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S U M M A R Y
Dynamic ray tracing is a robust and efficient method for computation of amplitude and phase
attributes of the high-frequency Green’s function. A formulation of dynamic ray tracing in
Cartesian coordinates was recently extended to higher orders. Extrapolation of traveltime and
geometrical spreading was demonstrated to yield significantly higher accuracy—for isotropic
as well as anisotropic heterogeneous 3-D models of an elastic medium. This is of value
in mapping, modelling and imaging, where kernel operations are based on extrapolation or
interpolation of Green’s function attributes to densely sampled 3-D grids. We introduce higher-
order dynamic ray tracing in ray-centred coordinates, which has certain advantages: (1) such
coordinates fit naturally with wave propagation; (2) they lead to a reduction of the number
of ordinary differential equations; (3) the initial conditions are simple and intuitive and (4)
numerical errors due to redundancies are less likely to influence the computation of the Green’s
function attributes. In a 3-D numerical example, we demonstrate that paraxial extrapolation
based on higher-order dynamic ray tracing in ray-centred coordinates yields results highly
consistent with those obtained using Cartesian coordinates. Furthermore, in a 2-D example
we show that interpolation of dynamic ray tracing quantities along a wavefront can be done
with much better consistency in ray-centred coordinates than in Cartesian coordinates. In
both examples we measure consistency by means of constraints on the dynamic ray tracing
quantities in the 3-D position space and in the 6-D phase space.

Key words: Numerical approximations and analysis; Numerical modelling; Body waves;
Computational seismology; Seismic anisotropy; Wave propagation.

1 I N T RO D U C T I O N

Dynamic ray tracing is established in seismology and seismic exploration as a robust and efficient method for computation of amplitude and
phase attributes of the high-frequency Green’s function (e.g. Červený 1972, 2001; Červený et al. 1977, 1984, 2012; Popov & Pšenčı́k 1978;
Červený & Hron 1980; Hanyga 1982; Farra & Madariaga 1987; Gajewski & Pšenčı́k 1990; Kendall et al. 1992; Klimeš 1994; Chapman 2004;
Iversen 2004a; Klimeš 2006b; Červený & Moser 2007; Červený & Pšenčı́k 2010).

The accuracy of the Green’s function attributes, in particular regarding traveltime, is key in the construction of an initial velocity model
for full-waveform inversion (FWI). Moreover, as shown recently by Djebbi & Alkhalifah (2020), sensitivity kernels computed by dynamic
ray tracing can be used in the FWI model update—this is beneficial with respect to the computation speed and the computer memory required
to store the Green’s function attributes. Another example on the use of ray theory for FWI is Zhou et al. (2018), who compute two-way
reflection wave paths to update the velocity model.

For the computation of traveltimes only, methods based on the finite-difference solution to the Eikonal equation (e.g. Vidale 1988;
Podvin & Lecomte 1991) have been popular due to their simplicity and efficiency. Le Bouteiller et al. (2019) describe an efficient and accurate
seismic traveltime computation in 3-D anisotropic media by applying the fast-sweeping method to a discontinuous Galerkin based eikonal
solver. A limitation of the latter methods, however, is the restriction to compute only the first arrivals. The wavefront construction method
(e.g. Vinje et al. 1993; Lambaré et al. 1996; Gibson et al. 2005), which is based on dynamic ray tracing, omits this limitation and provides
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an efficient and accurate computation of multi-arrivals in a dense grid of receivers (or image points). On the other hand, the implementation
of the method can be challenging.

The dynamic ray tracing quantities, that is the first-order derivatives of perturbations in position and momentum (slowness) with respect
to ray parameters at the source, are integrated along a reference ray through a system of ordinary differential equations (ODEs). Dynamic
ray tracing is frequently used for paraxial computations, which means to obtain wavefield quantities in the vicinity of the reference ray. If
we have only one reference ray the paraxial computation is an extrapolation operation—with a system of several reference rays the paraxial
computation can be conducted as interpolation.

Dynamic ray tracing in Cartesian coordinates has recently been extended to higher orders (Iversen et al. 2019). The motivation is to
provide more accurate paraxial computations of the quantities characterizing the high-frequency Green’s function: traveltime, geometrical
spreading, polarization vectors and so forth. In addition, the higher-order dynamic ray tracing system yields a possibility that does not exist
for the leading-order system: to extrapolate the fundamental solution, that is the ray propagator matrix, to a paraxial location.

As follows from the above, dynamic ray tracing has had a role in seismology and seismic exploration for five decades. A classic paper
in the history of seismic ray theory is Červený (1972)—it describes kinematic and dynamic ray tracing for arbitrarily anisotropic media,
in Cartesian coordinates. Later in the 1970s, one became aware that alternative coordinates could be beneficial with respect to removing
the redundancies of the dynamic ray tracing system. In this respect, the introduction of ray-centred coordinates for dynamic ray tracing for
isotropic media (Popov & Pšenčı́k 1978) is a major achievement. From the perspective of differential geometry, ray-centred coordinates are
linearized Fermi coordinates (e.g. Chavel 2006). To our knowledge, the first report on using ray-centred coordinates for anisotropic media is
Kendall et al. (1992).

When choosing coordinates for a particular application of dynamic ray tracing, trade-offs are coming into the consideration. With
Cartesian coordinates, the dynamic ray tracing system is relatively easy to implement, but on the other hand, there is redundant information
in the system, which may yield propagating errors along the reference ray. In ray-centred coordinates, redundancies can be removed and the
number of ODEs reduced accordingly. However, with ray-centred coordinates one must include at least one ODE for continuation of the basis
vectors along the ray—and, as the subsurface model is often specified in Cartesian coordinates, the method then relies on transformation
of spatial derivatives of the model parameters from Cartesian to ray-centred coordinates. This means that the advantage of fewer ODEs can
easily be lost in the extra computations required to evaluate the right-hand side of the equations. An additional, important, aspect with respect
to computational efficiency is how the evaluation of the ODE’s right-hand side is implemented. For an example of in-depth specifications to
obtain an optimal implementation, see Vinje et al. (1996b).

Concerning which coordinates one should choose for the dynamic ray tracing system, it is not easy to give a straight answer. For many
applications the choice of coordinates is not crucial and the results are almost identical—this concerns, for example, forward modelling
by classic two-point ray tracing. There are, however, wave propagation and data processing methods for which intrinsic use of ray-centred
coordinates would yield added value: We have in mind the methods built directly upon the properties of wavefronts. As follows intuitively, it
can be very powerful if such methods can use a coordinate system where one coordinate is time and the two other coordinates determine the
position on the wavefront.

From the 1970s and onwards a great effort has been invested in the theory of wavefront curvatures of elementary waves pertaining
to seismic reflections, referred to by Peter Hubral and colleagues as the normal wave (N-wave; exploding reflector wave) and the normal-
incidence point wave (NIP-wave) (e.g. Hubral 1977; Hubral & Krey 1980; Ursin 1982b; Iversen & Gjøystdal 1984; Bortfeld 1989; Hubral
et al.1992, 1993; Iversen 2006a). Later, the pioneering work of Hubral resulted in the common reflection surface (CRS) processing method
(Jäger et al. 2001; Duveneck 2004; Schleicher et al. 2007). Ray-centred coordinates have been essential in the development of the CRS-
method—the reason is the close connection between the wavefront curvatures, given in the ray-centred coordinate system, and the wavefront
attributes (second-order derivatives of traveltime), that can be retrieved from reflection seismic data.

Another example of methods taking advantage of ray-centred coordinates is wavefront construction (Vinje et al. 1993, 1996a, b). This
method is a combination of (1) taking small ray steps from one wavefront to the next and (2) interpolation of kinematic and dynamic ray
tracing quantities on the new wavefront to ensure a minimum sampling density before the wavefront is further continued. The dynamic ray
tracing step between two consecutive wavefronts can be performed equally well in Cartesian as in ray-centred coordinates, but the latter yield
better consistency in the interpolation of the dynamic ray tracing quantities. The degree of consistency of the dynamic ray-tracing system
along rays and wavefronts is therefore an issue that needs our attention, and to measure it we can use constraint relations (Červený 2001).

One of the difficulties with ray-theory based methods is the sampling of the medium. In the wavefront construction method the sampling
along the wavefront is adapted as the wavefront is continued. By incorporating higher-order dynamic ray tracing in the wavefront construction
method one could allow the ray cells to be wider and still retain the same, high, accuracy. In this way, fewer rays will be needed in the step
from one wavefront to the next. Likewise, in areas of the model with only one arrival one could allow the 3-D grid for storage of Green’s
function attributes to be coarser.

One of the most suitable applications of ray-centred coordinates is time-to-depth mapping—when the coordinate system of the velocity
model has one axis corresponding to two-way diffraction time (e.g. Iversen et al. 2012). In this case one can estimate a velocity model in
depth by the combined use of Dix’s (1955) classic method, the concept of the image ray (Hubral 1977) and the downward continuation of a
dynamic ray tracing system specified in ray-centred coordinates. For references to this combined approach, see, e.g. Hubral & Krey (1980);
Cameron et al. (2007); Iversen & Tygel (2008); de Hoop et al. (2014, 2015).
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Motivated by the good results obtained when extending dynamic ray tracing in Cartesian coordinates to higher orders (Iversen et al.
2019), we take in this paper yet another step, by introducing higher orders also for dynamic ray tracing in ray-centred coordinates. An
important foundation of the paper is the transformation between the ray-centred and the Cartesian phase-space coordinates (Klimeš 1994,
2002b, 2006b), which is also recently developed to higher orders (Iversen et al. 2021).

As with the higher-order dynamic ray tracing in Cartesian coordinates (Iversen et al. 2019), the corresponding extension for ray-centred
coordinates can be useful to many applications in modelling, mapping, processing and imaging (e.g. de Hoop et al. 1994; Brandsberg-Dahl
et al. 2003; Ursin 2004; Iversen 2004b, 2006b; Douma & de Hoop 2006; Stolk & de Hoop 2006; Iversen & Pšenčı́k 2008). More specifically:

(i) With the new achievements, it will be possible to do a better, wavefront consistent, interpolation of the dynamic ray tracing quantities.
This is fundamental in the wavefront construction method (Vinje et al. 1993, 1996a, b), and therefore also for applications using it for
high-frequency Green’s function computation.

(ii) The new developments have a potential in the modelling and mapping of the elementary (N- and NIP-)waves related to seismic
reflections (Iversen 2006a), as well as CRS processing and ‘true-amplitude’ imaging (Duveneck 2004; Schleicher et al. 2007).

(iii) The higher-order extension is expected to be of particular value in methods where ray-centred coordinates is the most natural choice
(e.g. Klimeš 2002a; Goldin & Duchkov 2003; Klimeš 2006a, b; Cameron et al. 2007; Iversen & Tygel 2008; de Hoop et al. 2014, 2015).

The paper is organized as follows. We start by considering leading-order dynamic ray tracing in ray-centred coordinates, which is based
on first-order Hamilton–Jacobi perturbation equations. Thereafter, we derive second- and third-order Hamilton–Jacobi perturbation equations
in ray-centred coordinates.

One section is devoted to identify constraints and address intrinsic relations between derivatives of perturbations in ray-centred co-
ordinates. Such relations are important for removal of redundancies from the ODEs for higher-order dynamic ray tracing in ray-centred
coordinates. Next, we write transformation formulas between derivatives of perturbations given in ray-centred and Cartesian coordinates, and
we provide initial conditions corresponding to a point source and a plane-wave source. In a numerical examples section, we show that paraxial
extrapolation based on higher-order dynamic ray tracing in ray-centred coordinates yields results highly consistent with those obtained
previously using Cartesian coordinates. We further demonstrate that interpolation of the dynamic ray tracing quantities along a wavefront is
achieved with much better consistency in ray-centred coordinates than in Cartesian coordinates. Appendices A–E describe details of the
derivations, under the assumption of a homogeneous Hamiltonian of degree two in the momentum components. Appendix F addresses the
generalization of the higher-order dynamic ray-tracing equations to an arbitrary degree of the Hamiltonian.

Notes on the nomenclature—We use mostly component notation, but also vector/matrix notation where appropriate. Components of
vectors, matrices and tensors are specified by lower- and uppercase subscript indices. The lowercase indices a, b, c, . . . , p, q run from 1 to
3, unless noted otherwise, while the uppercase indices A, B, C, . . . , P, Q have only the values 1, 2. The indices r, s, t, . . . run from 1 to 6;
their (reduced) uppercase versions only take the four values 1, 2, 4, 5. For equations in component notation we use Einstein’s summation
convention. The symbol † is used to signify components of an inverse matrix, B−1 = {B†

i j }. For overview of the mathematical symbols used
in the paper, see Tables 1–5. Explicit results from Iversen et al. (2021) are summarized in Tables 6–7.

2 L E A D I N G - O R D E R DY NA M I C R AY T R A C I N G I N R AY- C E N T R E D C O O R D I NAT E S

In this section, we derive systems for leading-order dynamic ray tracing in ray-centred coordinates pertaining to arbitrarily anisotropic media.
The derivations are done directly from a Hamilton–Jacobi equation given in ray-centred coordinates. One novelty aspect of this section is that
we use a fully general formulation for the continuation of basis vectors along the reference ray.

We consider a reference ray � with traveltime τ as the monotonous variable along the ray. In Cartesian coordinates, phase-space
locations along � are described by the six-component vector function ŵ(τ ), which represents the concatenation of the position and slowness
(momentum) vector functions x̂(τ ) and p̂(τ ). When taking the time derivative of x̂ and p̂ along � we obtain the ray-velocity vector v = dx̂/dτ

and the eta vector η = dp̂/dτ . The phase-velocity vector along the ray is c = c2p̂, where c is the (scalar) phase velocity.

2.1 Ray-centred coordinates

We give a brief review of the concept ray-centred coordinates. For greater technical detail, see Iversen et al. (2021).
The ray-centred coordinate system (q1, q2, q3) is attached to the chosen reference ray �. The q1 and q2 coordinates refer to straight axes

situated in a plane orthogonal to the slowness vector p̂(τ ). On � we have

q1 = q2 = 0. (1)

The q3 coordinate is curvilinear and chosen here as the traveltime along �, that is q3 = τ .
In ray-centred coordinates we denote the position vector q = (qi) and the momentum vector p(q) = (p(q)

i ). The latter is not referred to
here as a slowness vector, for the reason that all its components do not have the measurement unit of inverse velocity. The vectors (qi) and
(p(q)

i ) form the phase space in ray-centred coordinates, w(q) = (w(q)
r ) = (qi , p(q)

j ), where all six components vary freely.
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Table 1. Basic mathematical symbols used in the paper. For multicomponent quantities the dimensions are specified.

Quantity Dimension Description

(x1, x2, x3) 3 Cartesian coordinate system
x = (xi) 3 Position vector of the Cartesian coordinate system
p = (pi) 3 Slowness vector (momentum vector) of the Cartesian coordinate system
w = (wx) = (xi, pj) 6 Phase-space vector of the Cartesian coordinate system
� Reference ray
H (w) Hamiltonian
N Degree of the Hamiltonian
{aijkl} 3 × 3 × 3 × 3 Density-normalized elastic moduli
� = {�i j } 3 × 3 Christoffel matrix
G Eigenvalue of the Christoffel matrix
τ Traveltime along the ray �

τ 0 Traveltime at the initial point of the ray �

c Phase velocity
c = (ci) 3 Phase-velocity vector
n = (ni) 3 Normalized phase-velocity vector
v = (vi) 3 Ray-velocity (group-velocity) vector
η = (ηi ) 3 Derivative of slowness vector p with respect to traveltime τ

(q1, q2, q3) 3 Ray-centred coordinate system
q = (qi) 3 Position vector of the ray-centred coordinate system

p(q) = (p(q)
i ) 3 Momentum vector of the ray-centred coordinate system

w(q) = (w(q)
x ) 6 Phase-space vector of the ray-centred coordinate system

= (qi , p(q)
j )

E = {Ei M } 3 × 2 Contra-variant (paraxial) basis of the ray-centred coordinate system
= [e1 e2]
F = {Fi M } 3 × 2 Co-variant (paraxial) basis of the ray-centred coordinate system
τ (x) Traveltime function in Cartesian coordinates
τ (q) Traveltime function in ray-centred coordinates
{MI J } 2 × 2 Derivatives of traveltime, ray-centred coordinates, second order
{MI J K } 2 × 2 × 2 Derivatives of traveltime, ray-centred coordinates, third order
{MI J K L } 2 × 2 × 2 × 2 Derivatives of traveltime, ray-centred coordinates, fourth order

. . .
s = (si) 3 Source point
r = (ri) 3 Receiver point
T(r, s) Traveltime as a function of source–receiver coordinates
L(r, s) Relative geometrical spreading as a function of

source–receiver coordinates
J 6 × 6 Matrix for rearranging derivatives in Hamilton’s equations
{�xr} 6 × 6 Coefficients of phase-space coordinate transformation, ray-centred to Cartesian, first order
{�xrs} 6 × 6 × 6 Coefficients of phase-space coordinate transformation, ray-centred to Cartesian, second order
{�xrst} 6 × 6 × 6 × 6 Coefficients of phase-space coordinate transformation, ray-centred to Cartesian, third order

. . .
B = {BI J } 2 × 2 Matrix describing the deviation of the basis E from orthonormality
A = {AI J } 2 × 2 Coefficient matrix, phase-velocity formulation for the derivative dE/dτ

K = {KI J } 2 × 2 Coefficient matrix, ray-velocity formulation for the derivative dE/dτ

Table 2. Mathematical symbols: derivatives of perturbations, Cartesian coordinates. For multicomponent quantities the
dimensions are specified.

Quantity Dimension Description

Nγ Number of parameters specifying a perturbation of the initial
phase-space location. Possible values are 1 to 6

(γ a) Nγ Parameters specifying a perturbation
of the initial phase-space location

{Xra} 6 × Nγ First-order derivatives
{Xrab} 6 × Nγ × Nγ Second-order derivatives
{Xrabc} 6 × Nγ × Nγ × Nγ Third-order derivatives
{QiA}, {PiA} 3 × 2 First-order derivatives, Q-P notation, for Nγ = 2
{QiAB}, {PiAB} 3 × 2 × 2 Second-order derivatives, Q-P notation, for Nγ = 2
{QiABC}, {PiABC} 3 × 2 × 2 × 2 Third-order derivatives, Q-P notation, for Nγ = 2
{Qia} = [{QiA} {vi}] 3 × 3 Extension of 3 × 2 matrix {QiA} to size 3 × 3, the

geometrical spreading matrix
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Table 3. Mathematical symbols: derivatives of perturbations, ray-centred coordinates. For multicomponent quantities the
dimensions are specified.

Quantity Dimension Description

X(q) = {X (q)
ra } 6 × Nγ First-order derivatives

X̄(q) = {X (q)
Ra} 4 × Nγ First-order derivatives, reduced version

{X (q)
rab} 6 × Nγ × Nγ Second-order derivatives

{X (q)
rabc} 6 × Nγ × Nγ × Nγ Third-order derivatives

S(q) = {Srs} 6 × 6 Coefficients of ODEs, first order
S̄(q) = {SRS} 4 × 4 Coefficients of ODEs, first order, reduced version

{S(q)
rst } 6 × 6 × 6 Main coefficients of ODEs, second order

{R(q)
rst } 6 × 6 × 6 Additional coefficients of ODEs, second order

{S(q)
rstu} 6 × 6 × 6 × 6 Main coefficients of ODEs, third order

{R(q)
rstu} 6 × 6 × 6 × 6 Additional coefficients of ODEs, third order

δw̄(q) = (δw(q)
R ) 4 Perturbation of the reduced phase-space vector

δw(q)
0 = (δw(q)

R )0 4 Perturbation of the reduced phase-space vector
at the initial point on �

�̄
(q)

(τ, τ0) 4 × 4 Ray propagator matrix

= {	(q)
RS(τ, τ0)}

{Qi A}, {Pi A} 3 × 2 First-order derivatives, Q-P notation, for Nγ = 2
{Qi AB}, {Pi AB} 3 × 2 × 2 Second-order derivatives, Q-P notation, for Nγ = 2
{Qi ABC }, {Pi ABC } 3 × 2 × 2 × 2 Third-order derivatives, Q-P notation, for Nγ = 2
{
RS}, {�RS} 4 × 4 Auxiliary matrices of the ODEs, second-order

Table 4. Mathematical symbols: derivatives of the Hamiltonian, Cartesian coordinates. For multicomponent quantities the
dimensions are specified.

Quantity Dimension Description

{H ,r } 6 First-order derivatives
{H ,rs} 6 × 6 Second-order derivatives
{H ,rst } 6 × 6 × 6 Third-order derivatives
{H ,rstu} 6 × 6 × 6 × 6 Fourth-order derivatives
{Uij} 3 × 3 Derivatives with respect to position, second order
{Uijk} 3 × 3 × 3 Derivatives with respect to position, third order
{Uijkl} 3 × 3 × 3 × 3 Derivatives with respect to position, fourth order
{Vij} 3 × 3 Derivatives with respect to momentum, second order—the

wave-propagation metric tensor
{Vijk} 3 × 3 × 3 Derivatives with respect to momentum, third order
{Vijkl} 3 × 3 × 3 × 3 Derivatives with respect to momentum, fourth order
{W 12

i j = ∂2 H /∂xi ∂p j } 3 × 3 Derivatives with respect to position/momentum,
second order

{W 112
i jk 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂3 H /∂xi ∂x j ∂pk} third order
{W 122

i jk 3 × 3 × 3 Derivatives with respect to position/momentum,
= ∂3 H /∂xi ∂p j ∂pk} third order

{W 1112
i jkl 3 × 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂4 H /∂xi ∂x j ∂xk∂pl } fourth order
{W 1122

i jkl 3 × 3 × 3 × 3 Derivatives with respect to position/momentum,
= ∂4 H /∂xi ∂x j ∂pk∂pl } fourth order

{W 1222
i jkl 3 × 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂4 H /∂xi ∂p j ∂pk∂pl } fourth order

On the ray � the momentum vector components in ray-centred coordinates are

p(q)
I = 0, p(q)

3 = 1, (2)

see the initial discussion on the momentum vector in ray-centred coordinates in Iversen et al. (2021). Moreover, contra-variant basis vectors
denoted e1 and e2 are assigned, respectively, to the q1 and q2 coordinates; the components of these vectors form a 3 × 2 matrix E = {Ei M }.
The corresponding co-variant basis vectors, denoted f1 and f2, form the 3 × 2 matrix F = {Fi M }. The matrices E and F satisfy the relations

Ei M pi = 0, Fi Mvi = 0, (3)

along the ray �. Eq. (3) means that the momentum direction is orthogonal to the directions given by the basis vectors e1 and e2. Similar for
the ray-velocity vector—it is orthogonal to the vectors f1 and f2.
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Table 5. Mathematical symbols: derivatives of the Hamiltonian, ray-centred coordinates. For multicomponent quantities
the dimensions are specified.

Quantity Dimension Description

{H (q)
,r } 6 First-order derivatives

{H (q)
,rs} 6 × 6 Second-order derivatives

{H (q)
,rst } 6 × 6 × 6 Third-order derivatives

{H (q)
,rstu} 6 × 6 × 6 × 6 Fourth-order derivatives

{U (q)
i j } 3 × 3 Derivatives with respect to position, second order

{U (q)
i jk } 3 × 3 × 3 Derivatives with respect to position, third order

{U (q)
i jkl } 3 × 3 × 3 × 3 Derivatives with respect to position, fourth order

{V (q)
i j } 3 × 3 Derivatives with respect to momentum, second order

— the wave-propagation metric tensor

{V (q)
i jk } 3 × 3 × 3 Derivatives with respect to momentum, third order

{V (q)
i jkl } 3 × 3 × 3 × 3 Derivatives with respect to momentum, fourth order

{W (q) 12
i j = ∂2 H /∂qi ∂p(q)

j } 3 × 3 Derivatives with respect to position/momentum,
second order

{W (q) 112
i jk 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂3 H /∂qi ∂q j ∂p(q)
k } third order

{W (q) 122
i jk 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂3 H /∂qi ∂p(q)
j ∂p(q)

k } third order

{W (q) 1112
i jkl 3 × 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂4 H /∂qi ∂q j ∂qk∂p(q)
l } fourth order

{W (q) 1122
i jkl 3 × 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂4 H /∂qi ∂q j ∂p(q)
k ∂p(q)

l } fourth order

{W (q) 1222
i jkl 3 × 3 × 3 × 3 Derivatives with respect to position/momentum,

= ∂4 H /∂qi ∂p(q)
j ∂p(q)

k ∂p(q)
l } fourth order

Table 6. First- and second-order coefficients of the transformation from ray-
centred to Cartesian phase-space coordinates.

Quantity Dimension Expression

{∂xi/∂qA} 3 × 2 Ei A

{∂xi/∂q3} 3 vi

{∂xi /∂p(q)
a } 3 × 3 0

{∂pi/∂qA} 3 × 2 pi η jE j A

{∂pi/∂q3} 3 ηi

{∂pi /∂p(q)
A } 3 × 2 Fi A

{∂pi /∂p(q)
3 } 3 pi

{∂2xi/∂qA∂qB} 3 × 2 × 2 0
{∂2xi/∂qA∂q3} 3 × 2 Ėi A

{∂2xi /∂q 2
3 } 3 v̇i

{∂2xi /∂q j ∂p(q)
a } 3 × 3 × 3 0

{∂2xi /∂p(q)
j ∂p(q)

a } 3 × 3 × 3 0
{∂2pi/∂qA∂qB} 3 × 2 × 2 2 pi η j ηkE j AEk B

{∂2 pi /∂q2
3 } 3 η̇i

{∂2pi/∂qA∂q3} 3 × 2 d/dτ (pi η jE j A)

{∂2 pi /∂p(q)
j ∂p(q)

k } 3 × 3 × 3 0

{∂2 pi /∂qA∂p(q)
B } 3 × 2 × 2 −piKAB

{∂2 pi /∂qA∂p(q)
3 } 3 × 2 pi η jE j A

{∂2 pi /∂q3∂p(q)
A } 3 × 2 Ḟi A

{∂2 pi /∂q3∂p(q)
3 } 3 ηi

2.2 Continuation of contra-variant basis vectors along the reference ray

Klimeš (2006b) provides a fundamental treatment of the continuation of the bases of ray-centred coordinates along a certain reference ray, �.
Iversen et al. (2021) obtain two equivalent sets of ODEs for the contra-variant basis E—the phase-velocity formulation

dEnI

dτ
= EnLAL I − cnηkEk I , (4)
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1268 E. Iversen et al.

Table 7. Third- and fourth-order coefficients of the transformation from ray-centred to Cartesian phase-space coordinates.
Some trivial expressions are excluded.

Quantity Dimension Expression

{∂3xi /∂qA∂q 2
3 } 3 × 2 Ëi A

{∂3xi /∂q 3
3 } 3 v̈i

··· ··· ···
{∂3pi/∂qA∂qB∂qC} 3 × 2 × 2 × 2 6 pi η j ηkηlE j AEk BElC

{∂3pi/∂qA∂qB∂q3} 3 × 2 × 2 2 d/dτ (pi η j ηkE j AEk B )
{∂3 pi /∂qA∂q2

3 } 3 × 2 d2/dτ 2 (pi η jE j A)
{∂3 pi /∂q3

3 } 3 η̈i

{∂3 pi /∂qA∂qB∂p(q)
C } 3 × 2 × 2 × 2 −pi η j (E j AKBC + E j BKAC )

{∂3 pi /∂qA∂qB∂p(q)
3 } 3 × 2 × 2 2 pi η j ηkE j AEk B

{∂3 pi /∂q3∂qA∂p(q)
B } 3 × 2 × 2 −d/dτ (pi KAB )

{∂3 pi /∂q3∂qA∂p(q)
3 } 3 × 2 d/dτ (pi η jE j A)

{∂3 pi /∂q2
3 ∂p(q)

A } 3 × 2 F̈i A

{∂3 pi /∂q2
3 ∂p(q)

3 } 3 × 2 η̇i

··· ··· ···
{∂4xi /∂qA∂q 2

4 } 3 × 2 d3/dτ 3 (Ei A)
{∂4xi /∂q 4

3 } 3 d3/dτ 3 (vi )
··· ··· ···
{∂4pi/∂qA∂qB∂qC∂qD} 3 × 2 × 2 × 2 × 2 24 pi η j ηkηlηm E j AEk BElCEm D

{∂4 pi /∂qA∂qB∂qC∂p(q)
D } 3 × 2 × 2 × 2 × 2 −2 pi η j ηk (E j AEk BKC D + E j AEkCKB D + E j BEkCKAD)

··· ··· ···

and the ray-velocity formulation

dEnI

dτ
= EnLKI L − vnηkEk I . (5)

Eq. (5) is equivalent to Klimeš (2006b, eq. 25).
Eq. (4) makes use of two 2 × 2 matrices A and B, with components

AI J = B†
I KEmK

dEm J

dτ
, (6)

BI J = Em IEm J . (7)

If matrix A equals the zero matrix the basis E is determined entirely by (1) the curvature and torsion of the ray trajectory and (2) the initial
condition for E . Matrix B = ETE is symmetric. When B equals the identity matrix the basis E is orthonormal.

Eq. (5) involves the 2 × 2 matrix K (Klimeš 2006b, eq. 24), which has an important role in dynamic ray tracing systems for anisotropic
media. It is defined by

KI J ≡ dEnI

dτ
Fn J = −EnI

dFn J

dτ
. (8)

It is shown in Iversen et al. (2021) that A, B and K are linked through the relation

KI J = AJ I + EnI ηnvkEkLB†
L J . (9)

The standard option to dynamic ray tracing in ray-centred coordinates (Červený 2001; Klimeš 2006b, section 5.4; Iversen et al. 2021,
Appendix A) corresponds to requiring AI J = 0 along the whole ray �. This specification yields BI J constant along �. Hence, if we specify
the basis E orthonormal at the initial point, that is BI J = δI J , then E will remain orthonormal along the whole ray. As an example of
implementation of the standard option, we refer to the Complete Ray Tracing (CRT) software package (Klimeš 2006c, section 6.2).

When the contra-variant basis E is known at some point on � one can compute the covariant basis F from an explicit expression. This
can also be done the other way around—first integrate F along � and then compute E by a simple formula. For details, see Iversen et al.
(2021).

2.3 Hamilton–Jacobi equation

In an arbitrarily anisotropic heterogeneous medium, we consider an elementary P or S wave, which corresponds to a specific eigenvalue
G(x, p) of the Christoffel matrix �,

�ik(x, p) = ai jkl (x) p j pl . (10)

Here, aijkl denotes the tensor of density-normalized elastic moduli.
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Higher-order H–J theory— dynamic ray tracing 1269

The foundation of our theoretical development in ray-centred coordinates is given by the Hamilton–Jacobi equation for stationary time,

H (w(q)) = constant = 1

N , (11)

where H , the Hamiltonian is a homogeneous function of degree N in the momentum components. Eq. (11) yields a constraint in phase
space, implying a reduction of the number of degrees of freedom from six to five.

According to Euler’s theorem for homogeneous functions we have

p(q)
i

∂ H
∂p(q)

i

= N H . (12)

To make the Hamiltonian satisfy eq. (12) we adopt the approach of Klimeš (2002b, eq. 9),

H (w(q)) = 1

N
[
G(w(q))

]N /2
, (13)

where G is the relevant eigenvalue of the Christoffel matrix (10), expressed in the ray-centred phase-space coordinates. An important property
of eq. (13) is that the variable along the ray � is traveltime, independently of the value of N .

In the main text and Appendices A–E of the paper, all derivations are done for a homogeneous Hamiltonian of second degree, N = 2,
in the momentum components. For some applications, however, a value different from 2 can be more optimal. For example, Bulant & Klimeš
(2007) successfully use N = −1 in the context of coupling ray theory for S waves in anisotropic media. In Appendix F the interested reader
can find the equations needed to generalize the theory to arbitrary N .

2.4 Hamilton’s equations

In ray-centred coordinates, Hamilton’s equations (Hamilton 1837) read

dqi

dτ
= ∂ H

∂p(q)
i

,
dp(q)

i

dτ
= −∂ H

∂qi
, (14)

or compactly

dw(q)
r

dτ
= Jrs

∂ H
∂w

(q)
s

, (15)

with {Jrs} = J as the 6 × 6 matrix

J = {Jrs} =
(

{0i j } {δi j }
−{δi j } {0i j }

)
. (16)

The structure of eqs (12)–(16) is the same in any coordinate system.
It is remarked that eqs (14) are of no value with respect to computing a (reference) ray. The reason is that one has to compute the

reference ray before attaching a ray-centred coordinate system to it. The eqs (14) are however useful as a basis for developing dynamic ray
tracing systems.

Inserting eqs (2) and (11) in eq. (12) we get, on the ray �,

∂ H
∂p(q)

i

= δi3. (17)

Moreover, since the momentum vector is constant along �, the second subequation of (14) yields

∂ H
∂qi

= 0. (18)

2.5 System of six Hamilton–Jacobi perturbation equations in ray-centred coordinates

As in Iversen et al. (2019) we let perturbations of phase-space locations be dependent on variables contained in a vector γ = (γa) with
dimension (length) Nγ . The maximum value of Nγ is 6. The variables γ a describe perturbations in phase space at the initial point, under the
assumption of constant initial time, τ = τ 0. For the reference ray �, along which the phase-space perturbations are all zero, the vector γ is
constant, signified as γ = γ̂ .

The quantities γ a of a particular ray are often referred to as ray parameters. When including the variable along the ray, in our case the
traveltime τ , we speak of (γ , τ ) as the ray coordinates. These coordinates yield the points of an arbitrary paraxial ray, that is a ray in the
vicinity of the reference ray.

Furthermore, to describe perturbed phase-space locations in ray-centred coordinates we introduce the following function of the ray
coordinates:

w(q)
r = w(q)

r (γ , τ ). (19)
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1270 E. Iversen et al.

The corresponding function in Cartesian coordinates is written without the superscript (q). In analogy with Iversen et al. (2019, eq. 15) and
Klimeš (1994, eq. 27) dynamic ray tracing in ray-centred coordinates then yields the matrix quantity

X (q)
ra (τ ) = ∂(δw(q)

r )

∂γa
(γ̂ , τ ) = ∂w(q)

r

∂γa
(γ̂ , τ ) (20)

as output along �. The two forms for X (q)
ra in eq. (20) are equivalent, but for clarity reasons we mostly use the expression without the

perturbation (δ) symbol.
In complete analogy with the derivation in Cartesian coordinates, we can establish a system of ODEs for continuation of first-order

derivatives of phase-space perturbations related to ray-centred coordinates (see also Klimeš 1994, eqs 24 and 28),

dX (q)
ra

dτ
(τ ) = S(q)

r t (τ ) X (q)
ta (τ ), (21)

where

S(q)
r t = Jrs H (q)

,st , (22)

and

H (q)
,st = ∂2 H

∂w
(q)
s ∂w

(q)
t

. (23)

The second-order derivatives of the Hamiltonian in ray-centred coordinates, H (q)
,st , are all evaluated on the reference ray. We relate them to

corresponding derivatives in Cartesian coordinates,

∂2 H
∂w

(q)
r ∂w

(q)
s

= ∂2 H
∂wx∂wy

∂wx

∂w
(q)
r

∂wy

∂w
(q)
s

+ ∂ H
∂wx

∂2wx

∂w
(q)
r ∂w

(q)
s

, (24)

or,

H (q)
,rs = H ,xy�xr�ys + H ,x�xrs . (25)

In (25) the �-quantities are coefficients of the transformation from ray-centred to Cartesian phase-space coordinates, defined by the convention

�xr ≡ ∂wx

∂w
(q)
r

, �xrs ≡ ∂2wx

∂w
(q)
r ∂w

(q)
s

, �xrst ≡ ∂3wx

∂w
(q)
r ∂w

(q)
s ∂w

(q)
t

, (26)

and so forth for higher orders. Iversen et al. (2021) derived explicit expressions for all �-quantities up to order four of the derivatives—these
are listed in Tables 6–7.

2.6 6 × 6 coefficient matrix in ray-centred coordinates

In the Cartesian phase-space coordinates, we assemble the partial second-derivatives of the Hamiltonian in three 3 × 3 matrices U, V and
W 12, with components

Ui j ≡ ∂2 H
∂xi∂x j

, Vi j ≡ ∂2 H
∂pi∂p j

, W 12
I J ≡ ∂2 H

∂xi∂p j
. (27)

Starting with eq. (25) we provide derivations in Appendix A of all second-order partial derivatives of the Hamiltonian with respect to
ray-centred phase-space coordinates, that is {H (q)

,rs}. For an equivalent treatment, see the derivation leading to eq. (51) in Klimeš (1994). The
evaluated results on the ray � are

U (q)
I J ≡ ∂2 H

∂qI ∂qJ
= (Umn − ηmηn) Em IEn J , (28)

V (q)
I J ≡ ∂2 H

∂p(q)
I ∂p(q)

J

= Vmn Fm IFn J , (29)

W (q) 12
I J ≡ ∂2 H

∂qI ∂p(q)
J

= W 12
mn Em IFn J − KI J , (30)

∂2 H
∂q3∂q j

= 0,
∂2 H

∂q3∂p(q)
j

= 0, (31)

∂2 H
∂p(q)

3 ∂qJ

= 0,
∂2 H

∂p(q)
3 ∂p(q)

j

= δ3 j . (32)
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Higher-order H–J theory— dynamic ray tracing 1271

Here, the indices I and J can take the values 1, 2. Observe that the quantity KI J is defined in eq. (8). Eqs (28)–(32) show that the 6 × 6 matrix
{H (q)

,yz} has the form

{H (q)
,yz} =

⎛
⎜⎜⎜⎜⎝

{
U (q)

I J

}
{0I 1}

{
W (q) 12

I J

}
{0I 1}

{01J } 0 {01J } 0{
W (q) 12

I J

}T
{0I 1}

{
V (q)

I J

}
{0I 1}

{01J } 0 {01J } 1

⎞
⎟⎟⎟⎟⎠ (33)

when evaluated on �. Eq. (33) coincides with Klimeš (1994, eq. 50).
The results in eqs (28)–(32) are very general. The only restrictions applying to the basis vectors e1 and e2 are (1) that they are not parallel

and (2) that they are are both orthogonal to the slowness vector p on �. In the q1q2 plane one may eliminate the mixed (ray-centred) position
and momentum second derivatives of the Hamiltonian, W (q) 12

I J , by using an option proposed by Klimeš (1994, section 9; 2006b, section 5.6),

W (q) 12
I J =

(
Em I W 12

mn − dEnI

dτ

)
Fn J = 0. (34)

The option (34) is very useful for studying the Lyapunov exponents (Klimeš 2002c, eq. 13).
Isolation of dE/dτ in (34) yields (Klimeš 1994, eq. 52a)

dEm I

dτ
= (

W 12
nm + vmηn

)
EnI . (35)

Eq. (35) is a condition which needs to be satisfied by the basis E in order to have W (q) 12
I J = 0. For matrix K this condition implies (Klimeš

2006b, eq. 115)

KM N = Ei M W 12
i j F j N . (36)

Remark: The 3 × 3 matrix W 12, which relates to Cartesian coordinates, is determined by the knowledge of position and momentum
(slowness) in these coordinates. Assume that the contra- and covariant bases E and F are known at the location under consideration on the
reference ray �. From eqs (30) or (34) we see that the matrix W(q) 12 in ray-centred coordinates is obtained from four equations with totally
four degrees of freedom for the time derivative of the contra-variant basis, Ė . As a consequence, we cannot require W (q) 12

I J = 0 and at the same
time introduce an additional constraint on the rotation and stretch of E . This means, for example, that eq. (34) is in general not compatible
with a situation where the basis E is orthonormal along the ray �. A special case occurs in an isotropic medium, where the matrix elements
W (q) 12

I J are always zero, regardless of how the basis E is rotated and stretched along the ray.

2.7 System of four Hamilton–Jacobi perturbation equations in ray-centred coordinates

Above, in the context of eq. (21) describing a system of six Hamilton–Jacobi perturbation equations in ray-centred coordinates, the indices
r and t run from 1 to 6. However, the form of the 6 × 6 matrix in eq. (33) suggests that it is possible to remove two equations from the
system of ODEs in (21) and in this way save computation time. It is not necessary to continue the quantities X (q)

3a and X (q)
6a along the ray �.

Consequently, we establish a reduced form of the system of ODEs, in which the associated capital indices R and T take the values 1, 2, 4, 5.
We have then eliminated the cases r, t = 3 and r, t = 6, which correspond to the third and sixth rows and columns of matrix S(q). The resulting
reduced system of differential equations reads

dX (q)
Ra

dτ
(τ ) = S(q)

RT (τ ) X (q)
T a(τ );

dX̄(q)

dτ
(τ ) = S̄(q)(τ ) X̄(q)(τ ). (37)

Eq. (37) represents a system of four Hamilton–Jacobi perturbation equations for dynamic ray tracing in ray-centred coordinates. The 4 × 4
coefficient matrix S̄(q) has the form

S̄(q) =
(

{W (q) 12
I J }T {V (q)

I J }
−{U (q)

I J } −{W (q) 12
I J }

)
, (38)

where the submatrix components are given by eqs (28)–(30).
When using ray-centred coordinates it is common to split the matrix {X (q)

Ra} into 2 × Nγ submatrices {QMa} and {PMa},

QMa(τ ) = ∂qM

∂γa
(γ̂ , τ ), PMa(τ ) = ∂p(q)

M

∂γa
(γ̂ , τ ), (39)

where M = 1, 2; a = 1, . . . , Nγ ; 1 ≤ Nγ ≤ 4. We refer to this as ‘Q-P notation’ for the derivatives of the phase-space perturbations.
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1272 E. Iversen et al.

2.8 Fundamental solutions to dynamic ray tracing in ray-centred coordinates

Červený (2001) describes the fundamental solutions to dynamic ray tracing as four paraxial solutions, one ray-tangent solution and one
non-eikonal solution. These six solutions correspond to perturbations

γ = δw(q)
0 = δ

(
q1, q2, q3, p(q)

1 , p(q)
2 , p(q)

2

)
τ0

(40)

at the initial point of the reference ray �.

2.8.1 Paraxial solutions

The reduced ray-centred phase-space perturbation at time τ reads

(δw(q)
R ) =

(
q1, q2, p(q)

1 , p(q)
2

)
τ
, (41)

with R = 1, 2, 4, 5. Consider now a corresponding reduced ray-centred phase-space perturbation (δw(q)
R )0 at the initial point on �, for which

τ = τ 0,

δw̄(q)
0 =

(
q1, q2, p(q)

1 , p(q)
2

)
τ0

. (42)

By taking the perturbed phase-space location function in eq. (19) as w
(q)
R (δw̄(q)

0 , τ ), we can introduce the 4 × 4 ray propagator matrix in
ray-centred coordinates,

	
(q)
RU (τ, τ0) = ∂(δw(q)

R )

∂(δw(q)
U )0

(δw̄(q)
0 = 0, τ ), (43)

where 0 is the four-component zero vector. The ray propagator matrix contains the four fundamental paraxial solutions to the system of ODEs
in eq. (37), and it is computed as a solution to the Hamilton–Jacobi perturbation equations

d	
(q)
RU

dτ
(τ, τ0) = S(q)

RT (τ ) 	
(q)
T U (τ, τ0);

d�̄
(q)

dτ
(τ, τ0) = S̄(q)(τ ) �̄

(q)
(τ, τ0). (44)

The integration is initialized by setting

	
(q)
RU (τ0, τ0) = δRU . (45)

As with Cartesian coordinates, knowledge of the ray propagator matrix for the segment (τ , τ 0) of � implies that any other dynamic ray tracing
solution on that segment can be found from the linear combination of fundamental solutions,

X (q)
Ra(τ ) = 	

(q)
RT (τ, τ0)X (q)

T a(τ0); X̄(q)(τ ) = �̄(τ, τ0)X̄(q)(τ0). (46)

2.8.2 Ray-tangent solution

Consider again the full set of initial perturbations (40), where we note that

γ3 = (δq3)τ0 (47)

yields a time shift at the initial point. Along the ray � this further results in the ray-tangent solution to dynamic ray tracing. This solution is
expressed explicitly as

∂qi

∂γ3
= δi3,

∂p(q)
i

∂γ3
= 0 (48)

in ray-centred coordinates (Klimeš 1994, first sub-eq. 53) and

∂xi

∂γ3
= vi ,

∂xi

∂γ3
= ηi (49)

in Cartesian coordinates (Klimeš 1994, first sub-eq. 55).

2.8.3 Non-eikonal solution

In eq. (40) the ray parameter

γ6 = (δp(q)
3 )τ0 (50)
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Higher-order H–J theory— dynamic ray tracing 1273

Figure 1. Model 3-D VTI and rays used for comparison of results from dynamic ray tracing in ray-centred and Cartesian coordinates. The colour scale yields
the value of the vertical P-wave velocity. Data for numerical comparisons is computed along rays (black) from a source point at depth 4 km. Coefficients for
paraxial extrapolation are computed along a nearly vertical reference ray (light grey line). A wavefront (grey dots) through the end point of the reference ray is
indicated.

yields the non-eikonal solution to dynamic ray tracing. We see that this solution corresponds to a perturbation of the momentum component
p(q)

3 at the initial point. For the degree N = 2 of the Hamiltonian, the non-eikonal solution is given explicitly as

∂qi

∂γ6
= (τ − τ0)δi3,

∂p(q)
i

∂γ6
= δi3 (51)

in ray-centred coordinates (Klimeš 1994, second sub-eq. 53) and

∂xi

∂γ6
= (τ − τ0)vi ,

∂xi

∂γ6
= pi + (τ − τ0)ηi (52)

in Cartesian coordinates (Klimeš 1994, second sub-eq. 55).
Among the six fundamental solutions it is only the non-eikonal solution that depends on the value of N . For details, see Appendix F.

3 H I G H E R O R D E R H A M I LT O N – JA C O B I P E RT U R B AT I O N E Q UAT I O N S I N
R AY- C E N T R E D C O O R D I NAT E S

In the leading-order approach to dynamic ray tracing in ray-centred coordinates one continues first-order derivatives of phase-space per-
turbations X (q)

Ra(τ ), see equation eq. (20), along the reference ray � . In this section we consider an extension of this approach to compute
higher-order derivatives of the phase-space perturbations.

3.1 Continuation of second-order derivatives of phase-space perturbations

In an extension of dynamic ray tracing to handle second-order derivatives of phase-space perturbations the full set of quantities to be
determined has the form

X (q)
rab(τ ) = ∂2w(q)

r

∂γa∂γb
(γ̂ , τ ). (53)

In Q-P notation we write the latter as

Qiab(τ ) = ∂2qi

∂γa∂γb
(γ̂ , τ ), Piab(τ ) = ∂2 p(q)

i

∂γa∂γb
(γ̂ , τ ). (54)

However, as we will become apparent below, the quantities Q3ab and P3ab are redundant in an ODE system for second-order dynamic ray
tracing. As in conventional (first-order) dynamic ray tracing, we can therefore introduce reduced phase-space perturbation quantities

X (q)
Rab(τ ) = ∂2w

(q)
R

∂γa∂γb
(γ̂ , τ ), (55)
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1274 E. Iversen et al.

Figure 2. Results of paraxial extrapolation of traveltime based on dynamic ray tracing in ray-centred coordinates. Different extrapolation approaches were
applied along the line y = 5 km. The reference point for the extrapolation is at x = 7 km. Top panel: traveltime curves resulting from the extrapolation. Bottom
panel: relative error in traveltime for the different approaches.

with index values R = 1, 2, 4, 5. We make use of a three-component coefficient tensor related to the third-order partial phase-space derivatives
of the Hamiltonian H ,

S(q)
RT U (τ ) = JRS

∂3 H
∂w

(q)
S ∂w

(q)
T ∂w

(q)
U

[w(q)(γ̂ , τ )]. (56)

For the third-order partial derivatives of the Hamiltonian we obtain (Appendix B)

U (q)
I J K ≡ ∂3 H

∂qI ∂qJ ∂qK

= (
Umnp + 2ηmUnp + 2ηnUmp + 2ηpUmn − 6ηmηnηp

)
Em IEn JEpK , (57)

W (q) 112
I J K ≡ ∂3 H

∂qI ∂qJ ∂p(q)
K

= (
W 112

mnp + ηm W 12
np + ηn W 12

mp

)
Em IEn JFpK , (58)

W (q) 122
I J K ≡ ∂3 H

∂qI ∂p(q)
J ∂p(q)

K

= W 122
mnp Em IFn JFpK , (59)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/226/2/1262/6226662 by Serials M

S 235 user on 11 O
ctober 2021
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Figure 3. Relative difference between results for extrapolated traveltime when using dynamic ray tracing in ray-centred and Cartesian coordinates. Different
extrapolation approaches were applied along the line y = 5 km. The reference point for the extrapolation is at x = 7 km.

V (q)
I J K ≡ ∂3 H

∂p(q)
I ∂p(q)

J ∂p(q)
K

= Vmnp Fm IFn JFpK , (60)

On the right-hand side of (57)–(60), the quantities Umnp, W 112
mnp , W 122

mnp and Vmnp are third-order derivatives of the Hamiltonian taken in the
Cartesian phase-space coordinates,

Umnp ≡ ∂3 H
∂xm∂xn∂x p

, W 112
mnp ≡ ∂3 H

∂xm∂xn∂pp
,

W 122
mnp ≡ ∂3 H

∂xm∂pn∂pp
, Vmnp ≡ ∂3 H

∂pm∂pn∂pp
. (61)

The second-order derivatives of the phase-space perturbations must satisfy a system of ODEs

dX (q)
Rab

dτ
(τ ) = S(q)

RT (τ )X (q)
T ab(τ ) + R(q)

Rab(τ ), (62)

where

R(q)
Rab(τ ) = S(q)

RT U (τ )X (q)
T a(τ )X (q)

Ub(τ ). (63)

We note that the combination of ODEs (37) and (62) can then be integrated to yield the solution (55).
A good alternative is to use an expression for the solution in terms of initial conditions, the ray propagator matrix and a closed-form

integral, namely,

X (q)
Rab(τ ) = 	

(q)
RS(τ, τ0)X (q)

Sab(τ0) +
∫ τ

τ0

	
(q)
RS(τ, τ ′) R(q)

Sab(τ ′) dτ ′. (64)

Here, the ray propagator matrix, 	
(q)
RT (τ, τ0), is assumed known along �.

As in the case of higher-order dynamic ray tracing in Cartesian coordinates (Iversen et al. 2019), it is practical to find formulations
where the ray propagator matrix in the integrand corresponds to propagation from τ = τ 0 to τ = τ

′
, rather than from τ

′
to τ . Using the chain

rule for the ray propagator matrix (Červený 2001),

	
(q)
RT (τ, τ0) = 	

(q)
RS(τ, τ ′) 	

(q)
ST (τ ′, τ0), (65)

in combination with its symplectic property, we obtain

X (q)
Rab(τ ) = 	

(q)
RS(τ, τ0)

(
X (q)

Sab(τ0) −
∫ τ

τ0

JSU 	
(q)
T U (τ ′, τ0)JT V R(q)

V ab(τ ′) dτ ′
)

. (66)
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1276 E. Iversen et al.

Figure 4. Results of paraxial extrapolation of geometrical spreading based on dynamic ray tracing (DRT) in ray-centred coordinates. Different extrapolation
approaches were applied along the line y = 5 km. The reference point for the extrapolation is at x = 7 km. Top panel: geometrical spreading curves resulting
from the extrapolation. Bottom panel: relative error in geometrical spreading for the different approaches.

3.2 Continuation of third-order derivatives of phase-space perturbations

We consider third-order derivatives of phase-space perturbations

X (q)
rabc(τ ) = ∂3w(q)

r

∂γa∂γb∂γc
(γ̂ , τ ) (67)

and the equivalent Q–P notation

Qiabc(τ ) = ∂3qi

∂γa∂γb∂γc
(γ̂ , τ ), Piabc(τ ) = ∂3 p(q)

i

∂γa∂γb∂γc
(γ̂ , τ ). (68)

Similar as for lower orders, the quantities Q3abc and P3abc are redundant—it is not necessary to include differential equations for them. In an
ODE system for third-order dynamic ray tracing we therefore only need to continue the reduced set of phase-space perturbation quantities

X (q)
Rabc(τ ) = ∂3w

(q)
R

∂γa∂γb∂γc
(γ̂ , τ ) (69)
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Higher-order H–J theory— dynamic ray tracing 1277

Figure 5. Relative difference between results for extrapolated geometrical spreading when using dynamic ray tracing (DRT) in ray-centred and Cartesian
coordinates. Different extrapolation approaches were applied along the line y = 5 km. The reference point for the extrapolation is at x = 7 km.

along the ray �. At arbitrary points on � it is necessary to compute the four-component coefficient tensor

S(q)
RT U V (τ ) = JRS

∂4 H
∂w

(q)
S ∂w

(q)
T ∂w

(q)
U ∂w

(q)
V

[w(q)(γ̂ , τ )], (70)

including fourth-order derivatives of the Hamiltonian. These derivatives are given as (Appendix C),

U (q)
I J K L ≡ ∂4 H

∂qI ∂qJ ∂qK ∂qL

= (
Umnpq + 2ηmUnpq + 2ηnUmpq + 2ηpUmnq + 2ηqUmnp

+ 6ηmηnUpq + 6ηmηpUnq + 6ηmηqUnp

+ 6ηnηpUmq + 6ηnηqUmp + 6ηpηqUmn

− 36ηmηnηpηq

)
Em IEn JEpKEq L , (71)

W (q) 1112
I J K L ≡ ∂4 H

∂qI ∂qJ ∂qK ∂p(q)
L

= (
W 1112

mnpq + ηm W 112
npq + ηn W 112

mpq + ηpW 112
mnq

+ 2ηmηn W 12
pq + 2ηmηpW 12

nq + 2ηnηpW 12
mq

)
Em IEn JEpKFq L

− 2(Umn − ηmηn) (Em IEn JKK L + Em IEnKKJ L + Em JEnKKI L ), (72)

W (q) 1122
I J K L ≡ ∂4 H

∂qI ∂qJ ∂p(q)
K ∂p(q)

L

= W 1122
mnqp Em IEn JFpKFq L

− W 12
mn (Em IFnKKJ L + Em IFnLKJ K + Em JFnKKI L + Em JFnLKI K )

+ KI KKJ L + KI LKJ K , (73)

W (q) 1222
I J K L ≡ ∂4 H

∂qI ∂p(q)
J ∂p(q)

K ∂p(q)
L

= (W 1222
mnpq − ηm Vnpq ) Em IFn JFpKFq L , (74)

V (q)
I J K L ≡ ∂4 H

∂p(q)
I ∂p(q)

J ∂p(q)
K ∂p(q)

L

= Vmnpq Fm IFn JFpKFq L . (75)
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1278 E. Iversen et al.

Figure 6. Constraint visualization along the reference ray, for first-order (conventional) dynamic ray tracing in Cartesian and ray-centred coordinates. Top
panel: scaled derivatives of traveltime dτ /dγ 1 (solid magenta) and dτ /dγ 2 (dotted magenta) for dynamic ray tracing in Cartesian coordinates, and corresponding
derivatives (solid/dotted blue) estimated from dynamic ray tracing in ray-centred coordinates. The derivatives are scaled by the factor δγ /τ , where τ is the
current traveltime and δγ = 0.1 s km–1. Bottom panel: scaled derivatives of the Hamiltonian dH /dγ1 (solid magenta) and dH /dγ2 (dotted magenta) for
dynamic ray tracing in Cartesian coordinates, and corresponding derivatives (solid/dotted blue) estimated from dynamic ray tracing in ray-centred coordinates.
The scale factor is δγ /H , with H = 1/2 and δγ = 0.1 s/km.

The quantities Umnpq, W 1112
mnpq , W 1122

mnpq , W 1222
mnpq and Vmnpq, on the right-hand side of (71)–(75), are fourth-order derivatives of the Hamiltonian in

the Cartesian phase-space coordinates,

Umnpq ≡ ∂4 H
∂xm∂xn∂x p∂xq

,

W 1112
mnpq ≡ ∂4 H

∂xm∂xn∂x p∂pq
, W 1122

mnpq ≡ ∂4 H
∂xm∂xn∂pp∂pq

, W 1222
mnpq ≡ ∂4 H

∂xm∂pn∂pp∂pq
,

Vmnpq ≡ ∂4 H
∂pm∂pn∂pp∂pq

. (76)

We use a system of ODEs for continuation of the third-order derivatives of the phase-space perturbations,

dX (q)
Rabc

dτ
(τ ) = S(q)

RT (τ )X (q)
T abc(τ ) + R(q)

Rabc(τ ), (77)
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Higher-order H–J theory— dynamic ray tracing 1279

Figure 7. Constraint evaluation along the reference ray, for second-order dynamic ray tracing in Cartesian and ray-centred coordinates. Top panel: scaled
derivatives of traveltime d2τ /dγ 1

2 (solid magenta) and d2τ /dγ 2
2 (dotted magenta) for dynamic ray tracing in Cartesian coordinates, and corresponding

derivatives (solid/dotted blue) estimated from dynamic ray tracing in ray-centred coordinates. The derivatives are scaled by the factor (δγ )2/(2τ ), with τ and
δγ set as in Fig. 6. Bottom panel: scaled derivatives of the Hamiltonian d2 H /dγ1

2 (solid magenta) and d2 H /dγ2
2 (dotted magenta) for dynamic ray tracing

in Cartesian coordinates, and corresponding derivatives (solid/dotted blue) estimated from dynamic ray tracing in ray-centred coordinates. The scale factor is
(δγ )2/(2H ), with H = 1/2.

where the last term is defined by

R(q)
Rabc(τ ) = S(q)

RT U V (τ ) X (q)
T a(τ ) X (q)

Ub(τ ) X (q)
V c(τ )

+ S(q)
RT u(τ )

[
X (q)

T a(τ )X (q)
ubc(τ ) + X (q)

T b(τ )X (q)
uac(τ ) + X (q)

T c (τ )X (q)
uab(τ )

]
. (78)

The ODEs given by eqs (37), (62) and (77) can now be integrated to collectively yield the solution (69). We remark that (77)–(78) have a
peculiarity compared to the dynamic ray tracing ODEs for lower orders, since the evaluation of the right-hand side requires computation of
the second-order perturbation quantities Q3ab and P3ab. The latter are however easily obtained by intrinsic relations to QI a , PI a and their time
derivatives—this is shown in Appendix D.

As for lower orders of dynamic ray tracing, one may alternatively compute the solution (69) using its initial condition, the ray propagator
matrix and a closed-form integral along the ray �,

X (q)
Rabc(τ ) = 	

(q)
RS(τ, τ0)X (q)

Sabc(τ0) +
∫ τ

τ0

	
(q)
RS(τ, τ ′)R(q)

Sabc(τ ′)dτ ′. (79)
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Figure 8. Constraint evaluation along the reference ray, for third-order dynamic ray tracing in Cartesian and ray-centred coordinates. Top panel: scaled
derivatives of traveltime d3τ /dγ 1

3 (solid magenta) and d3τ /dγ 2
3 (dotted magenta) for dynamic ray tracing in Cartesian coordinates, and corresponding

estimated derivatives (solid/dotted blue) from dynamic ray tracing in ray-centred coordinates. The derivatives are scaled by the factor (δγ )3/(6τ ), with τ and
δγ set as in Fig. 6. Bottom panel: scaled derivatives of the Hamiltonian d3 H /dγ1

3 (solid magenta) and d3 H /dγ2
3 (dotted magenta) for dynamic ray tracing

in Cartesian coordinates, and corresponding derivatives (solid/dotted blue) estimated from dynamic ray tracing in ray-centred coordinates. The scale factor is
(δγ )3/(6H ), with H = 1/2.

Here, the ray propagator matrix 	
(q)
RT (τ, τ0) and the various first- and second-order derivatives of the perturbations must be known on �. The

chain rule (65) and the symplectic property of the ray propagator matrix yield an important rearrangement

X (q)
Rabc(τ ) = 	

(q)
RS(τ, τ0)

(
X (q)

Sabc(τ0) −
∫ τ

τ0

JSU 	
(q)
T U (τ ′, τ0)JT V R(q)

V abc(τ ′) dτ ′
)

. (80)

4 C O N S T R A I N T S A N D I N T R I N S I C R E L AT I O N S B E T W E E N D E R I VAT I V E S O F
P H A S E - S PA C E P E RT U R B AT I O N S I N R AY- C E N T R E D C O O R D I NAT E S

In this section we focus on constraints inherent to conventional and higher-order dynamic ray tracing in ray-centred coordinates. The
constraints lead to intrinsic relations (Appendix D), which connect various derivatives of the phase-space perturbations, that is the Q-
and P-type quantities. The intrinsic relations include M-quantities, which represent derivatives of traveltime of order two and higher, in
ray-centred coordinates.
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Higher-order H–J theory— dynamic ray tracing 1281

Figure 9. Top panel: the model Marmousi VTI and a dense bundle of rays (black) traced from the point (x = 4.5, z = 2.7) km. Grey dots correspond to constant
time, τ = 0.8 s. Middle panel: close-up of rays (black) and wavefront points (grey) shown in the top subfigure. Bottom panel: setup for interpolation of dynamic
ray tracing results. For any point on the wavefront (signified by the triangle), three cases of interpolation based on neigbouring points are considered. The input
points for the three cases are marked 1, 2, 3.

It is not necessary to include dynamic ray tracing ODEs for the quantities Q3ab,P3ab and Q3abc,P3abc, but such quantities are needed
later, typically at the receiver point, in a transformation of a full set of derivatives of phase-space perturbations from ray-centred to Cartesian
coordinates. Also, as mentioned in the previous section, the quantities Q3ab,P3ab must be computed on the right-hand side of the third-order
dynamic ray tracing ODEs.

4.1 The momentum vector as a function of position

Consider here, in addition to Cartesian and ray-centred coordinates, also a 3-D ray coordinate system (γ 1, γ 2, γ 3 = τ ), in which γ A, A = 1, 2,
are two paraxial variables. In particular, if there is a one-to-one mapping between ray coordinates and Cartesian coordinates the traveltime can
be expressed as a function τ (x). A fundamental property of ray theory is then that the slowness (momentum) vector p equals the traveltime
gradient at the point x (Červený 2001),

pi = ∂τ

∂xi
, (81)
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1282 E. Iversen et al.

Figure 10. Constraint evaluation along a wavefront, τ = 0.8 s, in the Marmousi VTI model, for first-order (conventional) dynamic ray tracing in Cartesian
(magenta) and ray-centred (blue) coordinates. Top panel: scaled derivatives of traveltime dτ /dγ 1. The derivatives are scaled by the factor δγ /τ , with δγ =
0.01 s km–1. Bottom panel: scaled derivatives of the Hamiltonian dH /dγ1. The scale factor is δγ /H , with H = 1/2 and δγ = 0.01 s km–1.

which means that p is a function of x. The property (81) also comes out naturally from the transformation between ray-centred and Cartesian
coordinates (Iversen et al. 2021).

In ray-centred coordinates we have an analogous form of (81). For a one-to-one correspondence of ray coordinates and ray-centred
coordinates the traveltime is a function τ (q), and the momentum vector p(q) equals the traveltime gradient at q,

p(q)
i = ∂τ

∂qi
, (82)

so p(q) is then a function of q.
On the reference ray � we have p(q)

I = 0 and p(q)
3 = 1, that means, the momentum vector in ray-centred coordinates is constant. As a

consequence,

∂

∂q3

(
∂τ

∂qi

)
= 0 (83)

on �.
Derivatives of the momentum component function p(q)

i (q) with respect to ray coordinates γ A are needed below to establish intrinsic
relations between Q- and P-type quantities. Applying the chain rule of differentiation to eq. (82) yields, for the first three orders in γ A,

∂p(q)
i

∂γA
= ∂p(q)

i

∂q j

∂q j

∂γA
= ∂2τ

∂qi∂q j

∂q j

∂γA
, (84)
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Higher-order H–J theory— dynamic ray tracing 1283

Figure 11. Constraint evaluation along a wavefront, τ = 0.8 s, in the Marmousi VTI model, for second-order dynamic ray tracing in Cartesian (magenta) and
ray-centred (blue) coordinates. Top panel: scaled derivatives of traveltime d2τ /dγ 1

2. The derivatives are scaled by the factor δγ /τ , with δγ set as in Fig. 10.
Bottom panel: scaled derivatives of the Hamiltonian d2 H /dγ1

2. The scale factor is (δγ )2/(2H ), with H = 1/2.

∂2 p(q)
i

∂γA∂γB
= ∂3τ

∂qi∂q j∂qk

∂q j

∂γA

∂qk

∂γB
+ ∂2τ

∂qi∂q j

∂2q j

∂γA∂γB
, (85)

∂3 p(q)
i

∂γA∂γB∂γC
= ∂4τ

∂qi∂q j∂qk∂ql

∂q j

∂γA

∂qk

∂γB

∂ql

∂γC

+ ∂3τ

∂qi∂q j∂qk

(
∂q j

∂γA

∂2qk

∂γBγC
+ ∂q j

∂γB

∂2qk

∂γAγC
+ ∂q j

∂γC

∂2qk

∂γAγB

)

+ ∂2τ

∂qi∂q j

∂3q j

∂γA∂γB∂C
. (86)

The form of these equations is the same in Cartesian coordinates (simply replace qi by xi and p(q)
i by pi).

4.2 Constraints on position perturbations

The traveltime τ is constant along any trajectory situated in the wavefront. Therefore, the total derivatives of τ with respect to the ray
coordinates γ A must be zero for any order of these derivatives. We obtain

dτ

dγA
= ∂τ

∂qi

∂qi

∂γA
= 0, (87)
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Figure 12. Constraint evaluation along a wavefront, τ = 0.8 s, in the Marmousi VTI model, for third-order dynamic ray tracing in Cartesian (magenta) and
ray-centred (blue) coordinates. Top panel: scaled derivatives of traveltime d3τ /dγ 1

3. The derivatives are scaled by the factor δγ /τ , with δγ set as in Fig. 10.
Bottom panel: scaled derivatives of the Hamiltonian d3 H /dγ1

3. The scale factor is (δγ )3/(6H ), with H = 1/2.

d2τ

dγAdγB
= ∂2τ

∂qi∂q j

∂qi

∂γA

∂q j

∂γB
+ ∂τ

∂qi

∂2qi

∂γA∂γB
= 0, (88)

d3τ

dγAdγBdγC
= ∂3τ

∂qi∂q j∂qk

∂qi

∂γA

∂q j

∂γB

∂qk

∂γC

+ ∂2τ

∂qi∂q j

(
∂qi

∂γA

∂2q j

∂γB∂γC
+ ∂qi

∂γB

∂2q j

∂γA∂γC
+ ∂qi

∂γC

∂2q j

∂γA∂γB

)

+ ∂τ

∂qi

∂3qi

∂γA∂γB∂γC

= 0. (89)

Eqs (87)–(89) can be referred to as the first-, second- and third-order position constraint relations for dynamic ray tracing. The form of the
equations remains the same in Cartesian coordinates (replace qi with xi).

A remark: If a point (qi) is perturbed, then the traveltime τ will in general change as well. However, if the point (qi) is fixed and only the
momentum (p(q)

i ) is varied, the traveltime τ will remain unchanged. As a consequence, eqs (87)–(89) do not include partial derivatives of τ

with respect to p(q)
i , as all such derivatives are zero.
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Figure 13. Constraint evaluation along a wavefront, τ = 0.8 s, in the Marmousi VTI model, after interpolation of first-order (conventional) dynamic ray
tracing results in Cartesian and ray-centred coordinates. Top panel: scaled derivatives of traveltime dτ /dγ 1 for three cases of interpolation of dynamic ray
tracing results in Cartesian coordinates (magenta) and one interpolation in ray-centred coordinates (blue). The derivatives are scaled by the factor δγ /τ , with
δγ = 0.01 s km–1. Bottom panel: scaled derivatives of the Hamiltonian dH /dγ1 for three cases of interpolation of dynamic ray tracing results in Cartesian
coordinates (magenta) and one interpolation in ray-centred coordinates (magenta). The scale factor is δγ /H , with H = 1/2 and δγ = 0.01 s km–1.

4.3 Constraints on phase-space perturbations

The Hamiltonian in ray-centred phase-space coordinates was introduced in the Hamilton–Jacobi eq. (11). The Hamiltonian is a freely varying
function in the six coordinates, but eq. (11) yields a zeroth-order constraint on the domain (manifold) that can give valid ray solutions.

The Hamiltonian is constant along any trajectory in the wavefront. As a consequence, the total derivatives of the Hamiltonian with
respect to the ray coordinates γ A must be zero, to any order. For the first three orders these total derivatives are

dH
dγA

= ∂ H
∂w

(q)
r

∂w(q)
r

∂γA
= 0, (90)

d2 H
dγAdγB

= ∂2 H
∂w

(q)
r ∂w

(q)
s

∂w(q)
r

∂γA

∂w(q)
s

∂γB
+ ∂ H

∂w
(q)
r

∂2w(q)
r

∂γA∂γB
= 0, (91)
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Figure 14. Constraint evaluation along a wavefront, τ = 0.8 s, in the Marmousi VTI model, after interpolation of second-order dynamic ray tracing results in
Cartesian and ray-centred coordinates. Top panel: scaled derivatives of traveltime d2τ /dγ 1

2 for three cases of interpolation of dynamic ray tracing results in
Cartesian coordinates (magenta) and one interpolation in ray-centred coordinates (blue). The derivatives are scaled by the factor (δγ )2/(2τ ) with δγ set as in
Fig. 13. Bottom panel: scaled derivatives of the Hamiltonian d2 H /dγ1

2 for three cases of interpolation of dynamic ray tracing results in Cartesian coordinates
(magenta) and one interpolation in ray-centred coordinates (magenta). The scale factor is (δγ )2/(2H ), with H = 1/2.

d3 H
dγAdγBdγC

= ∂3 H
∂w

(q)
r ∂w

(q)
s ∂w

(q)
t

∂w(q)
r

∂γA

∂w(q)
s

∂γB

∂w
(q)
t

∂γC

+ ∂2 H
∂w

(q)
r ∂w

(q)
s

(
∂w(q)

r

∂γA

∂2w(q)
s

∂γB∂γC
+ ∂w(q)

r

∂γB

∂2w(q)
s

∂γA∂γC
+ ∂w(q)

r

∂γC

∂2w(q)
s

∂γA∂γB

)

+ ∂ H
∂w

(q)
r

∂3w(q)
r

∂γA∂γB∂γC

= 0. (92)

The form of the eqs (90)–(92) is the same for Cartesian coordinates (replace w(q)
r with wr). Eq. (90) is then restated

dH
dγA

= ∂ H
∂wr

∂wr

∂γA
= 0, (93)
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Figure 15. Constraint evaluation along a wavefront, τ = 0.8 s, in the Marmousi VTI model, after interpolation of third-order dynamic ray tracing results in
Cartesian and ray-centred coordinates. Top panel: scaled derivatives of traveltime d3τ /dγ 1

3 for three cases of interpolation of dynamic ray tracing results in
Cartesian coordinates (magenta) and one interpolation in ray-centred coordinates (blue). The derivatives are scaled by the factor (δγ )3/(6τ ) with δγ set as in
Fig. 13. Bottom panel: scaled derivatives of the Hamiltonian d3 H /dγ1

3 for three cases of interpolation of dynamic ray tracing results in Cartesian coordinates
(magenta) and one interpolation in ray-centred coordinates (magenta). The scale factor is (δγ )3/(6H ), with H = 1/2.

and Červený (2001) refers to it as the constraint relation for dynamic ray tracing in Cartesian coordinates. This constraint concept is extended
to higher orders by Iversen et al. (2019). In the context of the current paper it is natural to refer to equations of the form (90)–(92) as first-,
second- and third-order phase-space constraint relations for dynamic ray tracing.

5 T R A N S F O R M AT I O N O F D E R I VAT I V E S O F P E RT U R B AT I O N S B E T W E E N
R AY- C E N T R E D A N D C A RT E S I A N C O O R D I NAT E S

Consider a field of paraxial rays specified by two variables γ A, A = 1, 2. For an arbitrary location on the reference ray � it is of importance to
have access to efficient transformations of derivatives of perturbations given in ray-centred coordinates to derivatives in Cartesian coordinates,
and vice versa.

Using the chain rule it is straightforward to state generic relations for derivatives of perturbations in Cartesian coordinates in terms of
those given in ray-centred coordinates. For the first, second- and third-order derivatives the transformation relations are

Xx A = �xr X (q)
r A , (94)
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Xx AB = �xr X (q)
r AB + �xrs X (q)

r A X (q)
s B , (95)

Xx ABC = �xr X (q)
r ABC

+�xrs

(
X (q)

r BC X (q)
s A + X (q)

r AC X (q)
s B + X (q)

r AB X (q)
sC

)
+�xrst X (q)

r A X (q)
s B X (q)

tC . (96)

Here, all quantities have been evaluated on the ray �. For definition of the �-quantities, see eq. (26) and Tables 6–7. The inverse transformation
has the same form as (94)–(96) so we do not include it here.

Using eqs (94)–(96) and the results for the �-quantities it is straightforward and simple to transform derivatives of perturbations from
ray-centred to Cartesian coordinates. However, since there are quite a few zero elements included in the �-quantities it can be beneficial,
both for efficiency and clarity, to relate explicitly the various Q- and P-quantities in ray-centred coordinates to the corresponding Q- and
P-quantities in Cartesian coordinates. For such explicit expressions, the reader is referred to Appendix E.

6 I N I T I A L C O N D I T I O N S

The described framework of ODEs for higher-order derivatives of perturbations in ray-centred coordinates requires specification of proper
initial conditions. Moreover, ray-centred coordinates can be useful for designing initial conditions for continuation of derivatives in Cartesian
coordinates. To keep the discussion simple, we consider in the following only the initial conditions for a point source and a plane-wave source.
The expressions derived in this section are fully consistent with those obtained in the section on initial conditions in Iversen et al. (2019).

6.1 Initial conditions for derivatives of perturbations in ray-centred coordinates

For a point source and a plane-wave source the initial conditions for the derivatives of perturbations in ray-centred coordinates are particularly
simple. In fact, in each of these cases all such derivatives will have to be zero, with only one exception. The initial conditions are

PI A = δI A; all other derivatives of perturbations = 0; (97)

for a point source, and

QI A = δI A; all other derivatives of perturbations = 0; (98)

for a plane-wave source.

6.2 Ray-centred coordinates as a means to specify initial conditions for derivatives of perturbations in Cartesian
coordinates

We use ray-centred coordinates as a means to specify initial conditions in Cartesian coordinates. As support for the derivations we use intrinsic
relations for the dynamic ray tracing quantities in ray-centred coordinates (Appendix D) and transformations relating the dynamic ray tracing
quantities in Cartesian and ray-centred coordinates (Appendix E).

Applying QI A = 0 and PI A = δI A in eqs (E2) and (E5) yields an initial condition in Cartesian coordinates for the point-source situation,

Qi A = 0, Pi A = Fi A. (99)

Likewise, by using QI A = δI A and PI A = 0 in eqs (E2) and (E5) we get a plane-wave initial condition in Cartesian coordinates,

Qi A = Ei A, Pi A = piη jE j A. (100)

We note that for a point source or a plane-wave source we always have

Q3AB = 0, Q3ABC = 0. (101)

6.2.1 Point source

For a point source, we use eqs (D6) and (D12) for the second- and third-order derivatives of δp(q)
3 to obtain

P3AB = −V (q)
AB , P3ABC = −V (q)

ABC . (102)

Eqs (E12) and (E18) now become particularly simple,

Pi AB = piP3AB, Pi ABC = piP3ABC , (103)

which further yields
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Pi AB = −pi VjkF j AFk B, (104)

Pi ABC = −pi VjklF j AFk BFlC , (105)

in the point-source situation.

6.2.2 Plane-wave source

For a plane-wave source, eqs (D6) and (D12) give the expressions

P3AB = −U (q)
AB, P3ABC = −U (q)

ABC . (106)

Eq. (E12) then attains the form

Pi AB = ∂2 pi

∂qA∂qB
+ piP3AB, (107)

which results in

Pi AB = −pi (Umn − 3ηmηn)Em AEnB . (108)

Moreover, eq. (E18) reduces to

Pi ABC = ∂3 pi

∂qA∂qB∂qC

+ ∂pi

∂qA
P3BC + ∂pi

∂qB
P3AC + ∂pi

∂qC
P3AB

+ ∂pi

∂p(q)
3

P3ABC , (109)

hence,

Pi ABC = 6pi ηmηnηpEm AEnBEpC

−pi (ηmEm AU (q)
BC + ηmEm BU (q)

AC + ηmEmCU (q)
AB + U (q)

ABC ). (110)

Applying eqs (28) and (57) then yields

Pi ABC = pi

(
15ηmηnηp − 3ηmUnp − 3ηnUmp − 3ηpUmn − Umnp

)
Em AEnBEpC . (111)

7 PA R A X I A L E X T R A P O L AT I O N

To prepare for the numerical examples section, we review the main formulas from Iversen et al. (2019) for paraxial extrapolation of traveltime
and geometrical spreading, in Cartesian coordinates.

We consider a reference ray that connects a source point, s0, and a receiver point, r0. Using the dynamic ray tracing quantities that
have been integrated along the reference ray, our objective is to extrapolate traveltime and geometrical spreading to receiver locations r in
the (paraxial) vicinity of r0. Since these operations are done in Cartesian coordinates, we must, as a preparatory step, transform all relevant
dynamic ray tracing quantities from ray-centred to Cartesian coordinates.

7.1 Extrapolation of traveltime

Given a fixed source point, s0, the paraxial extrapolation of traveltime from a reference receiver point r0 to a general receiver point r is
expressed by means of a Taylor series (Iversen et al. 2019, eq. 92)

T (r, s0) = τ (r0, s0) + pi 
ri + 1

2

∂2T

∂ri∂r j

ri
r j

+ 1

6

∂3T

∂ri∂r j∂rk

ri
r j
rk + 1

24

∂4T

∂ri∂r j∂rk∂rl

ri
r j
rk
rl + . . . , (112)

where 
ri = ri − ri 0. The derivatives of traveltime on the right-hand side do all correspond to the reference location, r0. The relations between
these derivatives and the dynamic ray tracing quantities, i.e., the derivatives of the phase-space perturbations, are given by eqs (93)–(95) in
Iversen et al. (2019).
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7.2 Extrapolation of geometrical spreading

We extrapolate the 3 × 3 geometrical spreading matrix in Cartesian coordinates, {Qia} = {∂xi/∂γ a}, to paraxial locations. The first two
columns of {Qia} represent the paraxial solutions arising from the point-source initial condition; the third column is the ray-velocity vector.

Eq. (87) in Iversen et al. (2019) yields a Taylor series for the elements Qia,

Qia(r, s0) = Qia(r0, s0) + ∂ Qia

∂rk
(r0, s0) 
rk + 1

2

∂2 Qia

∂rk∂rl
(r0, s0) 
rk
rl

+ 1

6

∂3 Qia

∂rk∂rl∂rm
(r0, s0) 
rk
rl
rm + . . . , (113)

where the first three sets of derivatives are given by their eqs (88)–(90). All indices in eq. (113) and in the underlying computation of Taylor
series coefficients run from 1 to 3.

It is important to note that a complete computation of the first-order coefficients ∂Qia/∂rk requires Qiab (second-order dynamic ray
tracing), a complete computation of the second-order coefficients ∂2Qia/∂rk∂rl requires Qiabc (third-order dynamic ray tracing), and a
complete computation of the third-order coefficients ∂3Qia/∂rk∂rl∂rm requires Qiabcd (fourth-order dynamic ray tracing). However, in the latter
case, even if we do not know QiABCD (A, B, . . . = 1, 2), we are still able to obtain the remaining elements Qiabcd (a, b, . . . = 1, 2, 3) consisting
of time derivatives of the lower-order Q-quantities.

We assume point-source initial conditions for the dynamic ray tracing at the source point s0. For a paraxial ray from s0 to the receiver
point r the relative geometrical spreading can then be obtained by (Iversen et al. 2019, eq. 91)

L(r, s0) =
∣∣∣∣ 1

c(r)
det{Qia(r, s0)}

∣∣∣∣
1/2

. (114)

Here, c(r) is the phase velocity of the paraxial ray at r. The quantity L has the measurement unit of distance/slowness (in SI units, e.g.
km2 s–1).

8 N U M E R I C A L E X A M P L E S

We illustrate the above methodology by means of numerical examples in two different subsurface models, named 3-D VTI and Marmousi
VTI. As signified by the abbreviation, the anisotropy in both models is transversely isotropic with a vertical axis of symmetry. Other common
aspects of the two models: The ratio of of the vertical P-and S-wave velocities is set constant everywhere, to 2, and Thomsen’s anisotropy
parameters (Thomsen 1986) are defined constant throughout, with ε = 0.3 and δ = 0.1. As we consider only P-wave simulations, the value
of Thomsen’s parameter γ does not influence the results.

Note that the Cartesian model coordinates are referred to in this section as x, y and z.

8.1 Simulations using model 3-D VTI

Iversen et al. (2019) tested higher-order dynamic ray tracing in Cartesian coordinates for a 3-D model with weak lateral velocity variation
and different situations of anisotropy. We use here the vertical transversely isotropic (VTI) version of that model, for which the vertical P-
and S-wave velocity fields correspond to a gentle anticline structure.

8.1.1 Data

As data for numerical comparisons we use values of traveltime and geometrical spreading, obtained by conventional leading-order kinematic
and dynamic ray tracing, in Cartesian coordinates (Iversen et al. 2019). We consider a buried source point s0 = (7, 5, 4) km to receivers in
the plane at zero depth (Fig. 1). The nearly vertical ray (light grey) arriving at the receiver location r0 = (7, 5, 0) km is used as a reference
for the higher-order dynamic ray tracing computations, in ray-centred as well as Cartesian coordinates.

All computed differences in traveltime and geometrical spreading are relative to the data values obtained previously (Iversen et al. 2019).

8.1.2 Extrapolation of traveltime

We do dynamic ray tracing simulations in ray-centred coordinates along the selected reference ray, which connects the fixed source point, s0,
and the chosen reference receiver point, r0. The dynamic ray tracing is conducted for different orders in the derivatives of the phase-space
perturbations: first order (conventional dynamic ray tracing), second order and third order.

At the point r0, the dynamic ray tracing quantities are transformed to Cartesian coordinates, and thereby, we obtain coefficients for
(paraxial) extrapolation of traveltime away from the reference ray. A Taylor series with terms up to order four is used for this purpose (eq.
112). In addition, as also done in Iversen et al. (2019), we compute coefficients in a Taylor series for the square of the traveltime, as this
extrapolation method often yields good results, in particular for weakly heterogeneous isotropic media.
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Fig. 2 shows traveltimes extrapolated at zero depth, along the line y = 5 km, (top) and the corresponding relative errors (bottom). The
traveltime extrapolation errors are in general quite small for all the approaches considered. We observe that in the case of second-order
extrapolation, which is based on conventional dynamic ray tracing only, the use of Taylor series for squared traveltime (dashed blue) yields
a better result than with a plain Taylor series for the traveltime (solid blue). In general, this is however not always the case (Ursin 1982a;
Gjøystdal et al. 1984). Our fourth-order extrapolations of traveltime (solid magenta) and squared traveltime (dashed magenta) yield better
results than the corresponding second-order approaches. Also to fourth order, a Taylor series for squared traveltime give smaller errors than
a plain Taylor series for the traveltime. The latter errors are below 0.025 per cent within a 2 km paraxial distance (the lateral distance away
from the reference ray).

In Fig. 3 we compare traveltime extrapolation using Taylor series coefficients obtained from dynamic ray tracing in Cartesian coordinates
(Iversen et al. 2019) and ray-centred coordinates (methodology of this paper). The relative difference between using Cartesian and ray-centred
coordinates is larger for the fourth-order than for the lower-order extrapolations, but still below 5e-07 at 3 km paraxial distance. In other
words, the traveltime extrapolation results obtained using Cartesian and ray-centred coordinates are highly consistent.

8.1.3 Extrapolation of geometrical spreading

Previously, for dynamic ray tracing in Cartesian coordinates (Iversen et al. 2019), we used eq. (113) to extrapolate the geometrical spreading
matrix and subsequently eq. (114) to compute the relative geometrical spreading in the (paraxial) receiver point. All coefficients used in the
extrapolation were computed in the endpoint of the reference ray (the reference receiver point). We examined extrapolation of the geometrical
spreading for the three available sets of dynamic ray tracing quantities—corresponding to first-, second- and third-order dynamic ray tracing.

As explained above, a certain order of the dynamic ray tracing does not permit to compute the full set of coefficients for extrapolation of
the geometrical spreading matrix up to the same order. Therefore, for first-order dynamic ray tracing the first-order extrapolation coefficients
are incomplete (QiAB are not known), for second-order dynamic ray tracing the second-order extrapolation coefficients are incomplete (QiABC

are not known), and so forth. In Iversen et al. (2019) the unknown coefficients were simply set to zero. Here, we proceed in the same manner
when extrapolating the geometrical spreading matrix based on dynamic ray tracing computations in ray-centred coordinates. The results are
shown in Fig. 4, where the solid blue, cyan, and magenta curves correspond, respectively, to a first-, second- and third-order Taylor expansion
using eq. (113). Among these three, it is only the third-order expansion, with input data from third-order dynamic ray tracing, that yields a
satisfactory extrapolation result.

Fig. 4 includes, in addition to the solid magenta curve, also a dotted version. That curve also corresponds to third-order dynamic ray
tracing, but now we have lowered the extrapolation order from three to two. As a consequence, the second-order expansion is in this case
performed with a complete set of coefficients. We can see that the results for the solid and dotted magenta curves are quite similar: the relative
errors are below 1 per cent for paraxial distances 0–1 km and below 5 per cent for paraxial distances 0–2 km. In other words, whether we use
a second- or third-order Taylor expansion is not decisive in this situation—what is important is that the dynamic ray tracing is of third order.

Next, we compare in Fig. 5 the extrapolation of geometrical spreading based on dynamic ray tracing in ray-centred coordinates with
the corresponding values obtained using Cartesian coordinates (Iversen et al. 2019). For the higher-order approaches the relative difference
is within 2e-05 at 3 km paraxial distance, so the two dynamic ray tracing approaches must be said to yield very consistent results. Note one
particular aspect, that becomes very apparent in Fig. 5 because of the scale: Dynamic ray tracing in ray-centred and Cartesian coordinates are
mathematically equivalent, but their numerical implementations result in different values for geometrical spreading on the reference ray. The
relative difference is very small though (≈1e-06).

8.1.4 Constraints along the reference ray

To get an impression of the numerical errors involved in the integration along the reference ray � we monitor the constraints on the
perturbations of the position vector (eqs 87–89) and on the phase-space vector (eqs 90–92). The total derivatives in these equations shall
ideally be perfectly zero.

For dynamic ray tracing in Cartesian coordinates this monitoring is straightforward. We simply evaluate the constraint relations [eqs
(87)–(92)] restated such that qi → xi, w(q)

r → wr .
A similar operation for dynamic ray-tracing in ray-centred coordinates will however just yield zero, in a numerical sense. The reason is

that we have already used the constraint relations to remove redundancy from the dynamic ray tracing ODEs. We can however get a measure
of the numerical accuracy if we (1) transform the obtained results for the position and phase-space perturbations to Cartesian coordinates and
(2) apply relations (87)–(92), again with qi → xi, w(q)

r → wr (version for Cartesian coordinates). The errors involved in the continuation of
the ray-centred coordinate system will then become visible.

Selected graphs corresponding to the involved first-, second- and third-order constraints are shown in Figs 6–8. To facilitate comparison
of the graphs the first, second and third total derivatives of the traveltime are multiplied by the scale factors δγ /τ , (δγ )2/(2τ ) and (δγ )3/(6τ ),
respectively, where δγ is a constant and τ is the traveltime to the current point. Likewise, the first, second and third total derivatives of
the Hamiltonian are scaled by the factors δγ /H , (δγ )2/(2H ) and (δγ )3/(6H ), where H = 1/2. For all graphs shown we have set δγ =
0.01 s km–1.

We summarize our observations.
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(1)A general remark is that the deviations from zero are very small. The largest scaled derivative of the traveltime is ≈2e-08 (Fig. 7, top
panel), while the largest scaled derivative of the Hamiltonian is ≈1e-07 (Fig. 7, bottom panel).
(2)The impact on the paraxial deviations of the Hamiltonian seems to be a lot smaller for dynamic ray tracing in ray-centred coordinates than
for dynamic ray tracing in Cartesian coordinates.
(3)The constraint graphs based on dynamic ray tracing in ray-centred coordinates appears somewhat more high frequent than those for
Cartesian coordinates. This could be related to the choice of ODE solver (MATLAB’s ‘ode45’) and its settings. However, we must keep in
mind that the scale in Figs 6–8 is very small (from 2e-07 down to 2e-10).

8.2 Simulations using model Marmousi VTI

Above, we studied the evolution of the position and phase-space constraint relations along a reference ray in the model 3-D VTI. As a next step,
we evaluate and compare the constraint relations along a wavefront. These evaluations and comparisons are conducted for two situations—the
as is case where we compare directly the constraint values resulting from higher-order dynamic ray tracing in Cartesian and ray-centred
coordinates, and in addition the case when the dynamic ray tracing quantities have been obtained by interpolation. The objective of the latter
is to expose eventual differences in the interpolation of dynamic ray tracing quantities given in Cartesian and ray-centred coordinates.

To add some challenges in terms of varying wavefront curvature, the tests are done in a different model, referred to as Marmousi VTI.
It is the same model as were used by Iversen et al. (2021)—a smoothed version of the Marmousi model. The (vertical) P-wave velocity was
smoothed using the NORSAR software, by applying a Hamming filter with radius 0.3 km.

8.2.1 Data

We wanted to do a test of interpolation of dynamic ray tracing quantities along a wavefront, such that the test results are relevant for the
wavefront construction method—however, without invoking the wavefront construction method itself. Our solution to generating a ‘true’
wavefront reference data set, was to trace a dense system of rays a given time τ = 0.8 s, with all rays starting in the point (x = 4.5, z = 2.7)
km. Fig. 9 (top panel) shows shows the P-wave velocity field of the Marmousi VTI model, overlaid by the traced ray bundle (black) and the
resulting wavefront points (grey). A close-up is provided in Fig. 9 (middle panel) to give a better impression of the wavefront geometry.

Along each ray, higher-order dynamic ray tracing was conducted in Cartesian and in ray-centred coordinates. These dynamic ray tracing
data sets are used for two purposes: as reference data for numerical comparisons, and as input data to interpolation. The setup for the
interpolation tests is outlined in Fig. 9 (bottom panel). For any point on the wavefront (marked by a triangle), three interpolations of dynamic
ray tracing quantities based on neigbouring points are conducted. The input points for the three cases are marked in the figure by numbers 1,
2, 3, so that 3 corresponds to the largest interpolation distance.

8.2.2 Constraints along the wavefront

From the generated wavefront data sets, with dynamic ray tracing quantities in Cartesian and ray-centred coordinates stored for each point on
the wavefront, we compute the position and phase-space constraints corresponding to first, second and third order in the ray parameters. We
are then able to display the constraint values along the wavefront, similarly to what we did earlier along a reference ray.

As before all constraints for ray-centred coordinates are computed after transforming the dynamic ray tracing results to Cartesian
coordinates. The reason is that we then include errors resulting from the continuation of the ray-centred basis along the rays. Without this
operation all evaluated constraint relations for ray-centred coordinates would have been zero (see the comments above related to monitoring
constraints along a specific ray).

Figs 10–12 show graphs corresponding to constraint quantities of first-, second- and third-order dynamic ray tracing, performed using
Cartesian (magenta) and ray-centred (blue) coordinates. The scaling of the constraint quantities was done in the same way as when monitoring
the constraints along a ray (Figs 6–8).

We observe the following.

(1)For conventional dynamic ray tracing (Fig. 10) the position constraint appears as far more noisy for Cartesian than for ray-centred
coordinates. This is also the general impression concerning the phase-space constraint. However, in some parts on the wavefront the phase-
space constraint inconsistency is greater in ray-centred than in Cartesian coordinates. These parts have high negative and positive wavefront
curvature and are therefore related to the formation of caustics.
(2)For second-order dynamic ray tracing (Fig. 11) we observe, both for the position and the phase-space constraint, that in the right part the
inconsistency of using ray-centred coordinates can be greater than when using Cartesian coordinates. In the left-hand part, the graphs for
Cartesian coordinates more noisy, and the noise seems to increase with the increasing obliquity of the rays (away from the vertical).
(3)For third-order dynamic ray tracing (Fig. 12) we see the same trends as in the second-order case.
(4)In general, the consistency along the wavefront is much better for ray-centred coordinates than for Cartesian coordinates. However,
Cartesian coordinates may do equally well or better in caustic regions.
(5)The constraint relations for Cartesian coordinates seem quite sensitive to the obliquity of the ray path in this model.
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8.2.3 Interpolation along the wavefront

Our setup to do interpolation of dynamic ray tracing results along the wavefront is outlined in Fig. 9(bottom panel). For each dynamic ray
tracing coordinate type (Cartesian or ray-centred) we did three linear interpolations of the dynamic ray tracing quantities. The output point
of the interpolation was chosen as one of the points we already have on the wavefront, the interpolation was conducted using input data from
the first, second and third ray to the left and right (referring to Fig. 9). For the latter case (third ray to the left/right) the interpolation distance
along the wavefront varies between 48 and 116 m.

The results for the constraint values, after linear interpolation of the dynamic ray tracing quantities from the ray neighbours, are shown
in Figs 13–15. The constraint values, which measure the degree of consistency, appear as quite pronounced for Cartesian coordinates. For
ray-centred coordinates, the constraint values are almost insensitive to linear interpolation of the dynamic ray tracing quantities.

Although the latter results are clearly in favour of ray-centred coordinates, it is important to note that the interpolation error is not
necessarily less in ray-centred coordinates concerning, say, geometrical spreading. For the two coordinate systems the errors distribute on
the different components of ∂qi/∂γ A and ∂xi/∂γ A, but in ray-centred coordinates we have by definition ∂q3/∂γ A = 0. The latter guarantees a
better consistency along the wavefront. The graphs in Figs 13–15 are therefore very good news with respect to implementation of higher-order
dynamic ray-tracing in ray-centred coordinates, as a an intrinsic element of the wavefront construction method.

9 D I S C U S S I O N

This work is a follow-up of a previous paper (Iversen et al. 2019), where we built a novel framework for higher-order dynamic ray tracing
in Cartesian coordinates. No doubt, these coordinates have important advantages, such as the fact that the model coordinates are often also
Cartesian, so one can then avoid quite complicated coordinate transformations. In addition, the implementation in Cartesian coordinates is
relatively straightforward. However, dynamic ray tracing in Cartesian coordinates is subject to redundancies, and there is little we can do
about it. A redundant ODE system increases the risk for numerical inconsistencies, and it is necessary to check the system closely by means
of constraint relations. Ray-centred coordinates, on the other hand, yields explicit expressions for the redundant quantities, and it is easy to
remove the corresponding ODEs from the system.

For some applications of dynamic ray tracing, it is useful to take the perspective of differential geometry, and ray-centred coordinates is
then a natural choice. Here we have in mind approaches where the ‘leading’ coordinate of the velocity model has the unit of time, and—the
corresponding time axis coincides with the reference ray for dynamic ray tracing. An example is the (generalized) Dix inversion problem
(Iversen & Tygel 2008; de Hoop et al. 2014, 2015).

The number of ODEs for the higher-order fundamental solution of dynamic ray tracing in ray-centred coordinates is substantially reduced
as compared to in Cartesian coordinates. We remark, however, that although the equations in Cartesian coordinates include redundancy, the
number of independent solutions that we need to compute is the same in ray-centred and Cartesian coordinates. For example, if we want to
find the 6 × 6 ray propagator matrix in Cartesian coordinates it is sufficient to compute the 6 × 4 system of paraxial solutions corresponding
to an initial point source and an initial plane wave. The full 6 × 6 matrix is obtained by including the ray-tangent and non-eikonal solutions,
which are given explicitly—dynamic ray tracing is not needed to computed them. The connections between the 6 × 4 paraxial system, the
associated second-derivatives of traveltime and the 6 × 6 ray propagator matrix have been known for a long time (see, for example, Klimeš
1994; Červený 2001; Červený & Moser 2007; Červený et al. 2012; Klimeš 2013). Recently this topic has been further illuminated (Koren &
Ravve 2021; Ravve & Koren 2021) founded on the properties of parametric functionals (Bliss 1916).

Our numerical tests of interpolation along a wavefront of dynamic ray tracing quantities, in Cartesian and ray-centred coordinates,
clearly point in favour of the latter. We emphasize that the conducted interpolation is linear, as it typically would be in a practical and efficient
ray theory implementation, for example in the wavefront construction method. One could of course consider a more sophisticated, non-linear,
interpolation—in order to better honour the dynamic ray tracing quantities in Cartesian coordinates. However, this adds a complication and
is therefore by itself an argument supporting to do the interpolation in ray-centred coordinates.

1 0 C O N C LU S I O N S

In this paper, we have extended conventional dynamic ray tracing, in ray-centred coordinates, to higher orders. The methodology applies to
3-D anisotropic heterogeneous models. A key application is paraxial extrapolation or interpolation of Green’s function attributes, as a kernel
operation within mapping, modelling or imaging.

For a 3-D model with VTI anisotropy, model 3-D VTI, we show that the results of higher-order extrapolation of traveltime and geometrical
spreading are highly consistent with those obtained in a recent paper using dynamic ray tracing in Cartesian coordinates. Graphs corresponding
to constraints along the reference ray confirm our expectation: that higher-order dynamic ray tracing in Cartesian coordinates may be exposed
to numerical errors due to redundancies. The numerical inconsistencies resulting in the given model are however very small, both for dynamic
ray tracing in Cartesian and in ray-centred coordinates.

In the 2-D model Marmousi VTI we tested the evolution of the constraint values along a given wavefront. This model has a much more
complicated (vertical) P-wave velocity field than model 3-D VTI, and not surprisingly, the general level of the constraint values is higher.
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As a general observation, the consistency along the wavefront is found much better for ray-centred coordinates than for Cartesian
coordinates. Moreover, for the model Marmousi VTI the constraint relations for Cartesian coordinates seem quite sensitive to the obliquity of
the ray path. On the other hand, dynamic ray tracing in Cartesian coordinates is found equally consistent or better in caustic regions.

In a test of interpolation of the dynamic ray tracing quantities along the wavefront, for different interpolation distances, the consistency
is far much better with interpolation in ray-centred coordinates than in Cartesian coordinates. This tells us that Cartesian and ray-centred
coordinates can be used for dynamic ray tracing in a complementary way: Cartesian coordinates are a good choice when dynamic ray tracing
is to be performed with relatively long time steps in a model specified in Cartesian coordinates, while ray-centred coordinates are better suited
for approaches where wavefront consistency is important and/or the model is specified in curvilinear (wavefront) coordinates.

With the recent and current introduction of higher-order dynamic ray tracing in Cartesian and ray-centred coordinates, for elementary
waves in a smooth anisotropic medium, the natural future extensions are (1) to describe the transformation of higher-order dynamic ray
tracing quantities across interfaces, by reflection and transmission and (2) to take into account shear-wave coupling.
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Jäger, R., Mann, J., Höcht, G. & Hubral, P., 2001. Common-reflection-
surface stack: Image and attributes, Geophysics, 66(1), 97–109.

Kendall, J.-M., Guest, W.S. & Thomson, C.J., 1992. Ray-theory Green’s
function reciprocity and ray-centred coordinates in anisotropic media,
Geophys. J. Int., 108, 364–371.
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�rs = H ,x�xrs . (A3)

Here, all indices run from 1 to 6. Explicit expressions for the �-quantities are given in Tables 6–7.

A1 Notation remap

We introduce a remap to a lower/upper system of indices so that, e.g. 
rs → 

i ′ j ′

i j , where the new lower indices i and j run from 1 to 3. The
corresponding upper (primed) indices i

′
and j

′
may take the values 1 or 2, signifying whether differentiation is performed with respect to a

position (1) or momentum (2) variable.

A2 Remap of the second derivatives of the Hamiltonian

Based on the above the remap of eq. (A1) reads

H (q) ,i ′ j ′
,i j = 


i ′ j ′
i j + �

i ′ j ′
i j , (A4)

with the remap of the quantities 
st and �st from eqs (A2)–(A3) expressed as



i ′ j ′

i j = H ,m′n′
,mn � m′i ′

mi �
n′ j ′

nj

= H ,11
,mn�

1i ′
mi �

1 j ′
nj + H ,21

,mn�
2i ′

mi �
1 j ′

nj + H ,12
,mn�

1i ′
mi �

2 j ′
nj + H ,22

,mn�
2i ′

mi �
2 j ′

nj , (A5)

�
i ′ j ′

i j = H ,m′
,m �

m′i ′ j ′
mi j

= H ,1
,m�

1i ′ j ′
mi j + H ,2

,m�
2i ′ j ′

mi j . (A6)

We elaborate on specific cases for the individual 3 × 3 matrix quantities in eqs (A5)–(A6) and utilize that the transformation quantities � 12
mi ,

� 112
mi j , � 122

mi j , and � 222
mi j are all zero. This yields


 11
i j = H ,m′n′

,mn � m′1
mi � n′1

nj

= H ,11
,mn�

11
mi �

11
nj + H ,21

,mn�
21

mi �
11

nj + H ,12
,mn�

11
mi �

21
nj + H ,22

,mn�
21

mi �
21

nj , (A7)


 21
i j = H ,m′n′

,mn � m′2
mi � n′1

nj

= H ,11
,mn�

12
mi �

11
nj + H ,21

,mn�
22

mi �
11

nj + H ,12
,mn�

12
mi �

21
nj + H ,22

,mn�
22

mi �
21

nj

= H ,21
,mn�

22
mi �

11
nj + H ,22

,mn�
22

mi �
21

nj , (A8)


 12
i j = 
 21

j i , (A9)


 22
i j = H ,m′n′

,mn � m′2
mi � n′2

nj

= H ,11
,mn�

12
mi �

12
nj + H ,21

,mn�
22

mi �
12

nj + H ,12
,mn�

12
mi �

22
nj + H ,22

,mn�
22

mi �
22

nj

= H ,22
,mn�

22
mi �

22
nj , (A10)

� 11
i j = H ,m′

,m � m′11
mi j

= H ,1
,m� 111

mi j + H ,2
,m� 211

mi j , (A11)

� 21
i j = H ,m′

,m � m′21
mi j

= H ,1
,m� 121

mi j + H ,2
,m� 221

mi j

= H ,2
,m� 221

mi j , (A12)

� 12
i j = � 21

j i , (A13)

� 22
i j = H ,m′

,m � m′22
mi j

= H ,1
,m� 122

mi j + H ,2
,m� 222

mj

= 0. (A14)

A3 Second-order partial derivatives of the Hamiltonian with respect to paraxial coordinates

Consider a reduced form of eqs (A1)–(A3), with indices R, S = 1, 2, 4, 5,
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H (q)
,RS = 
RS + �RS, (A15)


RS = H ,xy�x R�yS, (A16)

�RS = H ,x�x RS . (A17)

The remapping in reduced form reads, e.g. H (q)
,RS → H (q) ,I ′ J ′

,I J , where the new lower indices I and J can be 1 or 2, while the corresponding
upper (primed) indices signify differentiation in position (1) or momentum (2). Remapping eqs (A16)–(A17) then yields


 I ′ J ′
I J = H ,m′n′

,mn � m′ I ′
m I � n′ J ′

n J , � I ′ J ′
I J = H ,m′

,m � m′ I ′ J ′
m I J . (A18)

Now we use eqs (A7)–(A14) to obtain specific reduced forms for the inividual 2 × 2 matrix quantities. Note, in particular, that for eq. (A11)
we have � 111

m I J = 0. The results are,


 11
I J = H ,11

,mn�
11

m I �
11

n J + H ,21
,mn�

21
m I �

11
n J + H ,12

,mn�
11

m I �
21

n J + H ,22
,mn�

21
m I �

21
n J , (A19)


 21
I J = H ,21

,mn�
22

m I �
11

n J + H ,22
,mn�

22
m I �

21
n J , (A20)


 12
I J = 
 21

J I , (A21)


 22
I J = H ,22

,mn�
22

m I �
22

n J , (A22)

� 11
I J = H ,2

,m� 211
m I J , (A23)

� 21
I J = H ,2

,m� 221
m I J , (A24)

� 12
I J = � 21

I J , (A25)

� 22
I J = 0. (A26)

On the ray � the different 2 × 2 matrices of type � I ′ J ′
and �I ′ J ′

have components


 11
I J = (Umn − 3ηmηn) Em IEn J , 
 22

I J = VmnFm IFn J , 
 12
I J = W 12

mn Em IFn J , (A27)

� 11
I J = 2ηmηnEm IEn J , � 22

I J = 0, � 12
I J = −dEnI

dτ
Fn J = −KI J . (A28)

This yields the following second derivatives of the Hamiltonian in ray-centred coordinates,

U (q)
I J = ∂2 H

∂qI ∂qJ
= (Umn − ηmηn) Em IEn J , (A29)

V (q)
I J = ∂2 H

∂p(q)
I ∂p(q)

J

= VmnFm IFn J , (A30)

W (q) 12
I J = ∂2 H

∂qI ∂p(q)
J

= W 12
mn Em IFn J − KI J . (A31)

A4 Second-order partial derivatives of the Hamiltonian with respect to time and time stretch

Along the reference ray � we consider the particular second-order partial derivatives of the Hamiltonian taken either with respect to the time
variable q3 or the time-stretch variable p(q)

3 .
The vectors (∂ H /∂p(q)

i ) and (∂ H /∂qi ) are both constant along �, see eqs (17) and (18). As a consequence, at every point on � we have

∂2 H
∂q3∂p(q)

i

= d

dτ

(
∂ H
∂p(q)

i

)
= 0, (A32)

∂2 H
∂q3∂qi

= d

dτ

(
∂ H
∂qi

)
= 0. (A33)

Differentiation of eq. (12) with respect to p(q)
j yields

p(q)
i

∂2 H
∂p(q)

i ∂p(q)
j

= ∂ H
∂p(q)

j

. (A34)
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On � we use eq. (17) in eq. (A34) to obtain

∂2 H
∂p(q)

3 ∂p(q)
j

= δ3 j . (A35)

When eq. (12) is differentiated with respect to qj we obtain

∂2 H
∂p(q)

3 ∂q j

= 1

p(q)
3

(
2
∂ H
∂q j

− p(q)
I

∂2 H
∂p(q)

I ∂q j

)
. (A36)

Hence, on � we have

∂2 H
∂p(q)

3 ∂q j

= 0. (A37)

A P P E N D I X B : H A M I LT O N I A N I N R AY- C E N T R E D P H A S E - S PA C E C O O R D I NAT E S :
T H I R D - O R D E R PA RT I A L D E R I VAT I V E S

Consider the third-ordered partial derivatives of Hamiltonian in ray-centred phase-space coordinates, where the indices run from 1 to 6,

H (q)
,rst = H ,xyz�xr�ys�zt + H ,xy

(
�xr�yst + �xs�yrt + �xt�yrs

)
+H ,x�xrst . (B1)

The �-quantities are defined in eq. (26); for explicit expressions, seeTables 6–7.

B1 Third-order partial derivatives of the Hamiltonian with respect to paraxial coordinates

Reduction and remap of eq. (B1) yields

H (q) ,I ′ J ′ K ′
,I J K = H ,m′n′ p′

,mnp � m′ I ′
m I � n′ J ′

n J �
p′ K ′

pK

+H ,m′n′
,mn

(
� m′ I ′

m I � n′ J ′ K ′
n J K + � m′ J ′

m J � n′ I ′ K ′
nI K + � m′ K ′

mK � n′ I ′ J ′
nI J

)
+H ,m′

,m � m′ I ′ J ′ K ′
m I J K . (B2)

On the way to obtain specific expressions for the third-order derivatives of the Hamiltonian, we loop through the various possible values of I
′
,

J
′
, K

′
and eliminate terms that are always zero. The resulting expressions (not stated here) are quite long, but there is room for considerable

simplification when we evaluate on the ray �.
We observe that some of the transformation quantities (Iversen et al. 2021) � 21

m I , � 211
m I J , � 212

m I J , etc. are factored by the component pm. This
is attractive, because one can then, as an example, express the component product H ,211

,mnp�
21

m I in the form pm H ,211
,mnpaI , where aI = ηmEm I . For

the product pm H ,211
,mnp we can obtain a simpler expression by differentiating twice the fundamental relation pi ∂ H /∂pi = 2H , which gives

pi
∂3 H

∂pi∂x j∂xk
= 2

∂2 H
∂x j∂xk

(B3)

or

pi H ,211
,i jk = 2U jk . (B4)

The product H ,211
,mnp�

21
m I is therefore simply

H ,211
,mnp�

21
m I = 2ηmUnpEm I . (B5)

Next, inspect the component products H ,221
,mnp � 21

m I and H ,221
,mnp � 21

m I � 21
n J using the same strategy as above. We utilize the relations

pi
∂3 H

∂pi∂p j∂xk
= ∂2 H

∂xk∂p j
(B6)

and

pi p j
∂3 H

∂pi∂p j∂xk
= 2

∂ H
∂xk

(B7)

to obtain

H ,221
,mnp � 21

m I = W 12
pn ηmEm I (B8)

and

H ,221
,mnp � 21

m I � 21
n J = −2ηmηnηpEm IEn J . (B9)
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Working along such lines, we obtain also the simplifying relations

H ,12
,mn�

211
n J K = −4ηmηnηpEn JEpK , (B10)

H ,12
,mn�

212
n J K = 2ηmKJ K , (B11)

H ,22
,mn�

21
m I = vnηmEm I , (B12)

H ,22
,mn�

21
m I �

211
n J K = 2ηmηnηpEm IEn JEpK , (B13)

H ,22
,mn�

21
m I �

212
n J K = −ηmEm IKJ K , (B14)

H ,22
,mn�

22
m I �

211
nK J = 0, (B15)

H ,22
,mn�

22
m I �

212
nK J = 0, (B16)

H ,2
,m� 2111

m I J K = 6ηmηnηpEm IEn JEpK , (B17)

H ,2
,m� 2112

m I J K = −ηm (Em IKJ K + Em JKI K ) . (B18)

The above auxiliary results (B5) and (B8)–(B18) enable us to convert eq. (B2) into specific transformation equations for the third-order partial
derivatives of the Hamiltonian. We obtain the results

H (q) ,111
,I J K = (

Umnp + 2ηmUnp + 2ηnUmp + 2ηpUmn − 6ηmηnηp

)
Em IEn JEpK , (B19)

H (q) ,112
,I J K = (

W 112
mnp + ηm W 12

np + ηn W 12
mp

)
Em IEn JFpK , (B20)

H (q) ,122
,I J K = W 122

mnp Em IFn JFpK , (B21)

H (q) ,222
,I J K = Vmnp Fm IFn JFpK . (B22)

B2 Third-order partial derivatives of the Hamiltonian with respect to time and time stretch

On the reference ray, to take the partial derivative with respect to the coordinate q3 is equivalent to taking the total derivative with respect to
the traveltime τ . Straightforward differentiation of eqs (A29)–(A31) yields

∂3 H
∂qI ∂qJ ∂q3

= dU (q)
I J

dτ
= d

dτ
[ (Umn − ηmηn) Em IEn J ] , (B23)

∂3 H
∂p(q)

I ∂p(q)
J ∂q3

= dV (q)
I J

dτ
= d

dτ
[ VmnFm IFn J ] , (B24)

∂3 H
∂qI ∂p(q)

J ∂q3

= dW (q) 12
I J

dτ
= d

dτ

[
W 12

mn Em IFn J − KI J

]
. (B25)

Here, the time derivatives of the quantities Uij, Vij, and W 12
i j can be computed using

dUi j

dτ
= vkUi jk + ηk W 112

i jk

dW 12
i j

dτ
= vk W 112

ik j + ηk W 122
i jk ,

dVi j

dτ
= vk W 122

ki j + ηk Vi jk . (B26)

For time differentiation of the basis quantities Em I , Fn J and KI J , see Iversen et al. (2021).
Differentiation of the second derivatives of the Hamiltonian with respect to the time stretch variable p(q)

3 yields, on the reference ray,

∂3 H
∂qI ∂qJ ∂p(q)

3

= 2U (q)
I J ,

∂3 H
∂p(q)

I ∂p(q)
J ∂p(q)

3

= 0,

∂3 H
∂qI ∂p(q)

J ∂p(q)
3

= W (q) 12
I J . (B27)
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A P P E N D I X C : H A M I LT O N I A N I N R AY- C E N T R E D P H A S E - S PA C E C O O R D I NAT E S :
F O U RT H - O R D E R PA RT I A L D E R I VAT I V E S

We elaborate on fourth-order partial derivatives of the Hamiltonian in ray-centred phase-space. Such derivatives have the generic form

H (q)
,rstu = H ,xyzφ�xr�ys�zt�φu

+ H ,xyz

(
�xrs�yt�zu + �xrt�ys�zu + �xru�ys�zt

+ �xst�yr�zu + �xsu�yr�zt + �xtu�yr�zs

)
+ H ,xy

(
�xrs�ytu + �xrt�ysu + �xru�yst

+ �xrst�yu + �xrsu�yt + �xrtu�ys + �xstu�yr

)
+ H ,x�xrstu, (C1)

with all indices running from 1 to 6. For definition of the �-quantities and their explicit expressions, see eq. (26) and Tables 6–7.

C1 Fourth-order partial derivatives of the Hamiltonian with respect to paraxial coordinates

We do reduction and remap of eq. (C1), eliminate terms that are always zero, and simplify using a similar strategy as in Appendix B. This
yields the following fourth-order partial derivatives with respect to the paraxial coordinates qI and p(q)

I ,

H (q) ,1111
,I J K L = (

Umnpq + 2ηmUnpq + 2ηnUmpq + 2ηpUmnq + 2ηqUmnp

+ 6ηmηnUpq + 6ηmηpUnq + 6ηmηqUnp

+ 6ηnηpUmq + 6ηnηqUmp + 6ηpηqUmn

− 36ηmηnηpηq

)
Em IEn JEpKEq L , (C2)

H (q) ,1112
,I J K L = (

W 1112
mnpq + ηm W 112

npq + ηn W 112
mpq + ηpW 112

mnq

+ 2ηmηn W 12
pq + 2ηmηpW 12

nq + 2ηnηpW 12
mq

)
Em IEn JEpKFq L

− 2(Umn − ηmηn) (Em IEn JKK L + Em IEnKKJ L + Em JEnKKI L ), (C3)

H (q) ,1122
,I J K L = W 1122

mnpq Em IEn JFpKFq L

− W 12
mn (Em IFnKKJ L + Em IFnLKJ K + Em JFnKKI L + Em JFnLKI K )

+ KI KKJ L + KI LKJ K , (C4)

H (q) ,1222
,I J K L = (W 1222

mnpq − ηm Vnpq ) Em IFn JFpKFq L , (C5)

H (q) ,2222
,I J K L = Vmnpq Fm IFn JFpKFq L . (C6)

A P P E N D I X D : I N T R I N S I C R E L AT I O N S F O R DY NA M I C R AY T R A C I N G I N
R AY- C E N T R E D C O O R D I NAT E S

We consider intrinsic relations between quantities within the first-, second-, and third-order systems for dynamic ray tracing in ray-centred
coordinates.

D1 Intrinsic relations in first-order dynamic ray tracing

Consider the position constraint relation (87). On the reference ray, �, we have ∂τ /∂qi = δi3, and therefore

Q3A ≡ ∂q3

∂γA
= 0. (D1)

Moreover, the phase-space constraint relation (90) yields

∂ H
∂qi

∂qi

∂γA
+ ∂ H

∂p(q)
i

∂p(q)
i

∂γA
= 0.

Since ∂ H /∂qi = 0 and ∂ H /∂p(q) = δ3i on �, we have

P3A ≡ ∂p(q)
3

∂γA
= 0. (D2)
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For the first-order derivatives of the momentum components p(q)
I in eq. (84) we find

∂p(q)
I

∂γA
= ∂2τ

∂qI ∂qJ

∂qJ

∂γA
+ ∂

∂q3

(
∂τ

∂qI

)
∂q3

∂γA
.

The last term is zero on � because of eqs (83) and (D1), hence,

PI A = MI JQJ A, (D3)

where we have introduced the second-order derivatives of traveltime,

MI J ≡ ∂2τ

∂qI ∂qJ
. (D4)

D2 Intrinsic relations in second-order dynamic ray tracing

Consider the second-order position constraint (88) when evaluated on �,

∂2τ

∂qI ∂qJ

∂qI

∂γA

∂qJ

∂γB
+ ∂2q3

∂γA∂γB
= 0.

Using eqs (D3) and (D4) results in the relation

Q3AB ≡ ∂2q3

∂γA∂γB

= −MI JQI AQJ B = −QI API B . (D5)

Then, use the second-order phase-space constraint (91) on �, which yields

∂2 H
∂w

(q)
r ∂w

(q)
s

X (q)
r A X (q)

s B + ∂2 p(q)
3

∂γA∂γB
= 0.

After application of the reduced form of the dynamic ray tracing ODEs (37), we obtain

P3AB ≡ ∂2 p(q)
3

∂γA∂γB

= JRS S(q)
ST X (q)

R A X (q)
T B

= QI AṖI B − PI AQ̇I B . (D6)

The reduced form implies that the indices R, S, T can only have values 1,2,4,5. We can further use eq. (D3) to restate (D6) as

P3AB = ṀI JQI AQJ B . (D7)

Eqs (D6) and (D7) represent equivalent constraint relations for the second-order derivatives of perturbations in the phase space— the only
second-order quantity affected is P3AB .

Consider the second-order derivatives of the momentum components p(q)
I in eq. (85). On � the latter simplifies to

∂2 p(q)
I

∂γA∂γB
= ∂3τ

∂qI ∂qJ ∂qK

∂qJ

∂γA

∂qK

∂γB
+ ∂2τ

∂qI ∂qJ

∂2qJ

∂γA∂γB
.

This result is conveniently restated

PI AB = MI J KQJ AQK B + MI JQJ AB, (D8)

where MI J K signifies the third-order derivatives of traveltime,

MI J K ≡ ∂3τ

∂qI ∂qJ ∂qK
. (D9)

D3 Intrinsic relations in third-order dynamic ray tracing

On � the third-order position constraint (89) yields

Q3ABC ≡ ∂3q3

∂γA∂γB∂γC

= −MI J KQI AQJ BQK C − MI J (QI AQJ BC + QI BQJ AC + QI CQJ AB). (D10)
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One may use eqs (D3) and (D8) to remove the M-quantities on the right-hand side of eq. (D10). As a result, we obtain the equivalent
expression

Q3ABC = −QI API BC − PI BQI AC − PI CQI AB . (D11)

We apply the third-order phase-space constraint (92) on �, which results in

∂3 p(q)
3

∂γA∂γB∂γC
= − ∂3 H

∂w
(q)
r ∂w

(q)
s ∂w

(q)
t

X (q)
r A X (q)

s B X (q)
tC

− ∂2 H
∂w

(q)
r ∂w

(q)
s

(
X (q)

r A X (q)
r BC + X (q)

r B X (q)
r AC + X (q)

rC X (q)
r AB

)
= 0.

Introducing the reduced form of the phase-space coordinate indices gives us

P3ABC ≡ ∂3 p(q)
3

∂γA∂γB∂γC

= JS R S(q)
RT U X (q)

S A X (q)
T B X (q)

UC

+ JS R S(q)
RT

(
X (q)

T A X (q)
SBC + X (q)

T B X (q)
S AC + X (q)

T C X (q)
S AB

)
. (D12)

Using eq. (86) it is straightforward to derive the convenient form

P3ABC = ṀI J KQI AQJ BQK C + ṀI J (QI AQJ BC + QI BQJ AC + QI CQJ AB). (D13)

Eqs (D12) and (D13) represent equivalent constraint relations for the third-order derivatives of perturbations in the phase space— the only
third-order quantity affected is P3ABC .

We use eq. (86) to obtain third-order derivatives of the momentum components p(q)
I on �. As a first result, we obtain

PI ABC = MI J K LQJ AQK BQLC

+ MI J K (QJ AQK BC + QJ BQK AC + QJCQK AB)

+ ṀI J (QJ AQ3BC + QJ BQ3AC + QJCQ3AB)

+ MI JQJ ABC , (D14)

where MI J K L represent the fourth-order derivatives of traveltime,

MI J K L ≡ ∂4τ

∂qI ∂qJ ∂qK ∂qL
. (D15)

Applying eq. (D5), we can recast (D14) as

PI ABC = (MI J K L − ṀI JMK L − ṀI KMJ L − ṀI LMJ K )QJ AQK BQLC

+ MI J K (QJ AQK BC + QJ BQK AC + QJCQK AB)

+ MI JQJ ABC . (D16)

A P P E N D I X E : T R A N S F O R M AT I O N O F DY NA M I C R AY T R A C I N G Q UA N T I T I E S
B E T W E E N C A RT E S I A N A N D R AY- C E N T R E D C O O R D I NAT E S

We derive expressions that relate the dynamic ray tracing quantities in ray-centred and Cartesian coordinates.

E1 Transformation of first-order derivatives

First-order derivatives of position in ray-centred and Cartesian coordinates are related by

∂xi

∂γA
= ∂xi

∂qm

∂qm

∂γA
. (E1)

Since ∂q3/∂γ A = 0 on � we have

Qi A = Ei MQM A, (E2)

while the inverse transformation reads

QM A = Fi M Qi A, Q3A = pi Qi A = 0. (E3)
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Furthermore, the derivatives of momentum in Cartesian coordinates are given by

∂pi

∂γA
= ∂pi

∂qm

∂qm

∂γA
+ ∂pi

∂p(q)
m

∂p(q)
m

∂γA
. (E4)

Using phase-space coordinate transformations from Iversen et al. (2021) in combination with ∂q3/∂γ A = 0 and ∂p(q)
3 /∂γA = 0 on � yields

Pi A = Fi MPM A + piη jE j NQN A. (E5)

Conversely, the derivatives of momentum in ray-centred coordinates are expressed by

PM A = Ei M Pi A, P3A = −ηi Qi A + vi Pi A = 0. (E6)

The latter sub-equation is recognized as the first-order constraint relation for dynamic ray racing in Cartesian coordinates.

E2 Transformation of second-order derivatives

We differentiate eq. (E1) with respect to γ B,

∂2xi

∂γA∂γB
= ∂2xi

∂qm∂qn

∂qm

∂γA

∂qn

∂γB
+ ∂xi

∂qm

∂2qm

∂γA∂γB
, (E7)

which, on the reference ray, becomes

Qi AB = Ei MQM AB + viQ3AB . (E8)

The inverse result is

QM AB = Fi M Qi AB, Q3AB = pi Qi AB . (E9)

Using eqs (D5), (E3), and (E6) the second-order derivatives Q3AB in ray-centred coordinates can be expressed solely in terms of first-order
derivatives in Cartesian coordinates,

Q3AB = −Qi A Pi B . (E10)

Moreover, we differentiate eq. (E4) with respect to γ B,

∂2 pi

∂γA∂γB
= ∂2 pi

∂qk∂ql

∂qk

∂γA

∂ql

∂γB
+ ∂2 pi

∂qk∂p(q)
l

∂qk

∂γA

∂p(q)
l

∂γB
+ ∂pi

∂qk

∂2qk

∂γA∂γB

+ ∂2 pi

∂p(q)
k ∂ql

∂p(q)
k

∂γA

∂ql

∂γB
+ ∂pi

∂p(q)
k

∂2 p(q)
k

∂γA∂γB
, (E11)

which gives on �,

Pi AB = ∂2 pi

∂qM∂qN
QM AQN B + ∂2 pi

∂qM∂p(q)
N

QM APN B

+ ∂pi

∂qM
QM AB + ηiQ3AB

+ ∂2 pi

∂p(q)
M ∂qN

PM AQN B

+Fi MPM AB + piP3AB . (E12)

It is possible to write eq. (E12) differently. As it stands, however, it is simple to directly plug in the values for the transformation coefficients
derived in Iversen et al. (2021).

Conversely, to obtain PM AB in terms of quantities in the Cartesian coordinates we multiply both sides of eq. (E12) with Ei M . This yields,

PM AB = Ei M (Pi AB − ηi p j Q j AB). (E13)

We can also relate the quantity P3AB to Cartesian coordinates, as follows,

P3AB = Qi A Ṗi B − Pi A Q̇i B + Qi AĖi KF j K Pj B + Pi AFi K Ė j K Q j B . (E14)

E3 Transformation of third-order derivatives

Taking the derivative of eq. (E7) with respect to γ C we obtain, after evaluation on the ray �,

Qi ABC = Ei M QM ABC + vi Q3ABC

+ Ėi M (QM AQ3BC + QM BQ3AC + QMCQ3AB). (E15)
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The corresponding expressions for third-order derivatives in ray-centred coordinates are

QM ABC = Fi M Qi ABC

+ KK MFi K (Qi AQ3BC + Qi BQ3AC + QiCQ3AB), (E16)

Q3ABC = pi Qi ABC

+ ηi (Qi AQ3BC + Qi BQ3AC + QiCQ3AB). (E17)

Furthermore, differentiation of eq. (E11) with respect to γ C and subsequent evaluation on � yields

Pi ABC = ∂3 pi

∂qK ∂qL∂qM
QK AQL BQMC

+ ∂3 pi

∂qK ∂qL∂p(q)
M

(QK AQL BPMC + QK AQLCPM B + QK BQLCPM A)

+ ∂2 pi

∂qk∂qL
(Qk ABQLC + Qk ACQL B + Qk BCQL A)

+ ∂2 pi

∂qk∂p(q)
L

(Qk ABPLC + Qk ACPL B + Qk BCPL A

+ Qk APL BC + Qk BPL AC + QkCPL AB)

+ ∂pi

∂qk
Qk ABC + ∂pi

∂p(q)
k

Pk ABC . (E18)

Eq. (E18) yields the derivatives PiABC, after inserting values for the transformation coefficients given in Iversen et al. (2021).
To find an expression for a corresponding quantity in ray-centred coordinates, PM ABC , we first PiABC onto the basis vectors (e1, e2),

Ei K Pi ABC = PK ABC + Ei K ηiQ3ABC

+Ei K ηiη jE j M (QM AQ3BC + QM BQ3AC + QMCQ3AB)

−KK M (PM AQ3BC + PM BQ3AC + PMCQ3AB) . (E19)

Based on eq. (E5), the following relation holds in general,

KK MPMC = Ei K ηiη jE j MQMC + Ėi K PiC . (E20)

As a consequence, eq. (E19) can be recast as

PM ABC = Ei M (Pi ABC − ηiQ3ABC )

+Ėi M (Pi AQ3BC + Pi BQ3AC + PiCQ3AB) . (E21)

In a similar way as in eq. (E14) it is in principle possible to write the quantityP3ABC in terms of quantities related to Cartesian coordinates.
However, to avoid a very long expression we recommend to first transform all relevant quantities to ray-centred coordinates and then apply
one of the relations (D12) or (D13).

A P P E N D I X F : A R B I T R A RY D E G R E E O F T H E H A M I LT O N I A N

In the main text, the Hamiltonian is assumed a homogeneous function of degree N = 2 in the momentum components. We describe here a
generic approach, valid for any coordinate system, to make the higher-order dynamic ray tracing method correspond to an arbitrary value
N �= 0. Moreover, for dynamic ray tracing in ray-centred coordinates we consider the specific actions needed to generalize the equations of
the main text to such arbitrary N .

In this Appendix we use the Hamiltonian (Klimeš 2002b, eq. 9)

H (N )(w) = 1

N [G(w)]N /2 , (F1)

where the degree is signified by the superscript (N ). If the Hamiltonian is a function of ray-centred phase-space coordinates the superscript is
extended to (N )(q). In eq. (F1) G is the specific eigenvalue of the Christoffel matrix corresponding to the elementary wave under consideration.

From eq. (F1) it is clear that the Hamiltonians of degree 2 and N are related by

H (N )(w) = 1

N
[
2H (2)(w)

]N /2
. (F2)
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F1 Derivatives of the Hamiltonian: Conversion from degree 2 to degree N and vice versa

Using eq. (F2) we relate the derivatives in phase space of the Hamiltonians H (2) and H (N ). The phase space may correspond to Cartesian
coordinates, ray-centred coordinates, or other coordinates. For the first four derivatives the conversion from derivatives of H (2) to derivatives
of H (N ) is stated

H (N )
,r = H (2)

,r , (F3)

H (N )
,rs = (N − 2) H (2)

,r H (2)
,s + H (2)

,rs, (F4)

H (N )
,rst = (N − 4)(N − 2) H (2)

,r H (2)
,s H (2)

,t

+ (N − 2)
(
H (2)

,r H (2)
,st + H (2)

,s H (2)
,r t + H (2)

,t H (2)
,rs

)
+ H (2)

,rst , (F5)

H (N )
,rstu = (N − 6)(N − 4)(N − 2) H (2)

,r H (2)
,s H (2)

,t H (2)
,u

+ (N − 4)(N − 2)
(
H (2)

,r H (2)
,s H (2)

,tu + H (2)
,r H (2)

,t H (2)
,su + H (2)

,r H (2)
,u H (2)

,st

+ H (2)
,s H (2)

,t H (2)
,ru + H (2)

,s H (2)
,u H (2)

,r t + H (2)
,t H (2)

,u H (2)
,rs

)
+ (N − 2)

(
H (2)

,rs H
(2)
,tu + H (2)

,r t H (2)
,su + H (2)

,st H (2)
,ru

+ H (2)
,r H (2)

,stu + H (2)
,s H (2)

,r tu + H (2)
,t H (2)

,rsu + H (2)
,u H (2)

,rst

)
+ H (2)

,rstu . (F6)

The reverse conversion of derivatives is given by

H (2)
,r = H (N )

,r , (F7)

H (2)
,rs = (2 − N ) H (N )

,r H (N )
,s + H (N )

,rs , (F8)

H (2)
,rst = (2 − 2N )(2 − N ) H (N )

,r H (N )
,s H (N )

,t

+ (2 − N )
(
H (N )

,r H (N )
,st + H (N )

,s H (N )
,r t + H (N )

,t H (N )
,rs

)
+ H (N )

,rst , (F9)

H (2)
,rstu = (2 − 3N )(2 − 2N )(2 − N ) H (N )

,r H (N )
,s H (N )

,t H (N )
,u

+ (2 − 2N )(2 − N )
(
H (N )

,r H (N )
,s H (N )

,tu + H (N )
,r H (N )

,t H (N )
,su

+ H (N )
,r H (N )

,u H (N )
,st + H (N )

,s H (N )
,t H (N )

,ru

+ H (N )
,s H (N )

,u H (N )
,r t + H (N )

,t H (N )
,u H (N )

,rs

)
+ (2 − N )

(
H (N )

,rs H (N )
,tu + H (N )

,r t H (N )
,su + H (N )

,st H (N )
,ru

+ H (N )
,r H (N )

,stu + H (N )
,s H (N )

,r tu + H (N )
,t H (N )

,rsu + H (N )
,u H (N )

,rst

)
+ H (N )

,rstu . (F10)

F2 Conventional dynamic ray tracing in ray-centred coordinates with a Hamiltonian of arbitrary degree

Dynamic ray tracing in ray-centred coordinates with a Hamiltonian of arbitrary degree in the momentum components has been described by
Klimeš (2002b). We briefly review the modifications needed, relatively to using a Hamiltonian of the second degree.
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F2.1 Coefficients of the conventional (first-order) dynamic ray tracing system

Applying equations (17)–(18) in eq. (F4), it is clear that eq. (33) in the main text transforms to (Klimeš 2002b, eq. 50)

{H (N )(q)
,yz } =

⎛
⎜⎜⎜⎜⎝

{
U (2)(q)

I J

}
{0I 1}

{
W (2)(q) 12

I J

}
{0I 1}

{01J } 0 {01J } 0{
W (2)(q) 12

I J

}T
{0I 1}

{
V (2)(q)

I J

}
{0I 1}

{01J } 0 {01J } N − 1

⎞
⎟⎟⎟⎟⎠ . (F11)

Thus, it is clear that

U (N )(q)
I J = U (2)(q)

I J , W (N )(q) 12
I J = W (2)(q) 12

I J , V (N )(q)
I J = V (2)(q)

I J , (F12)

and the only coefficient of the (complete) dynamic ray tracing system affected by N is

V (N )(q)
33 = N − 1. (F13)

In view of the above, the paraxial and ray-tangent solutions of dynamic ray tracing do not depend on the value of N— only the
non-eikonal solution is affected.

F2.2 Non-eikonal solution

The non-eikonal solution for the case N = 2 is given by eqs (51)–(52). For a general degree N of the Hamiltonian, the non-eikonal solution
is restated

∂qi

∂γ6
= (N − 1)(τ − τ0)δi3,

∂p(q)
i

∂γ6
= δi3 (F14)

in ray-centred coordinates (Klimeš 2002b, second sub-eq. 53) and

∂xi

∂γ6
= (N − 1)(τ − τ0)vi ,

∂xi

∂γ6
= pi + (N − 1)(τ − τ0)ηi (F15)

in Cartesian coordinates (Klimeš 2002b, second sub-eq. 55).

F2.3 Continuation of basis vectors along the reference ray: Special case

Consider the continuation of the basis vectors E = {Em I } under the condition W (N )(q)
I J = 0. Using eq. (F8) in eq. (35) yields (Klimeš 2002b,

eq. 52a)

dEm I

dτ
= [

W (N ) 12
nm + (N − 1)vmηn

]
EnI . (F16)

We note that the left-hand side of this equation is unchanged relatively to the N = 2 situation.
For matrix K the condition W (N )(q)

I J = 0 implies that eq. (36) is restated (Klimeš 2006b, eq. 115)

KM N = Ei M W (N ) 12
i j F j N . (F17)

However, even though the quantity N appears on the right-hand side of (F17), the left-hand side, KM N , does not depend on N .

F3 Higher-order dynamic ray tracing in ray-centred coordinates with a Hamiltonian of arbitrary degree

For the higher-order reduced dynamic ray tracing systems in ray-centred coordinates we examine the effect of the quantity N .

F3.1 Coefficients for second-order dynamic ray tracing

Eq. (F5) yields

U (N )(q)
I J K = U (2)(q)

I J K , W (N )(q) 112
I J K = W (2)(q) 112

I J K ,

W (N )(q) 122
I J K = W (2)(q) 122

I J K , V (N )(q)
I J K = V (2)(q)

I J K . (F18)

We observe that the coefficients of the reduced ODE system for second-order dynamic ray tracing do not depend on N .
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F3.2 Coefficients for third-order dynamic ray tracing

We use eq. (F5) to write an expression for third-order derivatives of the Hamiltonian H (N )(q) included among the coefficients for third-order
dynamic ray tracing,

H (N )(q) ,i ′ j ′2
,I J3 = (N − 2) H (2)(q) ,i ′ j ′

,I J + H (2)(q) ,i ′ j ′2
,I J3 . (F19)

Here we have utilized the auxiliary upper/lower indexing system introduced in Appendix A.
Applying the sub-eqs of (B27) in (F19), we obtain

W (N )(q) 112
I J3 = N U (2)(q)

I J , (F20)

W (N )(q) 122
I J3 = (N − 1) W (2)(q) 12

I J , (F21)

V (N )(q)
I J3 = (N − 2) V (2)(q)

I J . (F22)

Furthermore, using eq. (F6), the effect of N on the fourth-order derivatives of the Hamiltonian can be expressed compactly as

H (N )(q) ,i ′ j ′k′l ′
,I J K L = (N − 2)

(
H (2)(q) ,i ′ j ′

,I J H (2)(q) ,k′l ′
,K L

+H (2)(q) ,i ′k′
,I K H (2)(q) , j ′l ′

,J L

+H (2)(q) ,i ′l ′
,I L H (2)(q) , j ′k′

,J K

)
+ H (2)(q) ,i ′ j ′k′l ′

,I J K L . (F23)

With the help of eq. (F23) we obtain the following specific conversion formulas for the fourth-order coefficients,

U (N )(q)
I J K L = (N − 2)

(
U (2)(q)

I J U (2)(q)
K L + U (2)(q)

I K U (2)(q)
J L + U (2)(q)

I L U (2)(q)
J K

)
+ U (2)(q)

I J K L , (F24)

W (N )(q) 1112
I J K L = (N − 2)

(
U (2)(q)

I J W (2)(q) 12
K L + U (2)(q)

I K W (2)(q) 12
J L + U (2)(q)

J K W (2)(q) 12
I L

)
+ W (2)(q) 1112

I J K L , (F25)

W (N )(q) 1122
I J K L = (N − 2)

(
U (2)(q)

I J V (2)(q)
K L + W (2)(q) 12

I K W (2)(q) 12
J L + W (2)(q) 12

I L W (2)(q) 12
J K

)
+ W (2)(q) 1122

I J K L , (F26)

W (N )(q) 1222
I J K L = (N − 2)

(
W (2)(q) 12

I J V (2)(q)
K L + W (2)(q) 12

I K V (2)(q)
J L + W (2)(q) 12

I L V (2)(q)
J K

)
+ W (2)(q) 1222

I J K L , (F27)

V (N )(q)
I J K L = (N − 2)

(
V (2)(q)

I J V (2)(q)
K L + V (2)(q)

I K V (2)(q)
J L + V (2)(q)

J K V (2)(q)
I L

)
+ V (2)(q)

I J K L . (F28)

We see from eqs (F19)–(F28) that some coefficients of the third-order reduced dynamic ray tracing system depend on the quantity N .
However, one can show, using the theory provided in this paper, that the terms including N on the right-hand side of the ODEs cancel out.
As we would expect, the ODEs for third-order dynamic ray tracing of the paraxial solutions are therefore not influenced by the value of N .
The proof is left as an exercise to the interested reader.
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