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ABSTRACT
Long-range interactions play a central role in electron transport. At the same time, they present a challenge for direct computer simulations
since sufficiently large portions of the bath have to be included in the computation to accurately compute the Coulomb potential. This article
presents a reduced-order approach by deriving an open quantum model for the reduced density matrix. To treat the transient dynamics, the
problem is placed in a reduced-order framework. The dynamics described by the Liouville–von Neumann equation is projected to subspaces
using a Petrov–Galerkin projection. In order to recover the global electron density profile as a vehicle to compute the Coulomb potential,
we propose a domain decomposition approach, where the computational domain also includes segments of the bath that are selected using
logarithmic grids. This approach leads to a multi-component self-energy that enters the effective Hamiltonian. We demonstrate the accuracy
of the reduced model using a molecular junction built from lithium chains.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0059355

I. INTRODUCTION

The availability of high-performance computing (HPC) has
prompted substantial progress in electron structure calcula-
tions using sophisticated models. Tremendous efforts have been
made to implement the time-dependent density-functional theory
(TDDFT)1,2 in the context of electron transport.3–9 Numerous soft-
ware packages have been developed to facilitate such effort.10,11 The
main computational challenge in such an approach is still the com-
putational cost. A typical situation is a molecular junction, con-
nected to two leads that can be regarded as a quantum bath.12 Ideally,
one should consider a sufficiently large quantum bath to correctly
model the effect of the semi-infinite leads. This necessarily intro-
duces a large number of electronic degrees of freedom to the system.
In terms of a TDDFT model, this induces many more wave func-
tions and, more importantly, their representations at many more
grid points into the computation. Specifically, the degrees of free-
dom have roughly an O(N2) scaling, where N denotes the number
of electrons. In a crude tight-binding approximation, a relatively

larger number of electrons can be considered, but the computational
challenge still remains.

Numerous attempts have been made to construct models so
that only the electronic degrees of freedom near the junction are
involved in the computation. These efforts range from the theoreti-
cal approach to derive open quantum system models13 to absorbing
boundary conditions (ABCs),14–16 the reduced density-matrix
(RDM) approach by Subotnik et al.,17 the driven Liouville–von
Neumann (DLvN) approach,18–21 and the reduced-order
approach.22 In principle, all these methodologies lead to a
reduced quantum model with much fewer variables.

This paper focuses on such a reduction scheme for systems with
Coulomb interactions. Coulomb interactions play a central role in
electron transport and are responsible for the important observa-
tion of Coulomb blockade.23,24 However, as suggested in Ref. 25 in
the context of ABCs, it is still an open challenge to derive a bound-
ary condition that takes into account such long-range effects. The
ABCs can only be applied with a leap of faith. The development
of the DLvN approach18,19 and the reduced-order method22 also
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neglect this effect. However, in a more careful approximation of
TDDFT, e.g., the real-space approximation26,27 or the self-consistent
tight-binding approximation,11 one needs to take into account the
Coulomb interactions, which have to be computed at each time step,
and it leads to considerable computational overhead.

In order to compute the Coulomb potential at the junction, we
replace a direct truncation of the bath regions with a sparse repre-
sentation, where the grid spacings are gradually increased. The use of
non-uniform grids that concentrate more at the regions of interest is
not foreign in quantum mechanics: It has been a popular technique
for computing the radial component of a Schrödinger equation, e.g.,
the logarithmic grids in the computation of pseudo-potentials.28

Overall, our selected representations form a “multi-connected” sub-
domain. Following the previously developed reduced-order tech-
nique,22 we project the Liouville–von Neumann equation into
appropriate subspaces. As a result, the effective Hamiltonian con-
sists of a self-energy that couples the sub-domains. The RDM,
with a function interpolation, provides the global electron density
profile, which can subsequently be used to estimate the Coulomb
potential at the junction. The treatment using the domain decom-
position method is reminiscent of the partition density-functional
theory.29 However, the current approach targets the dynamics at
the center region, rather than the electron density in the entire
domain.

The fact that the wave functions from density-functional the-
ory are often extended creates a challenge for the model reduction
effort based on the wave functions. Although such ideas have been
discussed2,4 to reduce the Kohn–Sham orbitals to a subdomain, it is
not clear how to derive a reduced model that involves fewer orbitals.
Therefore, we will base our reduction approach on the Liouville–von
Neumann equation for the density matrix. A convenient and robust
approach to derive a reduced model, as suggested by reduced-order
techniques,30–32 is by the Petrov–Galerkin projection, which reduces
the method to finding appropriate subspaces. The reduced model for
the RDM will be referred to as the reduced Liouville–von Neumann
equation (RLvN). An important observation is that the Lie group
structure is no longer present due to the fact that the effective Hamil-
tonian is non-Hermitian. Rather, the RLvN should be viewed as an
open quantum system,33 where the influence of the bath is implic-
itly incorporated. An important difference from those models, e.g.,
the Lindblad equation,34 is that the present model does not have the
trace-preserving property due to the electron transport nature.

In Sec. II, we will outline the domain decomposition and model
reduction methods to derive the RLvN. Details regarding the imple-
mentations of the reduced model are presented in Secs. II E–II G.
Results from several numerical experiments are demonstrated in
Sec. III.

II. METHODS AND ALGORITHMS
A. The Liouville–von Neumann equation
and its perturbation

We formulate our method and algorithms based on the LvN
equation

i@tρ = [H, ρ]. (1)
Here, ρ(x, x′, t) represents the density matrix of the entire sys-
tem. Following TDDFT models,2,35 the Hamiltonian operator H will
depend on the electron density n(x, t), which can be determined

from the density matrix ρ. These properties are expressed as follows:

H(t) = H[n(t)], n(x, t) = ρ(x, x, t). (2)

Although our model works with the density matrix, our pri-
mary interest is in the electric current induced by a time-dependent
external potential. The potential bias is denoted here by δU(t), and
it is switched on at t = 0+. It triggers the time evolution of elec-
tron density n(r, t), which has an implicit influence on the Hamil-
tonian H of the entire system. Motivated by the theory of linear
response,36–38 we first incorporate the external potential and write
the total Hamiltonian as follows:

Htot(t) = H[n(t)] + δU(t). (3)

The response of the system due to the external potential in the linear
response regime can be represented in terms of the perturbed density
matrix,

δρ(t) ∶= ρ(t) − ρ0, δρ(0) = 0. (4)

Here, ρ0 is the ground state density matrix of the system in the
absence of the biased potential. A variety of methods are available for
computing the ground state.29,39 The corresponding electron density
is denoted here by n0(r), with its perturbation δn(r, t) given by

δn = diag (δρ). (5)

With the ground state density, we define an unperturbed
Hamiltonian as

H0 = −1
2
∇2 +VH[n0] +VXC[n0] +Vion, (6)

where VXC is the exchange-correlation potential. VH is the Hartree
potential, and it is expressed as follows:

VH[n](x) = �Rv(x − x′)n(x′)dx′. (7)

As a result, the total Hamiltonian Htot(t) can be split up as
follows:

Htot(t) = H0 + δH(t), (8)

where
δH(t) = H[n0 + δn(t)] −H0 + δU(t). (9)

Traditionally, the perturbation of the Hamiltonian operator
is treated under the linear-response framework.40 Also known as
Sternheimer’s formalism, it linearizes the Hamiltonian as follows:

H[n0 + δn] −H0 = Kδn +O(δn2). (10)

Here, the integral operator K is given in terms of the functional
derivative with respect to the density,

Kδn ∶= � δV
δn(x′) [n0(x)]δn(x′)dx′. (11)

Although Sternheimer’s approach is important in determin-
ing electro-magnetic properties, it leads to a dense matrix due to
the Coulomb term. Therefore, we will keep the nonlinear form
(9) instead. As we will demonstrate, it does not complicate the

J. Chem. Phys. 155, 114105 (2021); doi: 10.1063/5.0059355 155, 114105-2

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

numerical implementation. We will break δH in (9) into three
contributions,

δH = δU +VH[δn] + (VXC[n0 + δn] −VXC[n0]). (12)

Note that the Hartree term is linear with respect to the charge
density,

VH[δn] = VH[n] −VH[n0]. (13)
Meanwhile, the exchange-correlation potential is nonlinear. This
nonlinearity will be kept in our formulation.

After substituting (4) into (1) and dropping the high order
term, [δH, δρ], the perturbed density matrix satisfies a response
equation, given by

iδρt(t) = [H0, δρ(t)] +Θ(t). (14)

The perturbation approach also leads to a non-homogeneous term,

Θ(t) = [δH(t), ρ0], (15)

which incorporates the influence of the external potential as well as
the density fluctuation δn.

B. Reduced-order modeling
To better elaborate the method, we first establish some nota-

tions. To begin with, we use � to denote the entire region. As a
concrete example, we first discretize the Hamiltonian operator using
a real-space method and the domain � consists of grid points. We
denote the dimension by N = dim(�), and it indicates the dimen-
sion of the full system. In the case when a tight-binding method,
e.g., Ref. 41, is used, the domain � consists of the atoms. The setup
of the molecular junctions naturally divides the domain � into a cen-
ter region, denoted here by �C, and a bath region, denoted by �B;
� = �B ∪�C and �B ∩�C = Á.

As alluded to in the Introduction, the main obstacle in the
model reduction is that the Coulomb potential is non-local, and
completely neglecting the electron density in the bath region will
lead to inaccurate computation of the Hartree potential. To address

this issue, we extend the “center” region �C by including points in
the bath that are distributed according to

xα = xR + abα, α ∈ N. (16)

Here, xR refers to the right end point of �C. b > 1 indicates how the
grid spacing is increased, and a > 0 is a prefactor. Similarly, we can
select such grid points in the bath on the left, e.g., xα = xL − ab−α,
α ∈ N. Such grid distribution is known as the logarithmic grids in
the solution of the Schrödinger equation in polar or spherical coor-
dinates. Figure 1 demonstrates the distribution of such grid points,
where the system consists of 300 lithium atoms. It also shows a sce-
nario of how the grid points can be selected. This approach assumes
that the system is one-dimensional, but it can also be extended to
systems that are quasi-one-dimensional, e.g., a nanowire.

By including these additional grid points, we introduce the
computational domain as the union of the selected grid points with
the center region �C,

�I ∶= �C ∪ {xα, α ∈ A}. (17)

The symbol A indicates the labels of those grid points in the bath
that have been selected according to (16). The dimension of the
new domain �I will be denoted by m. Of our particular interest is
the case when m� N. The new “bath” region corresponds to the
complement of �I,

�II ∶= ���I. (18)

C. Galerkin projection for the perturbed dynamics
Motivated by its remarkable success of reduced-order modeling

techniques30–32 in handling large-dimensional dynamical systems,
we apply the Petrov–Galerkin projection approach directly to the
full system equation (14). The method uses two subspaces V and W
as the solution and test spaces, respectively. Although conventional
Petrov–Galerkin projections arise from approximations of PDEs,42

the technique can also be applied to discrete dynamics, e.g., classi-
cal particle systems.43,44 For reduced-order problems, the approach
is more robust than the traditional moment matching methods.32 To

FIG. 1. Schematic representation of the
molecular junction and its representation
in the computation. (a) The system with
three Li chains separated by an extra
spacing of 2.8 Å. (b) The domain decom-
position in the bath and center regions.
(c) An illustration of the selected grid
points in the bath region with increas-
ing spacings. (d) The atoms near the
junction.
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facilitate implementations, the space V will be represented by a set
of basis vectors, which are arranged into the columns of a matrix,
denoted by V. Therefore, V = Range(V), and the same notations
will be used for the space W as well, W = Range(W). The dimension
of the two subspaces is assumed to be m.

Overall, the Petrov–Galerkin projection for Eq. (14) consists of
the following three steps:

(1) Seek the solution in the subspace V. In our case, the approx-
imate density matrix is spanned by the matrix V as follows:

δρ(t) ≈ δ ρ̃(t) = VD(t)V∗. (19)

In the subspace approximation, the m ×m matrix D will be
referred to as the nodal values.

(2) Project the dynamics (14) to the orthogonal complement of a
subspace W. We choose the subspace spanned by the column
vectors of a matrix W, which yields

i
d
dt

W∗δ ρ̃(t)W =W∗([H0, δ ρ̃(t)] +Θ(t))W. (20)

The first two steps offer a low-rank approximation of the
density matrix. Such projections have been widely used in
solving matrix equations.45

(3) Use quadrature formulas to approximate functions outside
the domain �I using the nodal values in D(t).

The matrix products in the first two steps of the
Petrov–Galerkin projection give rise to two coefficient matrices,

M = V∗W, K = V∗H0W. (21)

In the Galerkin projection, these matrices are often referred to as
the mass and stiffness matrices.42 Direct computations from the first
step (19) and second step (20) yield

i
d
dt

D(t) = [Heff, D] +Θeff(t), (22)

where Heff is the reduced Hamiltonian,

Heff = KM−1. (23)

The bracket (22) has been generalized to non-Hermitian matrices,

[A, B] ∶= A∗B − B∗A. (24)

Furthermore, the non-homogeneous term Θeff(t) is a reduction of
the non-homogeneous term Θ(t) in (14),

Θeff(t) =M−∗W∗Θ(t)WM−1 =M−∗W∗[δH(t), ρ0]WM−1. (25)

This matrix product will be treated in step (3), i.e., approximated by
a quadrature formula.

D. The choice of the subspaces
We will choose the subspace V by specifying a set of orthonor-

mal basis following our previous work.22 To be more specific, using

the partition � = �I ∪�II, we express the basis as columns of a
matrix V,

V =
�������

Im×m

0

�������
�I

�II
. (26)

Here, we follow the notations in domain decomposition methods46

and order the grid points so that the points in �I appear first. The
elements in the Hamiltonian matrix H can be arranged in the same
way to a block matrix, �������

HI,I HI,II

HII,I HII,II

�������
. (27)

Thus, in (26), we essentially pick the standard basis in the subdomain
�I. Then, they are extended to �II by filling in zeros. This choice is
motivated by the reduced-order modeling.32 See Ref. 22 for details
about how the density-matrix equation (14) can be put into a stan-
dard form of reduced-order problems. In general, the choice of V
corresponds to the identification of quantities of interest by defining
the output vector.32 As we will demonstrate later, it will single out
the components of the density matrix in the subdomain �I, leading
to a description using the reduced density matrix (RDM). In turn,
one may consider how the rest of the dynamics is controlled by the
RDM. The vectors in W represent such coupling. Specifically, we
choose

W = (εI −H0)−1V . (28)

Here, we require Im(ε) < 0 for stability.22

With the choices (26) and (28), one finds that

M = V∗W = V∗(εI −H0)−1V = GI,I(ε). (29)

Here, GI,I refers to the first diagonal block of Green’s function,47,48

G(ε). From the block inversion formula, we obtain

M−1 = εI −HI,I −HI,II[εI −HII,II]−1HII,I. (30)

Meanwhile, for the stiffness matrix, we have

K = V∗H0W = −εV∗V + εM. (31)

Combining with (23) and (30) and noticing the orthogonality
V∗V = I, we get

Heff = HI,I + ΣI,I, (32)

where ΣI,I is the self-energy,49 given by

ΣI,I = HI,II[εI −HII,II]−1HII,I. (33)

Therefore, the choices of the subspaces according to (26) and
(28) have a remarkable connection with the well-known Green’s
function approach.47,50 In particular, the self-energy ΣI,I describes
the influence from the domain �II. It is also worthwhile to
point out that since �I is multi-connected, as depicted in Fig. 1,
the self-energy ΣI,I is an operator that couples a domain with
many fragments.
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E. The computation of the Coulomb potential
The selection of the domain �I is with the purpose to take into

account the density fluctuation δn in the bath. With the electron
density in the domain �I, we can reconstruct the correction to the
Hartree part of the Hamiltonian (7) using a quadrature formula,

VH[δn](x) = �Rv(x − x′)δn(x′)dx′ ≈ �
x′∈Q1

w(x, x′)δn(x′). (34)

Here, Q1 denotes the set of quadrature points and w(x, x′) denotes
the quadrature weights. In the numerical tests, we will use the three-
point Gaussian quadrature for each interval in �I.

Since xα from the bath is included in the computational domain
�I, the density matrix at xα is explicitly computed, and as its diag-
onal elements, δn(xα) is accessible. In the computation, we use a
spline interpolation based on the electron density at these points,
which is then evaluated at those quadrature points x∈ Q1 so that
the quadrature formula (34) can be applied to update the Hartree
potential.

F. The evaluation of Θeff

We now discuss how the non-homogeneous term (25) is eval-
uated. Due to the dependence of δH on the electron density (12),
this term has to be computed at each time step. The main issue here
is that the matrix product with W involves a summation over the
entire domain, which requires O(m2N2) operations.

As with many other applications of Galerkin projection,42,51

this term can be treated by quadrature approximations. For con-
venience, let us first work with a summation form. Namely, we
consider

I[ f ] = �
xk∈�

f (xk). (35)

In the present setting, xk’s are uniformly distributed grid points in
the entire domain. We assume that f (x) has certain smoothness
(e.g., twice continuously differentiable). In the quadrature approx-
imation, the sum is approximated by

I[ f ] ≈ �
xα∈Q2

f (xα)Aα. (36)

Here, Q2 denotes a subset of the points, which will be regarded as
quadrature points and Aα will be the corresponding weights. The

quadrature weights in our computation are determined in advance
by a spline interpolation. A simple idea is the following: For each xα,
one can set f (xα) = 1 but zero for all other quadrature points. Using
a cubic spline interpolation, f (x) ≈ s(x), and from the quadrature
formula above, one can obtain the quadrature weight Aα = I[s], i.e.,
directly summing up the spline interpolant s(x).

Returning to (25), with the quadrature formula, we can reduce
the matrix product,

�W∗[δH, ρ0]W�ij =�
k
�̀Wk,i(δHk − δH`)ρ0

k,`W`,j,

≈ �
xα∈Q

�
xβ∈Q

AαAβWα,i

× (δHα − δHβ)ρ0
α,βWβ,j. (37)

The overline denotes the complex conjugate. If the number of
quadrature points is k, this procedure reduces the computation from
O(m2N2) to O(m2k2).

An interesting case is when Q2 = �I. Combining (25) and (37),
we have

M−∗W∗�δH, ρ(0)�WM−1 ≈M−∗W∗VTSVWM−1 = S, (38)

where S is a skew-Hermitian matrix with elements given by

Sα,β = AαAβ(δVα − δVβ)ρ0
α,β. (39)

In the last step, we have used Eq. (21).

G. Methods for the time integration
In Secs. II D–II F, we explained how the terms in the RLvN

equation (22) are computed at each time step, and they are sum-
marized in Algorithm 1. Here, we discuss how the dynamics
is integrated.

ALGORITHM 1. Implementation of Eq. (22).

t = tn, D = D(x, x′, tn)
for xα ∈ �I do

δn(xα) = D(xα, xα)
δVXC = VXC[n0 + δn] −VXC[n0]

Interpolate δn and δVXC using cubic spline functions, δ̃n and �dVXC, respectively.
for xα ∈ �I do

Compute the values of δn(x) at the quadrature points from δ̃n.
Compute the Coulomb potential VH[δn](xα) from (34) using Gaussian quadrature.
for xβ ∈ �I do

Compute the matrix elements Θeff from (37).
Use Heff and Θeff to update the density matrix D to the next time step tn+1.
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We first discuss the approximation of the full model (1). We
assume that a finite-difference approximation has been applied so
that the Hamiltonian operator, as well as the charge density, is rep-
resented at grid points. We adopt the operator-splitting scheme of
Watanabe and Tsukada52 for TDDFT models. More specifically, we
split the Hamiltonian as follows:

H = H1 +H2, H1 ∶= −1
2
∇2, H2 ∶= H −H1, (40)

where the potential term may include Coulomb, exchange-
correlation, and external biased potential.

Despite the non-linearity in (1), one can still express the solu-
tion with an evolution operator,

ρ(t + �t) = E(t + �t, t)ρ(t). (41)

The evolution operator can be effectively approximated by an
operator-splitting scheme,

E(t + �t, t) ≈ E1�t + �t, t + �t
2
�E0(�t)E1�t + �t

2
, t�. (42)

Specifically, the operator E0 corresponds to the dynamics deter-
mined by the kinetic energy,

i@tρ = [H1, ρ], (43)

for which the evolution operator corresponds to a unitary dynamics,

E0(�t)ρ = U0(�t)ρU0(�t)†, U0(�t) ∶= exp(−i�tH1). (44)

The matrix exponential in U0 can be computed from direct spectral
decomposition, e.g., by using fast Fourier transform.

On the other hand, the operator E1 dictates the dynamics

i@tρ = [H2, ρ]. (45)

The diagonal of the right hand side is zero, which implies that the
electron density remains constant. Therefore, this is effectively a
linear equation. As a result, we can write

E1(t + �t, t)ρ(t) = U1(�t)ρ(t)U1(�t)†, U1(�t) ∶= e−i�tH2 . (46)

In addition, since H2 is only diagonal, the evaluation is
straightforward.

We now turn to the RLvN (22). Using the variation-of-constant
formula, we first obtain an integral form of the solution (with the
spatial variable x and x′ suppressed),

D(t + �t) = U(�t)D(t)U(�t)†
− i� �t

0
U(�t − τ)Θeff(t + τ)U(�t − τ)†dτ. (47)

Here, the matrix U(�t) is given by

U(�t) = exp�−i�tH∗eff�, (48)

which only needs to be computed once. Since the term Θeff in
Eq. (25) also depends on the diagonals of D(t), this remains as an

integral equation. To obtain an approximation, one can approximate
the integral using the values at t (τ = 0). This yields

D(t + �t) = U(�t)(D(t) − i�tΘeff(t))U(�t)†, (49)

which is an analog of the exponential-Euler method.53

This method can be extended to form a class of integrators that
resemble the exponential-Runge–Kutta methods.54 As an example,
one can apply the above formula for half of a step, which is then
combined with the mid-point rule for the integral (47),

D�t + �t
2
� = U��t

2
��D(t) − i

�t
2

Θeff(t)�U��t
2
�†,

D(t + �t) = U(�t)�D(t) − i�tΘeff�t + �t
2
��U(�t)†.

(50)

When the numerical stability is largely determined by the spectrum
of Heff, such exponential integrators often allow much larger step
sizes.

III. NUMERICAL TESTS
As examples, we consider a 1d lithium (Li) system, consisting

of three Li chains with a lattice spacing of 2.8 Å. Two atom chains,
each with 148 atoms, are used to model the bath. They are separated
from the middle chain with four Li atoms by adding an extra spacing
of 2.8 Å. This is the largest system that we have studied for which the
full system can be simulated within a realistic time frame to generate
a reference solution. Similar systems have been used by Refs. 55 and
56 to study transport properties.

The units follow those in Ref. 57 using Bohr radius and eV
as the length and energy units, which subsequently determine the
time units. We use a real-space method to approximate the solu-
tion of the full LvN model (1) as well as the reduced model that
follows. Specifically, we use a finite-difference spatial discretization
with N = 4000 grid points and grid spacing �x = 0.2114. We use
the three-point finite-difference formula for the kinetic energy term.
The electron current can be extracted from the off-diagonal entries

FIG. 2. The long-range interactions: regularized Coulomb (solid line) and expo-
nential potential from Ref. 57. To show scales, the grid points are shown at the
bottom.
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FIG. 3. Top: charge density. Bottom: fluctuation of the density δn. These results
are computed from the full model with the regularized Coulomb potential (52).

of the density matrix,

J(xj) = −Im(ρ(xj, xj+1))��x. (51)

The initial ground state is computed self-consistently using a mixing
method58,59 with four previous iterations at each step. The step size
for the time integration is �t = 0.0025, and Eqs. (1) and (22) are inte-
grated up to t = 50. Due to the finite size of the bath, the boundary
effect will occur. However, we have verified that such a finite-size

effect will not affect the dynamics in the center region within this
time period.

We follow the model by Baker et al.57 for the Coulomb poten-
tial and the exchange and correlation potentials. Figure 2 shows the
exponential form from Ref. 57 for the Coulomb potential, plotted
together with the grid points in the real-space approximation to
show the scale. Also shown in the figure is the regularized Coulomb
potential (Yukawa),

v(r) = 1�√r2 + 0.2. (52)

In terms of the atomic spacing, the exponential model has an effec-
tive range up to second nearest neighbors. However, the regular-
ized Coulomb potential extends much farther. Both models will be
implemented in the computation.

For the reduced model (22), we first pick the subdomains
as follows. The entire domain is positioned in the interval [0, L]
with L = 453.6. We keep the center region in the interval [xL, xR]= [205.8, 247.8]. Starting from this center region, we gradually
increase the grid size. For example, in the bath on the right, we
define the logarithmic grid xα = xR + �2 × 1.2α��x, with �⋅� denoting
the nearest integer. Out of the 4000 grid points, m = 462 points have
been selected with this procedure. Three-point Gaussian quadrature
formulas are used for the calculation of the Coulomb potential in
(34). For the non-homogeneous term (25), since we are approxi-
mating a summation, we need to pick quadrature points that coin-
cide with the grid points. In the center region, we already keep
all the grid points. Meanwhile, in the bath, for each interval with
xα+1 − xα > 9�x, we introduce two additional quadrature points in
that interval.

FIG. 4. Comparison of the computed current around the junction for various choices of the Coulomb potential: exponential (solid), regularized (dotted), and no Coulomb
(dashed). As a reference, the position of the atoms in the region is plotted at the bottom of the panels.
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FIG. 5. Comparison of the computed current at the center for the time window[0, 50] from the full model (1) with different treatments of the Coulomb potential.

Using the operator-splitting method (42), we first run the full
model (1) up to t = 50. We exert a potential bias UL = 0.1 on the left
bath and UR = 0 in the other bath. We first show the charge den-
sity at t = 8, along with the charge fluctuations δn(x, t) around the
center region in Fig. 3. We observe that the charge density n(r, t)
exhibits oscillations around the nuclei in the bath, which extends

FIG. 7. Comparison of the computed current at the center x = L�2 for the time
window [0, 50] with the regularized Coulomb potential (52). Also marked in the
figure is the current calculated based on Landauer’s method.18

to the entire domain. The two “dips” in the density profile occur at
the junctions. In contrast, the charge perturbation δn(x, t) spreads
out into the bath, and it exhibits decay toward the far side of the
bath. Therefore, it is important to take into account the density

FIG. 6. Comparison of the computed current around the junction for various points in time with regularized Coulomb potential. As a reference, the position of the atoms in
the region is plotted at the bottom of the panels.
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FIG. 8. Comparison of the current from two systems with 480 atoms and 300
atoms, respectively. The current is computed using the reduced model with the
regularized Coulomb potential. Shown in the figure is the current at the center
x = L�2 for the time window [0, 50].

perturbation in the bath to accurately compute the Coulomb poten-
tial in the device. The reduced model constructed in this paper works
with this charge perturbation, which is represented at sparse grid
points with increasing spacing.

We first examine the dynamics of the current predicted by
the full model (1). As a comparison, we consider three cases: the
exponential potential,57 the regularized Coulomb (52), and the case
where the Coulomb potential is turned off. Figure 4 shows sev-
eral snapshots of the current around the device region. In addition,
Fig. 5 shows the current in the middle of the device, x = 424.6465.
Triggered by the potential bias, a current peak first develops at the
left junction, which later spreads to the left bath and the device
region. When the Coulomb potential is turned off, the current in
the device region quickly develops into a plateau, reaching a steady
state. However, with the Coulomb potential, the situation is more
subtle. Within the time period [0, 50], we have not observed any
steady state. At t = 50, with the regularized Coulomb potential (52),
the current starts to flatten. However, with the exponential model,
the current in the device is still uneven at this point.

Next, we implement the algorithm (50) and run the reduced
model (22) using the regularized Coulomb potential (52). For the
subspace W (28), we pick the shift to be ε = � − 5i, with � being the
Fermi level. Figure 6 depicts the electron current around the junc-
tion for various time instances. One can observe that the potential
bias creates a current peak initially, which then develops into an
oscillatory pattern. Subsequently, the current profile starts to widen
and spread toward the bath region. The time history of the current at
x = L�2 is shown in Fig. 7. In both cases, the results agree well with

FIG. 9. Comparison of the computed current around the junction for various points in time with the exponential potential. As a reference, the position of the atoms in the
region is plotted at the bottom.
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FIG. 10. Comparison of the computed current at the center x = L�2 with the
exponential potential over the time period t ∈ [0, 50].

the full simulation results within the transient period [0, 15]. Over
longer time, the approximate current shows a tendency to approach
to the steady state.

We also implemented the reduced model on a larger system
with 480 atoms and N = 6000 grid points. In this case, the direct
simulation of the full model is projected to take over a month, and
therefore, we did not make such a comparison. Instead, we compare
to the result from the previous test with 300 atoms. The computed
current is shown in Fig. 8. We observe that these calculations yield
consistent results, which also indicates that the effect of the bath is
adequately represented by 148 atoms within this time interval.

The numerical tests are repeated using the exponential
Coulomb potential.57 Compared to the previous case, the current
profile exhibits more oscillations, as shown in Fig. 9. In this case,
the reduced models still accurately predicted the current in the cen-
ter region up to t = 15. The comparison of the current at x = L�2
is shown in Fig. 10. We observe that although the reduced model
is quite accurate within the transient period [0, 15] and is also rea-
sonable in final period [30, 50], it has significant error in the period[15, 30].

It is also worthwhile to point out that the reduced-order
approach30,32 is effective in predicting pre-selected quantities of
interest (the output), which in our case is the density matrix in the
region �I, and it embodies the electron current in the center region.
However, it does not involve the current in the bath regions. There-
fore, the reduced model (22) will not be able to capture the current
outside the center region.

Next, we monitored the central processing unit (CPU) time
for solving the full LvN equation (1) and the RLvN (22). We run
the models for systems of various sizes. To understand the reduc-
tion in computational cost, we studied two distinct cases. First, we
hold the system fixed while reducing the mesh size �x, which causes
the dimension N (number of grid points) to increase. The results
are summarized in Table I. As the dimension N (number of grid
points) increases, the CPU time corresponding to the simulation of
the full LvN equation (1) increases considerably. This can be under-
stood from algorithm (44): each step consists of multiplications by
the unitary matrices with dimension N ×N, which contributes to
the majority of the computational cost. On the other hand, for the
RLvN (22), algorithm (50) involves the multiplication by U(�t)

TABLE I. CPU time (in seconds) comparison for 100 steps of integration (160 atoms).

N = 2400 N = 3200 N = 4800

Full LvN 6589 13 340 23 815
Reduced LvN 18 30 56
dim(V) 304 424 540

TABLE II. CPU time (in seconds) comparison for 100 steps of integration (�x= 0.1878).
N = 2400 N = 3200 N = 4800

Full LvN 6589 8349 18 522
Reduced LvN 18 22 58
dim(V) 304 314 320

(48), which is of dimension m ×m, and it offers considerable reduc-
tion in this aspect. A close inspection reveals that, aside from the
matrix multiplication, the main computation comes from the cal-
culation of the Coulomb potential (34) and the non-homogeneous
term (37); for the RLvN (22), both have a O(m2) scaling due to the
quadrature approximation.

Another important scenario is to hold the mesh size �x while
enlarging the bath size. This will also increase the size of the full
system and hence cause the computational cost to grow, as can be
seen in Table II. However, for the RLvN (22), since most of the grid
points are around the device region, the dimension of the subspace
increases very little. The CPU time for the RLvN (22) also remains
remarkably low. Note that when N = 4800, although the dimension
of the subspace is less than the previous setup, the total CPU time is
still comparable. This is due to the quadrature approximation.

Finally, we check the occupation numbers by examining the
eigenvalues of the density matrix obtained from the reduced model
(22). Since the reduced model no longer follows a unitary dynam-
ics, the occupation numbers associated with density matrix are not
guaranteed to be between 0 and 1. Therefore, we resort to numerical
tests to examine this property. As shown in Fig. 11, most of the occu-
pation numbers lie between 0 and 1. About five of these are slightly
larger than 1 with the largest being 1.0210. Therefore, for the reduced
model, this property holds approximately.

FIG. 11. The occupation numbers computed from the reduced models at t = 8.
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IV. SUMMARY
In this paper, we have constructed a class of reduced-order

models for simulating electron transport problems. Based on a
decomposition of the physical domain and by partitioning the den-
sity matrix accordingly into different blocks, we regard such a
dimension reduction problem as a reduce-order problem,22 where
a subspace projection method can accurately predict certain quanti-
ties of interest.31,32 This approach naturally involves the self-energy
in the effective Hamiltonian. In this work, our focus is placed on
the treatment of long-range interactions. Specifically, we choose sub-
spaces so that the electron density in the bath is captured on some
sparse grids, which, in turn, determines the Hartree potential. This
enables the accurate computation of the Coulomb and exchange-
correlation potentials at the molecular junction. It is possible to
enlarge the subspaces to enable more accurate approximations, as
demonstrated in our prior work22 for a tight-binding model. How-
ever, based on the current results, we observed that the present
approach using subspaces (26) and (28) is quite easy to implement,
and it has already shown good agreement with the full model. Since
our formulation is primarily through algebraic manipulations, the
method is not specific to the underlying geometry of the electronic
system. So we expect that this method can be extended to high-
dimensional systems, e.g., that in Ref. 60, with similar selection of
the contact region and grid points.
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