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S U M M A R Y
Within the field of seismic modelling in anisotropic media, dynamic ray tracing is a powerful
technique for computation of amplitude and phase properties of the high-frequency Green’s
function. Dynamic ray tracing is based on solving a system of Hamilton–Jacobi perturba-
tion equations, which may be expressed in different 3-D coordinate systems. We consider
two particular coordinate systems; a Cartesian coordinate system with a fixed origin and a
curvilinear ray-centred coordinate system associated with a reference ray. For each system we
form the corresponding 6-D phase spaces, which encapsulate six degrees of freedom in the
variation of position and momentum. The formulation of (conventional) dynamic ray tracing
in ray-centred coordinates is based on specific knowledge of the first-order transformation
between Cartesian and ray-centred phase-space perturbations. Such transformation can also
be used for defining initial conditions for dynamic ray tracing in Cartesian coordinates and
for obtaining the coefficients involved in two-point traveltime extrapolation. As a step towards
extending dynamic ray tracing in ray-centred coordinates to higher orders we establish detailed
information about the higher-order properties of the transformation between the Cartesian and
ray-centred phase-space perturbations. By numerical examples, we (1) visualize the validity
limits of the ray-centred coordinate system, (2) demonstrate the transformation of higher-order
derivatives of traveltime from Cartesian to ray-centred coordinates and (3) address the stability
of function value and derivatives of volumetric parameters in a higher-order representation of
the subsurface model.

Key words: Numerical approximations and analysis; Numerical modelling; Body waves;
Computational seismology; Seismic anisotropy; Wave propagation.

1 I N T RO D U C T I O N

For more than 40 years, dynamic ray tracing has been a powerful method to compute important amplitude and phase attributes of high-frequency
Green’s functions. Dynamic ray tracing can be expressed in Cartesian coordinates, in ray-centred coordinates, and in generally curvilinear
coordinates (Červený 2001). The basic idea is to formulate a system of ordinary differential equations, Hamilton-Jacobi perturbation equations,
by which one continues the first-order derivatives of perturbations in position/slowness as a function of traveltime, say, along a reference
ray. These derivatives of phase-space perturbations constitute the basis for first-order extrapolation of position/slowness and second-order
extrapolation of traveltime in the paraxial region, that is a close neighborhood of the reference ray where the traveltime is single-valued. The
first derivatives of position in the dynamic ray tracing system yield the geometrical spreading—the primary contributor to the amplitude on
the reference ray. In this paper, we focus on the coordinates used in dynamic ray tracing. We also address the consequences for the model
representation when the transformation between coordinate systems is extended to higher orders. Our work fits in approximation theory,
which makes it natural to consider ‘higher order’ in the context of accuracy.

Historically, dynamic ray tracing has often been done in Cartesian coordinates (e.g. Červený 1972, 2001; Farra & Madariaga 1987; Gajew-
ski & Pšenčı́k 1990; Chapman 2004; Iversen 2004; Červený & Moser 2007; Červený & Pšenčı́k 2010; Klimeš 2013; Koren & Ravve 2021;
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894 E. Iversen et al.

Figure 1. Ray-centred coordinates: A 2-D Cartesian coordinate frame (q1, q2) is continued along the selected reference ray. The coordinate q3 is a monotonic
variable along the ray—we take q3 as the traveltime.

Ravve & Koren 2021) or in ray-centred coordinates (e.g. Popov & Pšenčı́k 1978; Hanyga 1982; Kendall et al. 1992; Červený 2001; Červený
et al. 2007; Cameron et al. 2007; Iversen 2006; Iversen & Tygel 2008; Klimeš 1994, 2006a, 2012, 2019).

Ray-centred coordinates were introduced in seismology by Popov & Pšenčı́k (1978). Assuming an isotropic medium, a 2-D Cartesian
coordinate frame is continued along the reference ray (Fig. 1). The dynamic ray tracing quantities, that is derivatives of the phase-space
perturbations, are expressed relative to this moving frame. In this way, ray-centred coordinates interplay naturally with the wave propagation
under study, the number of differential equations is limited to a minimum, the initial conditions become simple and intuitive, and numerical
errors caused by redundant solutions are absent or reduced to a minimum. In differential geometry, ray-centred coordinates are a first-order
approximation of Fermi coordinates (e.g. Chavel 2006), which are local coordinates associated with a geodesic—a generalized ray. As with
Fermi coordinates, the basis vectors of ray-centred coordinates are continued along the reference ray. The basis vectors are grouped in two
sets, referred to as the contra-variant and co-variant bases. Only one set needs to be integrated along the ray; the other set then follows from
explicit expressions.

Recently, Iversen et al. (2019) extended dynamic ray tracing for anisotropic media to higher orders, using Cartesian coordinates. The
main motivation was to attain more robust and accurate extrapolation or interpolation of amplitude and phase attributes of the high-frequency
Green’s function. Dynamic ray tracing in Cartesian and ray-centred coordinates have different strengths and weaknesses, and both formulations
have proven very useful for applications in seismology and seismic exploration. In some modelling approaches, for example the wavefront
construction method (Vinje et al. 1993), one can utilize the properties of both coordinate systems in a complimentary way. It is therefore
valuable to extend also dynamic ray tracing in ray-centred coordinates to higher orders, and to develop a framework that allows to switch
between the two formulations. The latter is provided in the current paper—a higher-order transformation of phase-space perturbations between
Cartesian and ray-centred coordinates.

Also shown in the paper, the mentioned higher-order transformation can, in principle, be obtained without a higher-order representation
of the model parameter functions. The reason is that the higher-order effects can be incorporated by interpolating along the reference ray the
phase-space coordinates and their time derivatives. However, the derivatives of the phase-space perturbations considered for transformation
may indeed depend explicitly on the higher-order derivatives of the model parameters. These perturbation quantities typically correspond to
initial conditions or end results of dynamic ray tracing. Thus, to ensure consistency between transformation coefficients and the quantities
to be transformed it is recommended that the same, higher-order, model representation is used both for computation of the transformation
coefficients and the derivatives of the phase-space perturbations.

We utilize the properties of basic splines, or B-splines (de Boor 1972), to ensure a consistent higher-order transformation of phase-space
perturbations between Cartesian and ray-centred coordinates. The term spline originated in the ship construction industry in England and
dates back at least to 1752 (Farin et al. 2002). The spline was a mechanical device of wood, used for drawing smooth curves. The objective
was to make the hull of the ship smooth. Later, in the 20th century, the science of curve fitting and computer-aided geometric design was
driven by pioneers working in the car industry (e.g. Carl de Boor, Paul de Casteljau, Pierre Bézier). From the 1970s and onwards splines
have been popular for use in computer graphics and geometric modelling in general (Bartles et al. 1987), and in solid earth geophysics in
particular (e.g. Gjøystdal et al. 1985).

A cornerstone in the theory of B-splines is the de Casteljau algorithm (Nowak 2011), which is used for recursive determination of
Bernstein polynomials (named after Sergei Natanovich Bernstein). With de Casteljau’s algorithm one can, in principle, compute safely the
value of a function representation and its derivatives to any order. In this paper we use quintic (fifth-degree) B-splines, which encapsulate
C4 continuity—it is then guaranteed that derivatives up to order four are continuous. In contrast, for conventional dynamic ray tracing and
associated transformation between Cartesian and ray-centred coordinates, a cubic B-spline representation (continuity of type C2) is sufficient.
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Higher-order H-J theory—coordinates 895

As key results, we provide expressions for the relevant second-, third- and fourth-order coefficients in the transformation from ray-centred
to Cartesian phase-space perturbations and vice versa. However, to avoid using long expressions for the higher-order coefficients of the inverse
transformation, Cartesian to ray-centred, we also emphasize the option of computing these implicitly from the coefficients of the forward
transformation, by means of the symplectic property (e.g. Červený 2001). The results obtained here are further used in a companion paper on
higher-order dynamic ray tracing in ray-centred coordinates (Iversen et al. 2021).

The higher-order transformations are valuable in the following situations.

(i) When performing dynamic ray tracing in ray-centred coordinates the transformations are needed in the design of the coefficients of
the system of Hamilton–Jacobi perturbation equations. These coefficients then belong to ray-centred coordinates but will typically depend
on a set of property functions defined with respect to Cartesian coordinates. Moreover, at the final point the results will often need to be
transformed to Cartesian coordinates, using the transformations presented in this paper.

(ii) Dynamic ray tracing in Cartesian coordinates yields the results directly in the Cartesian coordinate system. In some situations, however,
it may be useful to do further analysis and computations in ray-centred coordinates.

(iii) Initial conditions for the Hamilton–Jacobi perturbation equations can be specified in Cartesian coordinates, ray-centred coordinates, or
by other means. A transformation of such conditions between different coordinates may then be required, depending on the chosen coordinate
system for the Hamilton–Jacobi perturbation equations. The initial conditions in ray-centred coordinates are often simple and intuitive, while
this is generally not the case in Cartesian coordinates.

A general impact of the paper is that the presented transformation equations are of importance in paraxial ray methods. Furthermore, the
provided higher-order transformation could be a stepping stone to establishing a transformation where the ray-centred coordinates are replaced
by a more general curvilinear coordinate system. We expect the latter would be valuable in applications related to solid earth geophysics.

The paper is organized as follows. We first describe the notion of a 6-D phase space consisting of position and momentum, in ray-centred
coordinates. Important in this context is the two sets of basis vectors and the continuation of these along the reference ray. Next, we derive
explicit expressions for all relevant coefficients of the forward and inverse transformations, from the ray-centred to the Cartesian phase-space
perturbations and vice versa. The resulting transformation coefficients are subsequently used to derive a framework for transformation of
the higher-order derivatives of traveltime between ray-centred and Cartesian coordinates. Thereafter, we use the transformation coefficients
to address the validity region of ray-centred coordinates. In a numerical examples section we show applications of the derived theory, for
isotropic and vertical transversely isotropic (VTI) versions of the Marmousi model. In these examples, we (1) visualize the validity limits of
the ray-centred coordinate system and (2) show some subtleties of the transformation of higher-order derivatives of traveltime from Cartesian
to ray-centred coordinates. Later in the section we address the stability of the function value and the derivatives computed using a quintic
B-spline representation.

Notes on the nomenclature—We use component and vector/matrix notations in parallel. Components of vectors, matrices and tensors are
specified by lower- and uppercase subscript indices. The lowercase indices a, b, c, . . . , p, q run from 1 to 3, while corresponding uppercase
indices A, B, C, . . . take the values 1, 2 only. In the remaining part of the alphabet the indices r, s, t, . . . run from 1 to 6. For equations in
component notation we use Einstein’s summation convention. Vectors are are written as lowercase bold symbols, a, or in terms of components
only, ai. A vector a with N components is equivalently understood as an N-tuple a= (ai) = (a1, a2, . . . , aN) or as an N × 1 column matrix—the
specific meaning follows from the context. Multicolumn matrices are written either in bold uppercase, H, or in component notation, Hia. To
connect the two forms, we write H = {Hia}. The symbol † is used to signify components of an inverse matrix, for example H−1 = {H †

ai }.
In the context of derivatives of phase-space perturbations continued along the reference ray we use the perturbation symbol δ. Perturbations
performed locally are signified by the symbol �. For overview of the mathematical symbols used in the paper, see Table 1.

2 P H A S E - S PA C E C O O R D I NAT E S

We review and discuss the phase spaces arising from Cartesian and ray-centred coordinates.

2.1 Cartesian phase-space coordinates

For a fixed 3-D Cartesian coordinate system, (xi) = (x1, x2, x3), we consider a position vector, x = (xi), and a momentum vector, p = (pi),
with the measurement unit of inverse velocity. Because of the latter property, the vector p is commonly referred to as the slowness vector or
briefly as just the slowness. The slowness vector components p1, p2 and p3 can be combined with the position-vector components x1, x2 and
x3 to form the 6-D domain

(wr ) = (xi , p j ) = (x1, x2, x3, p1, p2, p3); r = 1, 2, . . . , 6; i, j = 1, 2, 3; (1)

known as the phase space in Cartesian coordinates. In this domain all six coordinates vary freely.
The notion of six freely varying phase-space components is fundamental in the Hamiltonian formulation of ray theory. One can consider

the phase space as a workspace in which we seek the ray solutions. The computed solutions form a subspace, a hypersurface, with five degrees
of freedom. The hypersurface is defined by the Hamilton-Jacobi equation, introduced in the next subsection.
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Table 1. Main mathematical symbols used in the paper. For multicomponent quantities the dimensions are specified.

Quantity Dimension Description

(x1, x2, x3) 3 Cartesian coordinate system
x = (xi) 3 Position vector of the Cartesian coordinate system
p = (pi) 3 Slowness vector (momentum vector) of the Cartesian coordinate system
w = (wr) 6 Phase-space vector of the Cartesian coordinate system
= (xi, pj)

� Reference ray
H (w) Hamiltonian
τ Traveltime along the ray �

τ 0 Traveltime at the initial point of the ray �

c Phase velocity
c = (ci) 3 Phase-velocity vector
n = (ni) 3 Normalized phase-velocity vector
v = (vi) 3 Ray-velocity (group-velocity) vector
η = (ηi ) 3 Time derivative of the slowness vector p
α = {αi j } 3 × 3 Projection operator with respect to the wave-propagation metric tensor
(q1, q2, q3) 3 Ray-centred coordinate system
q = (qa) 3 Position vector of the ray-centred coordinate system

p(q) = (p(q)
a ) 3 Momentum vector of the ray-centred coordinate system

w(q) = (w(q)
r ) 6 Phase-space vector of the ray-centred coordinate system

= (qa, p(q)
b )

(v(q)
a ) 3 Ray-velocity (group-velocity) vector, in ray-centred coordinates

(η(q)
a ) 3 Time derivative of the momentum vector p(q)

E = {Ei A} 3 × 2 Contra-variant (paraxial) basis of the ray-centred coordinate system
= [e1 e2]

H = {Hia} 3 × 3 Coefficients of coordinate transformation, ray-centred to Cartesian,
= [E v] first order

{Hiab} 3 × 3 × 3 Coefficients of coordinate transformation, ray-centred to Cartesian,
second order

{Hiabc} 3 × 3 × 3 × 3 Coefficients of coordinate transformation, ray-centred to Cartesian,
third order
. . .

F = {Fi A} 3 × 2 Co-variant (paraxial) basis of the ray-centred coordinate system

H−1 = {H †
ai } 3 × 3 Coefficients of coordinate transformation, Cartesian to ray-centred,

= [F p]T first order

{H †
ai j } 3 × 3 × 3 Coefficients of coordinate transformation, Cartesian to ray-centred,

second order

{H †
ai jk} 3 × 3 × 3 × 3 Coefficients of coordinate transformation, Cartesian to ray-centred,

third order
. . .

T (x), T (q) A general time function
τ (x), τ (q) A specific traveltime function
{Mij} 3 × 3 Derivatives of traveltime, Cartesian coordinates, second order
{Mijk} 3 × 3 × 3 Derivatives of traveltime, Cartesian coordinates, third order
{Mijkl} 3 × 3 × 3 × 3 Derivatives of traveltime, Cartesian coordinates, fourth order

. . .
{Mab} 3 × 3 Derivatives of traveltime, ray-centred coordinates, second order
{Mabc} 3 × 3 × 3 Derivatives of traveltime, ray-centred coordinates, third order
{Mabcd } 3 × 3 × 3 × 3 Derivatives of traveltime, ray-centred coordinates, fourth order

. . .
{Rm

i j } 3 × 3 × 3 Operator in the computation of inverse-transform coefficients,
second order

{Rmn
i jk } 3 × 3 × 3 × 3 × 3 Operator in the computation of inverse-transform coefficients,

third order
. . .

� = {�x r } 6 × 6 Coefficients of phase-space coordinate transformation,
ray-centred to Cartesian, first order

�11 = {�11
ia } 3 × 3 Sub-matrix of �

�21 = {�21
ia } 3 × 3 Sub-matrix of �

�22 = {�22
ia } 3 × 3 Sub-matrix of �

J 6 × 6 Matrix for rearranging the sub-matrices of matrix �

{�x rs} 6 × 6 × 6 Coefficients of phase-space coordinate transformation,
ray-centred to Cartesian, second order

{�x rst } 6 × 6 × 6 × 6 Coefficients of phase-space coordinate transformation,
ray-centred to Cartesian, third order
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Higher-order H-J theory—coordinates 897

Table 1. Continued

Quantity Dimension Description

. . .

�−1 = {�†
r x } 6 × 6 Coefficients of phase-space coordinate transformation,

Cartesian to ray-centred, first order

{�†
r xy} 6 × 6 × 6 Coefficients of phase-space coordinate transformation,

Cartesian to ray-centred, second order

{�†
r xyz} 6 × 6 × 6 × 6 Coefficients of phase-space coordinate transformation,

Cartesian to ray-centred, third order
. . .

Ē 3 × 2 An orthonormal version of the contra-variant basis E
C = {CAB} 2 × 2 Matrix that rotates and scales Ē into E
B = {BAB} 2 × 2 Matrix describing the deviation of the basis E from orthonormality
A = {AAB} 2 × 2 Coefficient matrix, phase-velocity formulation for the derivative dE/dτ

A Coefficient scalar, phase-velocity formulation for the derivative dE/dτ ,
applying when E is orthonormal

K = {KAB} 2 × 2 Coefficient matrix, ray-velocity formulation for the derivative dE/dτ

2.2 Hamilton–Jacobi equation and Hamilton’s equations for the reference ray

We consider a Hamilton–Jacobi equation

H (x, p) = 1/2, (2)

where H(x, p) is the Hamiltonian (see, e.g. Červený 2001; Iversen et al. 2019). As indicated by the form of eq. (2), we have chosen the
Hamiltonian as a homogeneous function of the second degree in the momentum vector components. This choice is practical and does not
affect the main theoretical results derived in the paper. The reason is that the Hamiltonian is used here only for establishing a reference ray
and an associated ray-centred coordinate system. Neither of these are affected by the chosen degree of the Hamiltonian.

The Hamiltonian H (x,p) has six degrees of freedom. On the other hand, the Hamilton–Jacobi equation (2) imposes a constraint in the
phase space, so that the solutions for position and momentum have (together) five degrees of freedom. As the position is unrestricted, it means
that a momentum satisfying the Hamilton–Jacobi-equation can only have two degrees of freedom. This constraint on the momentum will in
general include position-dependent medium properties.

Let τ be a generic independent time variable controlling the continuation of ray-field quantities. Moreover, consider a reference ray,
signified as �. The position and momentum vectors along � are given by the function:

x = x̂(τ ), xi = x̂i (τ ),

p = p̂(τ ), pi = p̂i (τ ). (3)

Taking the time derivative of these two vector functions yields the ray-velocity vector (or group-velocity vector)

v = ẋ = dx̂

dτ
, vi = ẋi = dx̂i

dτ
, (4)

and the so-called ‘eta-vector’ (Červený 2001)

η = ṗ = dp̂

dτ
, ηi = ṗi = d p̂i

dτ
. (5)

The functions x̂(τ ) and p̂(τ ) constitute the solution to a system of ordinary differential equations

dxi

dτ
= ∂H

∂pi
;

dpi

dτ
= −∂H

∂xi
, (6)

referred to as Hamilton’s equations. The solution to eq. (6) must in general be computed numerically, for example using the Runge–Kutta
method. Along the ray � the fundamental ray-theory relation

pivi = 1 (7)

is always satisfied.

2.3 Phase space in ray-centred coordinates

The ray-centred coordinate system consist of 3-D curvilinear coordinates (q1, q2, q3) related to the reference ray �, on which q1 = q2 = 0.
The position vector in ray-centred coordinates is denoted q = (qi). The third coordinate is curvilinear and changes monotonically along �.
We choose q3 as the traveltime; hence the points on � satisfy

qI = 0, q3 = τ. (8)
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898 E. Iversen et al.

Figure 2. A 2-D illustration of a limitation of ray-centred coordinates. The q1 coordinate lines corresponding to points A and B on the reference ray intersect
in the point C. Therefore, in C the mapping between Cartesian and ray-centred coordinates is not one-to-one.

For a certain point on � the coordinate axes q1 and q2 are straight (but not necessarily perpendicular) lines. The q1 and q2 axes are situated in
a moving plane, defined as a normal plane with respect to the slowness vector p̂(τ ) on �.

The coordinate q3 is constant in the specific q1q2 plane belonging a selected point on �. In this respect, the time variables q3 and τ are
fundamentally different. While τ signifies the time of a wavefront passing through an arbitrary point x, this is not the case for q3. Rather, q3

is the reference ray traveltime resulting if we are able to construct a unique q1q2 plane through x, such that the slowness vector p̂(q3) on �

is normal to that plane. It follows that the ray-centred coordinates have a certain region of validity in the vicinity of �, arising from the fact
that for a curved ray different q1q2 planes will intersect at some limiting transverse (paraxial) distance from �. Hence, for greater paraxial
distances there will not be a one-to-one correspondence between ray-centred and Cartesian coordinates (see the illustration in Fig. 2). The
width of the region of validity depends on the curvature of the ray trajectory.

In ray-centred coordinates we denote the momentum vector as p(q) = (p(q)
i ). The components of the ray-centred position and momentum

vectors q and p(q) form the phase-space coordinates

(w(q)
r ) = (qi , p(q)

j ) = (q1, q2, q3, p(q)
1 , p(q)

2 , p(q)
3 ). (9)

As with the phase space in Cartesian coordinates, see eq. (1), the entities in eq. (9) are independent. Moreover, in ray-centred coordinates
eq. (2) has the counterpart H (q,p(q)) = 1/2. The latter yields five degrees of freedom.

2.4 Transformation from ray-centred to Cartesian coordinates and associated basis vectors

For any, general, point located close to the ray �, we assume a one-to-one correspondence between the coordinates (q1, q2, q3) and (x1, x2, x3).
Violations of this assumption could occur—such cases are discussed in Section 6. Defining the one-to-one correspondence by the function
x(q1, q2, q3), the transformation from ray-centred and Cartesian coordinates is given as

x(q1, q2, q3 = τ ) = x̂(τ ) + e1(τ ) q1 + e2(τ ) q2, (10)

where e1(τ ) and e2(τ ) are basis vectors corresponding, respectively, to the q1 and q2 coordinates. We assemble these vectors as columns in
the 3 × 2 matrix

E(τ ) =
(
e1(τ ) e2(τ )

)
. (11)

The computation of matrixE implies to solve additional differential equations along the ray �, see Appendix A. In the perspective of differential
geometry, the ray-centred coordinates in eq. (10) result from a linearization of general coordinates associated with a geodesic—the Fermi
coordinates.

In terms of the mapping (10) from ray-centred to Cartesian coordinates we can write the basis vectors e1(τ ) and e2(τ ) as

e1(τ ) = ∂x

∂q1
(0, 0, τ ) ; e2(τ ) = ∂x

∂q2
(0, 0, τ ). (12)

The basis vector belonging to the coordinate q3 = τ is

∂x

∂q3
(0, 0, τ ) = dx̂

dτ
(τ ) = v(τ ), (13)
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Higher-order H-J theory—coordinates 899

that means, the ray-velocity vector introduced in eq. (4). The vector set (e1(τ ), e2(τ ), v(τ )) is referred to as the contra-variant basis (e.g.
Klimeš 2006a; Červený & Moser 2007) and is represented as the 3 × 3 transformation matrix,

H(τ ) = {Hia(τ )} =
{

∂xi

∂qa
(0, 0, τ )

}
=

(
E(τ ) v(τ )

)
. (14)

The terminology contra-variant and co-variant comes from differential geometry and corresponds, respectively, to vectors and covectors. A
vector is strictly defined to describe a change of position. From this point of view, the quantity v in eq. (4) is therefore a vector. If the timescale
in the direction of v is changed, say from unit seconds to milliseconds (scaling by a factor 1000), the corresponding scaling of v will be 1/1000
to compensate. The components of v therefore contra-varies with the change of basis, here exemplified by a change of the time variable. For
a co-vector the situation is the opposite—it covaries with the change of basis. Co-vectors form the dual space to vectors in the sense of linear
algebra.

Since vector p̂(τ ) is normal to the q1q2 plane, it follows that

p̂i (τ )
∂xi

∂qA
(0, 0, τ ) = p̂i (τ ) Ei A(τ ) = 0. (15)

Moreover, eqs (7) and (13) yield

p̂i (τ )
∂xi

∂q3
(0, 0, τ ) = p̂i (τ ) vi (τ ) = 1. (16)

The basis vectors e1 and e2 can be chosen orthonormal, but more general options are available (see Appendix A). In the latter case it is
of course important to ensure that e1 and e2 do not become co-linear, and that neither of them vanish. We remark that e1 and e2 do not depend
on the curvature of wavefronts, so that the determinant of matrix H will not vanish as a result of caustics in the wavefield.

2.5 Momentum vector in ray-centred coordinates

Consider a general differentiable time function T , expressed either in Cartesian coordinates or ray-centred coordinates, so that

T (x) = T (q). (17)

We emphasize that T is general, which means it can be chosen arbitrarily, as long as eq. (17) is satisfied. Applying the chain rule for derivatives
to T , we obtain

∂T
∂xi

= ∂T
∂qa

∂qa

∂xi
,

∂T
∂qa

= ∂T
∂xi

∂xi

∂qa
. (18)

In the following, it is necessary to consider the momenta pi and p(q)
a either as independent variables or as functions of position. To serve

both these purposes, we take

pi = ∂T
∂xi

, p(q)
a = ∂T

∂qa
, (19)

and we note that the momentum component

p(q)
3 = ∂T

∂q3
(20)

is dimensionless.
For a given choice of function T , the momentum components in eq. (19) are functions of position. However, since the time function T

can be chosen arbitrarily, the time gradients may in general have any direction and any magnitude. As a consequence, the relations (18) can
be restated

pi = p(q)
a

∂qa

∂xi
[x(q1, q2, q3)], (21)

p(q)
a = pi

∂xi

∂qa
(q1, q2, q3), (22)

where the momenta on the right-hand sides may vary freely.
Now recall the essence of eq. (15), that the basis vectors e1 and e2 are both normal to the slowness vector, and eq. (16), that the dot

product of the slowness vector and the ray-velocity vector is one. Using eqs (15) and (16) in eq. (22), it follows that the ray-centred momentum
components belonging to � are constants,

p(q)
A = 0, p(q)

3 = 1. (23)

Time differentiation of eqs (8) and (23) yields, in ray-centred coordinates, the counterparts to the vector functions v and η in eqs (4) and (5).
We obtain(
v(q)

a (τ )
) = (0, 0, 1),

(
η(q)

a (τ )
) = (0, 0, 0). (24)
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900 E. Iversen et al.

Moreover, the combination of eqs (21) and (23) yields

p̂i (τ ) = ∂q3

∂xi
[x(0, 0, τ )]. (25)

We discuss eq. (25). For an arbitrary point q = (0, 0, τ ) on the reference ray �, the slowness vector is equal to the time gradient of an
hypothetically ‘exploding’ plane wave. The wavefront source plane coincides with the q1q2-plane of the ray-centred coordinate system at the
point under consideration. However, since the local time gradient of a plane wavefront equals the time gradient corresponding to any other
wavefront propagating in the same direction, it is clear that eq. (25) can be generalized to pi = ∂τ /∂xi along the ray � and along any other ray.
This represents a fundamental property in ray theory— for a certain location on a ray, the slowness vector must equal the traveltime gradient
at that location (see, e.g. Červený 2001). We note in particular that a traveltime function with small (paraxial) variation with respect to q1 and
q2 will yield a value of the momentum component p(q)

3 = ∂τ/∂q3 that differs only slightly from 1.
Consider a perturbed momentum vector p(q) = p̂(q)(τ ) + δp(q) along �, specified such that p(q)

1 and p(q)
2 are both set to zero, while p(q)

3

is free to vary. In view of eq. (20) one can then interpret p(q)
3 in terms of a virtual stretch of the time q3 along �. To describe this kind of

stretch effect, Burridge (Chapman 2004, p. 152) introduced the variable ε. It relates to the momentum component p(q)
3 simply by

ε = p(q)
3 − 1, (26)

given that p(q)
1 = p(q)

2 = 0.

2.6 Transformation from Cartesian to ray-centred coordinates and associated basis vectors

The two sets of first-order derivatives involved in the transformations between ray-centred and Cartesian coordinates have to satisfy the
relations

∂qa

∂xi

∂xi

∂qb
= δab,

∂xi

∂qa

∂qa

∂x j
= δi j . (27)

In (27) the left-hand subequation has the implications

∂q3

∂xi

∂xi

∂qb
= δ3b, (28)

∂qa

∂xi

∂xi

∂q3
= δa3, (29)

∂qA

∂xi

∂xi

∂qB
= δAB, (30)

while the right-hand subequation yields

∂qA

∂xi

∂x j

∂qA
= αi j . (31)

Here, we have introduced the quantity

αi j = δi j − ∂q3

∂xi

∂x j

∂q3
. (32)

Moreover, on the ray � we define the 3 × 2 matrix

F (τ ) =
{

∂qA

∂xi
[x(0, 0, τ )]

}
. (33)

In view of eqs (25) and (33) the matrix H(τ ) in eq. (14) has the inverse

H−1 (τ ) = {
H †(τ )

} =
{

∂qa

∂xi
[x(0, 0, τ )]

}
=

(
F (τ ) p̂(τ )

)T
. (34)

The forms of matrices H and H−1 then yield the relations

vTF = {01A}; viFi A = 0, (35)

F TE = {δAB}; Fi AEi B = δAB, (36)

FET = {δi j } − pvT ; Fi AE j A = δi j − piv j = αi j , (37)

with all quantities evaluated on the reference ray �.
It is remarked that the quantity αij on �, on the right-hand side of eq. (37), represents a projection operator with respect to the

wave-propagation metric (Hanyga 1982; Klimeš 2002, 2006a)

αi j = P j
i = δ

j
i − pi h

j
3 (notation of Klimeš).
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Higher-order H-J theory—coordinates 901

The columns of matrix F represent two vectors f1 and f2,

F =
(
f1 f2

)
, (38)

and the vector set (f1, f2, p) is the co-variant basis (e.g., Klimeš 2006a; Červený & Moser 2007). The vectors f1 and f2 are related to the
contra-variant basis (e1, e2, v) by the operations (Klimeš 2006a)

f1 = e2 × v

e1 · (e2 × v)
, f2 = v × e1

e2 · (v × e1)
. (39)

The third co-variant and contra-variant basis vectors, p and v, are both known, but we include for completeness their relations to the other set
of basis vectors,

p = e1 × e2

v · (e1 × e2)
, v = f1 × f2

p · (f1 × f2)
. (40)

On the reference ray, the slowness vector p is, by definition, orthogonal to the contra-variant basis vectors e1 and e2, see eq. (15) and the
first sub-eq. (40). On the other hand, eq. (35) and the second sub-eq. (40) show that the ray-velocity vector v is orthogonal to the co-variant
basis vectors f1 and f2.

2.7 Continuation of basis vectors along the reference ray

Various options exist for continuation of the matrices E and F along the reference ray �; details concerning such options can be found in
Červený (2001), Klimeš (2006a) and Červený et al. (2007). In Appendix A, we describe simple ways of computing matrix F from matrix E ,
and we also provide general expressions for the time derivatives of E and F .

In the standard option for the bases of the ray-centred coordinate system the vectors eA, A = 1, 2, are orthonormal; in addition the two
derivative vectors ėA are both parallel to the slowness vector, p. This results in an ordinary differential equation for the vector eA along the
reference ray,

deA

dτ
= −c2 p (η · eA), A = 1 or 2, (41)

where c is the (scalar) phase velocity. It is sufficient to include this differential equation only for, say, vector e1. Then vector e2 can be found
from the cross product formula

e2 = p

‖p‖ × e1. (42)

For a proof of eq. (41), see the derivation of eq. (A8) in Appendix A. The form (41) is attained when we set the 2 × 2 matrix A zero
in (A8).

At the initial point on � the direction of vector e1 can, in principle, be chosen arbitrarily in the normal plane to the slowness vector. It
may, however, be practical to use a convention for the orientation of e1, for example, to let it comply with a mesh on an initial surface. The
standard option is used in the Complete Ray Tracing (CRT) software package (Klimeš 2006b, section 6.2).

3 T R A N S F O R M AT I O N O F P H A S E - S PA C E P E RT U R B AT I O N S : F RO M R AY- C E N T R E D
T O C A RT E S I A N C O O R D I NAT E S

We consider the transformation of phase-space perturbations from ray-centred coordinates to Cartesian coordinates. Recall then that the phase
space is represented by the two coordinate systems, respectively, in eqs (1) and (9). The transformation of the perturbations can be expressed
as the Taylor series

�wx = ∂wx

∂w
(q)
r

�w(q)
r + 1

2

∂2wx

∂w
(q)
r ∂w

(q)
s

�w(q)
r �w(q)

s + 1

6

∂3wx

∂w
(q)
r ∂w

(q)
s ∂w

(q)
t

�w(q)
r �w(q)

s �w
(q)
t

+ 1

24

∂4wx

∂w
(q)
r ∂w

(q)
s ∂w

(q)
t ∂w

(q)
u

�w(q)
r �w(q)

s �w
(q)
t �w(q)

u + . . . , (43)

where we use Einstein’s summation convention for the indices r, s, t, u = 1, 2, . . . , 6. The indices of the computed perturbation in the Cartesian
phase-space coordinates are x = 1, 2, . . . , 6. The objective of this section is to establish specific expressions for the partial derivatives in
eq. (43), which are all evaluated on the reference ray � and constitute the coefficients of the transformation.

In eq. (10) the position vector in Cartesian coordinates is expressed as a function of ray-centred coordinates. Using component notation,
this equation is equivalently written

xi (q) = x̂i (q3) + Ei A(q3)qA. (44)
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902 E. Iversen et al.

It is noted that the position vector in the Cartesian coordinate system depends on the position vector in ray-centred coordinates in a one-to-one
fashion. The position-vector function on the left-hand side of eq. (44) does not depend on the momentum vector in ray-centred coordinates.
Moreover, using eq. (21) the momentum (slowness) vector in Cartesian coordinates is expressed as a function of ray-centred phase-space
coordinates,

pi (q,p(q)) = ∂qm

∂xi
[x(q)] p(q)

m . (45)

3.1 Partial derivatives of Cartesian position coordinates

Based on eq. (44) we obtain first- and second-order partial derivatives of Cartesian position coordinates xi with respect to ray-centred position
coordinates qa,

∂xi

∂qA
= Ei A,

∂xi

∂q3
= dx̂i

dτ
+ dEi A

dτ
qA, (46)

∂2xi

∂qA∂qB
= 0,

∂2xi

∂q2
3

= d2 x̂i

dτ 2
+ d2Ei A

dτ 2
qA,

∂2xi

∂q3∂qA
= dEi A

dτ
. (47)

We observe that the extension to third- and fourth-order derivatives of xi with respect to qa is trivial. Moreover, to any order partial derivatives
of xi with respect to ray-centred momentum coordinates p(q)

a are zero.
Evaluation of the partial derivatives in eqs (46) and (47) on the reference ray, where qA = 0, yields

∂xi

∂qA
= Ei A,

∂xi

∂q3
= ẋi = vi , (48)

∂2xi

∂qA∂qB
= 0,

∂2xi

∂q2
3

= ẍi = v̇i ,
∂2xi

∂q3∂qA
= Ėi A. (49)

Expressions for higher-order partial derivatives follow readily.

3.2 Partial derivatives of Cartesian momentum coordinates

We derive relations for the derivatives of the Cartesian momentum coordinates pi with respect to the ray-centred phase-space coordinates qa

and p(q)
a . The starting point is eq. (45), which yields

∂pi

∂qa
= ∂x j

∂qa

∂2qb

∂xi∂x j
p(q)

b , (50)

∂pi

∂p(q)
a

= ∂qa

∂xi
. (51)

Applying eq. (51) in eq. (45), we can conclude that for any corresponding location in the phase space, (wr) or (w(q)
r ), we must have

pi = ∂pi

∂p(q)
a

p(q)
a . (52)

Differentiating eq. (52) with respect to qj yields the general relation,

∂pi

∂qa
= ∂2 pi

∂qa∂p(q)
b

p(q)
b , (53)

in which

∂2 pi

∂qa∂p(q)
b

= ∂

∂qa

(
∂pi

∂p(q)
b

)
= ∂

∂qa

(
∂qb

∂xi

)
= ∂x j

∂qa

∂2qb

∂xi∂x j
. (54)

In the last step we used the differential operator ∂/∂qa = (∂x j/∂qa) ∂/∂x j + (∂p j/∂qa) ∂/∂p j , where the second term has no effect.

3.2.1 First-order partial derivatives of Cartesian momentum coordinates

After some elaboration (Appendix B) we can restate eq. (50) as

∂pi

∂qA
= ∂q3

∂xi

∂p j

∂q3

∂x j

∂qA
, (55)

∂pi

∂q3
= p(q)

A

∂

∂q3
(
∂qA

∂xi
) + p(q)

3

∂

q3
(
∂q3

∂xi
). (56)
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Higher-order H-J theory—coordinates 903

Evaluation of eqs (51), (55) and (56) on the reference ray yields the results

∂pi

∂qA
= piη jE j A,

∂pi

∂q3
= ηi , (57)

∂pi

∂p(q)
A

= Fi A,
∂pi

∂p(q)
3

= pi . (58)

3.2.2 Higher-order partial derivatives of Cartesian momentum coordinates

Derivations of general higher-order partial derivatives of Cartesian momentum coordinates pi, evaluated on the reference ray �, are given in
Appendix B. We summarize here the results.

The second-order derivatives of pi on � are

∂2 pi

∂qA∂qB
= 2piη jηkE j AEk B,

∂2 pi

∂q2
3

= η̇i ,
∂2 pi

∂q3∂qA
= d

dτ

(
piη jE j A

)
, (59)

∂2 pi

∂p(q)
a ∂p(q)

b

= 0, (60)

∂2 pi

∂qA∂p(q)
3

= piη jE j A,
∂2 pi

∂q3∂p(q)
3

= ηi ,

∂2 pi

∂qA∂p(q)
B

= −piKAB,
∂2 pi

∂q3∂p(q)
A

= Ḟi A, (61)

where we have introduced a 2 × 2 matrix K = {KAB} (see Klimeš 2006a, eq. 24), such that

KAB ≡ Ėi AFi B . (62)

For the third-order derivatives of pi on � we obtain the expressions

∂3 pi

∂qA∂qB∂qC
= 6piη jηkηlE j AEk BElC ,

∂3 pi

∂q3
3

= η̈i ,

∂3 pi

∂q2
3 ∂qA

= d2

dτ 2

(
piη jE j A

)
,

∂3 pi

∂q3∂qA∂qB
= 2

d

dτ

(
piη jηkE j AEk B

)
, (63)

∂3 pi

∂qA∂qB∂p(q)
C

= −piη j (E j AKBC + E j BKAC ),

∂3 pi

∂q2
3 ∂p(q)

A

= F̈i A,
∂3 pi

∂q3∂qA∂p(q)
B

= − d

dτ
(pi KAB) ,

∂3 pi

∂qA∂qB∂p(q)
3

= 2piη jηkE j AEk B,
∂3 pi

∂q2
3 ∂p(q)

3

= η̇i ,
∂3 pi

∂q3∂qA∂p(q)
3

= d

dτ

(
piη jE j A

)
. (64)

Some third-order derivatives are always zero, namely,

∂3 pi

∂p(q)
a ∂p(q)

b ∂p(q)
c

= 0,
∂3 pi

∂p(q)
a ∂p(q)

b ∂qc

= 0, (65)

Concerning fourth-order derivatives of pi on � we only need to consider the following results,

∂4 pi

∂qA∂qB∂qC∂qD
= 24 pi η jηkηlηm E j AEk BElCEm D, (66)

∂4 pi

∂qA∂qB∂qC∂p(q)
D

= −2 pi η jηk (E j AEk BKC D + E j AEkCKB D + E j BEkCKAD). (67)

The remaining fourth-order derivatives are either zero or can be obtained trivially from lower-order derivatives.

4 I N V E R S E T R A N S F O R M AT I O N O F P H A S E - S PA C E P E RT U R B AT I O N S : F RO M
C A RT E S I A N T O R AY- C E N T R E D C O O R D I NAT E S

We consider in this section the inverse transformation of phase-space perturbations, that means, in the direction from Cartesian coordinates
to ray-centred coordinates. This transformation can be expressed as the Taylor series

�w(q)
r = ∂w(q)

r

∂wx
�wx + 1

2

∂2w(q)
r

∂wx∂wy
�wx�wy + 1

6

∂3w(q)
r

∂wx∂wy∂wz
�wx�wy�wz

+ 1

24

∂4w(q)
r

∂wx∂wy∂wz∂wφ

�wx�wy�wz�wφ + . . . , (68)
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904 E. Iversen et al.

with r, x, y, z, φ = 1, 2, . . . , 6, and where the involved coefficients (partial derivatives) belongs to the reference ray �. We derive specific
expressions for the derivatives of the ray-centred position and momentum coordinates up to, respectively, the second and the fourth order in
the Cartesian phase-space coordinates.

As opposed to the situation in eq. (44) for the forward transformation of phase-space perturbations, from ray-centred to Cartesian
coordinates, we do not have an explicit expression for the ray-centred space coordinates in terms of Cartesian coordinates. However, after
multiplying each side of (44) by Fi B(q3) and using (36), we obtain the following relationship between the position coordinates,

qA = Fk A(q3) [xk − x̂k(q3)] . (69)

The ray-centred momentum vector can be expressed as

p(q)
a (x, p) = pi

∂p(q)
a

∂pi
(x, p) = pi

∂xi

∂qa
[q(x)]. (70)

4.1 Symplecticity

A 6 × 6 matrix � is called symplectic (e.g. Červený et al. 2007, eq. 58) if it satisfies the equation

�T J� = J, (71)

where J is the 6 × 6 matrix

J = {Jrs} =
(

{0i j } {δi j }
−{δi j } {0i j }

)
. (72)

From eqs (71) and (72) it follows that the inverse matrix �−1 is given by

�−1 = −J�T J. (73)

Consider now the 6 × 6 matrix � defined as

� =
{

∂wx

∂w
(q)
r

}
=

⎛
⎝

{
∂xi
∂qa

}
{0i j }{

∂pi
∂qa

} {
∂pi

∂p
(q)
a

}
⎞
⎠ =

(
�11 0
�21 �22

)
. (74)

Inverting both sides of eq. (51), we obtain

∂xi

∂qa
= ∂p(q)

a

∂pi
. (75)

Another important property related to the matrices � and �−1 is

∂pi

∂qa
= −∂p(q)

a

∂xi
. (76)

For a proof of eq. (76), see Appendix B.
The matrix � in eq. (74) holds for any phase-space location w(q) complying with the validity of ray-centred coordinates, not only for

phase-space locations corresponding to the reference ray. It is straightforward to show that � satisfies eq. (71). As a consequence, � is
symplectic at any phase-space location w(q) where the mapping between ray-centred and Cartesian coordinates is one-to-one. Wherever � is
non-singular its determinant equals one.

Using eqs (51), (73), (75) and (76) we formulate the inverse �−1 as

�−1 =
{

∂w(q)
r

∂wx

}
=

⎛
⎜⎝

{
∂pi

∂p
(q)
a

}T
{0i j }

−
{

∂pi
∂qa

}T {
∂xi
∂qa

}T

⎞
⎟⎠ =

(
�22T

0

−�21T
�11T

)
. (77)

4.2 Transformation matrices on the reference ray

Eqs (74) and (77) yield general forms of the 6 × 6 matrices describing to first order the transformation between ray-centred and Cartesian
phase-space coordinates. We now summarize, in matrix and component form, the equations for the matrices � and �−1 = �† corresponding
to a point on the reference ray �. These matrices are well established (see e.g. Klimeš 1994; Červený 2001),

� =
(

E v {0i A} {0i1}
pηTE η F p

)
, �−1 =

⎛
⎜⎜⎜⎝

F T {0i A}T

pT {0i1}T

−ET ηpT ET

−ηT vT

⎞
⎟⎟⎟⎠ , (78)
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{�xr } =
(

{Ei A} {vi } {0i A} {0i1}
{piη jE j A} {ηi } {Fi A} {pi }

)
, {�†

r x } =

⎛
⎜⎜⎜⎝

{Fi A}T {0i A}T

{pi }T {0i1}T

−{piη jE j A}T {Ei A}T

−{ηi }T {vi }T

⎞
⎟⎟⎟⎠ . (79)

To obtain � we use eqs (48), (57) and (58); to obtain �−1 we use eq. (77).

4.3 Coefficients of the inverse transformation determined by means of symplecticity

Eq. (71) can be utilized as a simple, indirect, means of obtaining the coefficients of the inverse transformation (Cartesian to ray-centred),
given that the coefficients of the forward transformation (ray-centred to Cartesian) are known.

We restate eq. (73) in component form,

�†
r y = −Jrs Jxy �x s, (80)

where all indices take the values from 1 to 6. Successive differentiation to higher orders in the Cartesian phase-space coordinates then yields

�†
r yz = −Jrs Jxy �

†
t z �x st , (81)

�
†
r yzφ = −Jrs Jxy (�†

t zφ �x st + �
†
t z �

†
uφ �x stu), (82)

�
†
r yzφå = −Jrs Jxy

[
�

†
t zφå �x st + (�†

t z �
†
uφå + �

†
tφ �

†
uzå + �

†
t å �

†
uzφ) �x stu + �

†
t z �

†
uφ �

†
vå �x stuv

]
, (83)

and so forth. Here, the index series r, s, t, u, v and x, y, z, φ, å represent ray-centred and Cartesian phase-space coordinates, respectively. For
each order of differentiation, we use as input the results obtained in the differentiations for lower orders.

Eqs (80)–(83) have the advantage that they can be easily implemented. There are, however, contexts where it is useful to know explicit
expressions for the transformation coefficients in terms of quantities of the wavefield, for example the slowness vector and the ray-velocity
vector. We focus on such explicit expressions in the remaining part of this section.

4.4 Partial derivatives of ray-centred position coordinates

We obtain partial derivatives of the ray-centred position coordinates, qa. To any order, partial derivatives of qa with respect to momentum
coordinates pi are zero. In the following, we therefore need to consider only the partial derivatives with respect to position coordinates xi.
We provide here explicit expressions for such derivatives up to order four. For a certain spatial order of the transformation coefficients, the
computation take the form of a linear operator acting on the time derivative of the coefficients of one order less.

4.4.1 First-order partial derivatives

We differentiate eq. (69) with respect to the Cartesian position coordinates. This yields

∂qA

∂xi
= Ḟk A

∂q3

∂xi
[xk − x̂k(q3)] + Fk A

(
δki − ˙̂xk

∂q3

∂xi

)
. (84)

Here, the derivative ∂q3/∂xi can be expressed implicitly by two operations: First, form the 3 × 3 inverse {∂qi/∂xj} based on eq. (50); secondly,
extract the three components ∂q3/∂xi using

∂q3

∂xi
= δ3 j

∂qi

∂x j
. (85)

On the reference ray �, for which qA = 0, we naturally have

∂qA

∂xi
= Fi A,

∂q3

∂xi
= pi . (86)

4.4.2 Second-order partial derivatives

A derivation for the general second-order partial derivatives of ray-centred coordinates qa is contained in Appendix C. On the ray � such
derivatives can be expressed in the compact form

∂2qa

∂xi∂x j
≡ H †

ai j = Rm
i j Ḣ †

am, (87)
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where H †
ai j = ∂2qa/∂xi∂x j , and Rm

i j is the operator

Rm
i j = piα jm + p jαim + pi p jvm . (88)

The upper and lower indices on the Rm
i j symbol correspond, respectively, to the input and output data of the operator. From eqs (87) and (88)

we can state specific expressions for the derivatives of qA and q3,

∂2qA

∂xi∂x j
= pi Ḟ j A + p j Ḟi A − pi p jvmḞm A, (89)

∂2q3

∂xi∂x j
= piη j + ηi p j − pi p jvmηm . (90)

We note that eq. (90) is consistent with Červený & Klimeš (2010, eq. 35) .

4.4.3 Higher-order partial derivatives

Derivations for the third- and fourth-order derivatives of ray-centred coordinates qa with respect to Cartesian coordinates xi are given in
Appendices D and E. The third-order derivatives are expressed in the form

∂3qa

∂xi∂x j∂xk
≡ H †

ai jk = Rmn
i jk Ḣ †

amn, (91)

with H †
ai jk = ∂3qa/∂xi∂x j∂xk and the operator Rmn

i jk given by

Rmn
i jk = piα jmαkn + p jαkmαin + pkαimα jn + (pi p jαkn + p j pkαin + pk piα jn)vm + pi p j pkvmvn . (92)

For the fourth-order derivatives we get the result

∂4qa

∂xi∂x j∂xk∂xl
≡ H †

ai jkl = Rmnq
i jkl Ḣ †

amnq , (93)

where H †
ai jkl = ∂4qa/∂xi∂x j∂xk∂xl , and Rmnq

i jkl is the operator

Rmnq
i jkl = piα jmαknαlq + p jαimαknαlq + pkαimα jnαlq + plαimα jnαkq

+ (pi p jαknαlq + pi pkα jnαlq + pi plα jnαkq + p j pkαinαlq + p j plαinαkq + pk plαinα jq ) vm

+ (pi p j pkαlq + pi p j plαkq + pi pk plα jq + p j pk plαiq ) vmvn + pi p j pk pl vmvnvq . (94)

4.5 Partial derivatives of ray-centred momentum coordinates

We obtain explicit expressions for the partial derivatives of ray-centred momentum coordinates with respect to Cartesian phase-space
coordinates. We limit our specifications to include first- and second-order derivatives, to avoid unnecessary complexity. Higher-order
derivatives are also of importance, but we can compute them as described above, by utilizing the symplectic property of the transformation.

4.5.1 First-order partial derivatives

The general first-order derivatives ∂p(q)
a /∂xi and ∂p(q)

a /∂pi are easily obtained using the connections of these derivatives to the derivatives
∂pi/∂qa and ∂xi/∂qa, see eqs (75) and (76). On the reference ray we then have

∂p(q)
A

∂xi
= −piη jE j A,

∂p(q)
3

∂xi
= −ηi , (95)

∂p(q)
A

∂p j
= E j A,

∂p(q)
3

∂p j
= v j . (96)

4.5.2 Second-order partial derivatives

In consideration of eq. (75) we note that the following second-order partial derivatives with respect to Cartesian momentum coordinates will
be zero,

∂2 p(q)
a

∂pi∂p j
= 0. (97)

The same will be true for any higher-order derivative with respect to one of the three momentum coordinates.
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Higher-order H-J theory—coordinates 907

Using eqs (75) and (76) we find general second-order mixed derivatives with respect to xi and pj, as follows. First,

∂2 p(q)
A

∂xi∂p j
= ∂

∂xi

(
∂x j

∂qA

)
= ∂qb

∂xi

∂

∂qb

(
∂x j

∂qA

)
,

hence

∂2 p(q)
A

∂xi∂p j
= ∂q3

∂xi

∂

∂q3

(
∂x j

∂qA

)
. (98)

Secondly,

∂2 p(q)
3

∂xi∂p j
= ∂

∂xi

(
∂x j

∂q3

)
= ∂qb

∂xi

∂

∂qb

(
∂x j

∂q3

)
,

which yields

∂2 p(q)
3

∂xi∂p j
= ∂qb

∂xi

∂

∂q3

(
∂x j

∂qb

)
. (99)

Evaluation of eqs (98) and (99) on the reference ray gives the results

∂2 p(q)
A

∂xi∂p j
= pi Ė j A,

∂2 p(q)
3

∂xi∂p j
= H †

ai Ḣ ja, (100)

We use eqs (75) and (76) to obtain the remaining second-order derivatives of ray-centred momentum coordinates, evaluated on the ray
�. This yields

∂2 p(q)
A

∂xi∂x j
= ∂2q3

∂xi∂x j
pk Ėk A + pi p j pk Ëk A,

∂2 p(q)
3

∂xi∂x j
=

(
∂2qa

∂xi∂x j
Ḣma + H †

ai H †
bj

d

dτ

∂2xm

∂qa∂qb

)
pm . (101)

5 R E L AT I N G T H E D E R I VAT I V E S O F A T R AV E LT I M E F U N C T I O N I N R AY- C E N T R E D
A N D C A RT E S I A N C O O R D I NAT E S

In this section we use transformation coefficients derived above to relate the derivatives of a traveltime function given in ray-centred and
Cartesian coordinates. It is assumed that the traveltime function in the vicinity of a point on the reference ray � can be expressed equivalently
in ray-centred and Cartesian coordinates, as τ (q) and τ (x), respectively. On �, the second- and higher-order derivatives of τ with respect to xi

are denoted Mij = ∂2τ /∂xi∂xj, Mijk = ∂3τ /∂xi∂xj∂xk, etc.—the corresponding derivatives with respect to qa are denoted Mab = ∂2τ/∂qa∂qb,
Mabc = ∂3τ/∂qa∂qb∂qc, etc. For the coefficients of the forward/inverse transformations we use, respectively, the notations Hia = ∂xi/∂qa,
Hiab = ∂2xi/∂qa∂qb, Hiabc = ∂3xi/∂qa∂qb∂qc, etc., and H †

ai = ∂qa/∂xi , H †
ai j = ∂2qa/∂xi∂x j , H †

ai jk = ∂3qa/∂xi∂x j∂xk , etc.

5.1 Mapping the derivatives of traveltime from ray-centred to Cartesian coordinates

One advantage of using ray-centred coordinates is that many derivatives of traveltime are zero in these coordinates. As a consequence, it can
be useful to write the mapping of derivatives of traveltime, from ray-centred to Cartesian coordinates, explicitly in terms of the components
Fi A and pi of the co-variant basis vectors. As these expressions are space demanding as we proceed to higher orders, they are given in
Appendix F. Here, we provide mapping equations given in terms of the inverse transformation components H †

ai . These are attractive because
of compactness, but their computation may not be equally efficient as those in Appendix F.

On the reference ray �, the mapping for the first four orders of the derivatives of traveltime, from ray-centred to Cartesian coordinates,
can be written,

pi = p(q)
a H †

ai , (102)

Mi j = p(q)
a H †

ai j + Mab H †
ai H †

aj , (103)

Mi jk = p(q)
a H †

ai jk + Mab(H †
ai H †

bjk + H †
aj H †

bik + H †
ak H †

bi j ) + Mabc H †
ai H †

bj H †
ck, (104)

Mi jkl = p(q)
a H †

ai jkl + Mab (H †
ai H †

bjkl + H †
aj H †

bikl + H †
ak H †

bi jl + H †
al H †

bi jk + H †
ai j H †

bkl + H †
aik H †

bjl + H †
ail H †

bjk)

+Mabc (H †
ai H †

bj H †
ckl + H †

ai H †
bk H †

cjl + H †
ai H †

bl H †
cjk + H †

aj H †
bk H †

cil + H †
aj H †

bl H †
cik + H †

ak H †
bl H †

ci j )

+Mabcd H †
ai H †

bj H †
ck H †

dl . (105)
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908 E. Iversen et al.

This setup can be easily extended to order five and higher, if needed. Note that the first term on the right-hand side of eq. (103) corresponds
to eq. (90) and also to Červený & Klimeš (2010, eq. 35).

5.2 Mapping the derivatives of traveltime from Cartesian to ray-centred coordinates

Proceeding as above, the complete mapping of the first four derivatives of traveltime from Cartesian to ray-centred coordinates can be stated,
after evaluation on �,

p(q)
a = pi Hia, (106)

Mab = pi Hiab + Mi j Hia Hjb, (107)

Mabc = pi Hiabc + Mi j (Hia Hjbc + Hib Hjac + Hic Hjab) + Mi jk Hia Hjb Hkc, (108)

Mabcd = pi Hiabcd + Mi j (Hia Hjbcd + Hib Hjacd + Hic Hjabd + Hid Hjabc + Hiab Hjcd + Hiac Hjbd + Hiad Hjbc)

+ Mi jk (Hia Hjb Hkcd + Hia Hjc Hkbd + Hia Hjd Hkbc + Hib Hjc Hkad + Hib Hjd Hkac + Hic Hjd Hkab)

+ Mi jkl Hia Hjb Hkc Hld . (109)

5.3 Special case: Traveltime function corresponding to an initial plane wave

We comment on a special case, for which the mapping of the derivatives of traveltime becomes particularly simple, namely, the traveltime
function arising as a result of an initial plane wave.

Iversen et al. (2019) describes in detail how one can define the initial condition for the dynamic ray tracing quantities in Cartesian
coordinates, referred to as derivatives of phase-space perturbations, and also how to derive from these quantities the derivatives of traveltime
up to order four: pi, Mij, Mijk and Mijkl. Essential in this setup is the use of constraint relations of the standard type (Červený 2001) and of
higher order (Iversen et al. 2019). In particular, when using the plane-wave initial condition, one can from these constraint relations alone
obtain the complete set of dynamic ray tracing quantities.

For the initial plane wave, the computation of second-order derivatives of traveltime, Mij, at the given (initial) point requires only
knowledge of the first-order derivatives of the model parameters. Computation of third- and fourth order derivatives, Mijk and Mijkl, requires
computation of second- and third-order derivatives of the model parameters, respectively. Hence, the initial plane wave situation is special, as
it also permits a computation of fifth-order derivatives of traveltime, Mijklm, given that we provide the corresponding fourth-order derivatives of
the model parameters. These derivatives are naturally included when using the quintic B-spline as a basic element of the model representation.

To establish the fifth-order derivatives Mijklm, we therefore have available the required model input data, but there are two minor extra
issues to be handled, relative to the description in Iversen et al. (2019): (1) the set of constraint relations must be extended with one additional
order; (2) the set of equations for the derivatives of traveltime must be extended with one additional equation, thus involving Mijklm. We do not
write the specific equations here, as they would need a formal introduction of the derivatives of perturbations in phase space, which is outside
the scope of the paper. However—both these derivations are straightforward to carry out, and they are needed here basically to support the
numerical examples below.

In view of eqs (106)–(109) it is straightforward to transform the fifth-order derivatives in Cartesian coordinates, Mijklm, to corresponding
derivatives in ray-centred coordinates, Mabcde. There is, however, one issue that needs attention, as the transformation formulas contains
terms of the type piHiab, piHiabc, piHiabcd, piHiabcde, etc. The only apparently problematic components among the fifth-order transformation
derivatives in Hiabcde are Hia3333 = d4Hia/dτ 4—all other fifth-order derivatives are known from straightforward time differentiation of the
fourth-order derivatives Hiabcd. The term pi d4 Hia/dτ 4 may however be computed without specific knowledge of the derivatives d4Hia/dτ 4, as
we can utilize that the constraint piHia = δ3a must hold along �. Indeed, we may use this constraint at any level of the transform, in terms of
the relations

pi Hia3 = −ηi Hia, (110)

pi Hia33 = −dηi

dτ
Hia − 2ηi

dvi

dτ
, (111)

pi Hia333 = −d2ηi

dτ 2
Hia − 3

dηi

dτ

dHia

dτ
− 3ηi

d2 Hia

dτ 2
, (112)

pi Hia3333 = −d3ηi

dτ 3
Hia − 4

d2ηi

dτ 2

dHia

dτ
− 6

dηi

dτ

d2 Hia

dτ 2
− 4ηi

d3 Hia

dτ 3
, etc. (113)

Here, the time derivative d3ηi/dτ 3 relies on derivatives of the model parameters up to order four, which we have available.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/893/6226666 by R

ice U
niversity user on 11 O

ctober 2021



Higher-order H-J theory—coordinates 909

Figure 3. Marmousi isotropic model with source point (x = 4.5, z = 2.7) km. Rays have been computed to equidistant receivers located at zero depth. Grey
dots show ray points corresponding to the given traveltime 0.44 s. Reference ray—light grey line; other rays—black lines.

6 O N T H E VA L I D I T Y O F R AY- C E N T R E D C O O R D I NAT E S

We address the validity limits of ray-centred coordinates by computing the transformation coefficients �11
ia (q1, q2, q3) at paraxial locations,

not only on the reference ray �. Observe that on � we have �11
ia (0, 0, q3) = Hia(q3).

In general, ray-centred coordinates are valid only in a certain region around the reference ray. In this region, the mapping between the
three ray-centred coordinates and the three Cartesian coordinates must be one-to-one. A necessary condition to accomplish this is that the
determinant of matrix �11 is strictly positive,

det�11 > 0, (114)

which arises from the fact that the mapping collapses for det�11 = 0, while det�11 > 0 on �. We note that the condition (114) is not sufficient,
as there are special cases where fulfillment of (114) does not correspond to a one-to-one mapping. The 6 × 6 matrix � is symplectic, so its
determinant will be one as long as (114) is satisfied. All six phase-space coordinates of the Cartesian and ray-centred domains will then have
a one-to-one relationship.

To enable a monitoring of criterion (114) we perform a paraxial expansion of the coefficients �11
ia in the q1q2 plane. The expansion is

linear in qA,

∂xi

∂qA
(q1, q2, q3) = Ei A(q3),

∂xi

∂q3
(q1, q2, q3) = vi (q3) + Ėi A(q3) qA, (115)

so the determinant to be checked in (114) is therefore

det�11(q1, q2, q3) = c(q3) [1 − ηi (q3) Ei A(q3) qA]. (116)

We observe that this determinant does not depend on the convention used for continuation of the basis vectors, although the second sub-
equation of (115) indeed has this dependence. Eq. (116) can be used to monitor the behaviour of the coordinate transformation in a region
around the reference ray.

7 N U M E R I C A L E X A M P L E S

We illustrate by numerical examples some aspects of the above theory for the higher-order transformations between Cartesian and ray-centred
coordinates. We wanted to use a quite drastically varying model for the experiments, to be able to address the limits of validity of the
ray-centred coordinate system. Our choice was the well-known (isotropic, 2-D) Marmousi model. Before doing any tests, the P-wave velocity
field of the model was smoothed in NORSAR, using a Hamming filter radius of 0.3 km. This was a necessity to make the model appropriate
for ray tracing. We also made a VTI version of the smoothed model, by choosing Thomsen’s (1986) parameters ε and δ as the constants ε =
0.3, δ = 0.1. The ratio of the vertical P- to S-wave velocity was set to 2 throughout the VTI model.

Moreover, since we are taking advantage of a model representation supporting quintic B-splines, which is not so common to use, we
find it instructive to exemplify the function values and derivatives resulting when choosing different degrees of the B-spline representation.

In this section, we refer to the Cartesian coordinates x1 and x3 as x and z, respectively.

7.1 Rays and coordinate lines in the Marmousi isotropic model

In the Marmousi isotropic model (see Fig. 3), consider a source point at the location (x = 4.5, z = 2.7) km. Using two-point ray tracing,
we compute rays from this source point to regularly spaced receivers in the acquisition surface, z = 0 km. Even though our model has
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910 E. Iversen et al.

Figure 4. Top panel: Marmousi isotropic model and the reference ray (light grey) from Fig. 3. The black lines correspond to constant values of the q1-coordinate,
in the range [−2.4, 2.4] km. Grey dots correspond to constant q3 = 0.44 s. Bottom panel: The normalized determinant of the coordinate transformation matrix
{∂xi/∂qj} plotted in the ray-centred coordinates (q1, q3).

been smoothed, the ray field in Fig. 3 shows quite dramatic focusing/defocusing effects. We select one ray (light grey) as the reference ray.
Moreover, in the part where this ray has strong curvature, we select a reference time, τ = 0.44 s.

Next, in Fig. 4(top panel) we visualize the ray-centred coordinates that result for the given reference ray. The black lines in the figure are
q3-coordinate lines—they correspond to constant values of the q1 coordinate. The grey dots refer to our selected reference time, q3 = τ =
0.44 s. We observe the evolvement of a triplication of the q3 lines, starting around 1 km away from the reference ray. In Fig. 4(bottom panel)
we have plotted the normalized determinant of the coordinate transformation matrix, given by eq. (116). In this context, ‘normalized’ means
to divide by the phase velocity, c(q3).

In the white areas of the plot, the determinant is zero or negative, thus corresponding to a collapse of the ray-centred coordinate system.
The mapping between Cartesian coordinates and ray-centred coordinates is then not one-to-one. This type of collapse is outlined by the point
C in Fig. 2. The collapse is a result of the curvature of the ray path—it is not related to caustics of the ray field. We see that the formation of
triplications in the coordinate lines (Fig. 4, top panel) is consistent with the system determinant becoming zero (Fig. 4, bottom panel).

7.2 Rays and coordinate lines in the Marmousi VTI model

We repeat the above exercise using the Marmousi VTI model (Fig. 5). It is then natural to choose a different reference ray, to ensure that we
study a ray with significant curvature effects. Still, it seemed suitable to choose the same reference time, τ = 0.44 s. As for the isotropic
model, we obtain areas where the mapping between Cartesian coordinates and ray-centred coordinates is not one-to-one (Fig. 6, bottom
panel). The deformation of the coordinate lines (Fig. 6, bottom panel) appears in a somewhat different form than for the isotropic case; the
reason being that the coordinate lines not only depend on the curvature of the reference ray path—the angle between the slowness vector and
the ray-velocity vector also plays a role.
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Higher-order H-J theory—coordinates 911

Figure 5. Marmousi VTI model with source point (x = 4.5, z = 2.7) km. Rays have been computed to equidistant receivers located at zero depth. Grey dots
show ray points corresponding to the given traveltime 0.44 s. Reference ray—light grey line; other rays—black lines.

Figure 6. Top panel: Marmousi VTI model and the reference ray (light grey) from Fig. 5. The black lines correspond to constant values of the q1-coordinate,
in the range [−2.4, 2.4] km. Grey dots correspond to constant q3 = 0.44 s. Bottom panel: The normalized determinant of the coordinate transformation matrix
{∂ xi/∂qj} plotted in the ray-centred coordinates (q1, q3).

7.3 Traveltime expansions for an initial plane wave in the Marmousi VTI model

Based on our current reference point, that is the point on the reference ray that corresponds to the reference time, q3 = 0.44 s, we
now want to study the initiation of a plane wave. The initial slowness vector of the plane wave shall be equal to the slowness vector
at the reference point, so that our reference ray for the initial-plane-wave ray field and the original common-source ray field will be the
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912 E. Iversen et al.

Figure 7. Initiation of a plane wave (grey dots) in the Marmousi VTI model, based on a point on the reference ray in Fig. 5 with traveltime 0.44 s from the
original source point. All rays are traced a positive time 0.2 s away from the initial plane. Reference ray—light grey line; other rays—black lines.

same. In particular, we are interested in establishing higher-order approximations for the traveltime of the initial plane wave, given with
respect to Cartesian coordinates as well as ray-centred coordinates. All computations are then done in the reference point, that is without
using dynamic ray tracing. For the transformation of coefficients between the two coordinate systems we use the theory derived in this
paper.

Fig. 7 shows a close-up of the Marmousi VTI model around the reference point. A number of rays (reference ray—light grey line; other
rays—black lines) have been traced a positive time 0.2 s away from the initial plane (grey dots). Somewhat to the right of the reference ray,
the formation of a caustic is visible.

Using the same close-up window as in Fig. 7, we have in Fig. 8 plotted four versions of the traveltime function arising from the plane-
wave initial condition. The four versions corresponds to second-, third-, fourth- and fifth-order Taylor expansions, in Cartesian coordinates,
around the reference point. Comparing the expansions of orders two and three, we see that the third-order expansion yields a somewhat
better consistency with respect to the initial-plane-wave ray field. For the fourth-order expansion we observe a much better consistency on
the right-hand side of the reference ray, where the caustic is located. Finally, the fifth-order expansion yields improved accuracy quite close
to the reference ray but the consistency does not extend as far as for the fourth-order result.

In Fig. 9 we consider corresponding expansions of traveltime in ray-centred coordinates. The expansion of order two, which corresponds
to the conventional dynamic ray tracing method, shows no lateral variation. Such variation appears with a third-order expansion of traveltime,
but the degree of freedom is obviously too small to yield useful information at paraxial distances. For the fourth-order expansion a ‘ridge’
appears in the traveltime plot, to the right of the reference ray. This ridge indicates that paraxial rays experience a lower velocity than on the
reference ray. In fact, a locally lower velocity is indeed the reason for the formation of the caustic to the right of the reference ray, as can be
seen from Fig. 7. The fifth-order expansion in ray-centred coordinates provides one additional interesting detail: A local ‘height’ occurring at
a paraxial distance of around 1 km. This local maximum is consistent with the previously mentioned collapse of the ray-centred coordinate
system, see Fig. 5.

In summary, we find that Figs 8 and 9 illustrate well the increased information content inherent in the higher-order transformation of a
local traveltime function between Cartesian and ray-centred coordinates.

7.4 Use of higher-order B-splines in the model representation

In this subsection we show an example of function values and derivatives that can result when different degrees are chosen for the B-spline
function representing the discrete values of a given model parameter.

Fig. 10(top panel) shows a sequence of points (black circles), regularly spaced in the lateral direction, for which we want to generate a
univariate function. In the literature of computer aided geometric design these input points are referred to synonymously as nodes, vertices, or
control points. The first-degree spline (dashed black) is C0 and corresponds to straightforward linear interpolation between these points. The
function value is then continuous, while the first derivative is discontinuous. When choosing a cubic (magenta) and quintic (blue) B-spline
function we observe the following: (1) The function does not traverse through the given input points; (2) The function gets progressively
smoother as we increase the degree of the B-spline representation.

Consider the evaluation of a function value and eventual derivatives on a certain interval between two nodes. For a linear spline it is
only these two nodes that determine the evaluation (by linear interpolation); to evaluate a cubic B-spline on the same interval we need the

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/893/6226666 by R

ice U
niversity user on 11 O

ctober 2021



Higher-order H-J theory—coordinates 913

Figure 8. For an initial plane wave (grey dots) in the Marmousi VTI model: Traveltime extrapolation in Cartesian coordinates, to second (a), third (b), fourth
(c) and fifth (d) order. Reference ray—light grey line; other rays—black lines.

two bounding nodes plus one node on each side, totally four nodes; evaluation of a quintic B-spline requires the two bounding nodes plus two
nodes on each side, totally six nodes, and so forth.

In Fig. 10(bottom panel) the quintic 1-D B-spline representation in Fig. 10(top panel) has been restated as a volume function (in general
a function of all three spatial coordinates, but here only shown in two dimensions). This is a simple example of a volume function well suited
for seismic modelling. We note that cubic splines have been used in seismic modelling for a long time (Gjøystdal et al. 1985).
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914 E. Iversen et al.

Figure 9. For an initial plane wave in the Marmousi VTI model: Traveltime extrapolation in ray-centred coordinates, to second (a), third (b), fourth (c) and
fifth (d) order. Reference ray—light grey line; reference point—grey dot.

Fig. 11 shows graphs of first- (a) to fourth-order (d) derivatives evaluated using the cubic (magenta) and quintic (blue) B-spline functions
shown in Fig. 10. The first-order derivatives of the cubic and quintic B-spline functions (Fig. 11a) are both continuous and smooth. We
observe that the second-order derivative of the cubic B-spline function (Fig. 11b) is continuous but not smooth—the third-order derivative
is discontinuous. For the quintic B-spline function, however, the second-order derivative (Fig. 11b) and the third-order derivative (Fig. 11c)
are both continuous and smooth. Finally, the fourth-order derivative of the quintic B-spline function (Fig. 11d) is continuous but not
smooth.

We find that Figs 10 and 11 illustrate well the stable behaviour of computed function values and derivatives of the quintic B-spline
function, up to order three in the derivatives. For the fourth order the derivative is continuous, but in general not smooth. If more smoothness
is needed, one can introduce a pre-processing step for the input (node) values. We further address the topic of higher-order B-spline functions
in the Section 8.
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Higher-order H-J theory—coordinates 915

Figure 10. Top panel: B-spline representations of a sequence of node points (black circles) specified in one dimension only. First-degree (linear) B-spline
representation—dotted black line; third-degree (cubic) B-spline representation—magenta line; fifth-degree (quintic) B-spline representation—blue line. Bottom
panel: Using the quintic B-spline representation to form a volume function.

8 D I S C U S S I O N

We discuss (1) the choice of model representation for computation of the higher-order transformation relating the phase-space perturbations
in Cartesian and ray-centred coordinates and (2) the properties of B-splines in a higher-order context.

8.1 On the inclusion of higher-order derivatives of model parameters in the computation of transformation coefficients

The derived transformation coefficients do not depend explicitly on the derivatives of the model parameters (e.g. density-normalized elastic
moduli). These derivatives are hidden in the ray-velocity vector, v = (vi), and its time derivatives, and in the time derivatives of the eta
vector, η = (ηi ). In the tangent plane to the wavefront, first-order derivatives of the model parameters are sufficient to establish transformation
coefficients of any order. Summarizing these last observations, it is clear that the extension of the (standard) first-order transformation
approach to include higher-order transformation coefficients requires only a local, higher-order, extension of the Cartesian phase-space vector
for the reference ray.

More specifically, a transformation to second order between Cartesian and ray-centred coordinates requires dvi/dτ and dηi/dτ , while the
third-order transformation needs d2vi/dτ 2 and d2ηi/dτ 2. We outline two different approaches to compute these time derivatives:

(i) By adapting a three times differentiable function to the computed discrete values of [x(τ ), p(τ )].
(ii) By using the first-order (conventional) and second-order dynamic ray tracing equations in Cartesian coordinates (Iversen et al. 2019),

for which we need to know, respectively, the second- and third-order derivatives of the model parameters along the ray.

The first approach is simple, efficient and could typically be handled with a cubic B-spline representation of the model parameters.
However, if the transformations are to be used in higher-order dynamic ray tracing, in which we utilize a quintic B-spline representation
(Iversen et al. 2019), then one may risk inconsistencies resulting from the fact that the model representation is different in the computation
of the transformation coefficients and in the specification/continuation of the dynamic ray tracing quantities. For an indication of the source
of such potential inconsistencies, see Figs 10 and 11.
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916 E. Iversen et al.

Figure 11. First-(a) to fourth-(d) order derivatives based on the cubic and quintic B-spline representations for the sequence of node points in Fig. 10.

If we want to specify a local wavefield, based on information in a single point on the reference ray, then we may need also derivatives of
order two and higher in the coordinates q1 and q2. This is the case in the exploding plane wave situation, Figs 8 and 9. To evaluate the initial
condition for the exploding plane wave, to all orders, we therefore use the quintic B-spline representation.

To be on the safe side, our recommendation is to use approach (ii) above for the computation of time derivatives along the ray, whenever
the transformations are to be applied to the dynamic ray tracing quantities.
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Higher-order H-J theory—coordinates 917

8.2 Aspects of the use of B-splines

There are certainly trade-offs involved in the choice of a model representation. B-splines have many good properties, but there are also effects
that may be considered a disadvantage.

The B-spline function evaluation is local—this property makes it attractive with respect to efficiency, stability, and for model perturbation.
Consider a certain model volumetric model parameter, and assume that the input points (nodes) correspond to a regular 3-D grid in the
spatial coordinates. For a linear, cubic, and quintic B-spline the function evaluation inside a given grid cell requires, respectively, 2 ×
2 × 2 = 8, 4 × 4 × 4 = 64 and 6 × 6 × 6 = 216 model parameter values in the grid points of the current cell and its adjacent
neighbors.

If we change the model parameter value in one of the grid points, then the function is affected only in a local region, the region of
influence, surrounding that specific point. As with the function evaluation, the extent of the region depends on the B-spline degree—for linear,
cubic, and quintic B-splines the region of influence consists of, respectively, 8, 64 and 216 grid cells.

We also discuss smoothness and stability. A B-spline curve does not traverse through the given input points, but is ‘cutting the corners’.
The function value is guaranteed to be within the convex hull formed by the input points (Farin et al. 2002). This is in contrast to an
interpolating spline curve and a Bézier curve, for which the shape of the curve depends on all input points. It is noted the shape can be very
sensitive to a perturbation of a single point, while a B-spline curve changes in a controlled way.

As is illustrated in Fig. 10(top panel), increasing the degree of the B-spline leads to increased smoothness. The second and the fourth
derivative of, respectively, the cubic and the quintic B-spline are continuous, but not smooth (Fig. 11). To have a more smooth appearance of
such derivatives a preprocessing of the input model parameter values is necessary. For the cubic spline this aspect has been known for years
(e.g. Gjøystdal et al. 2002), but Fig. 11 (d) indicates that a pre-smoothing may be needed also for quintic B-splines.

When the latter point is handled, the quintic B-spline yields a stable computation of the value of a model parameter and its spatial
derivatives up to order four. As a side effect, we note that the B-spline representation introduces a smoothing of the input parameter values,
and this smoothing increases with the degree of the B-spline. The same is true for the computation time—it increases when more input points
are needed in the evaluation of the function.

9 C O N C LU S I O N S

We have derived expressions for the second-, third-, and fourth-order coefficients of the transformation of phase-space perturbations from
ray-centred coordinates to Cartesian coordinates and vice versa. The expressions depend on the (contra-variant and co-variant) sets of
basis vectors related to ray-centred coordinates and on the time derivatives of these basis vectors. We provide a general formulation of the
continuation of the contra-variant and co-variant basis along the reference ray.

With the transformation coefficients derived in this paper, the ground is prepared for introducing higher-order Hamilton–Jacobi per-
turbation equations (higher-order dynamic ray tracing) in ray-centred coordinates. For that purpose, we show and utilize that the 6 × 6
matrix of first-order derivatives relating the phase-space perturbations in ray-centred and Cartesian coordinates is symplectic. The sym-
plecticity holds not only on the reference ray but at general locations in phase space complying with the validity region of ray-centred
coordinates.

By numerical examples, we have used the transformation coefficients to visualize the validity region of ray-centred coordinates. A
natural question is to what extent this validity region will be a problem in practice. For conventional dynamic ray tracing it seems unlikely
that ray-centred coordinates may cause difficulties—on the other hand, as we have exemplified in this paper, the ability of the conventional
method to describe paraxial variations of wavefield attributes in a relatively complex model is very limited. In total, the numerical examples
show interesting effects for the traveltime extrapolations based on derivatives in a given point on the reference ray. The extrapolations to
third, fourth and fifth order are progressively richer in information—we can see the effect of paraxial velocity changes, that potentially may
lead to caustics. Moreover, the fifth-order result, in ray-centred coordinates, indicates that we can also see the imprint of the collapse of the
coordinates.

We have given examples of the transformation of a traveltime function, for different extrapolation orders. We expect that equally
significant results can be obtained for other wavefield properties, like geometrical spreading, amplitude coefficients, polarization vectors, and
so forth. It would be interesting to see this further illuminated in future papers.

Furthermore, in view of our observations in this paper: what will happen first as we move paraxially away from the reference ray—a
collapse of the wavefield (a caustic is encountered) or a collapse of the coordinate system? This is also a topic that requires more research.

The presented higher-order transformation theory for ray-centred coordinates is expected to be important in future developments of
paraxial ray methods. Furthermore, the theory represents a good base for developing higher-order transformations related to more general
curvilinear coordinate systems.
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We consider the continuation of the contra-variant and co-variant sets of basis vectors, E and F , along the reference ray �. The process
is typically organized by integrating the required differential equations for E , i.e., we need dE/dτ expressed in terms of E and quantities
that are known on �. Once E and dE/dτ are known for some location on �, then F and dF/dτ can be computed by explicit formulas.
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Alternatively, one may integrate a system of differential equations for F and from them obtain, by explicit expressions, the quantities E and
dE/dτ .

A1 Continuation of the contra-variant basis

The generally non-orthonormal basis E can be related to an orthonormal basis Ē by

E = ĒC, (A1)

where C is a 2 × 2 matrix that accounts for rotation as well as a possible stretch within the plane orthogonal to the slowness vector p̂(τ ). A
rotation does not change the lengths of the two vectors in Ē , while a stretch may imply a change of relative length as well as of measurement
unit. We use the symmetric matrix

B = {eA
T eB } = ETE (A2)

to describe eventual deviation of the basis E from orthonormality, which is the case when B = {δAB}. As a consequence, eq. (A2) can also
be expressed as

B = CTC. (A3)

Let c and n be the phase velocity and the unit vector corresponding to the slowness vector p, so that p = c−1n. As the vectors in E and
the unit vector n are linearly independent, any arbitrary vector, s = (si), may therefore be expressed as the linear combination

si = Ei B aB + ni a3, (A4)

where a1, a2, and a3 are coefficients. The corresponding expression for a matrix S = {SiB} consisting of two arbitrary column vectors reads

SiC = Ei BABC + niA3C . (A5)

In the following, we elaborate on the nature of the coefficients ABC and A3C in the case where SiC = dEiC/dτ .
The basis vectors in E have to be orthogonal to p, i.e., pTE = {0A}, implying that

pT dE
dτ

= −dpT

dτ
E, (A6)

which can be recast as

nT dE
dτ

= −c
dpT

dτ
E . (A7)

It is clear that the coefficients {A3C } are given by the right-hand side of eq. (A7), so we can write

dE
dτ

= EA − c
dpT

dτ
E . (A8)

Here, c = c2p is the phase-velocity vector, and A = {ABC } is a 2 × 2 matrix, which we have not yet specified.
We elaborate on the specification of matrix A. A first observation, based on eqs (A2) and (A7), is that A must satisfy

A = B−1ET dE
dτ

, (A9)

Eqs (A2) and (A9) further yields

dB
dτ

= ATB + BA. (A10)

Hence, if matrix A is zero then matrix B is constant along the ray �. In particular, if the basis E is orthonormal at the starting point, this
property will be preserved along the whole ray.

The situation

A = {0AB}; B = {δAB}, (A11)

has been referred to as the standard option for the bases of the ray-centred coordinate system (Červený 2001; Klimeš 2006a, section 5.4). It
is used, for example, in the Complete Ray Tracing (CRT) software package (Klimeš 2006b, section 6.2) .

A2 Computation of the co-variant basis and its time derivative

The co-variant basis F can always be expressed in terms of the contra-variant basis E via

F = αEB−1, (A12)
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with the components of α given by eq. (37). In view of the definition of the 2 × 2 matrix K in eq. (62), we can use eqs (A8) and (A12) to
obtain

KT = A + B−1ET vηTE . (A13)

Moreover, since ETF = {δAB} and vTF = {0A}, we have

ET dF
dτ

= −K, vT dF
dτ

= − dv

dτ
F . (A14)

Eq. (A14) then yields the time derivative of F as

dF
dτ

= −FK − p
dvT

dτ
F . (A15)

Note that eq. (A15) also follows from Klimeš (2006a, eqs 24 and 26).

A3 Equivalent formulations for the continuation of the contra-variant basis

By eq. (A8) we established a general formulation for the continuation of the contra-variant basis E along the reference ray. Eq. (A8) is
expressed in terms of the phase-velocity vector, c.

With the help of eq. (A13) we can obtain a system of differential equations for E that is fully equivalent to (A8),

dE
dτ

= EKT − v
dpT

dτ
E ; (A16)

see also Klimeš (2006a, eqs 24 and 25). In eq. (A16) it is now the ray-velocity vector, v, that appears on the right-hand side. The phase-velocity
vector is related to the ray-velocity vector by

c = [{δi j } − EB−1ET
]
v, (A17)

or equivalently,

c =
[
{δi j } − ĒĒT

]
v. (A18)

A4 Continuation of the contra-variant basis— the orthonormality case

If e1 and e2 are orthogonal unit vectors, eqs (A2) and (A10) yields

A = −AT = A
(

0 1
−1 0

)
, (A19)

where A is a scalar function of τ . It is common, but not mandatory, to define E(τ ) strictly in terms of 1) the curvature and torsion of the ray
trajectory and 2) the initial condition, E(τ0); see, e.g., Červený & Pšenčı́k (1979). The time derivative vectors deA/dτ , A = 1, 2, will then both
be parallel to p, which yields

A(τ ) = 0 (A20)

along the ray. Eq. (A20) represents the standard option in eq. (A11) in the situation that E is orthonormal. One can interpret A(τ ) as a function
specifying an additional constraint on the rotation of E , i.e., a constraint not related to curvature and torsion of the ray trajectory.

Using eqs (A2) and (A12), it follows that for an orthonormal basis E of any kind [A(τ ) may be nonzero in eq. (A19)] we have

F = αE . (A21)

A P P E N D I X B : PA RT I A L D E R I VAT I V E S O F C A RT E S I A N M O M E N T U M C O O R D I NAT E S

B1 First-order partial derivatives of Cartesian momentum coordinates

We obtain first-order partial derivatives of pi with respect to qa.
Using eq. (51) in eq. (53) we find different forms for the derivative ∂pi/∂q3,

∂pi

∂q3
= p(q)

a

∂2 pi

∂q3∂p(q)
a

= p(q)
a

∂

∂q3

(
∂pi

∂p(q)
a

)
= p(q)

a

∂

∂q3

(
∂qa

∂xi

)
, (B1)

where the last expression can also be stated

∂pi

∂q3
= p(q)

A

∂

∂q3

(
∂qA

∂xi

)
+ p(q)

3

∂

q3

(
∂q3

∂xi

)
. (B2)
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Furthermore, we differentiate the first sub-equation of (27) with respect to xi, which yields

∂2qc

∂xi∂x j

∂x j

∂qa
+ ∂qc

∂x j

∂qb

∂xi

∂2x j

∂qa∂qb
= 0, (B3)

and therefore,

∂x j

∂qa

∂2qc

∂xi∂x j
= − ∂qc

∂x j

∂qb

∂xi

∂2x j

∂qa∂qb
. (B4)

With the help of eq. (54) it is clear that

∂2 pi

∂qa∂p(q)
c

= − ∂qc

∂x j

∂qb

∂xi

∂2x j

∂qa∂qb
. (B5)

Using eq. (53) further yields

∂pi

∂qa
= −p(q)

c

∂qc

∂x j

∂qb

∂xi

∂2x j

∂qa∂qb
. (B6)

In order to find an expression for ∂pi/∂qA we use the property

∂

∂q3

(
∂qc

∂x j

∂x j

∂qA

)
= 0, (B7)

which follows from eq. (27). We substitute A for a and elaborate on eq. (B6),

∂pi

∂qA
= −p(q)

c

∂qc

∂x j

∂qb

∂xi

∂2x j

∂qA∂qb
δl3

= −∂q3

∂xi
p(q)

m

∂qm

∂x j

∂2x j

∂q3∂qA

= ∂q3

∂xi
p(q)

c

∂

∂q3

(
∂qc

∂x j

)
∂x j

∂qA
.

Using also eq. (B1) we obtain the result

∂pi

∂qA
= ∂q3

∂xi

∂p j

∂q3

∂x j

∂qA
. (B8)

The derivatives ∂pi/∂qA and ∂pi/∂q3 in eqs (B8) and (B2) correspond to general phase-space locations. As such they can be used to obtain
higher-order derivatives. Evaluation on � yields

∂pi

∂qA
= piη jE j A,

∂pi

∂q3
= ηi . (B9)

B2 A property of the symplectic transformation matrix

We derive an expression for the first-order derivatives ∂p(q)
a /∂xi of the transformation from Cartesian coordinates to ray-centred coordinates.

Differentiate eqs (70) and (75) with respect to the Cartesian position coordinate,

∂p(q)
a

∂xi
= p j

∂2 p(q)
a

∂xi∂p j
,

∂2 p(q)
a

∂xi∂p j
= ∂qb

∂xi

∂2x j

∂qa∂qb
,

and combine the latter expressions with eq. (B5). This yields,

∂p(q)
a

∂xi
= p j

∂qb

∂xi

∂2x j

∂qa∂qb
= −p j

∂x j

∂qc

∂2 pi

∂qa∂p(q)
c

= −p j
∂p(q)

c

∂p j

∂2 pi

∂qa∂p(q)
c

= −p(q)
c

∂2 pi

∂qa∂p(q)
c

= − ∂

∂qa

(
p(q)

c

∂pi

∂p(q)
c

)
,

and hence the important result

∂p(q)
a

∂xi
= − ∂pi

∂qa
. (B10)
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922 E. Iversen et al.

B3 Higher-order partial derivatives of Cartesian momentum coordinates

We obtain general second- and third-order partial derivatives of Cartesian momentum coordinates.
The right-hand side of eq. (51) is not a function of p(q)

a , so higher-order derivatives with respect to p(q)
a are therefore zero. Hence,

∂2 pi

∂p(q)
a ∂p(q)

b

= 0, (B11)

∂3 pi

∂p(q)
a ∂p(q)

b ∂p(q)
c

= 0,
∂3 pi

∂p(q)
a ∂p(q)

b ∂qc

= 0. (B12)

Moreover, the general result in eq. (B8) can equivalently be written

∂pi

∂qA
= ∂pi

∂p(q)
3

∂p j

∂q3

∂x j

∂qA
. (B13)

Differentiation of this equation with respect to p(q)
b yields

∂2 pi

∂qA∂p(q)
b

= ∂pi

∂p(q)
3

∂2 p j

∂q3∂p(q)
b

∂x j

∂qA
, (B14)

hence,

∂2 pi

∂qA∂p(q)
b

= ∂q3

∂xi

∂

∂q3

(
∂qb

∂x j

)
∂x j

∂qA
. (B15)

Moreover, one can write

∂2 pi

∂q3∂p(q)
b

= ∂

∂q3

(
∂qb

∂xi

)
. (B16)

We evaluate eqs (B15) and (B16) on the reference ray, which gives

∂2 pi

∂qA∂p(q)
B

= −piKAB,
∂2 pi

∂qA∂p(q)
3

= piη jE j A,

∂2 pi

∂q3∂p(q)
A

= Ḟi A,
∂2 pi

∂q3∂p(q)
3

= ηi . (B17)

For definition of the quantity KAB , see eq. (62).
From eqs (B9) and (B17) the results for higher-order partial derivatives of pi with respect to q3 follow readily,

∂2 pi

∂q2
3

= η̇i ,
∂2 pi

∂q3∂qA
= d

dτ

(
piη jE j A

)
, (B18)

∂3 pi

∂q3
3

= η̈i ,
∂3 pi

∂q2
3 ∂qA

= d2

dτ 2

(
piη jE j A

)
,

∂3 pi

∂q2
3 ∂p(q)

A

= F̈i A, (B19)

∂3 pi

∂q3∂qA∂p(q)
B

= − d

dτ
(piKAB) ,

∂3 pi

∂q2
3 ∂p(q)

3

= η̇i ,
∂3 pi

∂q3∂qA∂p(q)
3

= d

dτ

(
piη jE j A

)
. (B20)

We proceed to consider the momentum components pi differentiated twice with respect to the ray-centred position coordinates, qA. Using
eq. (B13) as our starting point, we obtain

∂2 pi

∂qA∂qB
=

(
∂2 pi

∂p(q)
3 ∂qB

∂p j

∂q3
+ ∂pi

∂p(q)
3

∂2 p j

∂q3∂qB

)
∂x j

∂qA

= ∂q3

∂xi

∂2 pk

∂q3∂p(q)
3

∂xk

∂qB

∂p j

∂q3

∂x j

∂qA
+ ∂pi

∂p(q)
3

∂

∂q3

(
∂q3

∂x j

)
∂pk

∂q3

∂xk

∂qB

∂x j

∂qA
,

which can be restated

∂2 pi

∂qA∂qB
= ∂q3

∂xi

(
∂

∂q3

(
∂q3

∂xk

)
∂p j

∂q3
+ ∂

∂q3

(
∂q3

∂x j

)
∂pk

∂q3

)
∂x j

∂qA

∂xk

∂qB
. (B21)

The evaluated expression on the reference ray is

∂2 pi

∂qA∂qB
= 2piη jηkE j AEk B . (B22)

As a consequence, we also get

∂3 pi

∂q3∂qA∂qB
= 2

d

dτ

(
piη jηkE j AEk B

)
. (B23)
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Higher-order H-J theory—coordinates 923

Eq. (B21) is equivalently written

∂2 pi

∂qA∂qB
= ∂q3

∂xi

(
∂2 pk

∂q3∂p(q)
3

∂p j

∂q3
+ ∂2 p j

∂q3∂p(q)
3

∂pk

∂q3

)
∂x j

∂qA

∂xk

∂qB
. (B24)

Differentiation with respect to p(q)
c then yields the third-order (mixed) derivative

∂3 pi

∂qA∂qB∂p(q)
c

= ∂q3

∂xi

(
∂2 pk

∂q3∂p(q)
3

∂2 p j

∂q3∂p(q)
c

+ ∂2 p j

∂q3∂p(q)
3

∂2 pk

∂q3∂p(q)
c

)
∂x j

∂qA

∂xk

∂qB
, (B25)

which can also be stated

∂3 pi

∂qA∂qB∂p(q)
c

= −∂q3

∂xi

(
∂2 pk

∂q3∂p(q)
3

∂xk

∂qB

∂

∂q3

(
∂x j

∂qA

)
∂qc

∂x j
+ ∂2 p j

∂q3∂p(q)
3

∂x j

∂qA

∂

∂q3

(
∂xk

∂qB

)
∂qc

∂xk

)
. (B26)

Evaluation on the reference ray gives

∂3 pi

∂qA∂qB∂p(q)
C

= −piη j (E j AKBC + E j BKAC ),
∂3 pi

∂qA∂qB∂p(q)
3

= 2piη jηkE j AEk B . (B27)

To obtain the general third-order derivative ∂pi/∂qA∂qB∂qC we do further differentiation of eq. (B24). The derivation is straightforward and
follows the same principles as above. On the reference ray we find,

∂3 pi

∂qA∂qB∂qC
= 6piη jηkηlE j AEk BElC . (B28)

Certain fourth-order derivatives of pi have a role in the derivation of third-order Hamilton-Jacobi perturbation differential equations. It
is straightforward, although space demanding, to develop expressions for these derivatives. Therefore, we state here only the evaluated results
on the reference ray,

∂4 pi

∂qA∂qB∂qC∂qD
= 24 pi η jηkηlηm E j AEk BElCEm D, (B29)

∂4 pi

∂qA∂qB∂qC∂p(q)
D

= −2 pi η jηk (E j AEk BKC D + E j AEkCKB D + E j BEkCKAD). (B30)

A P P E N D I X C : S E C O N D - O R D E R PA RT I A L D E R I VAT I V E S O F R AY- C E N T R E D
P O S I T I O N C O O R D I NAT E S

We develop specific expressions for the second-order partial derivatives of ray-centred position coordinates, qa.
Eq. (54) yields

∂2qa

∂xi∂x j
= ∂2 pi

∂qc∂p(q)
a

∂qc

∂x j

= ∂2 pi

∂qC∂p(q)
a

∂qC

∂x j
+ ∂2 pi

∂q3∂p(q)
a

∂q3

∂x j
. (C1)

Inserting from eqs (B15) and (B16) gives

∂2qa

∂xi∂x j
= ∂2 pi

∂qc∂p(q)
a

∂qc

∂x j

= ∂2 pi

∂qC∂p(q)
a

∂qC

∂x j
+ ∂2 pi

∂q3∂p(q)
a

∂q3

∂x j

= ∂q3

∂xi

∂

∂q3

(
∂qa

∂xm

)
∂xm

∂qC

∂qC

∂x j
+ ∂

∂q3

(
∂qa

∂xi

)
∂q3

∂x j

= ∂q3

∂xi

∂

∂q3

(
∂qa

∂xm

) (
δ jm − ∂q3

∂x j

∂xm

∂q3

)
+ ∂

∂q3

(
∂qa

∂xi

)
∂q3

∂x j

=
(

∂q3

∂xi
δ jm + ∂q3

∂x j
δim − ∂q3

∂xi

∂q3

∂x j

∂xm

∂q3

)
∂

∂q3

(
∂qa

∂xm

)
, (C2)

where we utilized eq. (31). Eq. (C2) corresponds to a general location in phase space. We write this equation compactly as

∂2qa

∂xi∂x j
= Rm

i j

∂

∂q3

(
∂qa

∂xm

)
, (C3)
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924 E. Iversen et al.

where the operator Rm
i j has two equivalent forms—

Rm
i j = ∂q3

∂xi
δ jm + ∂q3

∂x j
δim − ∂q3

∂xi

∂q3

∂x j

∂xm

∂q3
(C4)

and

Rm
i j = ∂q3

∂xi
α jm + ∂q3

∂x j
αim + ∂q3

∂xi

∂q3

∂x j

∂xm

∂q3
. (C5)

The quantity αjm is defined in eq. (32).
Application of eqs (C3) and (C4) on the ray � yields

H †
ai j = Rm

i j Ḣ †
am, (C6)

with the operator Rm
i j given equivalently by

Rm
i j = piα jm + p jαim + pi p jvm (C7)

or

Rm
i j = piδ jm + p jδim − pi p jvm . (C8)

A P P E N D I X D : T H I R D - O R D E R PA RT I A L D E R I VAT I V E S O F R AY- C E N T R E D P O S I T I O N
C O O R D I NAT E S

We derive expressions for the third-order partial derivatives of the ray-centred position coordinates,

∂3qa

∂xi∂x j∂xk
.

Multiplying this derivative expression with the first-order derivatives of the transformation from ray-centred to Cartesian coordinates leads to
component quantities of the form

Aa
cde ≡ ∂3qa

∂xi∂x j∂xk

∂xi

∂qc

∂x j

∂qd

∂xk

∂qe

=
(

∂3 pi

∂p(q)
a ∂qd∂qe

− ∂2qa

∂xi∂x j

∂2x j

∂qd∂qe

)
∂xi

∂qc
. (D1)

It is straightforward to show that the components Aa
C DE are zero. Moreover, we utilize in the following that

∂xi

∂q3

∂3qa

∂xi∂x j∂xk
= ∂

∂q3

(
∂2qa

∂x j∂xk

)
. (D2)

For brevity, we introduce on the reference ray � a notation for the higher-order derivatives,

H †
ai j = ∂2qa

∂xi∂x j
, H †

ai jk = ∂3qa

∂xi∂x j∂xk
, etc., (D3)

so that eq. (D2) can be restated

vi H †
ai jk = Ḣ †

ajk (D4)

on �. The third-order derivatives of ray-centred position coordinates can now be written in terms of the co-variant basis as

∂3qa

∂xi∂x j∂xk
= Aa

3DE (piF j DFk E + piFk DF j E + p jFk DFi E )

+Aa
33E (pi p jFk E + pi pkF j E + p j pkFi E )

+Aa
333 pi p j pk, (D5)

with the A-quantities given by

Aa
3DE = Ḣ †

amnEm DEnE , (D6)

Aa
33E = Ḣ †

amnvmEnE , (D7)

Aa
333 = Ḣ †

amnvmvn . (D8)
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Higher-order H-J theory—coordinates 925

Applying eqs (D6) and (D8) in (D5) yields

H †
ai jk = Ḣ †

amnEm DEnE (piF j DFk E + p jFi DFk E + pkFi DF j E )

+Ḣ †
amnvmEnE (pi p jFk E + pi pkF j E + p j pkFi E )

+Ḣ †
amnvmvn pi p j pk . (D9)

We can therefore write

H †
ai jk = Rmn

i jk Ḣ †
amn, (D10)

where we can use eq. (37) and the symmetry of indices m and n to state the operator Rmn
i jk as

Rmn
i jk = piα jmαkn + p jαkmαin + pkαimα jn

+ (pi p jαkn + p j pkαin + pk piα jn)vm

+ pi p j pkvmvn . (D11)

Further use of eq. (37) yields the equivalent form

Rmn
i jk = piδ jmδkn + p jδkmδin + pkδimδ jn

− (pi p jδkn + p j pkδin + pk piδ jn) vm

+ pi p j pkvmvn . (D12)

To evaluate the right-hand side of eq. (D10) we need the time derivative of the second-order coefficients, see eq. (C6). This time derivative
is expressed in terms of the first and second time derivatives of the first-order coefficients,

Ḣ †
ai j = Ṙm

i j Ḣ †
am + Rm

i j Ḧ †
am . (D13)

Here, we can obtain Ṙm
i j by straightforward differentiation of eq. (C8), which yields

Ṙm
i j = ηiα jm + η jαim − pi p j v̇m . (D14)

A P P E N D I X E : F O U RT H - O R D E R PA RT I A L D E R I VAT I V E S O F R AY- C E N T R E D
P O S I T I O N C O O R D I NAT E S

In order to obtain the fourth-order derivatives of ray-centred position coordinates we introduce the component quantities

Aa
cde f ≡ ∂4qa

∂xi∂x j∂xk∂xl

∂xi

∂qc

∂x j

∂qd

∂xk

∂qe

∂xl

∂q f

=
[

∂4 pi

∂p(q)
a ∂qd∂qe∂q f

− ∂3qa

∂xi∂x j∂xk

(
∂2x j

∂qd∂qe

∂xk

∂q f
+ ∂2x j

∂qd∂q f

∂xk

∂qe
+ ∂2x j

∂qe∂q f

∂xk

∂qd

)
− ∂2qa

∂xi∂x j

∂3x j

∂qd∂qe∂q f

]
∂xi

∂qc
. (E1)

Here, we note that the components Aa
C DE F are zero. We also emphasize the importance of the relation

∂xi

∂q3

∂4qa

∂xi∂x j∂xk∂xl
= ∂

∂q3

(
∂3qa

∂x j∂xk∂xl

)
, (E2)

which, on the reference ray, can be written in short-hand notation as

vi H †
ai jkl = Ḣ †

ajkl . (E3)

From eq. (E1) it follows that the fourth-order derivatives H †
ai jkl , taken on the reference ray, can be expressed in terms of the co-variant

basis as

H †
ai jkl = Aa

3DE F (piF j DFk EFl F + p jFi DFk EFl F + pkFi DF j EFl F + plFi DF j EFk F )

+Aa
33E F (pi p jFk EFl F + pi pkF j EFl F + pi plF j EFk F + p j pkFi EFl F + p j plFi EFk F + pk plFi EF j F )

+Aa
333F (pi p j pkFl F + pi p j plFk F + pi pk plF j F + p j pk plFi F ) + Aa

3333 pi p j pk pl , (E4)

where the A-components are

Aa
3DE F = Ḣ †

amnqEm DEnEEq F , (E5)

Aa
33E F = Ḣ †

amnqvmEnEEq F , (E6)

Aa
333F = Ḣ †

amnqvmvnEq F , (E7)
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926 E. Iversen et al.

Aa
3333 = Ḣ †

amnqvmvnvq . (E8)

Using eqs (E5)–(E8) in eq. (E4) yields the result

H †
ai jkl = Rmnq

i jkl Ḣ †
amnq , (E9)

with the operator Rmnq
i jkl given by

Rmnq
i jkl = piα jmαknαlq + p jαimαknαlq + pkαimα jnαlq + plαimα jnαkq

+ (pi p jαknαlq + pi pkα jnαlq + pi plα jnαkq + p j pkαinαlq + p j plαinαkq + pk plαinα jq ) vm

+ (pi p j pkαlq + pi p j plαkq + pi pk plα jq + p j pk plαiq ) vmvn + pi p j pk pl vmvnvq . (E10)

To compute the right-hand side of eq. (E9) we need the time derivative of the third-order coefficients of the transformation from Cartesian
to ray-centred coordinates, given by eq. (D10). The differentiation can be carried out as follows,

Ḣ †
ai jk = Ṙmn

i jk Ḣ †
amn + Rmn

i jk Ḧ †
amn, (E11)

where

d2 H †
amn

dτ 2
= d2 Rq

mn

dτ 2

dH †
aq

dτ
+ 2

dRq
mn

dτ

d2 H †
aq

dτ 2
+ Rq

mn

d3 H †
aq

dτ 3
. (E12)

A P P E N D I X F : D E TA I L S O F T H E M A P P I N G O F T R AV E LT I M E D E R I VAT I V E S F RO M
R AY- C E N T R E D T O C A RT E S I A N C O O R D I NAT E S

We elaborate on the details of the mapping of the derivatives of traveltime, from ray-centred to Cartesian coordinates. The objective is to
write explicit expressions in terms of the co-variant basis vector components, Fi A and pi, of the ray-centred coordinates. This can be useful,
because many derivatives of traveltime in ray-centred coordinates are zero. It is clear, however, that when addressing derivatives of traveltime
of orders four and higher, one comes to a point where it is more practical to write the mapping in terms of the inverse transformation matrix
components, H †

ai .
Similarly to in the first sub-equation of (18), we use that the first derivatives of traveltime are related by

∂τ

∂xi
= ∂τ

∂qa

∂qa

∂xi
. (F1)

Differentiation of eq. (F1) then yields

∂2τ

∂xi∂x j
= ∂τ

∂qa

∂2qa

∂xi∂x j
+ ∂2τ

∂qa∂qb

∂qa

∂xi

∂qb

∂x j
. (F2)

On � we use that

∂τ

∂qe
= δ3e,

∂2τ

∂qe∂q f
= ∂2τ

∂qA∂qB
δAeδB f , (F3)

Defining Mij ≡ ∂2τ /∂xi∂xj and MAB ≡ ∂2τ/∂qA∂qB , we therefore have

Mi j = H †
3i j + MAB Fi AF j B . (F4)

We further differentiate eq. (F2), to third order in the spatial coordinates,

∂3τ

∂xi∂x j∂xk
= ∂τ

∂qa

∂3qa

∂xi∂x j∂xk

+ ∂2τ

∂qa∂qb

(
∂qa

∂xi

∂2qb

∂x j∂xk
+ ∂qa

∂x j

∂2qb

∂xi∂xk
+ ∂qa

∂xk

∂2qb

∂xi∂x j

)

+ ∂3τ

∂qa∂qb∂qc

∂qa

∂xi

∂qb

∂x j

∂qc

∂xk
. (F5)

In the evaluation on � we utilize that

∂3τ

∂qe∂q f ∂qg
= ∂3τ

∂qA∂qB∂qC
δAeδB f δCg

+ d

dτ

(
∂2τ

∂qA∂qB

)
(δ3eδA f δBg + δ3 f δAeδBg + δ3gδAeδB f ), (F6)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/893/6226666 by R

ice U
niversity user on 11 O

ctober 2021



Higher-order H-J theory—coordinates 927

which yields

Mi jk = H †
3i jk

+ MAB

(
Fi A H †

B jk + F j A H †
Bik + Fk A H †

Bi j

)
+ ṀAB

(
piF j AFk B + p jFi AFk B + pkFi AF j B

)
+ MABC Fi AF j BFkC . (F7)

In the same manner, we obtain an equation for transformation of the fourth-order derivatives of traveltime, from ray-centred to Cartesian
coordinates. The evaluated result on � is

Mi jkl = H †
3i jkl + MAB

(
Fi A H †

B jkl + F j A H †
Bikl + Fk A H †

Bi jl + Fl A H †
Bi jk + H †

Ai j H †
Bkl + H †

Aik H †
B jl + H †

Ail H †
B jk

)
+ ṀAB(δ3eδA f δBg + δ3 f δAeδBg + δ3gδAeδB f )

×
(

H †
ei H †

f j H †
gkl + H †

ei H †
f k H †

g jl + H †
ei H †

f l H †
g jk + H †

ej H †
f k H †

gil + H †
ej H †

f l H †
gik + H †

ek H †
f l H †

gi j

)
+ MABC

(
Fi AF j B H †

Ckl + Fi AFk B H †
C jl + Fi AFl B H †

C jk + F j AFk B H †
Cil + F j AFl B H †

Cik + Fl AFl B H †
Ci j

)
+ ṀABC

(
piF j AFk BFlC + p jFi AFk BFlC + pkFi AF j BFlC + plFi AF j BFkC

)
+ M̈AB

(
pi p jFk AFl B + pi pkF j AFl B + pi plF j AFk B + p j pkFi AFl B + p j plFi AFk B + pk plFi AF j B

)
+MABC D Fi AF j BFkCFl D . (F8)

It is straightforward, but quite laborious, to also write the mapping of fifth-order derivatives (or even higher derivatives) in terms of the
co-variant basis. We leave this exercise to the interested reader.
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