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Abstract: Evolutionary dynamics in ecological communities are often repeatable, but how 11 
species interactions affect the distribution of evolutionary outcomes at different levels of 12 
biological organization is unclear. Here, we use barcode lineage tracking to experimentally 13 
address this gap in a facultatively mutualistic community formed by the alga Chlamydomonas 14 
reinhardtii and the yeast Saccharomyces cerevisiae. We find that interactions with the alga alter 15 
the magnitude but not the sign of the fitness effects of adaptive mutations in yeast, changing the 16 
distribution of mutants contending for fixation. In the presence of alga, most contending mutants 17 
reinforce the mutualism and make evolution more repeatable at the community level. Thus, 18 
ecological interactions not only alter the trajectory of evolution but also dictate its repeatability at 19 
multiple levels of biological organization. 20 
One-sentence summary: The mutualistic interaction between two species drives evolution to 21 
increase both species’ yields.  22 
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Multispecies communities in similar environments often evolve repeatably toward similar 23 
ecological states (1–6). A significant degree of repeatability in eco-evolutionary dynamics is 24 
expected when selection is driven by the same abiotic environment and when it acts upon 25 
standing genetic variation (7, 8). In contrast, new mutations and/or selection driven by species 26 
interactions can increase the role of priority effects, epistasis and coevolution, which may steer 27 
the eco-evolutionary dynamics towards new states and reduce its repeatability (8–11). However, 28 
repeatability even in this regime is surprisingly high (12–22), suggesting that eco-evolutionary 29 
dynamics are subject to additional poorly understood constraints. 30 
Evolution experiments of microbial monocultures have shown that the genetic architecture of 31 
organisms constrains the distribution of evolutionary outcomes for traits at higher levels of 32 
biological organization (23, 24), so that evolution at these levels is highly repeatable (25, 26). In 33 
multispecies communities, however, the distribution of eco-evolutionary outcomes depends not 34 
only on the genetic architecture of community members but also on the ecological interactions 35 
between them. Interactions can steer community evolution towards novel ecological states (14, 36 
19, 27) and influence its repeatability (17, 28–31). However, how ecological interactions alter 37 
the underlying distribution of eco-evolutionary outcomes at various levels of organization, to our 38 
knowledge, has never been directly measured. We set out to address this gap in an experimental 39 
microbial community for which there is no prior expectation about how ecological interactions 40 
would affect the eco-evolutionary dynamics. 41 
This community consists of two microbes, the yeast Saccharomyces cerevisiae and the alga 42 
Chlamydomonas reinhardtii (32). We propagate them over multiple cycles of growth and 43 
dilution in well-mixed and well-lit conditions (SM). In these conditions, both species reproduce 44 
asexually and interact via competition and nutrient exchange, forming a facultative mutualism in 45 
a medium containing ammonia and nitrite as potential sources of nitrogen, as well as glucose and 46 
CO2 as potential sources of carbon (30; SM). Yeast growth is inhibited by algae at the beginning 47 
of each cycle, likely due to competition for the initial supply of ammonia (Figure S1; SM). Once 48 
this supply is exhausted, the alga switches to metabolizing nitrite (which cannot be metabolized 49 
by yeast) and excretes ammonia, thereby supporting yeast survival while also benefiting from 50 
additional dissolved CO2 produced by the yeast (Figure S1) (32). There is no clear a priori 51 
expectation that this community would repeatably evolve towards certain ecological states. For 52 
example, yeast could adapt by improving its competitive ability (e.g. by increasing the rate of 53 
ammonia consumption), potentially driving the alga to extinction, or by improving its 54 
cooperation (e.g. by limiting its ammonia uptake early in the growth cycle to receive a fitness 55 
benefit later in the cycle) and thereby strengthen the mutualism. 56 
Using this community, we aim to tease apart how ecological interactions affect the distribution 57 
of eco-evolutionary outcomes. This distribution can change over time because of epistasis within 58 
each species (33) and coevolution between species (19, 34). To avoid these complications, we 59 
characterize single adaptive mutations rather than multi-step eco-evolutionary trajectories, 60 
capturing adaptive mutants before any of them reach high enough frequencies to significantly 61 
modify the environment. We focus on adaptive mutations available to one community member, 62 
the yeast, because it is more likely to acquire the first adaptive mutations in our community (see 63 
SM). To this end, we leverage barcode lineage tracking (BLT) technology (35, 36) to sample 64 
adaptive mutations in yeast. We examine how ecological interactions affect the diversity of these 65 
mutations at the genetic, phenotypic, fitness and community levels by comparing mutations that 66 
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arise in yeast evolving in co-culture with alga (“C-condition”) versus those that arise in yeast 67 
evolving alone (“A-condition”). 68 
We first asked whether and how ecological interactions with algae change the diversity of 69 
adaptive mutations available to yeast in terms of genotype and fitness. We carried out five 70 
replicate BLT experiments in yeast in A- and C-conditions (SM). In each population, we tracked 71 
the frequencies of about 5×105 neutral DNA barcodes integrated into the yeast genome (37) over 72 
17 growth and dilution cycles. We identified a total of 14,098 and 14,523 adapted lineages across 73 
all replicates in the A- and C-conditions, respectively (SM; Figures S2–S5). The similarity of 74 
these numbers suggests that the presence of algae does not dramatically change the rate at which 75 
beneficial mutations arise in yeast. 76 
Each adapted lineage is expected to initially carry a single driver mutation (35), which allows us 77 
to estimate the competitive fitness effects of these mutations from barcode frequency trajectories 78 
(SM). The resulting distributions of fitness effects of beneficial mutations (bDFEs) are much 79 
broader than would be expected from measurement noise alone in both conditions (SM), 80 
indicating that yeast has access to multiple adaptive mutations with different fitness effects. 81 
Furthermore, the bDFEs in A- and C-conditions are different (Figures 1A). Specifically, 82 
ecological interactions with algae reduce the bDFE median (1.60 in A vs. 1.50 in C; P < 10–4, 83 
permutation test) but increase the width of the distribution (interquartile range (IQR) = 0.31 in A 84 
vs. IQR = 0.37 in C; P < 10–4, permutation test). This increase in width is associated with the 85 
appearance of two peaks with higher relative fitness values around 2.0 and 2.5 (Figure 1A). 86 
We then asked whether interactions with algae alter only the fitness effects of beneficial 87 
mutations available to yeast or also change which mutations are beneficial. In other words, do 88 
some mutations that are beneficial in the A-condition become deleterious in the C-condition 89 
and/or vice versa? We randomly sampled 219 yeast clones from distinct adapted lineages in the 90 
A-condition (“A-mutants”) and 189 yeast clones from distinct adapted lineages in the C-91 
condition (“C-mutants”). Clones were sampled at cycle nine where we expect that most adapted 92 
lineages are still driven by single beneficial mutations. We used competition assays to measure 93 
the fitness of all A- and C-mutants in both A- and C-conditions relative to the ancestor (SM; 94 
Figures S6–S8; Data S1). These direct fitness estimates are concordant with the estimates from 95 
the BLT experiment (see SM; Figure S9). We find that the C-mutants have significantly higher 96 
fitness in their “home” C-condition than the A-mutants (P = 5×10–5, t-test) and the A-mutants are 97 
more fit in the A-condition than the C-mutants (P = 7×10–5), consistent with a signature of local 98 
adaptation. Interactions with algae significantly alter the fitness of 43% (178/410) of  A- and C-99 
mutants. However, fitness is positively correlated between the two conditions for all mutants 100 
(Figure 1B; R = 0.70, P < 10–10) and crucially, none of the A- or C-mutants are deleterious in 101 
their “non-home” condition. Therefore, the presence of algae changes the fitness benefits 102 
provided by adaptive mutations, but does not measurably alter which mutations are beneficial. 103 
Given that all sampled mutants remain beneficial in the presence and absence of algae and 104 
mutant fitness is correlated between the two treatments, we expect that the set of A-mutants 105 
would be genetically indistinguishable from the set of C-mutants. To test this expectation, we 106 
sequenced the genomes of 181 out of 189 C-mutants, 215 out of 221 A-mutants, as well as eight 107 
evolved neutral and 24 ancestral isolates as controls (SM; Figures S10–S13; Data S2). We found 108 
176 large chromosomal duplications and deletions across 14 loci in the genomes of A- and C-109 
mutants and none in the ancestral or neutral isolates. All of these large mutations are likely 110 
adaptive (see SM), with a typical A- and C-mutant carrying 0.39 and 0.51 of them, respectively. 111 
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We also discovered 185 small indels and point mutations at 63 loci where mutations are found in 112 
A- and C-mutants more often than expected by chance (see SM), suggesting that these small 113 
mutations are also adaptive. A typical A- and C-mutant carries 0.35 and 0.60 of them, 114 
respectively. Overall, we identified 361 beneficial mutations across 77 loci in 250 out of 396 115 
adapted mutants, with each A- and C-mutant carrying on average 0.74 and 1.11 such mutations, 116 
respectively (Table S1, Data S2). 117 

We measured the diversity of adaptive mutations carried by A- and C-mutants using the 118 
probability of genetic parallelism, Pg, i.e., the probability that two random clones share a 119 
mutation at the same driver locus, so that lower Pg values imply higher diversity. We find that 120 
the diversity is high in both A- and C-mutants (Pg = 6.0% and 8.5%, respectively), but there is no 121 
statistically significant difference (see SM). Nevertheless, there are large differences in the 122 
frequency distribution of driver mutations among A- and C-mutants (Figures 1C and S14, Data 123 
S3; P = 5×10–8, χ2-test), suggesting that the chances for the same beneficial mutation to rise to 124 
high enough frequency and be sampled are markedly different between the A- and C-conditions. 125 
The starkest difference is observed for chromosome XIV: 10% (18/181) of C-mutants carry a 126 
whole chromosome amplification but none of the 215 A-mutants do (Figures 1C and S14), 127 
despite chrXIV-3n mutations being beneficial in both conditions (Figure 1B). 128 
This unexpected observation can be explained by the dynamics of rapid adaptation in 129 
populations with limited recombination. In such populations, clonal interference can prevent 130 
weak or rare beneficial mutations from reaching even moderately high frequencies (38, 39). 131 
Therefore, the same beneficial mutation can have dramatically different chances of being 132 
sampled in the two conditions if it is located in different parts of the respective bDFEs. 133 
Consistent with this explanation, a typical chrXIV-3n mutant is 2.05 times more fit per cycle 134 
than the ancestor and ranks in the top 11% of most fit mutants in the C-condition, while being 135 
only 1.59 times more fit than the ancestor and ranking in the 53rd percentile in the A-condition 136 
(Figure 1C). Other mutations with strong discrepancies in their representation among A- and C-137 
mutants show similar shifts in their fitness effects and rank (Figure 1C, Data S3). In general, 138 
interactions with algae shift the fitness ranks of mutants between conditions by 14% on average. 139 
We used evolutionary simulations to confirm that these differences are sufficient to explain the 140 
observed genetic differences between A- and C-mutants (see SM; Figures S15, S16, Table S2). 141 

Mutations that are more likely to be in our sample also have higher chances of winning the 142 
clonal competition, i.e., they are contending for fixation. Thus, our results imply that the 143 
presence of alga does not change the sign of fitness effects of mutations, but nevertheless 144 
markedly shifts which mutations contend for fixation. We wondered what ecological 145 
consequences these mutations would have if they actually spread and fixed in the yeast 146 
population. In a mutualistic community, adaptive mutations may alter public-good production in 147 
a way that either enhances or weakens the mutualism (40, 41). In our community, yeast and 148 
algae both compete and cooperate, so that mutations ranging from mutualism-weakening to 149 
mutualism-enhancing could conceivably be beneficial to yeast. However, it is unclear how 150 
commonly mutations with different ecological effects contribute to adaptation and whether the 151 
presence of alga shifts these contributions relative to the abiotic condition. To address these 152 
questions, we selected 28 C-mutants and 31 A-mutants that span the diversity of contending 153 
mutations (SM). We then quantified their impact on the strength of mutualism by growing each 154 
mutant in coculture with the ancestral alga strain (i.e., forming “mutant communities”) and 155 
measuring the relative “yields” of both species, defined as their densities at the end of the 5-day 156 
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growth cycle. We report these yields as the percent change in final density relative to the 157 
ancestral community (SM, Figure S17). 158 

We find that yeast and alga yields are positively correlated (Figure 2A), as may be expected for a 159 
mutualism. 14% (8/59) of tested adaptive mutants significantly decrease the yield of at least one 160 
of the species, while 47% (28/59) of mutants significantly increase it. The median change in 161 
yield is +63% for yeast (IQR = [+4%, +170%]) and +47% for alga (IQR = [+1%, +113%]), with 162 
some mutations decreasing the yield by as much as 58% and others increasing it by as much as 163 
as 265% (Figure 2A). Thus, the ecological consequences of the first adaptive step in yeast are 164 
highly diverse across both A- and C-mutants, with a trend towards stronger mutualism (as 165 
quantified by species yields). 166 

While evolution of monocultures typically does not lead to higher yields (42), we observed that 167 
contending yeast mutants in our experiment typically increase the yields of both species, 168 
suggesting a positive correlation between competitive fitness and yield. While we indeed observe 169 
such correlations in both conditions, they are strong in the C-condition (Figures 2B and S18) but 170 
weak in the A-condition (Figures 2C and S18). Consistent with this observation, the yields of 171 
yeast and alga in C-mutant communities are on average higher by 103% (P = 3×10–4, 172 
permutation t-test) and 57% (P = 0.004) than those in the A-mutant communities, which 173 
themselves are higher by 37% (P = 0.02) and 28% (P = 0.03) than those of the ancestral 174 
community. The yield differences between A- and C-mutant communities remain large and 175 
significant after accounting for the frequency with which different driver mutations are observed 176 
(P < 2×10–5, weighted t-test, Figure S19). 177 
The presence of alga may also affect the repeatability of evolution at the community level. We 178 
measure such repeatability by the probability of ecological parallelism Pe, i.e., the probability 179 
that two random mutant communities have the same sign change (relative to the ancestral 180 
community) in yeast yield and the same sign change in alga yield. Pe = 33.5% for the A-mutant 181 
communities, compared to the null expectation of 25%, indicating that evolution in the A-182 
condition would be only slightly more repeatable at the community level than expected by 183 
chance. In contrast, Pe = 77% for C-mutant communities, indicating that by shifting selection 184 
towards mutualism-enhancing mutants, the interactions with alga make community evolution 185 
much more repeatable at the ecological level (P = 0.006, permutation and resampling, see SM).  186 

Does selection in the presence of alga favor increased cooperation in yeast directly or is 187 
cooperation a byproduct of selection for another trait (22, 43)? Natural selection can directly 188 
favor rare mutualism-enhancing (more cooperative) yeast mutants only if such mutants 189 
preferentially receive fitness benefits from their alga partners (44). Our system is well-mixed, so 190 
that all diffusible benefits are shared by the entire culture, eliminating any potential fitness 191 
advantage of a rare mutualism-enhancing mutant (22, 45). The only way to prevent such 192 
diffusion and ensure preferential benefit exchange with an alga partner is for such a mutant to 193 
form a physical association with the partner (20). However, we found no evidence for such 194 
associations (Figure S20; SM). Therefore, the increased cooperation of C-mutants is likely a 195 
byproduct (pleiotropic effect) of selection for one or more other traits. 196 

We sought to identify traits under selection in the C-condition that could cause yields to increase. 197 
Both competitive fitness and yield depend on fundamental physiological and life-history traits 198 
embodied by yeast and algae, such as their growth rates, mortalities, nutrient consumption 199 
efficiencies, etc (42). Since measuring all potentially relevant traits was not feasible in this study, 200 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


6 

we focused on two key traits that are known to be under selection in environments with variable 201 
nutrient availability. The maximum population growth rate, r, is important for competitive 202 
fitness when resources are abundant (46, 47), particularly in the initial phase of each growth 203 
cycle. The carrying capacity, K, is an indicator of nutrient utilization efficiency, which is 204 
important for competitive fitness when resources are scarce (46, 47), particularly in the later 205 
phase of each growth cycle. We estimated these two traits for all 59 mutants from monoculture 206 
growth-curve measurements (Figures S21, S22; SM), reasoning that these intrinsic traits would 207 
be relevant in both A- and C-conditions. 208 

We observe that the sampled adaptive mutations have diverse effects on r and K. 32% (19/59) 209 
and 36% (21/59) of mutants have significantly higher and lower r than the ancestor, respectively, 210 
with the median change in r being –0.4% (IQR = [–12%, +7%]). At the same time, 31% (18/59) 211 
and 7% (4/59) of mutants reach either significantly higher or lower K than the ancestor, 212 
respectively, with the median change in K being +7% (IQR = [–2%, +16%]). Consistent with 213 
other systems (48–50), we observe a trade-off between the effects of mutations on r and K 214 
(Figure 3A). 215 
To test whether r and K are under selection, we examined the correlation between these traits and 216 
competitive fitness among all 59 assayed mutants. We find weak or no correlation between either 217 
r or K and fitness in the A-condition (Figure S23A, B). As a result, the A-mutants have r and K 218 
values indistinguishable from the ancestor (average ∆r = +2%, P = 0.27; average ∆K = +3%; P = 219 
0.29; permutation t-test). In contrast, fitness in the C-condition is positively correlated with K 220 
(Figure 3B, R = 0.51, P < 10–4) and negatively correlated with r (Figure S23C, R = –0.50, P < 221 
10–4), consistent with the observed r vs K trade-off. C-mutants reach K values on average 16% 222 
higher than the ancestor (P = 4×10–4, permutation t-test) and 13% higher than A-mutants (P = 223 
0.04). C-mutants also have a significantly lower r than both the ancestor (average ∆r = –15%, P 224 
= 0.001) and A-mutants (∆r = –17%, P = 7×10–4). We infer that there is no detectable selection 225 
on r and K in the absence of alga, while the presence of alga induces selection that favors yeast 226 
mutants with lower r and higher K. This shift in selection increases the probability of phenotypic 227 
parallelism (defined analogously to Pe; SM) from 31.2% for the A-mutants to 43.5% for the C-228 
mutants, but this increase is not statistically significant (P = 0.21, SM). 229 
Finally, as expected, we find a significant positive correlation between the effects of mutations 230 
on K and the yields of both species in mutant communities (Figures 3C and S23D). Taken 231 
together, our observations suggest a plausible model for how adaptive evolution can favor 232 
mutualism enhancement in the absence of partner-fidelity feedbacks: ecological interactions with 233 
algae intensify selection for yeast mutants that use resources more efficiently (i.e., those that 234 
reach higher K), and once these mutants spread in the yeast population, they support higher 235 
yields of both members of the community. Whether mutualistic partners generally induce 236 
selection for lower r and/or higher K and whether such selection consistently leads to increased 237 
yields of both species remains to be determined. 238 

The biochemical and cellular mechanisms by which the observed mutations enhance the 239 
mutualism are currently unknown. ChrXIV-3n amplifications are sometimes adaptive under 240 
ammonium limitation, possibly driven by the copy number of the gene MEP2 that encodes a high 241 
affinity ammonium transporter (51). These adaptations are particularly beneficial to yeast in the 242 
C-condition, possibly because the alga provides a continuous but low flux of ammonia. ChrIV-243 
1n mutations could be driven by the loss of the gene SIR4, which regulates chromatin silencing 244 
(52) and has been previously implicated in adaptation in yeast (53). Mutations in genes HEM1, 245 
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HEM2 and HEM3 provide much larger fitness benefits in the C-condition compared to the A-246 
condition (Data S3) possibly because they shift the metabolic balance towards fermentation at 247 
higher concentrations of dissolved oxygen produced by the alga (see SM). Elucidating these and 248 
other mechanisms of physiological adaptation may help us understand how and why microbial 249 
mutualists modify the environment to favor stronger mutualism and apparently improve 250 
coexistence (54, 55) even in the absence of partner-fidelity feedbacks. 251 

Overall, our results suggest that similar to abiotic conditions (53, 56, 57) microbial adaptation in 252 
the community context is driven by many mutations that are genetically and phenotypically 253 
diverse. Ecological interactions may not open up or close down any major adaptive paths; 254 
nevertheless, by altering the benefits of mutations and their rank order, interactions may canalize 255 
evolutionary trajectories at the community level. Thus, our results support the view (58) that 256 
despite the daunting complexity at the genetic level, evolution at the community level may be 257 
relatively simple and repeatable. 258 
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 471 

Figures 472 
Figure 1. Ecological interactions with alga alter adaptation in yeast at fitness and genetic levels. (A) Yeast 473 
bDFE when evolving alone (top) and in the community with alga (bottom). Each histogram is constructed based on 474 
five replicates of the BLT experiment. Dashed blue lines show the outlines of the bDFE in the other condition. Each 475 
colored point indicates the average fitness of a mutant carrying a mutation at the indicated adaptive locus (same data 476 
as in panel B, see SM for details). Large copy-number variants are referred to as chrx-yn, where x is the chromosome 477 
number and y is the number of copies. (B) Fitness of A- and C-mutants measured in competition assays in the A- 478 
and C-conditions. Mutants carrying mutations at the 7 most common driver loci are colored. (C) Distribution of 479 
adaptive mutations among A- and C-mutants. The same 7 most common mutation classes are shown explicitly as in 480 
panels A and B, all other classes are grouped into “Other” (see Data S3 for full distributions). Adaptive mutations 481 
that are expected to be present in our mutants but are not identified are labelled as “Unknown” (see SM for details). 482 
The number of times each locus was independently mutated is given in parentheses. 483 
 484 
 485 
  486 
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Figure 2. Relationship between yields and fitness. (A) Correlation 487 
between yeast and alga yields across communities formed by mutant 488 
yeast and ancestor alga (“mutant communities”). (B) Correlation 489 
between mutant fitness in the original community (C-condition) and 490 
yeast yield in mutant communities. (C) Correlation between mutant 491 
fitness alone (A-condition) and yeast yield in mutant communities. 492 
 493 
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Figure 3. Relationships between the effects of adaptive mutations 497 
on growth parameters, fitness and yield. The mutational effects ∆r 498 
and ∆K are reported as fractional differences relative to the ancestral 499 
values (see SM). (A) Correlation between ∆K and ∆r among adapted 500 
mutants. (B) Correlation between ∆K and their relative fitness in the 501 
original community among adapted mutants. (C) Correlation between 502 
∆K and yeast yield in mutant communities. 503 
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1 Data availability

All raw sequencing data is available on the US National Center for Biotechnology Infor-
mation (NCBI) Sequence Read Archive (SRA) under BioProject PRJNA735257. Other
input data (e.g. growth data, variant calls, community yield etc) and analysis scripts can
be found on Dryad at

https://doi.org/10.6076/D14K5X.

The latest version of the barcode counting software BarcodeCounter2 can be found at

https://github.com/sandeepvenkataram/BarcodeCounter2.git.

2 Barcode lineage tracking (BLT) experiment and

data analysis

2.1 Strains

We used the strain CC1690 of the alga Chlamydomonas reinhardtii as in Ref. [32], which
can also be obtained from the Chlamydomonas Resource Center.

The barcoded library of the diploid yeast Saccharomyces cerevisiae strain GSY6699 is
described in Ref. [37] and was kindly provided by Prof. Gavin Sherlock. This is a diploid,
prototrophic strain derived from the BY genetic background, homozygous throughout the
genome, except for locus YBR209W, where one copy of a DNA barcode was integrated,
as described in Ref. [35]. Our starting library consists of about 5 × 105 clones, each
of which carries a unique DNA barcode at this locus. In principle, the genomes of all
clones should be identical everywhere else prior to our barcode lineage tracking (BLT)
experiment. However, as discussed in detail below (see Sections 2.6.2 and 4), we found
that our initial population already contains some pre-existing polymorphisms, which arose
prior to our BLT experiment.

2.2 Growth conditions

Both yeast monocultures and yeast-alga communities were cultured in a defined basic
medium (“CYM medium”, see Ref. [32]) supplemented with 2% dextrose, 10mM KNO2

and 0.5mM NH4Cl, which we thereafter refer to as the “growth medium”. All cultures
were grown at room temperature (21°C) on a platform shaker with 70 foot-candles of
constant light (three Feit Electric #73985 suspended approximately 24 inches above the
platform shaker) shaking at 125 RPM, unless noted otherwise.
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When yeast is grown alone in this medium (the A-condition), it reaches the final
density of 2.49 × 106 cells per mL. When yeast and alga are co-cultured together (the
C-condition), yeast and alga reach final densities (yields) of 2.72 × 106 cells per mL and
5.63× 105 cells per mL, respectively. In all subsequent experiments, we grow our cultures
in 10mL of the growth medium in 50mL flasks, unless otherwise noted.

2.3 BLT experiment

2.3.1 Pre-cultures

Prior to the BLT experiment, yeast and alga were pre-cultured in 50mL of growth medium
in 250mL delong baffled flasks (PYREX #C4446250) for two and 10 days respectively.
Alga pre-cultures were started from colonies. To start yeast pre-cultures, the barcoded
yeast library was thawed from frozen stock at room temperature, then 500µL were trans-
ferred into 50mL of the growth medium.

2.3.2 Initiation and propagation

We conducted five replicate BLT experiments for each of two treatments, yeast mono-
culture (the A-condition) and yeast + algae community (the C-condition). All BLT
experiments were conducted in 10mL of the growth medium in 50mL Erlenmeyer flasks
(FisherSci #FS2650050) capped with 50mL plastic beakers (VWR #414004-145) to main-
tain sterility. Each monoculture BLT experiment was initiated from 100µL of the yeast
pre-culture. Each community BLT experiment was initiated from 100µL of the 1:1 (v/v)
yeast and alga mixture. During the BLT experiment, cultures were grown on a platform
shaker with constant light as described above for 5 days before being diluted 1:100 for the
next growth cycle (100µL into 10mL fresh media). A total of 17 growth/dilution cycles
were completed.

2.3.3 Culture preservation

Glycerol stocks were taken of the yeast pre-culture and yeast + algae inoculum mixture,
as well as at the end of every odd growth cycle. Separate stocks were stored for DNA
extraction and cell isolation purposes with two replicates each, for a total of 4 stocks per
culture per time point. Cell isolation stocks were created by aliquoting 1.5mL of culture
into 500µL of 80% glycerol, mixing by vortex and storing at −80°C. DNA stocks were
created by removing the supernatant of the remaining 7mL of culture via centrifugation
and resuspending in 2mL of 20% glycerol (80% glycerol diluted with 1x PBS), which was
then stored as two separate 1mL stocks at −80°C.
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2.4 Justification for ignoring adaptation in alga

Here we argue that ignoring adaptation in alga in our experiment is justified, based on
our current knowledge of rates of adaptation in yeast and alga.

In the C-condition, that is, when yeast and alga are co-cultured together, yeast and
alga reach final yields of 2.72 × 107 and 5.63 × 106 cells, respectively, with the bottle-
neck sizes being by a factor of 100 smaller. Since there is no evidence of alga or yeast
death in this condition (Figure S1), we estimate that both species undergo on aver-
age log2 100 = 6.64 doublings per cycle. Numerous evolution experiments with yeast
populations of comparable or smaller size across various environmental conditions have
shown that adaptive mutations arise and reach high frequencies within 250 generations
or less [26, 35, 56, 59, 60]. Although much less is known about the rates of adaptation
in Chlamydomonas reinhardtii, one study reports a failure of the alga (strain CC2344) to
adapt within 1000 generations of evolution at the bottleneck size of 105 cells, i.e., twice as
large as in our experiment [61]. Another study reports 35% growth rate gain after 1880
generations of evolution in alga strain CC-503 cw92 mt+ [62], although the bottleneck
size in that experiment was about 20 times larger than in ours and detectable gains ap-
peared only after about 300 generations. These studies suggest that yeast has a much
larger potential to gain adaptive mutations than alga, at least in laboratory conditions.

2.5 Barcode sequencing

2.5.1 DNA isolation

DNA stocks were thawed and DNA isolated using a “salting out” method, based on meth-
ods from Refs. [63, 64]. The thawed stocks were first centrifuged, and the supernatant
removed. The pellet was resuspended in 300µL 3% SET buffer (3% SDS, 10mM EDTA,
30mM Tris) and incubated at 65°C for 15 minutes. The tube was cooled to room temper-
ature by immersing in room temperature water, then 2.5µg of RNAse A was added. After
vortexing, the mixture was incubated at 37°C for 1 hour, after which it was cooled on ice.
150µL of 3M Sodium Acetate was then added and mixed by inversion, after which it was
cooled on ice for a further 5 minutes before centrifuging at maximum speed for 10 minutes
on a tabletop centrifuge. The supernatant was transferred to a new tube and DNA was
precipitated by the addition of 500µL isopropanol, which was mixed by inversion and
then pelleted by centrifugation for 1 minute at maximum speed. The supernatant was
removed and the pellet was washed with 200µL cold 70% ethanol without vortexing before
being allowed to dry inverted for 30 minutes at room temperature before the DNA was
resuspended in 50µL molecular biology grade water.
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2.5.2 Sequencing library preparation

The barcode locus was amplified through a 2-step PCR protocol, slightly modified from
the protocol described in Ref. [36]. The first amplification added inline indices for sample
multiplexing, universal molecular identifiers for removing PCR duplicates during analysis
and Illumina-compatible adapter sequences for a second round of amplification with stan-
dard Illumina Nextera XT primers. For the first reaction, 10µL of template was mixed
with 25µL of OneTaq 2x Master Mix, 1µL of 25mM MgCl2, 1µL each of the forward
and reverse primers (at 10mM concentration) and 12µL of molecular biology grade water.
Primer sequences are as described in Ref. [36]. This mixture was amplified using the
following conditions:

1. 94°C for 10 min

2. 94°C for 3 min

3. 55°C for 1 min

4. 68°C for 1 min

5. Repeat steps 2–4 for a total of 8 cycles

6. 68°C for 1 min

7. Hold at 4°C

The amplified product was purified using Ampure XP magnetic beads following the proto-
col in Ref. [65] (with 50µL of beads used per sample). Then, 10µL of the purified product
was used as the template for a second reaction along with Illumina Nextera XT primers
(1µL of 10mM stock for each primer), 1µL of 25mM MgCl2, 25µL of OneTaq 2x Master
Mix and 12µL of water with the following reaction conditions:

1. 94°C for 5 min

2. 94°C for 30 sec

3. 62°C for 30 sec

4. 68°C for 30 sec

5. Repeat steps 2–4 for a total of 25 cycles

6. 68°C for 5 min

7. Hold at 4°C
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The PCR products were purified using Ampure XP beads as before. 5µL of each
sample was mixed to form a pool for Illumina sequencing, concentrated using Ampure
beads as before with equal volume of beads as pooled sample, size selected via agarose
gel extraction to isolate the correct amplicon before submitting for sequencing.

2.5.3 Sequencing

Populations 1 and 6 were initially sequenced on a MiSeq platform. All populations (in-
cluding 1 and 6) were then also sequenced on a HiSeq platform. Data from both runs were
combined for all downstream analysis of frequency trajectories. We obtained an average
of 2.6 million paired-end reads per time point.

2.6 BLT data analysis

2.6.1 Barcode identification and counting

To identify and count DNA barcodes, we used a custom python pipeline BarcodeCounter2
available at https://github.com/sandeepvenkataram/BarcodeCounter2. The package
first uses the BLASTn tool to identify sequences known to flank the barcode region within
each read pair. If reads contain inline indices, samples can be demultiplexed. Universal
molecular identifier (UMI) sequences can be extracted if present within the reads. If
a sequence contains multiple barcode regions, these extracted regions are concatenated
together. To account for sequencing errors, DNAClust [66] is then used to cluster the
concatenated barcodes into clusters of nearly identical sequences which presumably orig-
inated from the same DNA molecule. The output of DNAClust is a FASTA database
of all unique barcode sequences present in the library. Then, BWA [67] is used to map
the barcode sequences from each sample onto the clustered FASTA database. Mapping of
reads is necessary because the clustering process removes identifying information associat-
ing barcode sequences with samples from which they came. PCR duplicates are removed
based on the UMI sequences, and the total number of unique reads corresponding to
every barcode in the FASTA database is counted. The final output is a tab-delimited
table of the read counts for every barcode in every sample. The software is designed to
be user-friendly and highly customizable, with simple text files describing the input files,
multiplexed samples and a sequence template describing the structure of the sequenced
reads. The package is built using python3, and uses the popular BioPython package. The
package has multithreading support, and can be run on both personal computers and
supercomputing clusters.

When generating the database of all unique barcode sequences, we clustered sequences
at 95% similarity, so that, given that the length of our barcode is 52bp, sequences with
3 or more basepair differences were merged into the same cluster. This set of clustered
sequences was generated only once using all of the time points from all sequenced popu-
lations. Using this method, we identified a total of 557,087 unique barcodes in our data
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with about 527,745 barcodes present at the initial time point, consistent with [35]. The
number of detected barcodes gradually declines over time, as would be expected in the
presence of demographic stochasticity and adaptive evolution (Figures S2B and S3B).
Since only roughly 68,475 are detectable in any population by cycle 11 (i.e., about 13%
of those present initially), we constrained our subsequent analysis to cycles 1 through 11.

2.6.2 Identification of adapted lineages and estimation of their fitness

The raw barcode frequency data for all our populations are shown in Figures S2, S3 (note
that populations were sequenced only at odd cycles 1, 3, 5, 7, 9, 11, 13, 15 and 17). Our
goal in analyzing these data was two fold. First, in order to physically isolate yeast clones
that carry adaptive mutations (see Section 4), we needed to identify those yeast lineages
that acquired an adaptive mutation (adapted lineages) among those that did not (neutral
lineages). Second, in order to construct the distributions of fitness effects of beneficial
mutations (bDFEs), we needed to estimate the competitive fitness of adapted lineages
relative to the ancestoral yeast strain.

We were unable to successfully apply the BLT data analysis methods developed pre-
viously [35, 68] to our data primarily because of the high extinction rate of our barcodes.
Thus, we developed a new iterative heuristic procedure described below that overcomes
this problem. Direct fitness measurements of isolated clones (see Section 3) confirmed
that the heuristic procedure works well.

Iterative heuristic procedure for identification of adapted lineages and esti-
mating their selection coefficients.

1. Initialization. Neutral barcodes for iteration 1 are identified separately for every
pair of consecutive time points. For a given time point pair, we define the set of
neutral lineages at iteration 1 as those lineages whose frequency (a) does not exceed
10−4 at the earlier time point and (b) increases by less than 100-fold between cycle
1 and cycle 11.

2. Estimation of mean fitness. Given the set of neutral lineages at iteration k−1,
we obtain their total frequency x

(k−1)
neut (t) at each cycle t. The frequency of neutral

lineages is governed by equation

xneut(t+ 1) ≈ xneut(t)e
−s̄(t),

where s̄(t) is the mean selection coefficient (per cycle) of the population at cycle
t. Thus, we estimate the mean selection coefficient of the population at cycle t at
iteration k as

s̄(k) = − log
x

(k−1)
neut (t+ 1)

x
(k−1)
neut (t)

.

The mean fitness at cycle t is then defined as 1 + s̄(k)(t).
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3. Estimation of fitness of individual lineages. The frequency xi(t) of lineage
i with selection coefficient si (per cycle) relative to the ancestor is governed by the
equation

xi(t+ 1) = xi(t) e
si−s̄(t) = xi(t)

xneut(t+ 1)

xneut(t)
esi .

Thus, for every lineage i (including those that were called as neutral at the previous

iteration) we estimate s
(k)
i at iteration k at time point t as

s
(k)
i (t) = log

xi(t+ 1)

x
(k−1)
neut (t+ 1)

− log
xi(t)

x
(k−1)
neut (t)

. (1)

These estimates are made for every pair of consecutive time points between cycles
1 and 11. If xi(t) = 0 and xi(t + 1) = 0, the time point pair is excluded from the
calculations. If only one of the two frequencies is 0, then this frequency is set to 0.5
/ total read depth. To obtain the final estimate of the selection coefficient s

(k)
i for

lineage i at iteration k, we average all s
(k)
i (t), weighting each s

(k)
i (t) by the number

of reads for lineage i at time t. We calculate the standard error σ
(k)
i with the same

weighting. The relative fitness of lineage i is then defined as 1 + s
(k)
i .

4. Calling adapted lineages. Lineage i is called adapted at iteration k if s
(k)
i >

2σ
(k)
i .

5. Updating the set of neutral lineages. We calculate the coefficient of variation
for each lineage i as CV = σ

(k)
i /s

(k)
i . We include any lineage i into the new set of

neutral lineages at iteration k if (a) its maximum frequency does not exceed 10−4

between cycles 1 and 11, and (b) either the CV of the lineage is more the median

CV across all lineages or if s
(k)
i < 0 (see Figure S4A).

6. Termination. The procedure is terminated when the set of neutral lineages at
iteration k differs by less than 5% compared to the set at the iteration k − 1.

Our procedure converges to a stable set of neutral lineages within 5 iterations. We
report fitness values relative to the ancestral strain on a per-cycle basis, rather than
the per-generation basis typically used in the literature because our cultures experience
growth phases other than exponential growth, as discussed in Refs. [36, 57].

Validation. We performed two “sanity” checks to ensure that our analysis gives
reasonable results. First, mean fitness is expected to monotonically increase over time in
each population. We find that mean fitness does indeed increase monotonically during
the first 11 cycles in all but one populations (Figure S4B). Second, we visually inspected
how well individual lineage trajectories are fitted by equation (1) and found that these
fits are generally very good (Figure S4C,D shows typical fits).
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Pre-existing mutations. Some mutations could have arisen prior to the beginning of
the experiment, specifically, prior to splitting the barcoded yeast library between five A
and five C replicates. Such pre-existing mutations cause two issues with the downstream
analysis and interpretation. First, they make it more difficult to identify causal mutations
that increase fitness of adapted lineages. We discuss this problem and how we address
it in Section 4. The second issue is that pre-existing beneficial mutations confound the
inference of bDFEs and their comparison across treatments. Specifically, if multiple lin-
eages (within the same population or in different replicate populations) carry the same
pre-exisiting beneficial mutation and are identified as such, this mutation will be counted
multiple times and will therefore inflate the size of a fitness class in the inferred bDFE.

To diagnose this problem, we note that there are two types of pre-existing mutations.
Those that arose after the transformation that introduced barcodes into our strain (type
I) and those that arose before this transformation (type II). All pre-existing mutations of
type I are linked to different barcodes. Therefore, these mutations can be identified by
comparing barcodes of lineages identified as adapted in different populations. We found
that pairs of populations have on average 416 (15%) adapted lineages with a common
barcode, whereas only 23 (0.8%) would be expected by chance (Figure S5). Barcodes are
more often shared between A populations than other types of population pairs (22% vs
13%, t-test P = 10−10). We suspect that this is because the majority of adapted mutants
have higher relative fitness in the A-condition than the C-condition (Figure 1B in the
main text), such that pre-existing mutations are more likely to reach high frequencies and
be detected in the A-condition. We eliminate pre-existing beneficial mutations of type
I from our bDFE analysis by constructing these distributions from lineages with unique
barcodes.

The same pre-existing mutation of type II can be linked to multiple barcodes and
is indistinguishable in the barcode data from multiple independently arising mutations.
However, pre-existing mutations of type II can be identified in the genome sequencing
data. As discussed in Section 4.5, we find no evidence of such mutations, suggesting that
they must be rare in our populations.

2.6.3 Permutation tests for differences in bDFE across conditions

We randomly relabel adaptive lineages as being from either the A- or C-condition, and
calculate the difference in bDFE median and IQR from this permuted data. This proce-
dure was conducted 10,000 times, to generate a random distribution of median and IQR
difference values. The observed median and IQR difference were larger than those of all
permuted values.
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2.7 Results

The median standard error in our estimates of fitness of adaptive mutants was 0.02, and
median CV was 0.08 (Figure S4A). The standard deviation of the bDFEs is much larger,
0.22 for A populations and 0.33 for C populations, suggesting that there are multiple
classes of adaptive mutations available to yeast in both conditions.

3 Competitive fitness assays

3.1 Clone isolation and barcode genotyping

We selected cycle 9 to isolate adapted mutants because the estimated fraction of adapted
lineages in our evolving populations was large, but each adapted lineage was still at a low
frequency (Figures S2 and S3). Specifically, 92% of a typical population in the A-condition
consisted of adapted lineages, with the median frequency of an individual adapted lineage
being 9×10−5 (∼ 22 cells per lineage at the bottleneck), and 73% of a typical population in
the C-condition consisted of adapted lineages, with the median frequency of an individual
adapted lineage being 7× 10−5 (∼ 19 cells per lineage at the bottleneck).

Isolation of random clones. To isolate adapted clones, frozen stocks of the monocul-
ture and community populations from cycle 9 were thawed, plated onto standard 100mm
Petri dishes with CYM + 1% agarose at a dilution of approximately 100 cells per dish,
and incubated at 30°C for three days (algae do not grow at 30°C). 88 random colonies
were isolated from each population, i.e., a total of 440 clones from the A- and C-condition
each. Eight additional clones from each population were harvested at cycle 17 and are
present in the pools described below, but they are not included in any of the analyses
presented in this study. Each colony was transferred into a well of a 96-well plate (Corning
3370) with 200µL of CYM media and incubated for two days at 30°C. 10µLwas used for
each of the “population”, “row” and “column” pools described below. Then, 50µL of 80%
glycerol was added to each well, and the plate was stored at −70°C.

Barcode genotyping. The DNA barcodes of all isolated clones were identified by se-
quencing, using the Sudoku method [70, 71]. Specifically, 10µL of each clone was pooled
into 10 “population” pools (one pool for each source population), eight “row” pools and 12
“column” pools. DNA barcodes in each pool were amplified and sequenced as described
in Section 2.5. We expect that a given combination of row, column and population pools
would have a single barcode in common, defining the isolate in the corresponding well
of the appropriate plate. We determined all barcodes present in the intersection of each
combinations of row, column population pool. If a single barcode is identified in the in-
tersection, the corresponding well is assigned that barcode identity. If multiple barcodes
or no barcode are identified, the associated clone is removed from further analysis.
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Generation of A, C and N pools. We used the heuristic procedure described in
Section 2.6.2 to classify clones with identified barcodes into three groups described below:
non-adapted, adapted in the C-condition or adapted in the A-condition. Clones were
pooled into three libraries defined by their membership in these three groups as follows.
To construct each pool, we transferred 20µL of thawed frozen stock of each isolate into
a 2mL 96-deep-well plate (Corning P-2ML-SQ-C) filled with 1.8mL of growth media
supplemented to 10mM ammonia. After incubating these plates at 30°C for three days,
we formed each pool by combining 200µL of individual saturated cultures. Three pools
were stored in 20% glycerol at −70°C.

For the sake of efficiency, clone pooling was based on an earlier version of the heuristic
procedure described in Section 2.6.2 used for the classification of lineages. The current ver-
sion of the procedure (as described in Section 2.6.2) classifies lineages slightly differently.
As a result, pools do not perfectly correspond to the classification of clones according to
the current heuristic procedure, which is provided below. This minor discrepancy has no
bearing on our results because the final classification of clones is based on fitness estimates
from the competition assays (see Section 3.3). The A pool contains 214 clones that are
classified as adapted in A populations. The C pool contains 223 clones that are classified
as adapted in C populations. The N pool contains 144 clones, 84 of which are classified
as neutral from the BLT analysis (i.e., not adapted in either A or C populations), 29
clones that are classified as adapted in the A-condition and 31 clones that are classified
as adapted in the C-condition. Thus, we measured competitive fitness for a total of 581
clones.

3.2 Competition assay experiment

To conduct the competitive fitness assays, we pre-cultured each of the three pools (N, A
and C; see above) separately in the growth media for two days. We also pre-cultured algae
for 10 days, starting from colonies. We then combined A, C and N pools in the 1:1:18
ratio. We carried out three replicate competitions in the A-condition and three replicate
competitions in the C-condition. To this end, we inoculated each of the six replicates
with 100µL of the combined A/C/N pool. In addition, the three C-condition replicates
were inoculated with 100µL of the algae preculture (∼ 106 cells / mL).

All replicates were propagated in conditions identical to the BLT experiment for a
total of five growth cycles. Glycerol stocks were made at the end of each growth cycle
after the dilution step by centrifuging the full culture volume, removing the spent media
and resuspending the pellet in 2mL of 20% glycerol + PBS. Two 1mL aliquots of this
glycerol suspension were stored at −70°C. One of these aliquots was harvested for DNA
extraction and barcode sequencing using protocols described in Section 2.6.2.
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3.3 Competition assay data analysis

Barcodes were identified and counted as described above (see Section 2.6.1). The resulting
barcode count data were analyzed as described in Ref. [36] using software available
at https://github.com/barcoding-bfa/fitness-assay-python. Briefly, the 84 non-
adapted barcodes (as defined from the BLT analysis described in Section 2.6.2) from
the N pool were used to estimate the mean fitness trajectories and the additive and
multiplicative noise parameters for each pair of time points in each assay (see Ref. [36]
for details). These estimates were used to estimate the fitness of every lineage the assay
for each pair of neighboring time points along with the error in the estimate. The variance
of an estimate for a given pair of time points was calculated as the inverse of the read
depth at the earlier of the two timepoints + the estimated multiplicative noise parameter.
Inverse variance weighting was then used to combine estimates across all time point pairs
to generate a single fitness and error estimate for each lineage in each replicate. Replicate
estimates were combined using further inverse variance weighting to generate the final
fitness estimate for each isolate in the A- and C-conditions. For each mutant in each
condition, we also calculated the 95% confidence interval around the fitness estimate based
on the variability in fitness measurements between replicates (assuming that measurement
errors are distributed normally).

3.4 Results

We obtained barcode frequency data at cycles 1, 2, 3, 4 and 5 (Figure S6). Fitness
estimates of individual lineages were concordant between replicates (Figure S7), with
relatively low estimation errors (Figure S8). Estimated fitness of sampled clones in both
conditions along with errors and confidence intervals are provided in Data S1.

Determining valid clones for further analysis. Of the 581 clones that were pooled
in the competition assays, we filtered out many clones from downstream analysis via a
number of filters. First, clones that were sampled at cycle 17 were excluded from further
analysis, as were clones that lacked a valid fitness measurement in either environment or
had variance in fitness measurement in either environment ≥ 0.5. These filters removed
151 of 581 from consideration, leaving us with 430 clones for further analysis.

Calling adapted clones. We use the competition assay data to call adapted clones.
A clone is called as adapted in a given environment if its estimated competitive fitness in
that environment is more than two standard errors greater than 1 (2.3% FDR based on
normal distribution). We identified 401 clones as adapted in the A-condition (see Data
S1). 221 of them were sampled from the A-condition and we refer to them as the A-
mutants. We identified 402 clones as adapted in the C-condition (see Data S1). 189 of
them were sampled from the C-condition and we refer to them as the C-mutants. There
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are 16 clones that are not adapted in either A or C condition, 13 clones that are adapted
in the C-condition but not in the A-condition and 12 clones that are adapted in the A-
condition but not in the C-condition. Of the 16 clones not adapted in either the A or
C conditions, 12 come from lineages determined not to be adaptive in the BLT analysis,
which we define as our neutral clones (Data S1). The genomes of 215 A-mutants, 181
C-mutants and eight neutral mutants were later sequenced, as described in Section 4.

Relationship between fitness estimated in competition assays and in BLT ex-
periments. The correlation between fitness of adapted mutants (i.e., A- and C-mutants)
estimated in the competition assays and those estimated from the BLT data is reasonably
good (Figure S9, R = 0.57, P = 8.77× 10−37), but there are also some systematic differ-
ences. Specifically, competition assays over-estimate BLT fitness in the A-condition and
under-estimate it in the C-condition (Figure S9). We discuss possible reasons for these
discrepancies below.

When we place mutants onto the bDFE in the non-home environment (as in Figure
1A in the main text) and when we estimate the probability of sampling a mutation in the
non-home environment (see Section 5), we need to know the BLT fitness of mutants in
their non-home environment. We have no direct measurements of BLT fitness of A- or C-
mutants in their non-home environment, but we do have the non-home fitness estimates
of all mutants in competition assays. However, directly substituting BLT fitness for
competitive fitness would lead to biases due to the aforementioned discrepancies between
the two estimates. To correct for these discrepancies, we linearly regress BLT fitness of
A-mutants against their competitive fitness in the A-condition and we regress BLT fitness
of C-mutants against their competitive fitness in the C-condition (see Figure S9). We
then use these regressions to estimate the BLT fitness of C-mutants in the A-condition
and A-mutants in the C-condition.

Difference in adaptive mutant fitness between conditions. Mutant’s fitness were
called as significantly different between A and C-conditions if the two 95% confidence
intervals did not overlap. We discovered 178 such clones (108 A-mutants and 70 C-
mutants), all of which were adaptive in both environments.

Possible reasons for the slight discrepancy between BLT and competitive fit-
ness estimates. We can think of at least three possible reasons for this discrepancy.
One possible reason is that we use a different set of reference lineages in the BLT experi-
ments and competition assays. It is possible, for example, that some of the lineages that
we use as reference in the competition assay are not in fact neutral in one or both of the
conditions.

Another possible reason is that fitness is weakly frequency- dependent (this is ex-
pected in batch culture experiments [72]). Frequency dependence can manifest itself in a
discrepancy between BLT and competition assays because lineages are present at much

14

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2021. ; https://doi.org/10.1101/2021.07.07.451547doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.07.451547
http://creativecommons.org/licenses/by/4.0/


higher frequencies in the competition assays than in the BLT experiments. Specifically,
the median frequency of an adapted clone (as defined from the competition analysis) in
the competition assay is 4× 10−4 at the initial time point, whereas the median frequency
of an adapted lineage is 3 × 10−6 at the initial time point (the frequency of the adapted
mutant driving the lineage frequency must be even lower since many if not most adapted
lineage also initially contain non-adapted individuals).

A third possible reason is that the media composition in the BLT experiments and
in competition assays could be somewhat different at later stages of the growth cycle
because population compositions are different and the media composition is determined
by the collective metabolism of all variants present in the population.

Given the overall concordance of fitness estimates, we decided that dissecting these
relatively minor effects was not particularly important within the scope of the present
work.

4 Genome sequencing and analysis

We sequenced full genomes of 219 A-mutants, 187 C-mutants, 8 non-adapted evolved
isolates and 24 ancestral isolates sampled from the inoculum population. Sequencing
failed for four A-mutant and six C-mutants, leaving us with 215 A-mutants and 181 C-
mutants with sequenced genomes, 8 non-adapted evolved isolates and 24 ancestral isolates
(a total of 428 clones). For all remaining clones, we obtained high quality genome data
(> 4x coverage, mean coverage of 24x).

4.1 DNA extraction and library preparation and sequencing

DNA was extracted using a modified variant of the YeaStar yeast genomic DNA extrac-
tion kit Protocol I (Zymo research #D2002). In particular, a number of solutions were
produced in-house, including YD Digestion buffer (1% SDS + 50mM Na2PO4), DNA
Wash buffer (80% ethanol + 20mM NaCl) and Elution Buffer (10mM Tris-HCl). 0.2ul
of 25mg/mL RNAse A (Zymo research #E1008-8) was used for each sample, as well as 1
Unit (0.2µL of 5U/µL stock solution) of Zymolyase (Zymo research #E1004).

Libraries were prepared using the method described in Ref. [65] and sequenced on the
Illumina HiSeq4000 platform. Sequencing services were provided by Novogene Inc. and
the UCSD Institute for Genomic Medicine.

4.2 Identification of new mutations

4.2.1 Small Variant calling

Reads were first trimmed using Trimmomatic with parameters
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HEADCROP:10

ILLUMINACLIP:NexteraPE-PE.fa:2:30:10

LEADING:3

TRAILING:3

SLIDINGWINDOW:4:15

MINLEN:36

Reads were then mapped with bowtie2 (v. 2.3.4.3) using -sensitive parameters to the
Saccharomyces cerevisiae reference genome (v. R64-2-1) with the addition of an extra
“chromosome” defining the barcode locus. Reads were sorted, duplicates marked and
short variants were called and filtered using GATK (v. 4.0.11.0) AddOrReplaceRead-
Groups, MarkDuplicates, HaplotypeCaller and VariantFiltration, respectively. Variant
filtration used the filter expression

QD<10.0 || FS>20.0 || MQ<20.0 || AN>10 || AF<0.25 || QUAL<100.0 || DP<3

All other commands used default parameters. Variants were annotated with ENSEMBL
Variant Effect Predictor using their command-line tool. As many variants had multiple
possible annotations, coding sequence annotations (“missense variant”, “frameshift variant”,
“stop gained” and “stop lost”) were prioritized over synonymous annotations, which were
prioritized over upstream noncoding annotations (within 2kb of a gene) and finally down-
stream noncoding annotations (again within 2kb of a gene). Variants further of 2kb of any
gene or those within 2kb but with no annotations were removed as likely nonfunctional.
Finally, variants with less than 3 reads of support for the derived allele were removed as
putative false positives.

Additional filtering to remove erroneous and ancestral variants. The procedure
described above identified 34,720 small variants across 428 sequenced isolates. We expect
that many of these variants are sequencing and/or mapping errors that our procedure
failed to remove, as well as fixed differences from the reference genome present in the
ancestor of our experiment. To further filter out such spurious variants, we estimate
the ancestral allele frequency spectrum from 24 sequenced ancestral clones and compare
it with a typical allele frequency spectrum of 24 adapted mutants (averaged over 1000
random draws of 24 adapted mutants). As Figure S12 shows, the latter has an excess of
variants that are present only in one clone, as expected for de novo mutations. The fact
that there is no excess of mutations present in two or more adapted clones suggests that
all or most mutations observed in two or more adapted clones are not adaptive. After
removing 303 such variants, each of which was detected in 110 isolates on average, we are
left with 1842 mutations across 428 sequenced strains (4.30 per clone), of which 33 strains
carry no detectable derived small variants (Table S1 and Data S2).
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4.2.2 Copy number variant calling

To identify large copy number variants (CNVs), we generate coverage plots for each se-
quenced clone by averaging read depth into 1kb windows with bedtools genomecov.
An example plot is shown in Figure S10A. As coverage negatively correlates with the dis-
tance to telomeres (Figure S11), we re-calculate coverage after correcting for this variation
(Figure S10B). We then manually identify CNVs from these corrected coverage plots by
visualizing the coverage distribution at higher resolution (Figure S10C).

4.3 Identification of driver loci carrying small adaptive muta-
tions

To differentiate adaptive “driver” mutations among residual ancestral and erroneous vari-
ants as well as nonadaptive “passenger” mutations, we rely on the idea of genetic paral-
lelism, i.e., the fact that loci under selection gain mutations in independent lineages more
often than expected by chance [23, 26]. We follow a similar procedure to the method
described in Ref. [26]. For each gene, we define its multiplicity as the number of clones
that carry a mutation in this gene. Since shorter genes require lower multiplicity to be
called adaptive, we bin genes by their length into six 1kb bins plus one bin for genes with
length ≥ 6kb. For each length bin ` = 1, 2, . . . , 7, we count the number of genes whose
multiplicity is m = 1, 2, . . . , denoting these counts by k`m. We obtain the number of such
genes 〈k`m〉 expected in the absence of selection as follows.

We randomly and independently redistribute N = 1718 mutations (small mutations
in adaptive clones after removing multiple mutations in the same gene in the same clone)
across 7226 yeast genes 1000 times, with the probability for each mutation landing in
a given gene being proportional to its length + 2kb. Then, the observed excess num-
ber of mutations with multiplicity m in length bin ` is a`m = max

{
0, k`m − 〈k`m〉

}
.

These excess mutations are assumed to be adaptive. We then redistribute the remaining
bN−

∑7
`=1

∑
m a`mc potentially non-adaptive mutations as before, and identify additional

excess mutations as adaptive. We repeat this procedure iteratively until the total number
excess mutations is ≤ 1. We achieve convergence after 8 iterations and thereby obtain
the final expected counts 〈k`m〉.

Next, we would like to identify specific loci that carry adaptive mutations as those with
multiplicities above some threshold. Specifically, we would like to determine multiplicity
thresholds M` for each length bin ` = 1, . . . , 7, so that all loci in that bin with multiplicities
≥M` are called adaptive. To do so, for all ` we calculate the expected FDR at the given
multiplicity threshold M` as

β(M`) =

∑
m≥M`

〈k`m〉∑
m′≥M`

k`m′
.

We choose the multiplicity thresholds M`, so that β(M`) ≤ β∗ for all ` and for some
desired β∗. We use β∗ = 10%.
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We estimate the overall FDR as

β =

∑7
`=1

∑
m≥M`

〈k`m〉∑7
`′=1

∑
m′≥M`′

k`′m′
.

We conduct this analysis considering all 396 sequenced adaptive isolates together, as well
as A- and C-mutants separately. Loci identified in any one of these three analyses are
defined as putative adaptive loci. After identifying putative adaptive loci this way, we
assume that all discovered mutations in these loci are adaptive (Data S3). We confirm
that there is an excess of small adaptive mutations in adapted isolates when compared to
ancestral isolates (Figure S13B).

4.4 Probability of genetic parallelism

We calculate the probability of genetic parallelism Pg for a set of mutants as follows. We
consider every pair of mutants, and calculate the proportion that have a mutation in at
least one common adaptive locus (including both small variants and CNVs). Adaptive
isolates with no mutations at the identified adaptive loci are assumed to have an adaptive
mutation at a locus that is not shared with any other isolate in the set.

To test whether A- and C-mutants have different probabilities of genetic parallelism,
we reshuffle the evolution treatment label (i.e. Alone vs Community) across all A- and
C-mutants and calculate Pg for both resulting groups. We obtain the absolute value
of the difference in Pg between the two groups, |∆Pg|, in 1000 such permutations, and
estimate the P -value as the fraction of permutations where |∆Pg| exceeds the observed
difference. We find that P = 0.06, suggesting that there is no significant difference in the
probabilities of genetic parallelism between A- and C-mutants.

4.5 Results

Small mutations. The distributions of derived small variants per clone is shown in
Figure S13A and their summary statistics are given in Table S1. These data show that
the majority of small variants detected in the evolved clones are still likely ancestral or
erroneous. We can estimate the expected number of adaptive small variants as follows.
A typical adapted isolate carries 1.18 more mutations compared to an ancestral isolate
(Figures S12, S13, Table S1). However, not all of these mutations may be adaptive.
Indeed, given that small indels and single-nucleotide mutations occur at rate 3×10−3 per
genome per generation [69], we expect 0.18 of such mutations to have occurred on the line
of descent of any isolate sampled at cycle 9 (∼ 60 generations). Based on this estimate,
a typical adapted clone is expected to carry 1.18 - 0.18 = 1.00 adaptive mutation.

One potential problem with this estimate is that our yeast strain may have a somewhat
different mutation rate than the strain used in Ref. [69]. We can obtain an alternative
estimate for the number of adaptive mutations per clone by comparing adapted clones
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with the neutral ones. We find that a typical neutral clone carries 1.96 ± 0.88 more
mutations than a typical ancestral isolate1 (Table S1), which is greater than 1.18 extra
mutations carried by a typical adapted clone. Thus, it is possible that a typical adapted
clone carries no beneficial small mutations.

The problem with the second estimate is that some of the clones identified as neutral
may in fact carry adaptive mutations2. Therefore, we use both methods to obtain bounds
on the number of adaptive mutations carried by a typical adapted clone and conclude that
a typical adapted clone is expected to carry between 0 and 1 small adaptive mutations.
Carrying out the same calculations for the A- and C-mutants separately, we estimate that
a typical A-mutant carries between 0 and 1.34 small adaptive mutations (so that between
0 and 288 out of 1008 small mutations found in A-mutants are expected to be adaptive),
and a typical C-mutant carries between 0 and 0.61 small adaptive mutations (so that
between 0 and 110 out of 717 small mutations found in C-mutants are expected to be
adaptive; Table S1).

Using genetic parallelism, we identify 185 mutations at 63 loci as adaptive (on average
0.47 mutations per clone), consistent with our expectation. 76 of these mutations at 39
loci are found in 60 A-mutants (on average 0.35 mutations per clone) and 109 mutations
at 56 loci are found in 81 C-mutants (on average 0.60 mutations per clone; Table S1).

Large CNVs. We identified 176 CNVs across 167 strains (Data S2), of which 85 are
aneuploidies. The distribution of CNVs per clone is shown in Figure S13C and summary
statistics are given in Table S1. These data show that none of the ancestral or neutral
isolates carry CNVs and that most adapted clones carry zero or one such mutation.

Since we found no CNV events in 32 sequenced ancestral and neutral isolates (Fig-
ure S13C, Table S1), we estimate the frequency of observing a non-adaptive CNV event
as at most 1/32. Thus, we expect at most 12.4 such events among 396 sequenced adaptive
clones. In fact, we found 176 CNV events, which suggests that all or almost all of them
are adaptive (expected FDR ≤ 0.07; Data S3).

We found no statistical relationship between the number of CNV mutations and the
number of identified small mutations per isolate (R = −0.07, P = 0.18).

Total number of identified adaptive mutations per clone. After combining small
mutations and CNVs together, we find that a typical A-mutant carries 0.74 identified
adaptive mutations with 100 A-mutants having no identified adaptive mutations (Fig-
ure S14 and Data S2). A typical C-mutant carries 1.11 identified adaptive mutations
with 46 C-mutants having no identified adaptive mutations (Figure S14 and Data S2).
Since all A- and C-mutants gained fitness in their home environment, each of them must

1This number is larger than 0.18 expected based on the yeast mutation rate, but the difference is not
statistically significant (P = 0.08, t-test, expected µ = 0.18).

2This is confirmed by the fact that we find two mutations at driver loci in the neutral clones (see
Figure S13 and Table S1).
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have at least one adaptive mutation. Therefore, the “unknown” sectors in Figure 1C in
the main text refers to the numbers of A- or C-mutants without any identified adaptive
mutations.

Pre-existing mutations. We use genetic information to test for the prevalence of
preexisting mutations of type II, i.e., those that arose prior to the integration of the DNA
barcodes, so that multiple lineages may carry an adaptive mutation identical by descent.
If such mutations were prevalent, we would expect to observe an excess of adapted clones
carrying identical genetic mutations, compared to ancestral isolates.

CNV events are not suitable for this analysis because they occur at very high rates.
Indeed, many CNVs are aneuploidies, which occur at rate 9.7 × 10−4 per generation
[69]. The only consistent segmental CNVs are ChrIV-1n and ChrIV-3n. ChrIV-1n mu-
tations are localized to identical breakpoints across 64 mutants. However, these break-
points are concordant with highly similar repetitive regions, YDRWTy2-2/YDRCTy1-2
and YDRWTy2-3/YDRCTy1-3. There are three different classes of ChrIV-3n amplifica-
tions across 10 mutants. At least some of these breakpoints also appear to be localized
close to known repetitive regions, including YDRCTy2-1, YDRCTy1-1 and YDRWTy2-2.
Thus, we suspect that these recombination-driven segmental events also occur at high
rates and are not necessarily indicative of pre-existing variation.

As mentioned above, we find no excess of identical small mutations present in multiple
adapted clones (Figure S12). In fact, an identical small mutation is found less frequently
in multiple adapted clones than in multiple ancestral clones, suggesting that some of the
pre-existing genetic variation may have been deleterious.

5 Simulations of evolutionary dynamics and the es-

timation of rates of adaptive mutations

We found that the sets of A- and C-mutants are genetically distinct (Figures 1D in the
main text, S14 and Data S3), despite all of them being more fit than the ancestor in
both environments. In this section, we show that this somewhat puzzling observation can
be explained by the differences in the evolutionary dynamics in the concurrent mutation
regime [73].

There are two key differences between the A- and C-conditions. First, the bDFEs
are different (Figure 1A in the main text), resulting in different increases of population’s
mean fitness over time. Second, the fitness rank orders of adaptive mutations are also
different (Figure 1A,B in the main text). These two facts imply that in the concurrent
mutation regime the chances for a given mutation to escape drift while rare and reach
a certain frequency and be sampled can be substantially different in the two conditions.
Next, we develop a quantitative version of this argument.
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As described in Section 4, we classify all discovered adaptive mutations into mutation
classes by the type of CNV or the gene in or near which the mutation occurred (Data
S3). Let kAim and kCim be the number of sequenced A- or C-mutants that carry a mutation
from class m sampled from the replicate population i = 1, 2, 3, 4, 5 (see Table S2). We
would like to know whether the differences between kAim and kCim can be explained by the
observed differences in the bDFEs and by differences in the fitness benefits provided by
mutations of class m in the A- and C-conditions.

The challenge is that the probability Pr {k; s, U} of observing k mutants of a certain
type in a sample from a given population depends not only on the selection coefficients s
of adaptive mutations of this type (which we have measured, as described in Section 3)
but also on the unknown rate U at which such mutations arise. Therefore, we first find the
mutation rates that fit our data and confirm that these rates are biologically plausible. We
then ask how well the expected numbers of A- and C-mutants carrying specific mutations
match the observed numbers kAim and kCim, given the estimated mutation rates.

5.1 Data

Exclusion of pre-existing mutations. A number of lineages are identified as
adapted in multiple populations, indicative of pre-existing mutations of type I (see Sec-
tion 2.6.2 for more details). Since such mutations do not carry information about the
mutation rate, we exclude them from this analysis. That is, numbers kAim, kCim given in
Table S2 and in Figure S16 are the numbers of sampled and sequenced clones with unique
barcodes.

Selection coefficients. Fitness of individual mutants in the BLT experiments are
estimated based on the competition assay data, as described above (see Section 3.4), and
selection coefficients sAm and sCm are taken as averages over all mutants carrying a mutation
from a given mutation class (Table S2).

Mean fitness trajectories. Our model described below takes into account the fact
that the probability of a newly arisen beneficial mutation to survive genetic drift depends
on how the mean fitness of the population changes over time. Thus, when simulating
the evolutionary dynamics, we use the empirical mean selection coefficient trajectories
s̄A(t) and s̄C(t) in the A- and C-conditions, respectively. s̄A(t) and s̄C(t) are computed
by first averaging the values of the mean selection coefficient (estimated in as described
in Section 2.6.2) over all five replicates and then fitting the logistic function to these data
points (see Figure S4B).
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5.2 Model

To keep the model as simple as possible, we assume that our population has the constant
size N = 2× 106 in both A- and C-conditions, mutations from the mutation class m arise
at (an unknown) rate Um per division in both conditions. We assume that all mutation
from class m confer the same (known) fitness benefits sAm and sBm relative to the ancestor
in the A- and C-condition, respectively (Table S2. We also assume that all mutants are
sampled at time T = 60 generations after the beginning of the experiments in both A- and
C-conditions, which roughly corresponds to cycle 9, assuming log2 100 = 6.64 doublings
per cycle (see Section 2.3).

To estimate the mutation rate Um for mutation class m we define the log-likelihood
function

L(Um) =
1

5

5∑
i=1

log Pr
{
kAim; sAm, Um

}
+

1

5

5∑
i=1

log Pr
{
kCim; sCm, Um

}
. (2)

The sampling probability Pr {k; s, U} depends on the number of lineages that indepen-
dently arose in the population and that carry a mutation of the focal type, as well as on
the frequencies of these lineages at the sampling time point T . It is difficult to obtain
an analytical expression for this probability because it requires integrating over all these
nuisance parameters. We therefore compute the sampling probability numerically, using
population dynamic simulations described below.

5.2.1 Evolutionary dynamics simulations and the estimation of the sampling
probability

As mentioned above, difference in the bDFE between the A- and C-conditions may con-
tribute to the observed differences in the genetic composition of sampled mutants. The
bDFE indirectly affects the survival probability of a newly arisen beneficial mutation
by altering how the mean fitness of the population changes over time. Thus, we design
our simulations so that they match the average empirical mean selection coefficient tra-
jectories in the A- or C-condition (see Section 2.6.2 and Figure S4B). Matching these
trajectories in simulations of the full Wright-Fisher where all mutation classes segregate
simultaneously is difficult. Instead, we simulate the arrival and spread of mutations of
each mutation class separately, while accounting for changes in mean fitness using our
logistic fit of the observed mean fitness trajectories (Figure S4B). This approach also al-
lows us to use branching process approximations described below in Section 5.2.2, which
greatly speed up the calculations.

Since in this section we are concerned with mutants of one mutational class in one
environment, we omit the subscript m and superscripts A/C. In other words, we assume
that the mutations arrive at rate U per individual per generation and have selection
coefficient s, and we sample 88 mutants from this population at time point T = 60.
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In our simulations, we allow for new mutations to arise between 1 cycle prior to the
beginning of the experiment up to cycle 9. Thus, we divide the time interval between −6.6
and T = 60 generations into 260 to 1300 segments of length ∆t = 0.01/s generations.
For each time segment (ti, ti + ∆t), we draw the number of new mutants arising in the
population in that segment from the Poisson distribution with rate N U ∆t. Each of these
mutants survives until the sampling time point T with probability Psurv(T ; s, ti), given
by equation (3) below. For each mutant that survives, we draw its establishment time τ
from the distribution given by equation (4) below. We then set the mutant’s frequency
at the sampling time point to n(T ; sm, τ)/N , where n is given by equation (5) below.
At the end of each simulation run, we obtain a list of frequencies of all independently
arisen mutants carrying mutation of type m. We assume that each independently arisen
mutants is linked to a distinct barcode. We then randomly sample 88 clones from the
whole population and discard those that do not carry the focal adaptive mutation. If
multiple clones are sampled from the same lineage, only one is retained. We further
randomly sub-sample these clones with 97.5% success probability, simulating the small
whole-genome sequencing failure rate, which results in the final number k of sampled
clones that carry a mutation from the focal mutation class. We estimate the probability
of sampling k clones, Pr {k; s, U}, by running 104 simulations and recording the fractions
of simulations where we observe k sampled clones.

5.2.2 Branching process approximations for mutant growth dynamics

Consider a mutant that arises at some point t0 < T on the ancestral background. The early
population dynamics of such mutant lineage can be modeled as a branching process [73].
In particular, Desai and Fisher [73] used the branching process approximation to derive
the probability that a mutant with selection coefficient s that arose at time zero in the
ancestral population (i.e., whose mean selection coefficient is zero) has not gone extinct by
time t and the related probability that the mutant “establishes” at time τ (see equations
(11) and (17) in Ref. [73]). However, this model ignores the fact that the mean fitness of
the population is changing over time while the focal mutant is still at low frequency. In
our experiment, mean fitness changes very rapidly, as can be seen in Figure S4B, which
can significantly alter mutant’s survival probability and its establishment time. Assuming
that the mean selection coefficient trajectory s̄(t) is known (see Section 5.1), we can model
mutant dynamics analogous to Ref. [73] but with a generalized birth-death model with
growth rate 1 + s − s̄(t) and death rate 1. In this model, the probability that a mutant
that arose at time t0 survives until time t is given by

Psurv(t; s, t0) =
ω(t0)

1 + ω(t0)− e−ρ(t,t0)
, (3)
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where

ω(t) = s− s̄(t),

ρ(t, t0) =

∫ t

t0

ω(t′) dt′,

provided that ω(t0) > 0. Conditional on surviving, the probability that this mutant
establishes at time τ is given by

Pest(τ ; s, t0) =
ω(t0)

1 + ω(t0)
exp

[
−ρ(τ, t0)− e−ρ(τ,t0)

1 + ω(t0)

]
. (4)

Once the mutant establishes at time τ and provided that it is still beneficial, i.e., ω(τ) > 0,
its subsequent dynamics are essentially deterministic, so that its size n(t; τ) at time t is
approximately given by

n(t; s, τ) =
eρ(t,τ)

ω(τ)
, (5)

which is analogous to equation (14) in Ref. [73] in the limit t� 1/s.

5.2.3 Estimation of mutation rates by maximum likelihood

For each mutation class m, we compute the likelihood function L(Um) using equation (2)
for 40 discrete values of um = log10 Um between −7 and −3 and interpolate between them
using a polynomial of degree 4. The likelihood function for chrIII-3n mutations is shown
as an example in Figure S15. We find the maximum of this function as a point where
the polynomial approximation of L has a zero first derivative with respect to um. We
estimate the standard error (SE) as the inverse of the square root of Fisher information
[74].

5.3 Results

We estimated the rates of driver mutations at 9 loci that were mutated in at least five
adapted clones, after excluding gene NUM1 where all mutations are likely pre-existing
(see Figure S14, Table S2 and Data S3). Our estimates are generally consistent with
those derived from a published mutation accumulation experiment by Zhu et al [69]. In
particular, our estimate of the rate of small adaptive mutations in genes HEM1 and HEM2
is ∼ 3× 10−7 per generation, consistent with per basepair mutation rate of 1.67 × 10−10

estimated by Zhu et al [69]. Gene YIL169C is an exception, with an estimated rate of
adaptive point mutations of 7.76 × 10−6 per generation. We estimate the rates of large
CNV events to be ∼ 10−5 per generation, again consistent with the genome-wide rate of
aneuploidies of 1.04 × 10−4 estimated by Zhu et al [69]. Our estimate of the segmental
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duplications ChrIV-3n is much lower (3.24 × 10−7 per generation), also consistent with
Ref. [69], although they do not provide a quantitative estimate of such events.

The probability that at least one sequenced mutant from all five replicate populations
has a mutation with a given selection coefficient s and mutation rate U is shown in
Figure S16A, for both A- and C-conditions. As expected, this function is different between
conditions because the mean fitness dynamics are different (Figure S4B). Finally, we
directly compare the observed numbers of mutations of each mutation class with the
expected numbers in the A- and C-conditions and find a reasonable match (Figure S16B).

6 Phenotyping

We selected 31 C-mutants and 28 A-mutants for three types of phenotyping experiments:
measurements of yields in the community, microscopy for detecting possible physical asso-
ciations between yeast and algae, and growth-curve measurements of individual mutants
in the A-condition. We selected these 59 mutants manually to cover a diversity of mu-
tations and fitness values represented in the sampled adaptive mutants (see Data S3 for
the number of mutants selected from each mutation class). Our reasoning for this selec-
tion rather sampling randomly is that mutants carrying the same driver mutation would
have similar phenotypic values3. Then, by selecting clones for phenotyping randomly, we
would not observe rare phenotypes. To account for this over-dispersion in the selection
of mutants we apply the mutation weighting procedure described below in Section 6.4.

6.1 Measurements of species yields in mutant communities

We create mutants communities as follows. On day 0, we inoculate 50mL growth media
(in 250mL non-baffled Erlenmeyer flask) with 1mL of CC1690 C. reinhardtii stock stored
in a liquid nitrogen freezer and incubate for 20 days in our standard conditions. On day
20, 100µL of this culture are transferred to the BLT experiment conditions (10mL of fresh
media in a 50mL flask). Also on day 20, the 60 yeast strains (including the ancestor) are
individually inoculated into the evolution condition from frozen stocks. On day 25, we
form the mutant communities by transferring 100µL of each yeast culture and 200µL of
the algae culture into fresh media (200µL of alga were used instead of 100µL because
the density of algae culture was approximately 50% of that at the initiation of the evo-
lution experiment). These mutant communities are grown for one cycle in our standard
conditions. On day 30, we transfer 100µL of each mutant community into 10mL fresh

3This hypothesis was indeed confirmed. We tested whether mutants carrying the same mutation have
more similar yeast and alga yields, r and K values than random mutants. We carried out these tests for
the 9 clones with chrIII-3n mutations, 5 clones with the chrIV-3n mutations, 3 clones with the chrIV-
1n mutations, 3 clones with HEM2 mutations and 3 clones with HEM3 mutations. In all cases, clones
carrying the same mutation had more similar phenotypes than random mutants, but in most cases the
difference was not statistically significant, presumably due to lack of power.
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media, as in the BLT experiment. We estimate both yeast and alga density on day 35, as
follows. We estimate alga density by measuring chlorophyll b fluorescence. To that end,
we transfer 200µL of each culture into a well of a black-wall clear-bottom 96-well plate
(Corning) and measure fluorescence in a plate reader (Molecular Devices Spectramax i3x,
excitation at 435nm and observation at 670nm). To measure yeast density, we dilute the
culture 1:1600, plate 100µL on Petri dishes with standard media + 1% agarose, grow at
30°C for 3 days and count colonies.

Yield estimates can be found in Data S1. Replicate measurements show reasonably
good correlation (Figure S17). We find a positive correlation between Alga yield and
yeast mutant fitness in both the A- and C-conditions (Figure S18).

6.2 Microscopy

To detect potential physical associations between algae and beneficial yeast mutants, we
created mutant communities as described in Section 6.1. Communities were mounted
on glass microscope slides (Fisher Scientific 12550143), sealed with Dow Corning high
vacuum grease (Amazon B001UHMNW0) and imaged on a light microscope using a 20x
objective with DIC. Figure S20 shows one representative community, the remaining 17
imaged mutants along with WT controls can be found in the Dryad data repository.

6.3 Mutant growth curve measurements

To estimate the growth parameters r and K for individual beneficial mutants, we carried
out growth curve measurement experiments of individual yeast mutants and the ancestor
in the A-condition. To this end, we inoculated all 60 yeast strains (including the ancestor)
individually into the BLT condition (10mL of media in 50mL flasks) from frozen stocks
and propagated them for two cycles (10 days). During the third cycle, we estimated yeast
densities on days 10, 10.5, 11, 11.5, 12, 13, 14 and 15 by plating and colony counting as
described in Section 6.1. The growth curves are shown in Figure S21 and the data are
provided in Data S1.

We estimate r as the slope of the relationship between log (CFU/mL) and time (in
hours) for the three measurements between 12 and 36 hours of growth. We estimate K
as the maximum observed density (in CFU/mL). r and K estimates can be found in
Data S1. Growth rate estimates are well correlated between replicates (Figure S22A).
K measurements are more noisy (Figure S22B). The relationship between these growth
parameters, mutant fitness and species yields in mutant communities are shown in Figure
3 in the main text and Figure S23.
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6.4 Statistical analysis

Mutation weighting. Even though not all A- or C-mutants were phenotyped, we
would like to make certain statistical statements about the distribution of phenotypes
among all sampled A- or C-mutants. We can do so by weighting each phenotyped mutant
according to its mutational class. We do so as follows. First, we associate each of the
59 phenotyped mutants with a single driver mutation. Mutants with multiple driver
mutations are associated only with the driver mutation from the most common mutational
class. Mutants with no identified driver mutations are associated with a unique unknown
mutations. Then, for each of the phenotyped mutants, we weight its measured phenotypic
value by the number of A- or C-mutants that share a mutation class with it, divided by
the number of phenotyped A- or C-mutants that share a mutation class with it. Based on
this reweighted distribution of phenotypes, we calculate various statistics such as kernel
density estimates, correlation between phenotypes and probabilities of parallelism (see
below).

Kernel density estimation. We use kernel density estimate (KDE) to determine how
likely certain phenotypic trait values would occur among random A- and/or C-mutants.
Specifically, we obtain the kernel density estimates DA(y, a) and DC(y, a) for the probabil-
ities that a community formed by algae and a random A- or C-mutant, respectively, would
produce a yeast yield y and alga yield a. To estimate DA, we apply the kde2d function in
R with bandwidth 1 along the x-axis and 4/3 along the y-axis to the mutation-weighted
yield data for the A-mutants. We analogously obtain DC(y, a).

Accounting for measurement errors in statistical tests. As the measurement er-
rors in our estimates of phenotypic values (r, K, yeast yield and algae yield) are quite
large, we use a permutation and resampling procedure to determine the statistical signif-
icance in various tests involving these variables. In this procedure, we permute isolate
labels and resample the phenotypic values associated with each isolate from the normal
distribution with the estimated mean and with the standard deviation set to the estimated
standard error of the mean. We carry out 1000 permutation and resampling instances in
each test.

Phenotypic parallelism analysis. We quantify the degree of parallelism among a
set of mutants with respect to a pair of quantitative traits X and Y by estimating the
probability that, for two randomly selected mutants, trait X changes in the same direction
in both mutants and trait Y changes in the same direction in both mutants. Mathemat-
ically, if one randomly selected mutant has trait increments ∆Xi and ∆Yi relative to
the ancestor and the other mutant has trait increments ∆Xj and ∆Yj, we estimate the
probability that both (∆Xi) (∆Xj) ≥ 0 and (∆Yi) (∆Yj) ≥ 0. This measure of pheno-
typic parallelism emphasizes the direction of change rather than the magnitude, which,
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we believe, is more meaningful than some other quantitative measures, at least for the
community and growth phenotypes that we consider in this study. When we compute
this measure for the pair of yields of mutant communities, in which case X and Y are
yeast and alga yields, we refer to it as the probability of ecological parallelism, Pe. When
we compute this measure for the growth phenotypes, in which case X and Y are r and
K, we refer to it as the probability of phenotypic parallelism, Pph.

We obtain these probabilities of parallelism for the A- and C-mutants after applying
the mutation weighting procedure described above. To determine the statistical signifi-
cance of the difference between the probabilities of parallelism for the A- and C-mutants,
we resample the phenotypic values of each of the 59 mutants from the normal distribu-
tion (see above) and permute mutant genotype and home-environment labels, so that
the genotype and label are always associated with each other but dissociated from the
phenotypic values. We then calculate the parallelism probabilities for these permuted
and resampled data. We estimate the P -value by carrying out this permutation and
resampling procedure 1000 times.

7 Possible function effects of mutations in HEM1,

HEM2 and HEM3 genes

Three critical components of the heme biosynthesis pathway, HEM1, HEM2 and HEM3
are putative targets of adaptation in this study, and provide a substantially larger fitness
benefit in the C-condition than in the A-condition (see Data S2 and Data S3). Most muta-
tions found in these genes probably compromise the function of the encoded enzymes and
lead to a decreased “siphoning” of succinyl-coenzyme A (sCoA) from the TCA cycle and
the production of less heme and/or decoupling of aerobic-driven regulation from aspects
of central metabolism. Although yeast is already capable of performing fermentation un-
der ambient oxygen concentration, we speculate that these mutations enables yeast to
ferment under even higher oxygen concentrations that results from alga photosynthesis.

7.1 HEM1

HEM1 encodes the mitochondrial 5-aminolevulinate synthase (ALAS) that catalyzes the
first committed step of porphyrin through the condensation of glycine and sCoA using
the cofactor pyridoxal 5’-phosphate (PLP):

sCoA + glycine + PLPcofactor 5-aminolevulinate + CoA + CO2 + PLPcofactor

ALAS links heme/cytochrome production with the TCA cycle and aerobic respiration via
sCoA, and thus plays a key role in cellular energetics [75]. ALAS functions as a homodimer
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(with subunits referred to as A and B below). A crystal structure of S. cerevisiae HEM1
is available (https://www.rcsb.org/3d-view/5TXR/1).

We found 5 adaptive mutations in the HEM1 gene, four of which occurred in the
C-mutants (Data S2 and Data S3). A nonsense mutation at residue 166 (out of 548) in
HEM1/ALAS leads to a truncated coding sequence and presumably loss of function. All
other mutations alter amino acids that are conserved in all sequenced S. cerevisiae strains,
which we speculate may also significantly compromise normal HEM1/ALAS function, as
described below.

His107Pro mutation does not seem to be involved in any substrate or co-factor binding
directly, but a change from histidine to a proline, with significant backbone confirmational
constraints may have serious consequences for the folding (and thus function) of the
enzyme. Bracketing this position (107) nearby is Arg91, which plays a critical role in
sCoA binding, and Asn121, which forms an alpha-carboxylate hydrogen bond with the
glycine substrate [76]. Moreover, His107 (of subunit B) forms important structurally
stabilizing side-chain interactions with Glu111 (subunit B) and Lys142 (subunit A) (see
Figure S3 of [76]), which may very well be disrupted with a proline substitution (lacking
a side chain).

Asn152Lys and Asn157Lys mutations occur in a region of the ALAS protein that
becomes ordered upon PLP cofactor binding. N152 plays a direct role in coordinating
sCoA [76], hydrogen bonding with the carboxylate (COO-) moiety of the sCoA succinyl
group. Mutation from asparagine to a positively charged lysine may both disrupt the
formation of this hydrogen bond and prevent a key side-chain interaction between Asn152
(subunit A) and Arg91 (subunit B) that stabilizes key structural elements needed for
PLP cofactor binding (we expect the side chain of mutation Lys152 to repel that of
Arg91 since both are positively charged). Asn157Lys is a few amino acids downstream
from Ile153, which also plays a role in carboxylate/sCoA coordination like Asn121 [76].
Asn157 is adjacent to Ile158 (subunit A) that forms stabilizing main-chain and side-chain
interactions upon PLP cofactor binding with Asn95 and Asn 97 (both on subunit B);
mutation to Lys may disrupt these interactions, along with that of nearby stabilizing
interactions between Arg98 (subunit B) and Ala147 (subunit A), due to positive charge
repulsion between Arg98 and Asn157Lys (see Figure S3 of [76]).

Gly344Cys mutation occurs at a site that does not directly bind substrate or co-factor
but is each bracketed by amino acids that do play key active site roles and could also have
structural consequences as conformational flexibility is likely lost with the change away
from glycine. Gly344 is flanked (although several amino acids away) by K337 that forms
a critical covalent pyridoxyl-lysine bond, and F365 which delineates the sCoA substrate-
binding pocket [76]. Gly344 resides on the juncture between a beta-sheet and alpha-helix
motif in the protein structure, with little space for a side chain. Mutation of this site
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to a cysteine may alter backbone flexibility and the folding of key structural elements.
Gly344 is also in close proximity to Cys182 that forms stabilizing hydrogen bonds with
amino acids Asn129, Thr275, and Gly 276; having another cysteine nearby may very likely
interfere with that hydrogen bonding network.

7.2 HEM2

HEM2 encodes for the cytoplasmic/nuclear, homo-octameric aminolevulinate dehydratase
(ALAD; porphobilinogen synthase), which catalyzes the second step in heme biosynthesis:

5-aminolevulinate porphobilinogen + 2 H2O

A crystal structure of S. cerevisiae HEM2 is also available (https://www.rcsb.org/
3d-view/1AW5/1).

We found 5 adaptive mutations in the HEM2 gene, four of which also occurred in
the C-mutants (Data S2 and Data S3). Two frame-shift mutations lead to premature
stop codons ∼ 100 out of 342 amino acids. The three remaining mutations Ile129Phe,
Val132Phe, and Pro264Arg are predicted to have moderate impact.

Ile129 resides on a beta-strand with a side chain embedded in a relatively hydrophobic
environment. It is unclear what the consequences of mutation Ile129Phe might be, as
phenylalanine is a comparably bulky hydrophobic side chain to isoleucine that would at
first glance seem to be a conservative substitution [77]. However, several aromatic amino
acids are in the vicinity, including Trp30 and Tyr127; Ile129Phe may form aromatic ring-
stacking interactions with these residues to disrupt fold structure.

Val132 is similarly on a beta-strand with a side chain embedded in another nearby
hydrophobic pocket and interface with other non-polar amino acids on alpha-helix. The
Val132Phe mutation could disrupt the tight packing at this interface as phenylalanine
is substantially bulkier than valine. Moreover, Tyr168 is nearby which hydrogen bonds
a key water molecule that is hydrogen-bonded to several other backbone atoms flank-
ing Val132; the Val132Phe mutation may also disrupt this by interacting with Tyr168
through aromatic stacking interactions. Pro264 resides in a sharply kinked beta-turn
between beta-strand and alpha-helix elements, which may be important for constraining
and enabling key interactions of flanking residues with amino acids distributed across dif-
ferent structural elements: Val262/Ser265/Tyr287, Ser265/Glu292, and Lys263/Tyr287
(see https://www.rcsb.org/3d-view/1AW5/1).

Pro264Arg mutation is pronounced not just for the loss of backbone constraint pro-
vided by the imino acid proline [77], but it introduces a large positively charged side
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change that may form “inappropriate” interactions to disrupt monomer fold and subse-
quently oligomerization; these include interactions with nearby: negatively charged amino
acids: Glu292 and Glu313 aromatic amino acids (through cation-pi interactions) Phe211
(normally interacting with Tyr268 via aromatic stacking), Tyr216 (normally interacting
with the backbone of Phe211), Tyr268 (normally interacting with Glu313), and Tyr287
(normally interacting with Lys263 via cation-pi interactions).

7.3 HEM3

HEM3 encodes for the cytoplasmic/nuclear enzyme, porphobilinogen deaminase/hydroxy-
methylbilane synthase (HMBS), which catalyzes the third step in heme biosynthesis in-
volving four molecules of porphobilinogen to make a linear hydroxymethybilane molecule
that looks like a heme/tetrapyrole when “wrapped around”:

4 porphobilinogen + H2O hydroxymethylbilane + 4 NH3

We found 4 adaptive mutations in the HEM3 gene, three of which occurred in the C-
mutants (Data S2 and Data S3). However, since no structure exists for S. cerevisiae
HEM3 protein and since the homology with the human ortholog for which the structure
does exist (https://www.rcsb.org/3d-view/5M6R/1) is rather low (∼ 40% similarity),
predicting the functional effects of these mutations is challenging.
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8 Supplementary Figures

Figure S1. Growth curves for the ancestral strains of the yeast and the alga.
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Figure S2. Lineage trajectories in yeast populations in the A-condition. First five
panels show individual replicate populations A1 through A5. Barcode lineage frequencies are
estimated at every odd cycle. Only the lineages identified as adapted are shown (black lines).
Thick red lines show the total frequency of all non-adapted lineages. Last panel shows the
number of nonextinct lineages over time for all populations.
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Figure S3. Lineage trajectories in yeast populations in the C-condition. Notations
as in Figure S2.
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Figure S4. Estimation of fitness of adapted lineages in the BLT data. A. The mean
lineage fitness (x-axis) is plotted against the coefficient of variation (CV) of the estimate
(y-axis). Blue (red) points indicate lineages identified as adapted (non-adapted). B. Mean
fitness of each population over time. Individual populations are shown in grey, the average
mean fitness trajectory over all populations is shown in black, and a logistic fit to this average
trajectory is shown in red. C, D. Examples of selection coefficient estimation for one lineage
in one A population (C) and one C population (D).
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Figure S5. Evidence for pre-existing mutations in the BLT experiments. For each
population on the x-axis, we plot the fraction of lineages identified as adapted in that
population which are also identified as adapted in every other population (y-axis, black points)
as well as the expectation for this fraction (red points). The expected overlap between
populations i and j is calculated by comparing the observed adaptive lineages in population i
to a random set of lineages from population j that reach detectable frequency. All lineages are
considered equally for sampling.
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Figure S6. Lineage frequency trajectories in the competition assay. Reference
lineages are shown in green, all other lineages are shown in orange.
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Figure S7. Correlation between fitness estimates across replicates of the
competition assay. Line shows the diagonal.
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Figure S8. Mean and the coefficient of variation of the fitness estimates in the
competition assay.
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Figure S9. Correlation between BLT and competitive fitness estimates. Solid and
dashed lines show linear regressions for the A-mutants (in the A-condition) and C-mutants (in
the C-condition), respectively.
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Figure S10. An example illustrating the detection of large chromosomal
duplications and deletions in the genome sequence data. A. 1kb-window coverage plot
for clone 386817 from population C1. B. Same data, after normalization using the relationship
between coverage and chromosomal position shown in Figure S11. C. Focusing on chrIV to
manually identify breakpoints for the chrIV-1n mutation (red lines).
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Figure S11. Relationship between coverage and chromosome position. Mean
coverage in 1kb windows for clone 386817 from population C1 is shown vs distance of locus
from the end of a chromosome.
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Figure S12. Allele frequency spectrum for ancestral and adapted isolates. Each bar
shows the number of small mutations (point mutations and small indels) found in a given
number of ancestral or adapted clones. The distribution for adapted clones is averaged over
1000 random draws of 24 clones.
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Figure S13. Distribution of mutations per clone. A. Number of small mutations
detected per sequenced isolate. Triangles on the x-axis indicate the means of each distribution
(see also Table S1). B. Distribution of the number of identified adaptive small mutations per
isolate. C. Distribution of the number of CNVs per isolate.
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Figure S14. Distribution of adaptive mutations across the most common driver
loci. Only driver loci with 5 or more mutations are shown (see Data S3 for the full
distribution). Colors correspond to Figure 1 in the main text.
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Figure S15. The log-likelihood function for the estimation of the chrIII-3n
beneficial mutation rate.
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Figure S16. Sampling probabilities for adaptive mutations at the most common
driver loci. A. Shades of gray show the probability of sampling at least one clone at a locus
with a given beneficial mutation rate and fitness in the A-condition. The most common loci
are shown by points with the same colors as in Figure 1 in the main text. The beneficial
mutation rate and the selection coefficient for each mutation class are given in Table S2. B.
Same as A but for the C-condition. The mutation rate for each locus is assumed to be the
same in both conditions, but the selection coefficients vary. C. The observed number of
sequenced clones per replicate population with a mutation in each class (black points) and the
numbers expected in our simulations (bars and whiskers) given the measured selection
coefficients and the estimated mutation rates provided in Table S2. Bars show IQR (Q3−Q1),
whiskers show Q1− 1.5× IQR and Q3 + 1.5× IQR.
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Figure S17. Correlation between yield measurements across replicates.
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Figure S18. Correlation between yeast mutant fitness in the original community
and alga yield in the mutant community.
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Figure S19. Estimated yeast and alga yields among random A- and C-mutants.
The heatmap shows the ratio of probabilities of observing a given pair of yields among random
C- and A-mutants. Data points are identical to Figure 2A in the main text. DA and DC were
estimated from these data as described in Section 6.4. Any points where either DA or DC fall
below 0.03 are colored gray.
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Figure S20. Representative microscopy image showing lack of physical
associations between yeast and alga cells. Mutant culture formed by the C-mutant C2
109098 is shown. Some yeast and alga cells are indicated with arrows.
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Figure S21. Mutant growth curves in the A-condition. Growth curves for the 59
adapted yeast mutants are shown, from which r and K values are estimated as described in
Section 6.3. A. Replicate 1. B. Replicate 2.
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Figure S22. Correlation between replicates for r and K measurements.
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Figure S23. Relationship between growth parameters, yields and fitness. A. ∆r vs
fitness of mutants in the A-condition. B. ∆K vs fitness of mutants in the A-condition. C. ∆r
vs fitness in the C-condition. D. ∆K vs alga yield in mutant communities. E. ∆r vs yeast
yield in mutant communities. F. ∆r vs alga yield in mutant communities.
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9 Supplementary Tables

Isolates Small variants CNVs
Adaptive

Type Number Total Per isolate Expected Identified Total Per isolate
Ancestral 24 76 3.17± 0.51 – 3 0 –
Neutral 8 41 5.13± 0.72 – 2 0 –
A-mutants 215 1008 4.69± 0.20 (0, 288) 76 84 0.39± 0.04
C-mutants 181 717 3.96± 0.22 (0, 110) 109 92 0.51± 0.04
Total 428 1842 – – 190 176 –

Table S1. Statistics of mutational counts among sequenced isolates
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