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Abstract—In this paper, we study the type graph, namely a
bipartite graph induced by a joint type. We study the maximum
edge density of induced bipartite subgraphs of this graph having
a number of vertices on each side on an exponential scale.
This can be seen as an isoperimetric problem. We provide
asymptotically sharp bounds for the exponent of the maximum
edge density as the blocklength goes to infinity. We also study the
biclique rate region of the type graph, which is defined as the set
of (R1, R2) such that there exists a biclique of the type graph
which has respectively enR1 and enR2 vertices on the two sides.
We provide asymptotically sharp bounds for the biclique rate
region as well. We also apply similar techniques to strengthen
small-set expansion theorems.

I. INTRODUCTION

Let X and Y be two finite sets. Let TX be an n-type
on X , i.e., an empirical distribution of sequences from Xn.
(Obviously, any n-type TXY is also a kn-type for k ≥ 1.)
Let T (n)

TX
, or simply TTX

, be the type class contained in
Xn with respect to TX , i.e., the set of sequences in Xn
having the type TX . Similarly, let TXY be a joint n-type
on X × Y and TTXY

the joint type class with respect to
TXY . Obviously, TTXY

⊆ TTX
× TTY

, where TX , TY are
the marginal types corresponding to the joint type TXY . In
this paper, we consider the undirected bipartite graph GTXY

whose vertex set is TTX
∪ TTY

and whose edge set can be
identified with TTXY

, defined as follows. Consider x ∈ TTX

and y ∈ TTY
as vertices of GTXY

. Two vertices x,y are joined
by an edge if and only if (x,y) ∈ TTXY

. G(n)
TXY

is termed
the graph of TXY or, more succinctly, a type graph [1]. For
brevity, when there is no ambiguity, we use the abbreviated
notation G for G(n)

TXY
. For subsets A ⊆ TTX

, B ⊆ TTY
, we

obtain an induced bipartite subgraph G [A,B] of G, whose
vertex sets are A and B, and where x,y are joined by an
edge if and only if they are joined by an edge in G. For the
induced subgraph G [A,B], the (edge) density ρ (G [A,B]) is
defined as

ρ (G [A,B]) :=
# of edges in G [A,B]

|A| |B|
.

Obviously, ρ (G [A,B]) =
|(A×B)∩TTXY |

|A||B| . It is interest-

ing to observe that1 ρ (G) =
∣∣∣∣TT (n)

XY

∣∣∣∣/(∣∣∣∣TT (n)
X

∣∣∣∣∣∣∣∣TT (n)
Y

∣∣∣∣) .
=

e−nIT (n) (X;Y ) for any sequence of joint types
{
T

(n)
XY

}
.

Moreover, if we only fix TX , TY , A, and B, then

1Throughout this paper, we write an
.
= bn to denote an = bneno(1).

TXY ∈ Cn (TX , TY ) 7→ ρ
(
G

(n)
TXY

[A,B]
)

forms a prob-

ability mass function, i.e., ρ
(
G

(n)
TXY

[A,B]
)
≥ 0 and∑

TXY ∈Cn(TX ,TY ) ρ
(
G

(n)
TXY

[A,B]
)

= 1, where Cn (TX , TY )

denotes the set of joint n-types TXY with marginals TX , TY .
We term this distribution a type distribution, which, roughly
speaking, can be considered as a generalization from binary
alphabets to arbitrary finite alphabets of the classic distance
distribution in coding theory; please refer to [2] for the
distance distribution of a single code, and [3] for the distance
distribution between two codes.

Given 1 ≤ M1 ≤ |TTX
|, 1 ≤ M2 ≤ |TTY

|, define the
maximal density of subgraphs with size (M1,M2) as

Γn (M1,M2) := max
A⊆TTX

,B⊆TTY
:|A|=M1,|B|=M2

ρ (G [A,B]) .

Recall that TX|Y and TY |X denote the conditional types
corresponding to the joint type TXY . For a sequence x ∈ TTX

,
let TTY |X (x) denote the corresponding conditional type class.
Since N1 :=

∣∣TTY |X (x)
∣∣ is independent of x ∈ TTX

, the
degrees of the vertices x ∈ TTX

are all equal to the constant
N1. Similarly, the degrees of the vertices y ∈ TTY

are all
equal to the constant N2 :=

∣∣TTX|Y (y)
∣∣. Hence we have

|B|ρ (G [A,B]) + |Bc|ρ (G [A,Bc]) = N1,

where Bc := TTY
\B. Thus, over A,B with fixed sizes, maxi-

mizing ρ (G [A,B]) is equivalent to minimizing ρ (G [A,Bc]).
In other words, determining the maximal density is in fact
an edge-isoperimetric problem. Furthermore, given A ⊆ TTX

and M2, maxB⊆TTY
:|B|=M2

ρ (G [A,B]) is attained by B∗

such that
∣∣A ∩ TTX|Y (y)

∣∣ ≥ ∣∣A ∩ TTX|Y (y′)
∣∣ for any y ∈

B∗,y′ /∈ B∗. Hence, M2 7→ maxB⊆TTY
:|B|=M2

ρ (G [A,B])
is nonincreasing, which implies that Γn (M1,M2) is nonin-
creasing in one parameter given the other parameter.

Let2 R(n)
X :=

{
1
n logM1 : M1 ∈ [|TTX

|]
}

and R(n)
Y :={

1
n logM2 : M2 ∈ [|TTY

|]
}

. Given a joint n-type TXY , define
the exponent of maximal density for a pair (R1, R2) ∈ R(n)

X ×
R(n)
Y as

En (R1, R2) := − 1

n
log Γn

(
enR1 , enR2

)
. (1)

2We use the notation [m : n] := {m,m + 1, ..., n} and [n] := [1 : n].
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If the edge density of a subgraph in a bipartite graph G is
equal to 1, then this subgraph is called a biclique of G. Along
these lines, we define the biclique rate region of TXY as

Rn (TXY ) :=
{

(R1, R2) ∈ R(n)
X ×R(n)

Y :

Γn
(
enR1 , enR2

)
= 1
}
.

Observe that any n-type TXY can also be viewed as a kn-type
for k ≥ 1. For an n-type TXY , define the asymptotic exponent
of maximal density for a pair (R1, R2) ∈ R(n)

X ×R(n)
Y as3

E (R1, R2) := lim
k→∞

− 1

kn
log Γkn

(
eknR1 , eknR2

)
, (2)

and the asymptotic biclique rate region as

R (TXY ) := closure
⋃
k≥1

Rkn (TXY ) . (3)

Han and Kobayashi [4] introduced a concept similar to the
asymptotic biclique rate region defined here. However, roughly
speaking, their definition is an approximate version of our
definition, in the sense that in their definition, for a distribution
PXY (not necessarily a type), type classes are replaced with
the typical sets with respect to PXY , and the constraint
Γn
(
enR1 , enR2

)
= 1 is replaced with Γn

(
enR

(n)
1 , enR

(n)
2

)
→

1 as n→∞ for a sequence of types T (n)
XY converging to PXY

and a sequence of pairs
(
R

(n)
1 , R

(n)
2

)
converging to (R1, R2).

In this paper we are interested in characterizing the limits
E (R1, R2) ,R (TXY ), and bounding the convergence rates of
En (R1, R2) and Rn (TXY ) to these limits as n→∞.

A. Motivations

Our motivations for studying the type graph have the
following three aspects.

1) The method of types is a classic and powerful tool in
information theory. In this method, the basic unit is the
(joint) type or (joint) type class. To the authors’ knowl-
edge, it is not well understood how the sequence pairs
are distributed in a joint type class. The maximal density
(or the biclique rate region) measures how concentrated
are the joint-type sequence pairs by counting the number
of joint-type sequence pairs in each “local” rectangular
subset. Hence, our study of the type graph deepens
the understanding of the distribution (or structure) of
sequence pairs in a joint type class. The first study on
this topic can be traced back to Han and Kobayashi’s
work [4], and it was also investigated in [5], [1], [6]
recently. However, all these works considered approxi-
mate versions of bicliques. In contrast, we consider the
exact version.

2) Observe that the type graph can be constructed by
permuting two sequences x,y respectively. Thus, unlike

3By definition, it is easy to see that − 1
kn

log Γkn

(
eknR1 , eknR2

)
is

nonincreasing in k. Hence the limit in (2) exists. Moreover, this limit, namely
E (R1, R2), is only dependent on TXY and is independent of the value of
n we attribute to TXY . Similar conclusions can be drawn for the asymptotic
biclique rate region defined in (3).

other well-studied large graphs, the type graph is deter-
ministic rather than stochastic. There are relatively few
works focusing on deterministic large graphs. Hence, as
a purely combinatorial problem, studying the type graph
is of independent interest.

3) The maximal and minimal density problems for type
graphs are closely related to noninteractive simulation
problems and hypercontractivity inequalities. Our results
and proof ideas can be applied to prove bounds in
noninteractive simulation problems and to strengthen
hypercontractivity inequalities.

B. Main Contributions

We first completely characterize the asymptotics of the
exponent of maximal density and the biclique rate region for
any joint type defined on finite alphabets. We observe that, in
general, the asymptotic biclique rate region defined by us is
a subset (in general, a strict subset) of the approximate one
defined by Han and Kobayashi [4]. In fact, their definition
for a distribution PXY is equal to the asymptotic rate region
of a sequence of n-types {T (n)

XY } approaching PXY , which
satisfy the condition En

(
R

(n)
1 , R

(n)
2

)
→ 0 as n → ∞.

Interestingly, our proof for the biclique rate region combines
information-theoretic methods and linear algebra, which seems
not common in information theory. We also apply similar proof
techniques to strengthen the forward and reverse small-set
expansion theorems in [7], [8], [9].

C. Notation

For a sequence x, we use Tx to denote the type of x. For
an n-length vector or sequence x and a subset J ⊆ [n], define
xJ := (xj)j∈J , i.e., the vector consisting of the components
with indices in x. We will also use notations HQ(X) or
H(QX) to denote the entropy of X ∼ QX . If the distribution
is denoted by P , we sometimes write the entropy HP (X) as
H(X) for brevity. We use supp(PX) to denote the support of
PX .

II. TYPE GRAPH

In this section, we completely characterize the asymptotic
exponent of maximal density and the asymptotic biclique rate
region.

Theorem 1. For any n ≥ 2 (|X | |Y|+ 2) |X | |Y|, any n-type
TXY , and (R1, R2) ∈ R(n)

X ×R(n)
Y , we have

E∗ (R1, R2) ≤ En (R1, R2) ≤ E∗ (R1, R2) + εn, (4)

where εn := (|X ||Y|+2)|X ||Y|
n log (n+1)n6

|X |4|Y|4 , E
∗ (R1, R2) :=

R1 +R2 − F (R1, R2), and

F (R1, R2) := max
PXY W :PXY =TXY ,

H(X|W )≤R1,H(Y |W )≤R2

H (XY |W ) , (5)

which we think of as being defined for all nonnegative pairs
(R1, R2). In particular, E (R1, R2) = E∗ (R1, R2) . Without
loss of optimality, the alphabet size of W in the definition of
F can be assumed to be no larger than |X | |Y|+ 2.
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Remark 1. Obviously, E∗ can be also expressed as
E∗ (R1, R2) = R1 +R2 −HT (XY ) +G (R1, R2) , with

G (R1, R2) := min
PXY W :PXY =TXY ,

H(X|W )≤R1,H(Y |W )≤R2

I (XY ;W ) (6)

corresponding to the minimum common rate given marginal
rates (R1, R2) in the Gray-Wyner source coding network [10,
Theorem 14.3]. Moreover, for R1 = HT (X) , R2 = HT (Y ),
we have that (5) or (6) is attained by a constant W , which in
turn implies that E∗ (HT (X) , HT (Y )) = IT (X;Y ).

Proof of Theorem 1: The alphabet bound |W| ≤
|X | |Y| + 2 in the definition of F comes from the support
lemma in [10]. We next prove the bounds in (4) by using
standard information-theoretic techniques.

Upper Bound: For a joint type PXYW such that PXY =
TXY , H (X|W ) ≤ R1, H (Y |W ) ≤ R2 and for a fixed
sequence w with type PW , we choose A as the union of
TPX|W (w) and a number enR1 − |TPX|W (w) | of arbitrary
sequences outside TPX|W (w), and choose B in a similar way,
but with TPX|W (w) replaced by TPY |W (w). Then |A| = enR1

and |B| = enR2 . Observe that

|(A×B) ∩ TTXY
| ≥

∣∣TPXY |W (w)
∣∣

≥ en(H(XY |W )− |W||X||Y| log(n+1)
n ),

where the second inequality follows from [11, Lemma 2.5].
Thus we have

ρ (G [A,B]) ≥ |(A×B) ∩ TTXY
|

enR1enR2

≥ e−n(R1+R2−H(XY |W )+
|W||X||Y| log(n+1)

n ). (7)

Optimizing the exponent in (7) over all joint n-types PXYW
such that PXY = TXY , H (X|W ) ≤ R1, H (Y |W ) ≤ R2

yields the upper bound

En (R1, R2) ≤ R1 +R2 − Fn (R1, R2)

+
|W| |X | |Y| log (n+ 1)

n
, (8)

where Fn is defined similarly as F in (5) but with the PXYW
in (5) restricted to be a joint type. It is not difficult to
remove this restriction at the cost of adding an asymptotically
vanishing term, by combining the inequality in [11, Lemma
2.7] and the fact in [12, Lemma 3] that the types are dense in
the probability simplex (i.e., any distribution PXYW can be
approximated by an n-type within an asymptotically vanishing
TV distance). We give the proof detail in [13], and omit it here.

Lower Bound: Let C := (A×B)∩TTXY
for some optimal

(A,B) attaining Γn
(
enR1 , enR2

)
. Let (X,Y) ∼ Unif (C).

Then,

Γn
(
enR1 , enR2

)
=
|C|
|A| |B|

=
eH(X,Y)

enR1enR2
,

1

n
H (X) ≤ R1,

1

n
H (Y) ≤ R2.

Therefore,

En (R1, R2) = R1 +R2 −
1

n
H (X,Y)

= R1 +R2 −
1

n

n∑
i=1

H
(
XiYi|Xi−1Y i−1

)
= R1 +R2 −H

(
XJYJ |XJ−1Y J−1J

)
where J ∼ Unif [n] is a random time index independent of
(Xn, Y n). On the other hand,

H
(
XJ |XJ−1Y J−1J

)
≤ H

(
XJ |XJ−1J

)
=

1

n
H (X) ≤ R1,

H
(
YJ |XJ−1Y J−1J

)
≤ R2.

Using the notation X := XJ , Y := YJ ,W := XJ−1Y J−1J ,
we obtain (X,Y ) ∼ TXY , and

En (R1, R2) ≥ inf
PXY W :PXY =TXY ,

H(X|W )≤R1,H(Y |W )≤R2

R1 +R2 −H (XY |W )

= E∗ (R1, R2) .

We next consider the biclique rate region.

Theorem 2. For any n ≥ 8(|X | |Y|)7/5 and any n-type TXY ,

(R∗ (TXY )− [0, ε1,n]× [0, ε2,n]) ∩
(
R(n)
X ×R(n)

Y

)
⊆ Rn (TXY ) (9)

⊆ R∗ (TXY ) ∩
(
R(n)
X ×R(n)

Y

)
(10)

where “−” is the Minkowski difference (i.e., for A,B ⊆ Rm,
A−B :=

⋂
b∈B (A− b)), ε1,n := |X ||Y|

n log n4(n+1)
16|X | , ε2,n :=

|X ||Y|
n log n4(n+1)

16|Y|2 , and

R∗ (TXY ) :=
⋃

0≤α≤1,PXY ,QXY :
αPXY +(1−α)QXY =TXY

{
(R1, R2) :

R1 ≤ αHP (X|Y ) , R2 ≤ (1− α)HQ (Y |X)
}
.

In particular,
R (TXY ) = R∗ (TXY ) , (11)

where R (TXY ) is the asymptotic biclique rate region, defined
in (3).

Remark 2. Given TXY , R∗ (TXY ) is a closed convex set. Us-
ing the continuity of HP (X|Y ) in PXY , it is straightforward
to establish that R∗ (TXY ) is closed. Convexity follows by
the fact that HP (X|Y ) is concave in PXY ; see the details in
[13].
Remark 3. Theorem 2 can be easily generalized to the k-
variables case with k ≥ 3; see [13].

Proof: Obviously, (11) follows from (9) and (10). It
suffices to prove (9) and (10).

Inner Bound: The inner bound proof here uses a standard
time-sharing argument. Let d be an integer such that 1 ≤ d ≤
n−1. Let (PXY , QXY ) be a pair of d-joint type and (n− d)-
joint type on X × Y such that d

nPXY +
(
1− d

n

)
QXY =

995
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TXY . For a fixed d-length sequence y with type PY and a
fixed (n− d)-length sequence x with type QX , we choose
A = TPX|Y (y)×{x} and B = {y}×TQY |X (x). Then, from

[11, Lemma 2.5], we have |A| ≥ ed(HP (X|Y )− |X||Y| log(d+1)
d )

and similarly |B| ≥ e(n−d)(HQ(Y |X)− |X||Y| log(n−d+1)
n−d ). On the

other hand, for this code, A×B ⊆ TTXY
. Hence any rate pair

(R1, R2) ∈
(
R(n)
X ×R(n)

Y

)
with

R1 ≤
d

n

(
HP (X|Y )− |X | |Y| log (d+ 1)

d

)
,

R2 ≤
(

1− d

n

)(
HQ (Y |X)− |X | |Y| log (n− d+ 1)

n− d

)
is achievable, which in turn implies that a pair of smaller rates
(R1, R2) ∈

(
R(n)
X ×R(n)

Y

)
with

R1 ≤
d

n
HP (X|Y )− |X | |Y| log (n+ 1)

n
, (12)

R2 ≤
(

1− d

n

)
HQ (Y |X)− |X | |Y| log (n+ 1)

n
(13)

is achievable.
We next remove the constraint that (PXY , QXY ) are joint

types. Due to the space limit, we refer readers to the extended
paper [13] for the proof of this.

Outer Bound: We next prove the outer bound by combining
information-theoretic methods and linear algebra. Observe that
the biclique rate region only depends on the probability values
of TXY , rather than the alphabets X ,Y . With this in mind, we
observe that we can identify X and Y with subsets of R by
one-to-one mappings such that, for any probability distribution
PXY , if (X,Y ) ∈ X × Y satisfies (X,Y ) ∼ PXY we can
talk about the expectations EP [X], EP [Y ], the covariance
CovP (X,Y ), and the correlation EP [XY ]. Translating the
choices of X and/or Y (as subsets of R) does not change
CovP (X,Y ), so we can ensure that we make these choices in
such a way that EP [XY ] = CovP (X,Y )+EP [X]EP [Y ] = 0.

Let us now choose X ,Y ⊆ R in this way, such that for the
given joint n-type TXY we have ET [XY ] = 0. Then, for A×
B ⊆ TTXY

, we will have 〈x,y〉 = 0 for any (x,y) ∈ A×B,
where x,y are now viewed as vectors in Rn. Let A denote the
linear space spanned by all the vectors in A, and B denote the
linear space spanned by all the vectors in B. Hence B ⊆ A⊥,
where A

⊥
denotes the orthogonal complement of a subspace

A. As an important property of the orthogonal complement,
dim(A) + dim(A

⊥
) = n. Hence dim(A) + dim(B) ≤ n.

We next establish the following exchange lemma. The
proof is provided in [13], which is based on the well-known
exchange lemma in linear algebra.

Lemma 1. Let V1, V2 be mutually orthogonal linear subspaces
of Rn with dimensions, denoted as n1, n2, satisfying n1 +
n2 = n. Then there always exists a partition {J1,J2} of [n]
such that |Ji| = ni and x = fi (xJi

) , ∀x ∈ Vi, i = 1, 2 for
some deterministic linear functions fi : Rni → Rn, where
xJi := (xj)j∈Ji .

Remark 4. The condition “mutually orthogonal linear sub-
spaces of Rn” can be replaced by “mutually (linearly) inde-
pendent linear subspaces of Rn”, or more generally, “affine
subspaces that are translates of mutually independent linear
subspaces of Rn”.

Remark 5. In other words, under the assumption in this lemma
there always exists a permutation σ of [n] such that x(σ) =

f1

(
x
(σ)
[1:n1]

)
, ∀x ∈ V1 and x(σ) = f2

(
x
(σ)
[n1+1:n]

)
, ∀x ∈ V2

for some deterministic functions fi : Rni → Rn, where x(σ)

is obtained by permuting the components of x using σ.

Proof: Let d denote dim(A), so we have dim(A
⊥

) =
n− d. Let X ∼ Unif (A) ,Y ∼ Unif (B) be two independent
random vectors, i.e., (X,Y) ∼ PX,Y := Unif (A) Unif (B).
Now we set V1 = A, V2 = A

⊥
in Lemma 1. Then there

exists a partition {J ,J c} of [n] such that |J | = d and both
x = f1 (xJ ) , ∀x ∈ A, and y = f2 (yJ c) , ∀y ∈ A⊥ for some
deterministic functions f1 : Rd → Rn, f2 : Rn−d → Rn. We
further have X = f1 (XJ ) ,Y = f2 (YJ c) since X,Y are
respectively defined on A,A

⊥
. By this property, on the one

hand we have

R1 =
1

n
H (X) =

1

n
H (X|Y) =

1

n
H (XJ |Y)

≤ 1

n
H (XJ |YJ ) ≤ 1

n

∑
j∈J

H (Xj |Yj)

=
d

n
H (XJ |YJJ) ≤ d

n
H (XJ |YJ) =

d

n
H
(
X̃|Ỹ

)
where J ∼ Unif (J ), X̃ := XJ , Ỹ := YJ , with J being
independent of (X,Y). Similarly,

R2 =
1

n
H (Y) =

1

n
H (Y|X) =

1

n
H (YJ c |X)

≤ 1

n
H (YJ c |XJ c) ≤ 1

n

∑
j∈J c

H (Yj |Xj)

=

(
1− d

n

)
H
(
YĴ |XĴ Ĵ

)
≤
(

1− d

n

)
H
(
YĴ |XĴ

)
=

(
1− d

n

)
H
(
Ŷ |X̂

)
,

where Ĵ ∼ Unif (J c), X̂ := XĴ , Ŷ := YĴ , with Ĵ being
independent of (X,Y, J). On the other hand,

d

n
PX̃Ỹ +

(
1− d

n

)
PX̂Ŷ =

1

n

∑
j∈J

PXjYj
+

1

n

∑
j∈J c

PXjYj

=
1

n

n∑
j=1

PXjYj = E(X,Y) [TXY] = TXY ,

where TXY denotes the joint type of a random pairs (X,Y)
which is hence also random. This completes the proof for the
outer bound.

We next study when the asymptotic biclique rate region
is a triangle region. We obtain the following necessary and
sufficient condition. The proof is provided in [13].
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Proposition 1. Let TXY be a joint n-type such that
HT (X|Y ), HT (Y |X) > 0. Then, the asymptotic biclique rate
region R (TXY ) is a triangle region, i.e.,

R (TXY ) = R4 (TXY ) :=
⋃

0≤α≤1

{
(R1, R2) :

R1 ≤ αHT (X|Y ) , R2 ≤ (1− α)HT (Y |X)
}
,

if and only if TXY satisfies that TX|Y (x|y)1/HT (X|Y ) =
TY |X(y|x)1/HT (Y |X) for all x, y.

The condition in Proposition 1 is satisfied by the joint n-
types TXY which have marginals TX = Unif (X ) , TY =
Unif (Y) and satisfy at least one of the following two
conditions: 1) |X | = |Y|; 2) X,Y are independent under
the distribution TXY . Hence, Proposition 1 implies that the
asymptotic biclique rate region is a triangle region if the joint
n-type TXY is a doubly symmetric binary source (DSBS).

The Han and Kobayashi [4] approximate version of the
asymptotic biclique rate region equals

R∗∗ (TXY ) :=
⋃

PXY W :PXY =TXY ,X↔W↔Y

{
(R1, R2) :

R1 ≤ H (X|W ) , R2 ≤ H (Y |W )
}
.

By Theorem 1, this is {(R1, R2) : E∗ (R1, R2) = 0} and
hence R∗ (TXY ) ⊆ R∗∗ (TXY ). In fact, it is a strict subset
if the joint n-type TXY is a DSBS or Unif(X × Y). This
difference is caused by the “type overflow” effect, crystallized
by the first author and Tan in [14]. Let (R1, R2) be a pair
such that E∗ (R1, R2) = 0. Let (A,B) be an optimal pair
of subsets attaining E∗ (R1, R2). All the sequences in A
have type TX , and all the sequences in B have type TY .
However, in general, the joint types of (x,y) ∈ A×B might
“overflow” from the target joint type TXY . The number of
non-overflowed sequence pairs (i.e., |(A×B) ∩ TTXY

|) has
exponent R1 + R2, since E∗ (R1, R2) = 0. This means that
not too many sequence pairs have overflowed. However, if
type overflow is forbidden, then we must reduce the rates of
A and B to satisfy this requirement.

III. STRONG SMALL-SET EXPANSION THEOREM

In this section, we study the noninteractive simulation
problem with (X,Y) ∼ PnXY , where PXY is a joint distri-
bution defined on X × Y . We still assume that X ,Y are the
supports of PX , PY , and moreover, are finite. Let E1,max :=
− log (minx PX (x)) , E2,max := − log (miny PY (y)) . For
E1 ∈ [0, E1,max] , E2 ∈ [0, E2,max], define

Θn (E1, E2) := − 1

n
log max

A⊆Xn,B⊆Yn:

Pn
X(A)≤e−nE1 ,

Pn
Y (B)≤e−nE2

PnXY (A×B) . (14)

Define Θn (E1, E2) similarly by replacing the maximiza-
tion with minimization. Denote their limits as n →
∞ as Θ (E1, E2) ,Θ (E1, E2). Ordentlich, Polyanskiy, and
Shayevitz [15] studied Θ (E1, E2) ,Θ (E1, E2) for binary
symmetric distributions PX,Y In this section, we consider

an arbitrary distribution PX,Y and prove the following two
theorems, which improve the forward and reverse small-set
expansion theorems in [7], [8], [9]. The proofs are in [13], and
are based on coupling techniques and information-theoretic
techniques similar to those used in the proof of Theorem 1.

Theorem 3 (Forward and Reverse Strong Small-Set Expansion
Theorems). For E1 ∈ [0, E1,max] , E2 ∈ [0, E2,max],

Θ (E1, E2) = Θ∗ (E1, E2)

:= min
QXY W :D(QX|W ‖PX |QW )≥E1,

D(QY |W ‖PY |QW )≥E2

D
(
QXY |W ‖PXY |QW

)
,

(15)

Θ (E1, E2) =


Θ
∗

(E1, E2) if E1, E2 > 0;

E1 if E2 = 0;

E2 if E1 = 0,

(16)

where for E1 ∈ [0, E1,max] , E2 ∈ [0, E2,max],

Θ
∗

(E1, E2) := max
QW ,QX|W ,QY |W :

D(QX|W ‖PX |QW )≤E1,

D(QY |W ‖PY |QW )≤E2

min
QXY |W∈C(QX|W ,QY |W )

D
(
QXY |W ‖PXY |QW

)
. (17)

Moreover, Θn (E1, E2) ≥ Θ∗ (E1, E2) and Θn (E1, E2) ≤
the RHS of (16) for any n ≥ 1 and E1 ∈ [0, E1,max] , E2 ∈
[0, E2,max]. Without loss of optimality, the alphabet size of W
in both (15) and (17) can be assumed to be no larger than 3.

IV. CONCLUDING REMARKS

The minimal density and the independent-set rate region are
also of interest. Given 1 ≤M1 ≤ |TTX

|, 1 ≤M2 ≤ |TTY
|, the

minimal density of subgraphs with size (M1,M2) is

Γn (M1,M2) := min
A⊆TTX

,B⊆TTY
:|A|=M1,|B|=M2

ρ (G [A,B]) .

Given n and TXY , define the independent-set rate region as

Rn (TXY ) :=
{

(R1, R2) ∈ R(n)
X ×R(n)

Y :

Γn
(
enR1 , enR2

)
= 0
}
.

It still remains open to determine the asymptotics of the
independent-set rate region.

In addition, it is worth nothing that in the extended version
of this conference paper [13], our results and proof ideas here
are also applied to strengthen some classical hypercontractivity
inequalities [16], [17], [18].
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