systematic procedure for reducing the GLE is the embedding technique [35,
43]. As motivated by Mori's continued-fraction approach, we approximate \Theta (\lambda ) by
rational functions,

(2.22) Rk,k =
\bigl[ 
I  - \lambda B1  - \cdot \cdot \cdot  - \lambda kBk

\bigr]  - 1\bigl[ 
A0 + \lambda A1 + \cdot \cdot \cdot + \lambda kAk

\bigr] 
,

with coefficient matrices Ai's and Bi's to be determined by appropriate interpolation
conditions.

Assuming that \bfita (0) is uncorrelated with the noise term, we multiply the equation
(2.15) by the transpose of \bfita (0) and take the Laplace transform. With \Theta approximated
by Rk,k, we obtain

(2.23)
1

\lambda 
\widetilde M(\lambda ) - M0 = Rk,k(\lambda ) \widetilde N(\lambda ).

The coefficients in the rational function can be determined by matching the coefficients
of \lambda 's powers in the expansion around \lambda = 0+ as follows:

(2.24)

M1 = A0N0,

\lambda (M2  - B1M1) = \lambda (A0N1 +A1N0),

\lambda 2(M3  - B1M2  - B2M1) = \lambda 2(A0N2 +A1N1 +A2N0),

\cdot \cdot \cdot .

In general, one can match the first 2k coefficients, yielding 2k linear equations for
the coefficients Ai's and Bi's. If \bfita is the local energy, it is not difficult to verify
that N2k+1 = M2k+1 = 0, which could further simplify the linear equations for Ai's
and Bi's, e.g., A0 = 0 [13]. The remaining condition is imposed at \lambda \rightarrow +\infty , which
incorporates long-time statistics, yielding

(2.25) M0 = B - 1
k AkN\infty .

Overall, the interpolation is of Hermite type, with two interpolation points at
\lambda = 0+ and \lambda = +\infty . As it turns out, without the long-time statistics, the resulting
model will be wave-type equations, with no dissipation.

Thanks to the rational approximation, the resulting reduced model can be con-
verted back to the time domain and expressed as a set of differential equations. The
memory term is embedded in an extended system which is Markovian (local).
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2.4. A hierarchy of generalized heat conduction models. We present the
models for k = 0, 1, and 2, to be referred to as the zeroth-, first-, and second-order
models, respectively. An important problem in the implementation of the GLE is the
approximation of the noise. Zhu and Venturi proposed using the Karhunen--Lo\`eve ex-
pansion and express the noise using the eigenmodes [71], while Chu and Li introduced
Gaussian multiplicative noise to ensure the correct equilibrium statistics of CG vari-
ables [13]. In our approach the random noise in the GLE (2.15) will be approximated
indirectly by introducing Gaussian additive noise in the extended system in such a
way that the statistics of the local energy is consistent. We will also show that with
additive Gaussian noise, matching two-point statistics is also straightforward. When
substituting back into (2.15), this procedure leads to an approximation of \bfitF (t) using
correlated Gaussian noise. The Gaussian nature of the noise from the MZ procedure
can be verified with certain linear approximations of the atomic interactions [41] but
otherwise remains an open issue. For example, approximations based on the more
general L\`evy processes would be an interesting direction. With this approximation,
the resulting stochastic equations can formally be interpreted as discretizations of
stochastic partial differential equations (SPDEs).

Zeroth-order model. For k = 0, \Theta (\lambda ) is approximated by a constant matrix
R0,0 = \Gamma . In order to accommodate long-term statistics, we pick an interpolating
condition in (2.23) as \lambda goes to infinity, which yields

(2.26)  - M0 = \Gamma N\infty ,

and

(2.27) \Theta \approx \Gamma =  - M0N
 - 1
\infty .

This corresponds to a delta function in the time domain, which is known as a
Markovian approximation [26]. Since M0 and N\infty are associated with the statistics
of energies in (2.19) and (2.21), \Gamma can be computed with the statistics of \bfita . Our
numerical results suggest that \Gamma is a tridiagonal matrix and proportional to a three-
point discrete Laplacian operator,

(2.28) \Theta \approx  - \kappa \nabla 2
h.

The subscript h is the width of each block. Here we use standard notation in finite-
difference methods,

(2.29) \nabla haj+1/2:=
aj+1  - aj

h
, \nabla h \cdot qj :=

qj+1/2  - qj - 1/2

h
.

The subscript j+1/2 in the first equation indicates that the finite difference is operated
on aj and aj+1, which are quantities defined at the center of the blocks. The result of
the gradient operator is a quantity defined at the interfaces of adjacent blocks, here
labeled by the index j + 1/2. Similarly, in the second equation, the divergence is
operated on quantities at the interfaces, here denoted by qj+1/2, e.g., the heat flux,
and the result is a quantity defined at the block centers. The Laplacian operator in
(2.28) is defined based on these two operators,

(2.30) \nabla 2
haj := \nabla h \cdot \nabla haj =

aj+1  - 2aj + aj - 1

h2
.
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Therefore, the GLE (2.15) is reduced to

(2.31) \.\bfita = \kappa \nabla 2
h

\delta W (\bfita )

\delta \bfita 
+ \sigma \bfitxi .

The noise in the GLE (2.15) is approximated by standard Gaussian white noise \bfitxi (t).
The operator \sigma is not a scalar. Rather, it acts as a discrete divergence, which comes
from the standard selection: if \sigma \sigma \intercal =  - 2\kappa \nabla 2

h, then the equilibrium PDF (2.10) is
the stationary PDF of our reduced model (2.31). Thus, \nabla h \cdot \xi (t) altogether can
be interpreted as a discretized space-time white noise, and (2.31) can be viewed as
a discrete analogue of a nonlinear heat equation driven by space-time white noise.
The continuum limit for stochastic heat equations has been analyzed in [24, 20, 55].
Another remarkable observation is that this model shows similarity to the stochastic
phase-field crystal model [4] as well as the general diffusion models [17, 19].

The local energy that we defined at the beginning satisfies the fundamental con-
servation law,

(2.32) \.aj +\nabla h \cdot qj = 0,

with qj+1/2 being the heat flux between the adjacent j and j + 1 blocks. Explicit
formulas of \bfitq can be derived for many MD models [10, 66].

Equations (2.31) and (2.32) suggest a stochastic constitutive relation for the heat
flux,

(2.33) qj+1/2 =  - \kappa \nabla hbj+1/2 +
\surd 
2\kappa \xi j+1/2, bj :=

\delta W (\bfita )

\delta aj
,

where \xi j+1/2(t) is scalar standard Gaussian white noise. This implies a nonlinear,
stochastic generalization of Fourier's law. It is also important in the constitutive
modeling of heat flux to ensure the second law of thermodynamics, in that the cor-
responding entropy production rate remains nonnegative [29, 33]. It can be directly
verified that the deterministic part of the nonlinear constitutive relation obeys this
property, since \nabla hbj+1/2 \cdot \nabla haj+1/2 \geq 0.

First-order model. When k = 1, the rational interpolating function becomes

(2.34) R1,1(\lambda ) =
\bigl[ 
I  - \lambda B1]

 - 1\lambda A1.

With this form of the approximation, the memory term can be greatly simplified.
From the definition in (2.19), one can compute that N0 =  - I and M2 is proportional
to a discrete Laplacian operator, i.e., M2 = \gamma 1\nabla 2

h. The matching conditions (2.24)
lead to an explicit formula for the coefficient matrix A1,

(2.35) A1 =  - M2 =  - \gamma 1\nabla 2
h.

Now, by incorporating the interpolation condition (2.25), we find that

(2.36) B1 =  - \gamma 1/\kappa I.

To this end we define an auxiliary variable \bfitz and rewrite the GLE (2.15) as

(2.37)

\left\{   
\.\bfita =\bfitz ,

\.\bfitz =\gamma 1\nabla 2
h

\delta W (\bfita )

\delta \bfita 
 - \gamma 1

\kappa 
\bfitz + \sigma \bfitxi ,
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after plugging the parameters in. With the added noise, the variable \bfitz now embodies
a combined approximation of both the memory and the random noise terms. To see
this, one can apply the variation-of-constant formula and get

(2.38)

\bfitz (t) =

\int t

0

exp

\biggl[ 
 - \tau 

\gamma 1
\kappa 

\biggr] 
\gamma 1\nabla 2

h

\delta W (\bfita )

\delta \bfita 
(t - \tau )d\tau 

+ exp

\biggl[ 
 - t

\gamma 1
\kappa 

\biggr] 
\bfitz (0) +

\int t

0

exp

\biggl[ 
 - (t - \tau )

\gamma 1
\kappa 

\biggr] 
\sigma \bfitd W\tau .

The first term clearly corresponds to an approximation of the memory term, while the
two remaining terms serve as an approximation of the random noise. The stationarity
of this approximate noise can be verified using It\^o isometry. See [43] for examples of
such calculations.

By solving the Lyapunov equation [54], \sigma is given by the formula

(2.39) \sigma \sigma \intercal =  - 2\gamma 2
1

\kappa 
\nabla 2

h.

It is possible to select \sigma in other forms to ensure the stability, but by choosing \sigma in
this way, the first-order model (2.37) has the stationary PDF,

(2.40) \rho (\bfita , \bfitz ) \propto exp - 
\biggl[ 
W (\bfita ) - 1

2\gamma 1
\bfitz \intercal \nabla  - 2

h \bfitz 

\biggr] 
,

which can be verified by the stationary Fokker--Planck equation. Clearly the marginal
density associated with \bfita is identical to the proposed PDF in (2.4). Again, together
with the conservation law (2.32), this stochastic model (2.40) implies a constitutive
relation for the heat flux,

(2.41) \tau 1 \.qj+1/2 + qj+1/2 =  - \kappa \nabla hbj+1/2 +
\surd 
2\kappa \xi j+1/2, bj :=

\delta W (\bfita )

\delta aj
.

This is an interesting generalization of the CV model [6]. Not only do we identify the
origin of the relaxation parameter, \tau 1 = \kappa /\gamma 1, but we also incorporate a nonlinear
driving force and a random noise. The model can also be written as

(2.42) \tau 1\"aj + \.aj = \kappa \nabla 2
h

\biggl[ 
\delta W (\bfita )

\delta \bfita 

\biggr] 
j

+ \tau 1\sigma \xi j ,

where \sigma behaves like a divergence operator \nabla h\cdot in light of (2.39). This equation
corresponds to a discretization of a damped nonlinear wave equation with additive
space-time white noise. However, unlike the zeroth-order (2.31), such a continuous
limit is still an open issue even when the equations are linear. To the best of our
knowledge, the existing finite element analysis only considered the case with white
noise in time [16, 24, 67]. Therefore, the connection to an SPDE is only formal: By
multiplying the SPDE by piecewise linear shape functions using the interpretation by
Walsh [65], we move the divergence operator to the shape functions and obtain the
semidiscrete form (2.42).

Second-order model. The procedure used in the first-order model can be extended
to a higher order. When k = 2, we approximate \theta (t) with R2,2(\lambda ) in Laplace space
based on (2.23). The second-order model can be expressed in a more compact form
with an added noise term,

(2.43) \.\bfitz = A\bfitb +B\bfitz + \sigma \bfitxi ,
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where A and B are block matrices,

(2.44) A =

\biggl[ 
A1

A2

\biggr] 
and B =

\biggl[ 
B1 I
B2 0

\biggr] 
.

To determine the covariance \sigma , we propose an equilibrium density of (\bfita , \bfitz ) in a
separable form,

(2.45) \rho (\bfita , \bfitz ) \propto exp - 
\biggl[ 
W (\bfita ) +

1

2
\bfitz \intercal Q - 1\bfitz 

\biggr] 
.

The marginal PDF of \bfita is consistent with (2.10) by choosing Q according to the
Lyapunov equation

(2.46) \sigma \sigma \intercal =  - (BQ+QB\intercal ).

Such a procedure is standard [54], and it is based on solving the underlying Fokker--
Planck equation.

When imposing the interpolation conditions to determine the parameters, this
second-order approximation involves higher order statistical moments, M4 and N2.
From numerical experiments, we observed that

(2.47) M4 \approx  - \gamma 2\nabla 2
h, N2 \approx  - \kappa 1\nabla 2

h,

but \gamma 2 \gg \gamma 1\kappa 1. After direct substitutions, we obtain an explicit form for the reduced
model (2.43),

(2.48)

\left\{             

\.\bfita = \bfitz 1,

\.\bfitz 1 = \gamma 1\nabla 2
h

\delta W (\bfita )

\delta \bfita 
 - \gamma 2\kappa 

\gamma 2
1

\bfitz 1 + \bfitz 2,

\.\bfitz 2 =
\gamma 2\kappa 

\gamma 1
\nabla 2

h

\delta W (\bfita )

\delta \bfita 
 - \gamma 2

\gamma 1
\bfitz 1 + \sigma \bfitxi ,

where \sigma \sigma \intercal =  - 2\gamma 2
2\kappa 

\gamma 2
1
\nabla 2

h. If we introduce a second relaxation parameter \tau 2 = \gamma 1/\gamma 2,

the corresponding constitutive relation for the heat flux \bfitq reads as

(2.49) \tau 2\"qj+1/2 + \tau 1 \.qj+1/2 + qj+1/2 = \kappa \nabla hbj+1/2 +
\tau 2\kappa 

\tau 1
\nabla h

\.bj+1/2 +
\surd 
2\kappa \xi j+1/2.

Here bj =  - \delta W (\bfita )
\delta aj

is defined according to (2.13). This is again a generalization of the

heat conduction model known as the Tzou model [62], with parameters linked to the
statistics of the local energies.

The procedure to embed the GLE (2.15) can be easily extended to higher orders,
and it has been a common practice in reduced-order modeling. The details can be
found in numerous publications [2, 35, 43]. For example, we have also derived a third-
order model, and it can be regarded as a higher order relaxation model for the heat
flux, but we omit the details here.

3. Numerical results. Our derivations yield stochastic constitutive relations up
to any order. As with many data driven methods, the current approach works with
the observation of the CG variables. The observations either can be obtained from
experimental measurements or can be generated from direct numerical simulations.
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However, often measured in nano-scale heat conduction is the local temperature,
rather than the local energy. Therefore, in our numerical tests, we choose to run
full molecular dynamics simulations to extract the time series of the local energy
from the full trajectories. With partial observations of the local energies, we compute
the projection direction \bfitb (\bfita ), which is related to the equilibrium distribution of CG
variables \bfita , and determine the reduced models up to any order. The coefficients in
these reduced models are identified by simple matrix algebra calculations of statistics
of the CG variables without revisiting the underlying model.

Here, as validation, we solve the stochastic models (2.31), (2.37), (2.48), and
a third-order model, and compare the numerical solutions with the true statistics
obtained from full MD simulations.

For the reduced models, we will write all the reduced stochastic models in the
following unified form, as suggested in (2.43):

(3.1)
\.\bfita =E1\bfitz ,

\.\bfitz =A\bfitb +B\bfitz + \sigma \bfitxi .

Here, E1 = (I, 0, . . . , 0) singles out \bfitz 1 from the auxiliary variables \bfitz . Then, the
integrator is constructed by splitting the equations into two systems,

(3.2)
(I) \.\bfita = E1\bfitz , \.\bfitz = 0,

(II) \.\bfita = 0, \.\bfitz = A\bfitb +B\bfitz + \sigma \bfitxi ,

both of which are linear by themselves, and the solutions can be written out explicitly.
A second-order weak method can be constructed by solving the first equation for half
of the step, the second equation for one step, and then the first equation for half of
the step.

More specifically, within one time from tn to tn+1, the algorithm consists of the
following steps:

(3.3)

\bfita n+1/2 \leftarrow \bfita n + E1\bfitz n\Delta t/2,

\bfitz n+1 \leftarrow C0\bfitz n + C1A\bfitb n+1/2 +\Delta Wn,

\bfita n+1 \leftarrow \bfita n+1/2 + E1\bfitz n+1\Delta t.

The coefficients can be found by solving the second equation in (3.2) using a variation-
of-constants formula similar to (2.38):

(3.4)

\bfitz (tn+1) = exp
\bigl[ 
\Delta tB

\bigr] 
\bfitz (tn) +

\int \Delta t

0

exp
\bigl[ 
(\Delta t - \tau )B

\bigr] 
A\bfitb (\bfita )d\tau 

+

\int \Delta t

0

exp
\bigl[ 
(\Delta t - \tau )B

\bigr] 
\sigma dW\tau .

In the integral, \bfita actually remains a constant. Therefore, the integral can be explicitly
computed. The last term is Gaussian process with zero mean, and the variance can
be computed using the It\^o isometry. With direct calculations, we find that

(3.5) C0 = exp
\bigl[ 
\Delta tB

\bigr] 
, C1 = B - 1

\bigl( 
exp

\bigl[ 
\Delta tB

\bigr] 
 - I

\bigr) 
,

and \Delta Wn is a normal random variable with mean zero and variance \Sigma given by

(3.6) \Sigma = Q - exp
\bigl[ 
\Delta tB

\bigr] 
Q exp

\bigl[ 
\Delta tBT

\bigr] 
.
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As far as the weak convergence is concerned, this can be understood in terms of the
one-step transition density, which is unknown in general for the underlying Fokker--
Planck equation. The operator-splitting scheme approximates the transition density
using two stochastic differential equations (SDEs), for which the transition kernels are
computable. Since this is by now a rather standard method in molecular simulations,
we will refer the reader to the monographs for the explicit formulas [37, 36].

As a simple validation of the choices of the coefficients of the noise, we compared
the PDF obtained from the models (2.31) and (2.37) to that from the full MD simu-
lation. As shown in Figure 4, the reduced models reproduce the correct non-Gaussian
statistics.
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Fig. 4. PDFs of a5 in 1D FPU chain example. Histograms of full MD simulations (True PDF)
and histograms of solutions to reduced models (Zeroth, First, Second, Third orders) are compared.
The time step is 0.001a.u. for reduced model simulations, and the Milstein method is used as the
stochastic integration scheme.

We compute the two-point time correlations of the energy to examine dynamical
properties,

(3.7) Ci(t) = \langle ai(t), ai(0)\rangle .

As shown in Figure 5, the two-point statistics of the energy is consistent for both
the 1D chain model (left) and the nanotube system (right). For both systems, the
zeroth-order approximation (2.31), which is a nonlinear extension of Fourier's law,
exhibits large error. We observed improved accuracy as we increase the order of the
approximations. Interestingly, the 1D model seems to be a bit harder to approximate:
We had to extend the method to the third order to obtain a good approximation of
the time correlation. On the other hand, for the nanotube system, the second-order
model (2.37) is able to offer quite satisfactory results within our simulation window.
The explanation for this is related to the central limit theorem. With the same block
size, there are more atoms in the nanotube system. The statistics of the local energy
is less skewed and tends to be more Gaussian. So a low order model is already able
to capture statistics.

4. Summary and discussions. In summary, we derived generalized heat con-
duction models from the underlying MD model. The stochastic constitutive equations
can be nonlinear, and the parameters were linked directly to the statistics of the local
energy, making it possible to determine system-specific model parameters using statis-
tical properties. The nonlinearity can be attributed to the non-Gaussian statistics of
the local energies. With approximations of the memory integral, we obtained various
models for the heat flux, which can be viewed as nonlinear and stochastic extensions
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Fig. 5. Two-point statistics of a1 from the full MD simulations (True correlation) and reduced
models. Left: 1D FPU chain model. Right: Single-wall nanotube. As the model order increases, the
plots demonstrate convergence to the true time correlation.

of the Cattaneo--Vernotte and Guyer--Krumhansl relaxation models. The models were
validated by examining the one- and two-point statistics.

Our parameter identification procedure uses statistics, which is made possible
by the stochastic nature of the models. This is quite different from the parameter
identification methods based on deterministic models [56].

Our effort to develop stochastic models was motivated by the classical text of Lan-
dau, Lifshitz, and Pitaevskii [32], the recent stochastic parameter estimation method
[35], and many experimental observations of thermal fluctuations in diffusion pro-
cesses. This approach can be extended to higher dimensions, e.g., graphene sheet, as
well as other diffusion problems, e.g., ion diffusions. These works are underway.

REFERENCES

[1] F. Alvarez and D. Jou, Memory and nonlocal effects in heat transport: From diffusive to
ballistic regimes, Appl. Phys. Lett., 90 (2007), 083109.

[2] Z. Bai, P. M. Dewilde, and R. W. Freund, Reduced-order modeling, in Handbook of Nu-
merical Analysis, Vol. XIII, Hanb. Numer. Anal. 13, North-Holland, Amsterdam, 2005,
pp. 825--891.

[3] A. A. Balandin, Thermal properties of graphene and nanostructured carbon materials, Nat.
Mater., 10 (2011), 569.

[4] J. Berry, K. Elder, and M. Grant, Melting at dislocations and grain boundaries: A phase
field crystal study, Phys. Rev. B, 77 (2008), 224114.

[5] N. Bleistein and R. A. Handelsman, Asymptotic Expansions of Integrals, Dover, New York,
1986.

[6] C. Cattaneo, A form of heat-conduction equations which eliminates the paradox of instanta-
neous propagation, Comptes Rendus, 247 (1958), pp. 431--433.

[7] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl, Breakdown of Fourier's
Law in nanotube thermal conductors, Phys. Rev. Lett., 101 (2008), 075903.

[8] J. Chen, G. Zhang, and B. Li, Molecular dynamics simulations of heat conduction in nanos-
tructures: Effect of heat bath, J. Phys. Soc. Japan, 79 (2010), 074604.

[9] M. Chen, X. Li, and C. Liu, Computation of the memory functions in the generalized Langevin
models for collective dynamics of macromolecules, J. Chem. Phys., 141 (2014), 064112.

[10] Y. Chen, Local stress and heat flux in atomistic systems involving three-body forces, J. Chem.
Phys., 124 (2006), 054113.

[11] A. J. Chorin, O. H. Hald, and R. Kupferman, Optimal prediction and the Mori-Zwanzig
representation of irreversible processes, Proc. Natl. Acad. Sci. USA, 97 (2000), pp. 2968--
2973.

[12] A. J. Chorin and P. Stinis, Problem reduction, renormalization, and memory, Commun.
Appl. Math. Comput. Sci., 1 (2006), pp. 1--27.

[13] W. Chu and X. Li, The Mori-Zwanzig formalism for the derivation of a fluctuating heat
conduction model from molecular dynamics, Commun. Math. Sci., 17 (2019), pp. 539--563.

D
ow

nl
oa

de
d 

04
/2

5/
21

 to
 7

1.
58

.1
86

.5
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

548 WEIQI CHU AND XIANTAO LI

[14] G. Ciccotti and J.-P. Ryckaert, On the derivation of the generalized Langevin equation for
interacting Brownian particles, J. Stat. Phys., 26 (1981), pp. 73--82.

[15] E. Darve, J. Solomon, and A. Kia, Computing generalized Langevin equations and general-
ized Fokker-Planck equations, Proc. Natl. Acad. Sci. USA, 106 (2009), pp. 10884--10889.

[16] A. Davie and J. Gaines, Convergence of numerical schemes for the solution of parabolic
stochastic partial differential equations, Math. Comp., 70 (2001), pp. 121--134.

[17] J. De La Torre, P. Espa\~nol, and A. Donev, Finite element discretization of non-linear
diffusion equations with thermal fluctuations, J. Chem. Phys., 142 (2015), 094115.

[18] A. Dhar, Heat transport in low-dimensional systems, Adv. Phys., 57 (2008), pp. 457--537.
[19] A. Donev, E. Vanden-Eijnden, A. Garcia, and J. Bell, On the accuracy of finite-volume

schemes for fluctuating hydrodynamics, Commun. Appl. Math. Comput. Sci., 5 (2010),
pp. 149--197.

[20] Q. Du and T. Zhang, Numerical approximation of some linear stochastic partial differential
equations driven by special additive noises, SIAM J. Numer. Anal., 40 (2002), pp. 1421--
1445, https://doi.org/10.1137/S0036142901387956.

[21] P. Espa\~nol, Statistical mechanics of coarse-graining, in Novel Methods in Soft Matter Simu-
lations, Springer, New York, 2004, pp. 69--115.

[22] G. Faure, R. Delgado-Buscalioni, and P. Espa\~nol, The entropy of a complex molecule, J.
Chem. Phys., 146 (2017), 224106.

[23] R. A. Guyer and J. Krumhansl, Solution of the linearized phonon Boltzmann equation, Phys.
Rev., 148 (1966), 766.

[24] I. Gy\"ongy, Lattice approximations for stochastic quasi-linear parabolic partial differential
equations driven by space-time white noise II, Potential Analysis, 11 (1999), pp. 1--37.

[25] C. Hij\'on, P. Espa\~nol, E. Vanden-Eijnden, and R. Delgado-Buscalioni, Mori--Zwanzig
formalism as a practical computational tool, Faraday Discuss., 144 (2010), pp. 301--322.

[26] C. Hij\'on, M. Serrano, and P. Espa\~nol, Markovian approximation in a coarse-grained de-
scription of atomic systems, J. Chem. Phys., 125 (2006), 204101.

[27] J. Hu, X. Ruan, and Y. P. Chen, Thermal conductivity and thermal rectification in graphene
nanoribbons: A molecular dynamics study, Nano Lett., 9 (2009), pp. 2730--2735.

[28] S. Izvekov and G. A. Voth, Modeling real dynamics in the coarse-grained representation of
condensed phase systems, J. Chem. Phys., 125 (2006), pp. 151101--151104.

[29] D. Jou, J. Casas-V\'azquez, and G. Lebon, Extended irreversible thermodynamics, in Ex-
tended Irreversible Thermodynamics, Springer, New York, 1996, pp. 41--74.

[30] D. Kauzlari\'c, J. T. Meier, P. Espa\~nol, A. Greiner, and S. Succi, Markovian equations
of motion for non-Markovian coarse-graining and properties for graphene blobs, New J.
Phys., 15 (2013), 125015.

[31] A. J. Ladd, B. Moran, and W. G. Hoover, Lattice thermal conductivity: A comparison of
molecular dynamics and anharmonic lattice dynamics, Phys. Rev. B, 34 (1986), 5058.

[32] L. D. Landau, E. M. Lifshitz, and L. Pitaevskii, Statistical Physics, Part I, Elsevier, Ams-
terdam, 1980.

[33] G. Lebon, Heat conduction at micro and nanoscales: A review through the prism of extended
irreversible thermodynamics, J. Non-Equilibrium Thermodynamics, 39 (2014), pp. 35--59.

[34] J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, and H. Cheong, Thermal conductivity of suspended
pristine graphene measured by Raman spectroscopy, Phys. Rev. B, 83 (2011), 081419.

[35] H. Lei, N. A. Baker, and X. Li, Data-driven parameterization of the generalized Langevin
equation, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 14183--14188.

[36] B. Leimkuhler and C. Matthews, Molecular Dynamics, Springer, New York, 2002.
[37] B. Leimkuhler and C. Matthews, Molecular Dynamics, Interdiscip. Appl. Math. 39,

Springer, Cham, 2015.
[38] S. Lepri, R. Livi, and A. Politi, Heat conduction in chains of nonlinear oscillators, Phys.

Rev. Lett., 78 (1997), 1896.
[39] S. Lepri, R. Livi, and A. Politi, On the anomalous thermal conductivity of one-dimensional

lattices, Europhys. Lett., 43 (1998), 271.
[40] S. Lepri, R. Livi, and A. Politi, Thermal conduction in classical low-dimensional lattices,

Phys. Rep., 377 (2003), pp. 1--80.
[41] X. Li, A coarse-grained molecular dynamics model for crystalline solids, Internat. J. Numer.

Methods Engrg., 83 (2010), pp. 986--997.
[42] Z. Li, X. Bian, X. Li, and G. E. Karniadakis, Incorporation of memory effects in coarse-

grained modeling via the Mori-Zwanzig formalism, J. Chem. Phys., 143 (2015), 243128.
[43] L. Ma, X. Li, and C. Liu, The derivation and approximation of coarse-grained dynamics from

Langevin dynamics, J. Chem. Phys., 145 (2016), 204117.
[44] S. Maruyama, A molecular dynamics simulation of heat conduction in finite length SWNTs,

D
ow

nl
oa

de
d 

04
/2

5/
21

 to
 7

1.
58

.1
86

.5
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/S0036142901387956


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NONLINEAR MODELS FOR NANO-SCALE HEAT CONDUCTION 549

Phys. B, 323 (2002), pp. 193--195.
[45] A. J. H. McGaughey and M. Kaviany, Thermal conductivity decomposition and analysis

using molecular dynamics simulations. Part I. Lennard-Jones argon, Int. J. Heat Mass
Transfer, 47 (2003), pp. 1783--1798.

[46] N. Mingo and D. Broido, Carbon nanotube ballistic thermal conductance and its limits, Phys.
Rev. Lett., 95 (2005), 096105.

[47] H. Mori, A continued-fraction representation of the time-correlation functions, Progr. Theoret.
Phys., 34 (1965), pp. 399--416.

[48] H. Mori, Transport, collective motion, and Brownian motion, Progr. Theoret. Phys., 33 (1965),
pp. 423--450.

[49] S. Nos\'e, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys.,
52 (1984), pp. 255--268.

[50] E. J. Parish and K. Duraisamy, Non-Markovian closure models for large eddy simulations
using the Mori-Zwanzig formalism, Phys. Rev. Fluids, 2 (2017), 014604.

[51] H. Pascal, A nonlinear model of heat conduction, J. Phys. A Math. Gen., 25 (1992), 939.
[52] C. Pr\'ev\^ot and M. R\"ockner, A Concise Course on Stochastic Partial Differential Equations,

Lecture Notes in Math. 1905, Springer, Berlin, 2007.
[53] J. Price and P. Stinis, Renormalized reduced order models with memory for long time

prediction, Multiscale. Model. Simul., 17 (2019), pp. 68--91, https://doi.org/10.1137/
17M1151389.

[54] H. Risken and H. Haken, The Fokker-Planck Equation: Methods of Solution and Applications,
2nd ed., Springer, New York, 1989.

[55] K.-U. Schauml\"offel, White noise in space and time and the cylindrical Wiener process,
Stochastic Anal. Appl., 6 (1988), pp. 81--89.

[56] A. Singh and E. B. Tadmor, Thermal parameter identification for non-Fourier heat transfer
from molecular dynamics, J. Comput. Phys., 299 (2015), pp. 667--686.

[57] H. Spohn, Nonlinear fluctuating hydrodynamics for anharmonic chains, J. Stat. Phys., 154
(2014), pp. 1191--1227.

[58] M. Stepanova, Dynamics of essential collective motions in proteins: Theory, Phys. Rev. E,
76 (2007), 051918.

[59] J. Tersoff, New empirical model for the structural properties of silicon, Phys. Rev. Lett., 56
(1986), pp. 632--635.

[60] M. Toda, R. Kubo, and N. Hashitsume, Statistical Physics II. Nonquilibrium Statistical
Mechanics, Springer, New York, 1983.

[61] M. E. Tuckerman, B. J. Berne, and G. J. Martyna, Reversible multiple time scale molecular
dynamics, J. Chem. Phys., 97 (1990), pp. 1990--2001.

[62] D. Tzou, Nonlocal behavior in phonon transport, Int. J. Heat Mass Transfer, 15 (2011), p. 475--
481.

[63] P. Vernotte, Paradoxes in the continuous theory of the heat equation, C.R. Acad. Sci., 246
(1958), pp. 154--3.

[64] S. G. Volz and G. Chen, Molecular dynamics simulation of thermal conductivity of silicon
nanowires, Appl. Phys. Lett., 75 (1999), pp. 2056--2058.

[65] J. B. Walsh, An Introduction to Stochastic Partial Differential Equations, Springer, New York,
1986.

[66] X. Wu and X. Li, On consistent definitions of momentum and energy fluxes for molecular
dynamics models with multi-body interatomic potentials, Model. Simul. Mater. Sci. Eng.,
23 (2015), 015003.

[67] Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differen-
tial equation driven by an additive noise, BIT, 44 (2004), pp. 829--847.

[68] H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990),
pp. 262--268.

[69] Y. Zhu, J. M. Dominy, and D. Venturi, On the estimation of the Mori-Zwanzig memory
integral, J. Math. Phys., 59 (2018), 103501.

[70] Y. Zhu and D. Venturi, Faber approximation of the Mori-Zwanzig equation, J. Comput.
Phys., 372 (2018), pp. 694--718.

[71] Y. Zhu and D. Venturi, Generalized Langevin Equations for Systems with Local Interactions,
preprint, https://arxiv.org/abs/1906.04918, 2019.

[72] R. Zwanzig, Nonlinear generalized Langevin equations, J. Stat. Phys., 9 (1973), pp. 215--220.

D
ow

nl
oa

de
d 

04
/2

5/
21

 to
 7

1.
58

.1
86

.5
8.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/p

ag
e/

te
rm

s

https://doi.org/10.1137/17M1151389
https://doi.org/10.1137/17M1151389
https://arxiv.org/abs/1906.04918

	Introduction
	The derivation of heat conduction models
	Numerical observations
	A new Mori–Zwanzig projection formalism
	Local stochastic models via Markovian embedding
	A hierarchy of generalized heat conduction models

	Numerical results
	Summary and discussions
	References

