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GENERIC UNIQUENESS AND STABILITY FOR THE MIXED

RAY TRANSFORM

MAARTEN V. DE HOOP, TEEMU SAKSALA, GUNTHER UHLMANN, AND JIAN ZHAI

Abstract. We consider the mixed ray transform of tensor fields on a three-
dimensional compact simple Riemannian manifold with boundary. We prove
the injectivity of the transform, up to natural obstructions, and establish sta-
bility estimates for the normal operator on generic three dimensional simple
manifold in the case of 1 + 1 and 2 + 2 tensors fields.

We show how the anisotropic perturbations of averaged isotopic travel-
times of qS-polarized elastic waves provide partial information about the mixed
ray transform of 2 + 2 tensors fields. If in addition we include the measure-
ment of the shear wave amplitude, the complete mixed ray transform can be
recovered. We also show how one can obtain the mixed ray transform from
an anisotropic perturbation of the Dirichlet-to-Neumann map of an isotropic
elastic wave equation on a smooth and bounded domain in three dimensional
Euclidean space.

1. Introduction

In this paper we study an inverse problem of recovering a 4-tensor field from a
family of certain line integrals.

This family
is called the mixed ray transform, and it was first considered in [42, Chapter

7]. We characterize the kernel of the mixed ray transform for 1 + 1 and 2 + 2
tensor fields for generic simple 3-dimensional Riemannian manifolds and provide a
stability estimate for the corresponding L2-normal operator.

We begin by introducing the mixed ray transform in the Euclidean space. Let
f be a smooth compactly supported two tensor field on R3. We choose a point
x ∈ R3 and a unit vector ξ. Thus x and ξ define a line {x + tξ ∈ R3 : t ∈ R}.
Then we choose a vector η that is orthogonal to ξ. The mixed ray transform L1,1f
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6086 MAARTEN V. DE HOOP ET AL.

of f for (x, ξ, η) is given by

(1.1) L1,1f(x, ξ, η) :=

∫ ∞

−∞
fij(x+ tξ)ηiξj dt.

We note that if we had chosen η = ξ in (1.1), then we would have obtained the
(longitudinal) ray transform of f . We recall that any 2-tensor f has a unique

decomposition fij(x) = fB
ij(x) + c(x)δij, with a zero trace μfB :=

∑3
i=1 f

B
ii = 0.

Since ξ and η were chosen to be orthogonal to each other we get from (1.1) that
L1,1(c(x)δij) = 0. Thus for the mixed ray transform, the only relevant tensor
fields are the trace-free ones, for which μf = 0. Notice that if f = (∇v)B for
some 1-form v ∈ C∞

0 (R3) then the fundamental theorem of calculus implies that
L1,1f = 0. Therefore L1,1 always has a non-trivial natural kernel, consisting of
potential tensor fields (∇v)B, v ∈ C∞

0 (R3). In this paper, we will consider the
mixed ray transform on certain Riemannian manifolds and study its injectivity up
to the natural obstruction.

Let (M, g) be a simple 3-dimensional Riemannian manifold with boundary ∂M .
We recall that a compact Riemannian manifold is simple if it has a strictly convex
boundary and any two points x, y ∈ M can be connected by a unique geodesic,
contained in M , depending smoothly on x and y. We use the notation TM for
the tangent bundle of M , T ∗M for the cotangent bundle, and SM for the unit
sphere bundle, defined as SM = {(x, ξ) ∈ TM ; |ξ|g = 1}. Let ∂+(SM) = {(x, ξ) ∈
SM ; x ∈ ∂M, 〈ξ, ν〉g < 0} be the inward pointing unit sphere bundle on ∂M , where
ν is the outward pointing unit normal vector field to the boundary. We use the
notation Skτ ′M ⊗ S�τ ′M , k, � ≥ 1 for the space of k + � tensor fields on M that are
symmetric with respect to first k and last � indices. Note that a priori we do not
pose any regularity properties for the tensor fields. To emphasize the regularity we
use the standard notations Cm, C∞, L2, or Hm in front of the vector space of the
corresponding tensor fields.

The mixed ray transform Lk,�f of a smooth tensor field f ∈ C∞(Skτ ′M ⊗ S�τ ′M )
is given by the following formula

(1.2) (Lk,�f) (x, ξ, η) =

∫ τ(x,ξ)

0

fi1...ikj1...j�(γ(t))η(t)
i1 · · · η(t)ik γ̇(t)j1 · · · γ̇(t)j�dt,

where (x, ξ) ∈ ∂+(SM) and γ(t) = γx,ξ(t) is the unit-speed geodesic given by the
initial conditions (x, ξ). The vector η ∈ TxM is perpendicular to ξ, and η(t) is the
parallel translation of η along the geodesic γ(t). We note that η(t) ⊥ γ̇(t) for any
t (see Figure 1 for an illustration). By τ (x, ξ) we mean the exit time of γ, which is
the first positive time in which γ hits the boundary again. Since (M, g) is simple
the exit time function τ is smooth on ∂+SM [42, Lemma 4.1.1.].

If k = 0 in (1.2), the operator L0,� is the (longitudinal) geodesic ray transform
I� for a symmetric �-tensor field f . The most interesting case is � = 2 which arises
from the linearization of the boundary rigidity problem, that concerns the recovery
of the Riemannian metric from its boundary distance function.

It was conjectured by Michel [30] that simple metrics are boundary rigid, which
means that they are uniquely determined, up to a diffeomorphism fixing the bound-
ary, by the boundary distance function.

Significant progress has been made in studying this problem [7,12,29,30,34,38,
45, 46]. The linearization of the boundary rigidity problem leads to an integral
geometry problem of recovering a symmetric 2-tensor field f from its geodesic ray
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THE MIXED RAY TRANSFORM 6087

∂M

x

η
ξ

Figure 1. In this figure we illustrate the notations used in the
definition of the mixed ray transform (1.2). We choose an initial
point x ∈ ∂M and an initial velocity ξ ∈ SxM , blue arrow. The
blue line is the geodesic γ given by these initial conditions. Finally
we choose η ∈ TxM, η ⊥ ξ and compute its parallel translation
along γ, this is illustrated by red arrows on γ.

transform I2f (see, for instance, [41]). The problem of reconstructing a symmetric
4-tensor field f from I4f arises from the linearization of elastic qP -wave travel-times
[9, 18].

Using the fundamental theorem of calculus, it is straightforward to see that if
f = Sym∇u with u ∈ S�−1τ ′M and u|∂M = 0, then I�f = 0. Here Sym is the
symmetrization operator and ∇ is the Levi-Civita connection. We recall that the
operator I� is called s-injective if its kernel coincides with the image of the operator
Sym∇ : H1

0 (S
�−1τ ′M ) → L2(S�τ ′M ). We list here some cases where s-injectivity of

I� is known:

• (M, g) simple, dim ≥ 2, � = 0 [31, 32], � = 1 [2].
• (M, g) simple, dim ≥ 2, � ≥ 2 under curvature conditions [14, 36, 37, 42].
• (M, g) simple, dim = 2, � arbitrary [35].
• (M, g) simple, dim ≥ 2, � = 2: generic s-injectivity [44].
• (M, g) admits a strictly convex foliation, dim ≥ 3, � = 0 [49], � = 1, 2 [47],
� = 4 [18].

In this paper we consider the mixed ray transform Lk,� as a generalization of the
geodesic ray transform I�, and study its kernel. As for the Euclidean case, we only
need to consider Lk,� acting on “trace-free” tensors. First, we introduce the operator
(symmetrized tensor product with the metric) λ : Sk−1τ ′M⊗S�−1τ ′M → Skτ ′M⊗S�τ ′M
defined by

(1.3) (λw)i1...ikj1...j� := Sym(i1 . . . ik)Sym(j1 . . . j�)(gikjlwi1...ik−1j1...j�−1
),

where Sym(·) is the symmetrization with respect to indices listed in the argument.
The algebraic dual of the operator λ is the trace operator
(1.4)

μ : Skτ ′M ⊗ S�τ ′M → Sk−1τ ′M ⊗ S�−1τ ′M , (μu)i1...ik−1j1...j�−1
:= ui1...ikj1...j�g

ikj� .

Therefore we see that

Skτ ′M ⊗ S�τ ′M = kerμ⊕ Imλ.
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6088 MAARTEN V. DE HOOP ET AL.

The tensors in kerμ are called trace free. We use the notation B for the projection
onto the trace-free class and write

Skτ ′M ⊗B S�τ ′M := B({Skτ ′M ⊗ S�τ ′M}) = kerμ.

We note here that Lk,�(Imλ) = 0 and Lk,�(Bf) = Lk,�(f). Therefore, from now on
we assume f ∈ Skτ ′M ⊗B S�τ ′M .

To describe the natural kernel of Lk,�, acting on Skτ ′M ⊗B S�τ ′M , we introduce
the symmetrized gradient operator d′ : Skτ ′M ⊗S�−1τ ′M → Skτ ′M ⊗S�τ ′M defined by

(1.5) (d′v)i1...ikj1...j� := Sym(j1 . . . j�)vi1...ikj1...j�−1;j� .

In (1.5) the index after the semicolon stands for the corresponding index of the
covariant derivative of a tensor field v. It was shown in [42, Chapter 7] that

Lk,�(Bd′u) = Lk,�(d
′u) = 0, for u ∈ Skτ ′M ⊗B S�−1τ ′M , with u|∂M = 0.

After these preparations we are ready to set the following definition of solenoidal-
injectivity (s-injectivity) for the mixed ray transform: Lk,� is called s-injective if
Lk,�f = 0 and f ∈ L2(Skτ ′M ⊗B S�τ ′M ) imply f = dBv := Bd′v with some tensor
field v ∈ H1

0 (S
kτ ′M ⊗B S�−1τ ′M ). Here

dB : H1(Skτ ′M ⊗B S�−1τ ′M ) → L2(Skτ ′M ⊗B S�τ ′M ).

We also introduce the formal adjoint of d′

−δ′ : Skτ ′M ⊗ S�τ ′M → Skτ ′M ⊗ S�−1τ ′M ,

where δ′ is the divergence operator

(δ′u)i1...ikj1...j�−1
:= gj�j�+1ui1...ikj1...j�;j�+1

.

We define δB := δ′|Skτ ′
M⊗BS�τ ′

M
. One can readily check that Im(δB) ⊂ Skτ ′M ⊗B

S�−1τ ′M , and therefore

δB : Skτ ′M ⊗B S�τ ′M → Skτ ′M ⊗B S�−1τ ′M .

However we will verify later in Lemma 2.2 that dB and −δB are well defined and
formally adjoint to each other.

The following tensor decomposition plays an essential role in the analysis of the
mixed ray transform.

Theorem 1.1. For any f ∈ Hm(Skτ ′M ⊗BS�τ ′M ), k = � ∈ {1, 2}, m ∈ {0, 1, 2, . . .},
there exists a unique decomposition

(1.6) f = fs + dBv,

with fs ∈ Hm(Skτ ′M ⊗B S�τ ′M ), δBfs = 0, and v ∈ Hm+1(Skτ ′M ⊗B S�−1τ ′M ),
v|∂M = 0. In addition there exists a constant C > 0 such that

(1.7) ‖fs‖Hm ≤ C‖f‖Hm , ‖v‖Hm+1 ≤ C‖δBf‖Hm−1 .

This theorem will be proved in Section 2. We note that a decomposition equiva-
lent to (1.6) has been provided earlier by Sharafutdinov [42, Lemma 7.2.1]: for any
f ∈ L2(Skτ ′M ⊗ S�τ ′M ), k, � ≥ 1, there is a decomposition

(1.8) f = fs + d′v + λw,
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THE MIXED RAY TRANSFORM 6089

with μfs = 0, δ′fs = 0, for some v ∈ H1
0 (S

kτ ′M ⊗ S�−1τ ′M ), w ∈ L2(Sk−1τ ′M ⊗
S�−1τ ′M ). Moreover if � ≥ 2 we can choose v such that μv = 0. The equivalence of
the decompositions (1.6) and (1.8) can be observed by noticing that

dBv − d′v ∈ Imλ, and Bf − f ∈ Imλ,

v ∈ L2(Skτ ′M ⊗B S�−1τ ′M ), f ∈ L2(Skτ ′M ⊗ S�τ ′M ),

and rearranging terms. We remark that it was shown in [42] that the solenoidal
part fs, in (1.8) is uniquely determined by f , but the uniqueness of v and w was not
proven. However the uniqueness of a quite similar decomposition has been proved
in [13].

Main result. The main purpose of this paper is to establish the s-injectivity of
L1,1 and L2,2 for g in a generic subset of all simple metrics on M . We also provide
a stability estimate for the corresponding normal operators. The analogous result
for I2 = L0,2 is given in [44, Theorem 1.5]. We will present a detailed proof for
L1,1. The proof is similar for L2,2, modulo some key calculations which we will also
provide.

We then introduce some necessary notations in order to state the main result
of this paper. We write Lg = Lk,� to emphasize the dependence on the metric
g. We denote the L2-normal operator L∗

gLg of the mixed ray transform by Ng

(see Section 3 for the rigorous definitions). Since (M, g) is simple we can without
loss of generality assume that M ⊂ R3 with a simple metric g that is smoothly
extended in whole R3. Thus we can find a small open neighborhood M1 of M ,
such that (M1, g) is simple, (see [43, page 454]). A tensor field f defined on M will
be extended by a zero field to M1 \ M . We note that this creates jumps at the

boundary ∂M . To tackle this, the H̃2-norm was introduced in [43] (see also Section
4). As the decomposition (1.6) depends on the domain, we use the notation fs

M for
the solenoidal part of f on M to emphasize this. Our main result is

Theorem 1.2. Let (k, �) = (1, 1) or (2, 2). There exists an integer m0 such that
for each m ≥ m0, the set Gm(M) of simple Cm-regular metrics in M , for which Lg

is s-injective, is open and dense in the Cm-topology. Moreover, for any g ∈ Gm,

‖fs
M‖L2(M) ≤ C‖Ngf‖H̃2(M1)

, f ∈ H1(Skτ ′M ⊗B S�τ ′M ),

with a constant C > 0 that can be chosen locally uniformly in Gm(M) in the
Cm(M)-topology.

The s-injectivity of Lk,�, k, � ≥ 1, has been proved for two-dimensional simple
manifolds in [17]. On higher dimensional manifolds, the s-injective was established
in [42, Theorem 7.2.2] under restrictions on the sectional curvature of (M, g). In
both of these aforementioned papers, the sharper tensor decomposition (1.6) is not
needed. However, in this paper the decomposition (1.6) is a key component of the
proof of Theorem 1.2.

We also refer to [28] for the study of a related problem in dimension two. In
a recent paper [22] the authors showed that on globally hyperbolic stationary
Lorentzian manifolds, the light ray transform is injective up to a similar natural
obstruction that L1,1 has. In Appendix A we relate the mixed ray transform L2,2

to the averaged travel-times of qS-polarized elastic waves. However we note that
the travel-time data alone only gives us partial information about the mixed ray
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6090 MAARTEN V. DE HOOP ET AL.

transform. If in addition we include the measurement of the shear wave ampli-
tude, the complete mixed ray transform can be recovered. In Appendix B, we
will show how one can obtain the mixed ray transform from a linearization of the
Dirichlet-to-Neumann map of an elastic wave equation on a smooth bounded do-
main M ⊂ R3. Here we rely on the observation that both the travel-time and the
amplitude are encoded in the Dirichlet-to-Neumann map. We refer to [42, Chapter
7] for an alternative approach to obtain L2,2.

Outline of the proof. In the beginning of Section 2 we find an explicit repre-
sentation for the projection B onto the space of trace-free tensors. Then we prove
Theorem 1.1 in the case k = � = 2. The rest of the paper is devoted to prove
Theorem 1.2. We give detailed proof for the case k = � = 1 in Sections 2–6, and
discuss the required modifications for the k = � = 2 in the final section.

In Sections 3–6 we study the mixed ray transform on 1+1 tensor fields f satisfying
the trace-free condition. Section 3 is dedicated to the study of the normal operator
Ng of the mixed ray transform on 1 + 1 tensor fields. First we show that Ng is an
integral operator and find its Schwartz kernel. In the second part of the section
we prove that the normal operator is a pseudo-differential operator (ΨDO) of order
−1. We also give an explicit coordinate-dependent formula for the principal symbol
of this operator.

Since in Theorem 1.2 we assumed that the metric is only finitely smooth we
start Section 4 by recalling some basics of the theory of ΨDO’s whose amplitudes
are only finitely smooth. This is needed to establish the continuity of Ng, and
several other operators, with respect to metric g in Cm-topology. We prove that
Ng is elliptic acting on the solenoidal tensor fields. This manifests the Fredholm
nature of the normal operator on some extended simple manifold. Then we can
recover the solenoidal part (on the extended manifold) of the tensor field f from
Ngf modulo a finitely smooth term. In the second part of Section 4 we compare
the solenoidal parts on original manifold and on the extended manifold. Then we
establish a reconstruction formula for the solenoidal part of tensor fields on the
original manifold. We also give a stability estimate for the normal operator (see
Theorem 4.6).

In Section 5, we prove the s-injectivity of the mixed ray transform on analytic
simple Riemannian manifolds (see Theorem 5.5). Since analytic metrics are Cm-
dense in the space of all simple metrics, Theorem 5.5 can be used to prove Theorem
1.2 in Section 6.

2. Decomposition of the trace-free tensor fields

We begin this section by finding an explicit formula for the projection B from
Skτ ′M ⊗ S�τ ′M onto kerμ = Skτ ′M ⊗B S�τ ′M .

2.1. Domain of the mixed ray transform. We choose some f ∈ Skτ ′M ⊗ S�τ ′M
and write

(2.1) f = Bf + λw, w ∈ Sk−1τ ′M ⊗ S�−1τ ′M .

In Lemma 2.1 we find a representation for w in (2.1) under the assumption k≥�≥1.
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THE MIXED RAY TRANSFORM 6091

Lemma 2.1. Any tensor field f ∈ Skτ ′M ⊗ S�τ ′M , k ≥ � ≥ 1 admits the decompo-
sition (2.1), where w ∈ Sk−1τ ′M ⊗ S�−1τ ′M is given by the formula

w = Af :=

(
�∑

K=1

(
(−1)K+1

∏K−1
h=1 bh∏K
h=1 ah

)
λK−1μK

)
f,

and

Bf = (Id− λA)f,

where

ah =
h(k + �+ 2− h)

k�
, bh =

(k − h)(�− h)

k�
.

Proof. To begin we derive the following formula for the commutator of λ and μ

μλw =
(
Sym(i1 . . . ik)Sym(j1 . . . j�)(wi1...ik−1j1...j�−1

)gikjl
)
gikjl

=
1

k�
(wi1...ik−1j1...j�−1

)gikjlg
ikjl

+
k − 1

k�
wi1...ik−2,ikj1...j�−1

gik−1j�g
ikj�

+
�− 1

k�
wi1...ik−1j1...j�−2j�gikj�−1

gikj�

+Sym(i1 . . . ik−1)Sym(j1 . . . j�−1)wi1...ik−2ikj1...j�−2j�gik−1j�−1
gikj�

=
k + �+ 1

k�
w +

(k − 1)(�− 1)

k�
λμw.

(2.2)

In the case k = � = 1, w is a function, and formulas (2.1) and (2.2) imply

(2.3) w =
μf

3
.

To proceed for the higher order tensors we assume max{k, �} ≥ 2 and use the
commutator formula (2.2) to prove that for m ∈ {2, . . . ,min{k, �}} we have

(2.4) μm−1λw = ahμ
m−2w + bhμ

m−1−hλμhw, h ∈ {1, . . . ,m− 1},
where

(2.5) ah =
1

k�

h∑
r=1

xr, xr := k + �+ 3− 2r, bh =
(k − h)(�− h)

k�
.

We note that the case m = 2 is the same as (2.2). If m > 2 we do an induction
over h. The initial step of the induction follows from (2.2). For the induction we
note that μhw ∈ Sk−h−1τ ′M ⊗ S�−h−1τ ′M . Due to (2.2) we have

μm−1−hλμhw = μm−2−h

(
k + �− 2h+ 1

(k − h)(�− h)
μhw +

(k − h− 1)(�− h− 1)

(k − h)(�− h)
λμh+1w

)
.

Therefore if (2.5) holds for h ∈ {1, . . . ,m− 2}, it also holds for h+ 1.
Next we note that for any m ≤ min{k, �} the formulas (2.1) and (2.4) imply

μm−1f = bm−1λμ
m−1w + am−1μ

m−2w.

We denote K = m− 1. Thus for any K ∈ {1, . . . ,min{k, �} − 1}, it holds
(2.6)

μKf = bKλμKw+aKμK−1w, aK =
K(k + �+ 2−K)

k�
, bK =

(k −K)(�−K)

k�
.
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6092 MAARTEN V. DE HOOP ET AL.

Now we assume that � ≤ k since we are mostly interested in the case k = � = 2.
The case � > k can be dealt with similarly.

We choose K = �− 1 and apply μ to both sides of equation (2.6) to get

μ�f = b�−1μλμ
�−1w + a�−1μ

�−1w.

We note that for any v ∈ Smτ ′M , μλv = m+3
m+1v. This implies

μλμ�−1w =
k − �+ 3

k − �+ 1
μ�−1w,

and we have found the formula

μ�−1w =

(
b�−1

k − �+ 3

k − �+ 1
+ a�−1

)−1

μ�f =
k

k + 2
μ�f =

1

a�
μ�f.

By the recursion formula (2.6) we get

w =
μf

a1
− b1

a1
λμw =

μf

a1
− b1

a1
λ

(
μ2f

a2
− b2

a2
λμ2w

)
=
μf

a1
− b1

a1a2
λμ2f +

b1b2
a1a2

λ2μ2w

= · · ·

=
�−1∑
K=1

(
(−1)K+1

∏K−1
h=1 bh∏K
h=1 ah

)
λK−1μKf +

(
(−1)�+1

∏�−1
h=1 bh∏�−1
h=1 ah

)
λ�−1μ�−1w

=

(
�∑

K=1

(
(−1)K+1

∏K−1
h=1 bh∏K
h=1 ah

)
λK−1μK

)
f.

(2.7)

The last row is the representation we were looking for. �

We recall that in Section 1 we had given the formal definitions for the gradient
operator

dB := Bd′ : H1(Skτ ′M ⊗B S�−1τ ′M ) → L2(Skτ ′M ⊗B S�τ ′M ),

and divergence operator

−δB := −δ′ : H1(Skτ ′M ⊗B S�τ ′M ) → L2(Skτ ′M ⊗B S�−1τ ′M )

on the trace-free class.

Lemma 2.2. The differential operators dB and −δB are well defined, formally
adjoint to each other and

(2.8) dBv = d′v − 1

a1
λμd′v, v ∈ Skτ ′M ⊗B S�−1τ ′M , when k ≥ � ≥ 1.

Proof. The operator dB is clearly well defined by its definition, and the operator
δB is well defined since μ and δ′ commute.

We note that for any u ∈ Skτ ′M ⊗B S�−1τ ′M we have μ2d′u = 0. Therefore opera-
tor dB has the representation (2.8). The proof of this claim is a direct consequence
of the fact that the Levi-Civita connection commutes with any contraction.

The operators dB and −δB are formal adjoints to each other since d′ and −δ′,
and also λ and μ, are formal adjoints respectively. �
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2.2. Tensor decomposition in the kernel of μ. In the L2-space of m-tensor
fields on M we use the standard definition of the inner product

〈f, h〉g =

∫
M

fi1···imhj1···jmgi1j1 · · · gimjm(det g)1/2dx.

Assuming the result of Lemma 2.3 we are ready to present the proof of Theorem
1.1.

Lemma 2.3. Let (M, g) be a smooth Riemannian manifold. There exists a unique
solution

u ∈ Hm(Skτ ′M ⊗B S�−1τ ′M ), k = � ∈ {1, 2}, m ∈ 1, 2, . . .

to the boundary value problem

(2.9) ΔBu := δBdBu = h in M int, u|∂M = w,

for any h ∈ Hm−2(Skτ ′M ⊗B S�−1τ ′M ) and w ∈ Hm− 1
2 (Skτ ′M ⊗B S�−1τ ′M |∂M ).

Moreover there exists C > 0 such that the following energy estimate is valid

(2.10) ‖u‖Hm(M) ≤ C
(
‖h‖Hm−2(M) + ‖w‖

Hm− 1
2 (∂M)

)
.

Proof of Theorem 1.1. We consider the boundary value problem (2.9) with the zero
boundary value w ≡ 0. Let (ΔB)−1 be the corresponding solution operator. We
denote v := (ΔB)−1δBf . Thus v solves the problem

(2.11) ΔBv = δBf, v|∂M = 0,

and the energy estimate (2.10) implies that the projection operator onto the potential
fields PM := dB(ΔB)−1δB is a bounded operator in Hm(Skτ ′M⊗BS�τ ′M ). We define
a second bounded operator by setting SM := I − PM and call this the projection
operator onto the solenoidal tensor fields. Finally we denote fs := SMf and obtain

f = fs + dBv, with δBfs = 0.

The estimate (1.7) follows from the boundedness of the operators SM and (ΔB)−1.
�

Remark 2.4. The operators SM and PM are both projections, i.e., S2
M = SM ,

P2
M = PM . These projections are formally self-adjoint since ΔB is formally self-

adjoint and thus its inverse (ΔB)−1 is also formally self-adjoint; see [27, Theorem
10.2-2].

The rest of this section is devoted to the proof of Lemma 2.3. We first recall some
facts about the solvability of boundary value problems for elliptic systems. See for
instance [51, Section 9] for a thorough review. Recall that we can without loss of
generality assume that M int ⊂ R3 is a domain with a smooth boundary. We use
the notations T ∗M and T ∗R3 for the cotangent bundles of M and R3 respectively.

Let α ∈ N3 be a multi-index and Dα = (−i)|α|∂α1
x1

∂α2
x2

∂α3
x3

. We say that a dif-

ferential operator A = (
∑

|α|≤2 A
α
ij(x)D

α)3i,j=1 is a second order (homogeneously)

elliptic operator if the order of the operator
∑

|α|≤2 A
α
ij(x)D

α is two for any i, j and

the characteristic polynomial χ(x, ξ) of the operator L does not vanish outside the
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set R3×{ξ = 0} ⊂ T ∗R3. Recall that the characteristic polynomial of A is defined
by

χ(x, ξ) := det (σA(x, ξ)) , σA(x, ξ) :=

⎛⎝ ∑
|α|=2

Aα
ij(x)ξ

α

⎞⎠3

i,j=1

, (x, ξ) ∈ T ∗R3.

We note that this is equivalent for the principal symbol σA(x, ξ) of A to be a
bijective linear operator for every cotangent vector (x, ξ) ∈ T ∗R3 \ {0}.

Next we define the Lopatinskij condition. Let z ∈ ∂M and (x′, t) be boundary
coordinates near z, that is t−1{0} ⊂ ∂M .

Definition 2.5. We say that the operator A satisfies the Lopatinskij at a point
z ∈ ∂M if the constant coefficient initial value problem

σA

(
z, 0, ξ′,−i

d

dt

)
v(t) = 0, t ∈ R+, v(0) = 0 ∈ R3, ξ′ ∈ T ∗

z ∂M \ {0},

has only the trivial solution in
{
u ∈ C2(R+) : u(0) = 0, limt→∞ u(t) = 0

}
.

For the rest of the paper we use the notations σ(A) to denote the principal
symbol of an operator A. Often we do not emphasize the point in which the
principal symbol is evaluated.

Definition 2.6. We say that the boundary value problem

Au = f, in M, u|∂M = w, u ∈ Hm(M),

f ∈ Hm−2(M), w ∈ Hm− 1
2 (∂M), m ∈ 1, 2 . . .

(2.12)

is elliptic if:

(I) The operator A is elliptic.
(II) The Lopatinskij condition holds for any z ∈ ∂M .

We aim to use techniques for the elliptic problems to prove Lemma 2.3. To do so
we first find the principal symbols of the operators dB, δB and ΔB. We introduce
the notation

SkT ′
xM ⊗B S�T ′

xM := {f(x)| f ∈ Skτ ′M ⊗B S�τ ′M},
for the evaluation of f ∈ Skτ ′M ⊗ S�τ ′M at x ∈ M . This is just the space of all
tensors acting on the fiber TxM that are symmetric with respect to the first k and
the last � indices and trace free.

Lemma 2.7. Let (x, ξ) ∈ T ∗M . Define operators

iBξ : S
kT ′

xM ⊗B S�−1T ′
xM → SkT ′

xM ⊗B S�T ′
xM, iBξ := Biξ,

(iξu)i1...ikj1...j� := Sym(j1 . . . j�)ui1...ikj1...j�−1
ξj�

(2.13)

and
(2.14)

jBξ : SkT ′
xM⊗BS�T ′

xM→SkT ′
xM⊗BS�−1T ′

xM, (jBξ v)i1...ikj1,...,j� :=vi1...ikj1...j�ξ
j� .

In the case k = � = 2 the principal symbols of 1
i d

B and 1
i δ

B are iBξ and jBξ
respectively. The principal symbol of ΔB is

σ(ΔB) : S2T ′
xM ⊗B S1T ′

xM → S2T ′
xM ⊗B S1T ′

xM
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such that

−(σ(ΔB)u)i1i2j1 =
1

2

(
ui1i2j1 |ξ|2g + ui1i2hξ

hξj1
)

− 1

10

(
uri2j1ξ

rξi1 + uri1j1ξ
rξi2 + gi1j1ξ

rξhuri2h + gi2j1ξ
rξhuri1h

)
.

(2.15)

Proof. We refer to [51, Section 8] for the definitions of the principal symbols of
ΨDOs over vector bundles. Recall that in local coordinates differential d′u of a
tensor field u ∈ S2T ′

xM ⊗ S1T ′
xM has a representation

(d′u)i1i2j1j2 = Sym(j1, j2)

(
∂ui1i2j1

∂xj2

−
(
uri2j1Γ

r
i1j2 + ui1rj1Γ

r
i2j2 + ui1i2rΓ

r
j1j2

))
.

Here Γk
ij are the Christoffel symbols of the metric g . Therefore the principal symbol

of d′ is exactly the map (x, ξ) �→ iξ. Since μ
2iξu = 0 for any u ∈ S2T ′

xM⊗BS1T ′
xM

we have due to (2.8) that

1

i
σ(dB) = iξ −

4

5
λμiξ = iBξ .

Similarly for δ′u, u ∈ S2T ′
xM ⊗ S2T ′

xM we have

(δ′u)i1i2j1

=

(
∂ui1i2j1j2

∂xh
−
(
uri2j1j2Γ

r
i1h + ui1rj1j2Γ

r
i2h + ui1i2rj2Γ

r
j1h + ui1i2j1rΓ

r
j2h

))
ghj2 .

Thus the principal symbol of δ′ is given by

1

i
σ(δ′) =

1

i
σ(δB) = jξ = jBξ .

By [51, Theorem 8.44] we have −σ(ΔB) = jBξ i
B
ξ . The proof of (2.15) is a di-

rect computation recalling that μu = 0. However we give it here as we need the
computations later.

− σ(ΔBu)i1i2j1

=(jBξ i
B
ξ u)i1i2j1 =

1

2
ξh

(
ui1i2j1ξh + ui1i2hξj1 −

4

5
λμ (ui1i2j1ξh + ui1i2hξj1)

)
=
1

2
ξh

(
ui1i2j1ξh + ui1i2hξj1 −

4

5
λ (uri2tξh + uri2hξt) g

rt

)
=
1

2
ξh

(
ui1i2j1ξh + ui1i2hξj1 −

4

5
Sym(i1i2)Sym(j1h) (gi1j1uri2hξ

r)

)
=
1

2
ξh

(
ui1i2j1ξh + ui1i2hξj1 −

1

5
(gi1j1uri2h + gi1huri2j1 + gi2j1uri1h + gi2huri1j1) ξ

r

)
=
1

2

(
ui1i2j1 |ξ|2g + ui1i2hξ

hξj1
)

− 1

10

(
uri2j1ξ

rξi1 + uri1j1ξ
rξi2 + gi1j1ξ

rξhuri2h + gi2j1ξ
rξhuri1h

)
.

�

In the following lemma we show that the problem (2.9) is elliptic.

Lemma 2.8. The problem (2.9) is elliptic in the sense of Definition 2.6.
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Proof. We check first the ellipticity of the principal symbol of ΔB. If we denote

(p1(ξ)u)i1i2j1 = ui1i2hξ
hξj1 , (p2(ξ)u)i1i2j1 = |ξ|2gui1i2j1 − ui1i2hξ

hξj1 ,

(p3(ξ)u)i1i2j1 = |ξ|2gui1i2j1 − gi2j1ξ
rξhuri1h,

then straightforward calculations show that pα(ξ), α = 1, 2, 3 are non-negative in
the sense of

〈pα(ξ)u, u〉L2 ≥ 0, u ∈ L2
(
S2T ′

xM ⊗B S1T ′
xM

)
.

Equation (2.15) implies〈
−σ(ΔB)u− 1

10
|ξ|2gu, u

〉
L2

≥ 1

2
〈p1(ξ)u, u〉L2+

1

5
〈p2(ξ)u, u〉L2+

1

5
〈p3(ξ)u, u〉L2 ≥ 0.

Hence we obtain

〈−σ(ΔB)u, u〉L2 ≥ 1

10
|ξ|2g〈u, u〉L2 ,

which proves the ellipticity of σ(ΔB).
Next, we verify the Lopatinskij condition. For that, we choose local coordinates

(x1, x2, x3 = t), t ≥ 0 in a neighborhood of a point x0 ∈ ∂M , such that the boundary
∂M is locally represented by t = 0, and gij(x0) = δij . We set a differential operator

D = (Dj)
3
j=1, Dj = −i ∂

∂xj , j ∈ {1, 2} and D3 = Dt = −i ddt . Then we denote

dB0 (D) = σ(dB)(x0, D), δB0 (D) = σ(δB)(x0, D).

We need to show that the only solution for the system of ordinary differential
equations

δB0 (ξ
′, Dt)d

B
0 (ξ

′, Dt)v(t) = 0, t ∈ R+

v(0) = 0,
(2.16)

which satisfies v(t) → 0 as t → +∞, is the zero field.
Let

u ∈ S(S2τ ′R+
⊗B0 S2τ ′R+

), v ∈ S(S2τ ′R+
⊗B0 S1τ ′R+

),

where S means that the function u(t) has a rapid decrease when t tends to +∞ and
B0 means that u belongs to the kernel of the operator μ associated to the Euclidean
metric. If v(0) = 0 then Lemma 2.2 implies the following Green’s formula

(2.17)

∫ ∞

0

〈δB0 (ξ′, Dt)u, v〉dt = −
∫ ∞

0

〈u, dB0 (ξ′, Dt)v〉dt.

Due to denseness of rapidly decreasing tensor fields, the formula (2.17) holds for
any u and v both vanishing in the infinity and v(0) = 0.

Let v(t) be a solution of (2.16). Taking u(t) := dB0 (ξ
′, Dt)v(t) in (2.17) we obtain

(2.18) dB0 (ξ
′, Dt)v(t) = 0, v(0) = 0.

Finally we show that only zero field solves this initial value problem.
We note that (2.18) implies the following equation in coordinates

1

i
(dB0 (ξ)v)i1i2j1j2 =

1

2
vi1i2j1ξj2 +

1

2
vi1i2j2ξj1

− 1

10
(δi1j1vri2j2 + δi1j2vri2j1 + δi2j1vi1rj2 + δi2j2vi1rj1) ξ

r = 0.
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In the previous formula we set j2 = 3 and ξ3 = −i ddt . Then we obtain the following
system of ordinary differential equations.

1

i

(
dB0 (ξ

′, Dt)v(t)
)
i1i233

=Dtvi1i23 −
1

5
(Dtvi133δi23 +Dtvi233δi13)

− 1

5

∑
r �=3

(vi1r3ξ
rδi23 + vi2r3ξ

rδi13)

=0

(2.19)

and, for j1 �= 3,

1

i

(
dB0 (ξ

′, Dt)v(t)
)
i1i2j13

=
1

2
Dtvi1i2j1 −

1

10
(Dtvi13j1δi23 +Dtvi23j1δi13

+Dtvi133δi2j1 +Dtvi233δi1j1)

+
1

2
vi1i23ξj1 −

1

10

∑
m �=3

(vi1mj1ξ
mδi23 + vi2mj1ξ

mδi13

+ vi1m3ξ
mδi2j1 + vi2m3ξ

mδi1j1)

=0.

(2.20)

Finally we solve these equations with initial value v(0) = 0, which is done in the
following sequence:

• If i1, i2 �= 3, equation (2.19) gives

Dtvi1i23 = 0, t > 0, v(0) = 0.

This implies vi1i23 = 0 for i1, i2 �= 3.
• If i1 �= 3, i2 = 3 or i2 �= 3, i1 = 3, equation (2.19) gives

4

5
Dtvi133 =

4

5
Dtv3i23 = 0, t > 0, v(0) = 0,

which implies vi33 and v3i3 for i �= 3.
• Finally equation (2.19) gives

3

5
Dtv333 = 0, t > 0, v(0) = 0,

and thus v333 = 0.

We have proved that vi1i23 = 0 and therefore equation (2.20) simplifies to

Dtvi1i2j1 −
1

5

(
Dtvi13j1δi23 +Dtvi23j1δi13

−
∑
m �=3

(vi1mj1ξ
mδi23 + vi2mj1ξ

mδi13)

)
= 0,

j1 �= 3.

(2.21)

• We take i1, i2 �= 3 in (2.21), and get

Dtvi1i2j1 = 0, t > 0, v(0) = 0.

Thus vi1i2j1 = 0 for i1, i2, j1 �= 3.
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• The choices i1 �= 3, i2 = 3 and i2 �= 3, i1 = 3 in (2.21), imply

4

5
Dtvi13j1 =

4

5
Dtv3i2j1 = 0, t > 0, v(0) = 0,

and then vi1j2j1 = 0 if at most one of i1, i2 equals 3.
• Finally we take i1 = i2 = 3 in (2.21), to get

3

5
Dtv33j2 = 0, t > 0, v(0) = 0,

and then v33j2 = 0 for j2 �= 3.

Thus we have proven that the zero field is the only solution of (2.18) and we have
verified the Lopatsinkij condition for (2.9). Also we have proved the ellipticity of
the boundary value problem (2.9). �

Now we are ready to give a proof for Lemma 2.3.

Proof of Lemma 2.3. We use the notation Tr: Hm(M) → Hm− 1
2 (∂M) for the trace

operator. As we have verified in Lemma 2.8 that the problem (2.9) is elliptic, it holds
due to [51, Theorem 9.32] that the operator (ΔB,Tr): Hm(M) → (Hm−2(M) ×
Hm− 1

2 (∂M)) is a Fredholm operator (a bounded operator with finite dimensional
kernel and co-kernel). Moreover there exists a uniform constant C > 0 such that
the following a priori estimate holds for any u ∈ Hm(M)

(2.22) ‖u‖Hm(M) ≤ C
(
‖ΔBu‖Hm−2(M) + ‖Tru‖

Hm− 1
2 (∂M)

+ ‖u‖Hm−1(M)

)
.

As the embedding Hm(M) ↪→ Hm−1(M) is compact it holds due to [43, Lemma 2]
that we can write (2.22) in the form

‖u‖Hm(M) ≤ C
(
‖ΔBu‖Hm−2(M) + ‖Tru‖

Hm− 1
2 (∂M)

)
for some uniform constant C, if (2.9) is uniquely solvable. This is the estimate
(2.10). In order to verify the unique solvability of the boundary value problem
(2.9), and to conclude the proof, we show that (ΔB,Tr) has a trivial kernel and
co-kernel.

We show first the kernel of (ΔB,Tr) is trivial. Let u solve (2.9) with a source
h ≡ 0 and boundary value w ≡ 0. Since we have proved that ΔB is elliptic, it holds
that u is smooth. As dB and −δB are formally adjoint we get∫

M

〈dBu, dBu〉gdV =

∫
M

〈−ΔBu, u〉gdV = 0,

and

dBu = d′u− 4

5
λμd′u = 0.

Next we note that for any x ∈ M and v ∈ S2τ ′M ⊗B S1τ ′M holds

(dBv)ijklη
iηjξkξl = (d′v)ijklη

iηjξkξl

if ξ, η ∈ TxM are orthogonal. In the following we use the notation γ for the
geodesic γx,ξ, ξ ∈ SxM and η(t) stands for the parallel transport of η along γ. By
straightforward computations we obtain

d

dt
[vijk(γ(t))η

i(t)ηj(t)γ̇k(t)] =(dBv)ijklη
i(t)ηj(t)γ̇k(t)γ̇l(t).(2.23)

Let x0 ∈ M \∂M and z0 be a closest boundary point to x0. We use the notation
ξ0 ∈ Sx0

M \ {0} for the direction of the unit speed geodesic γ0 connecting x0
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to z0. Since the geodesic γ0 intersects ∂M transversally there exists a neighborhood
U ⊂ Sx0

M of ξ0 such that the exit time function τ is finite and smooth in U . Then
for any ξ ∈ U and η ⊥ ξ, equation (2.23) and the fundamental theorem of calculus
imply

uijk(x0)η
iηjξk = −

∫ τ(ξ)

0

[dBu]ijkl(γx0,ξ(t))η
i(t)ηj(t)ξk(t)ξl(t)dt = 0.

Here η(t) is a parallel field along the geodesic γx0,ξ with η(0) = η and ξ(t) = γ̇x0,ξ(t).
In the following we use a short hand notation u = u(x0). Therefore

(2.24) uijkη
iηjξk = 0, ξ ∈ U, η ⊥ ξ.

We choose an orthonormal basis B = {ξ, η, η̃} for the three dimensional space
Tx0

M , where ξ ∈ U . By polarization, (2.24) implies

(2.25) uijkη
iη̃jξk = 0.

For any ε > 0 that is small enough, equation (2.24) gives

(2.26) uijk(η + εξ)i(η + εξ)j(ξ − εη)k = 0.

Therefore the coefficients of the ε3, ε2, ε, 1 of the expansion of (2.26) have to vanish.
Clearly the same holds if η is replaced by η̃ in (2.26). Now we have proven

uijkξ
iξjηk = 0, uijk

(
ξiξjξk − 2ηiξjηk

)
= 0, uijk

(
2ηiξjξk − ηiηjηk

)
= 0,

uijkξ
iξj η̃k = 0, uijk

(
ξiξjξk − 2η̃iξj η̃k

)
= 0, uijk

(
2η̃iξjξk − η̃iη̃j η̃k

)
= 0.

(2.27)

Also we have uijkη
iηj(ξ + εη̃)k = 0, from which we derive

uijkη
iηj η̃k = 0.(2.28)

Next, we note

uijk(η̃ + η + εξ)i(η̃ + η + εξ)j(ξ − εη)k = 0,

and the roles of η and η̃ can be interchanged. Collecting the coefficients for 1, ε, ε2

terms we get by (2.25)–(2.28)

uijkη̃
iξjξk − uijkη̃

iηjηk = 0, uijkη̃
iξjηk = 0,

uijkη
iξjξk − uijkη

iη̃j η̃k = 0, uijkη
iξj η̃k = 0.

(2.29)

To continue we note that since B is an orthogonal basis, it follows that

(μu)j(x0) = δikuijk =

3∑
k=1

ukjk =

3∑
k=1

ujkk = 0, j ∈ {1, 2, 3},

or equivalently

(2.30)

⎧⎨⎩
uijkη

iξjξk + uijkη
iηjηk + uijkη

iη̃j η̃k = 0,
uijkη̃

iξjξk + uijkη̃
iηjηk + uijkη̃

iη̃j η̃k = 0,
uijkξ

iξjξk + uijkξ
iηjηk + uijkξ

iη̃j η̃k = 0.
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It remains to show that each term in (2.30) vanishes. As (2.27) and (2.29) give 6
additional equations, the following linear systems hold true:⎧⎪⎨⎪⎩

uijkξ
iξjξk − 2uijkξ

iηjηk = 0,

uijkξ
iξjξk − 2uijkξ

iη̃j η̃k = 0,

uijkξ
iξjξk + uijkξ

iηjηk + uijkξ
iη̃j η̃k = 0;⎧⎪⎨⎪⎩

2uijkξ
iηjξk − uijkη

iηjηk = 0,

uijkη
iξjξk + uijkη

iηjηk + uijkη
iη̃j η̃k = 0,

uijkη
iξjξk − uijkη

iη̃j η̃k = 0;⎧⎪⎨⎪⎩
2uijkξ

iη̃jξk − uijkη̃
iη̃j η̃k = 0,

uijkη̃
iξjξk + uijkη̃

iηjηk + uijkη̃
iη̃j η̃k = 0,

uijkη̃
iξjξk − uijkη̃

iηjηk = 0.

(2.31)

Each system consists of three linearly independent equations for three variables,
and thus can only have trivial solutions.

Finally, we show that the boundary value problem (2.9) has a trivial cokernel.
If f ∈ H−1 we can choose a series of fj ∈ L2, j ∈ N that converges to f in H−1

sense. For the existence of such sequence see for instance [1, Section 3]. Let φjk be
a sequence of smooth tensor fields approximating fj in L2. Let ε > 0 and k, j ∈ N
be so large that

‖f − fk‖H−1 < ε/2, ‖fk − φkj
‖L2 < ε/2.

Then

‖f − φkj
‖H−1 ≤ ‖f − fk‖H−1 + ‖fk − φkj

‖L2 < ε.

Thus smooth tensor fields are dense in H−1.
Suppose then that

(f, h) ∈ C∞(S2τ ′M ⊗B S1τ ′M )× C∞(S2τ ′∂M ⊗B S1τ ′∂M )

is in the co-kernel of the operator (ΔB,Tr). We show that (f, h) ≡ (0, 0). To verify
this we first note that the choice of (f, h) implies in particularly that

(2.32)

∫
M

〈ΔBu, f〉gdV = 0, for any u ∈ C∞(S2τ ′M ⊗B S1τ ′M ), u|∂M = 0.

To show that (2.32) implies f ≡ 0 is very similar to the proof of an analogous claim
in [42, Theorem 3.3.2], and thus omitted here. The second claim h ≡ 0 follows
from the fact that the trace map is onto. Finally due to denseness of smooth tensor
fields we conclude that (ΔB,Tr) has a trivial co-kernel. �

3. The normal operator of mixed ray transform of 1 + 1 tensors

In this section, we show that the L2-normal operator NL of the mixed ray trans-
form L = L1,1 is an integral operator and find its Schwartz kernel. We also show
that NL is a pseudo-differential operator (ΨDO) of order −1 and give a represen-
tation for the principal symbol. In order to do this we will assume without loss of
generality that M ⊂ R3 is a smooth domain and the metric tensors g extends to
R3 in such a way that any geodesic exiting M never returns to M . We make a
standing assumption, for the rest of this paper, that any tensor field, excluding the
metric g, defined in M is extended to any larger domain with zero extension.
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We begin this section by giving a formal definition of the mixed ray transform,
equivalent to (1.2), on the trace-free tensors. For a vector (x, v) ∈ TM , we define
the contraction map

(3.1) Λv : S
kT ′

xM ⊗B S�T ′
xM → SkT ′

xM, (Λvf)i1...im = fi1...imj1...j�v
j1 · · · vj� .

Let

pv : TxM → v⊥, (pv)
k
i ξ

i =

(
δki − viv

k

|v|2g

)
ξi, k ∈ {1, 2, 3},

be the projection map onto the orthocomplement of the vector v. The second linear
operator is the restriction map

(3.2) Pv : S
mT ′

xM → SmT ′
xM, (Pvf)i1...im = fj1...jm(pv)

j1
i1
. . . (pv)

jm
im

.

Then we can give the following definition of the mixed ray transform by the
following “distributional” representation (see for instance [42, Chapter 7.2])

Lk,�f(x, ξ) =

∫ τ(x,ξ)

0

T 0,t
γ (Pγ̇(t)Λγ̇(t)fγ(t))dt,

f ∈ C∞(Skτ ′M ⊗B S�τ ′M ), (x, v) ∈ ∂+SM.

(3.3)

Here we used the notation T t,s
γ for the parallel translation along γ from the point

γ(s) to γ(t). Symbol τ (x, ξ) stands for the exit time of the geodesic γ = γx,ξ and
fγ(t) is the evaluation of the tensor field f at γ(t). Let us still clarify the action of

the mixed ray transform. Let f ∈ C∞(Skτ ′M ⊗B S�τ ′M ) and (x, ξ) ∈ ∂+SM . We
set the action of Lk,�f(x, ξ) on vector v = aξ + η ∈ TxM , where η ⊥ ξ, a ∈ R and
η(t) is the parallel transport of η, to be given by integrating the following quantity
over the interval [0, τ (x, ξ)]

〈T 0,t
γ Pγ̇(t)Λγ̇(t)fγ(t), v

k〉 = 〈Pγ̇(t)Λγ̇(t)fγ(t), (T t,0
γ v)k〉

= fi1...ikj1...j�(γ(t))η(t)
i1 · · · η(t)ik γ̇(t)j1 · · · γ̇(t)j� ,

where vk = (v, . . . , v︸ ︷︷ ︸
k

) and in the last equation we used the formulas (3.1) and (3.2).

This implies the equivalence for (1.2) and (3.3).
Finally we define the target space of the mixed ray transform. Let π : ∂+(SM) →

M be the restriction of the natural projection map from tangent bundle to the base
manifold. Using the pullback map π∗ we construct the symmetric pullback bundle of
k-sensors on ∂+(SM), and reserve the notation βk(∂+(SM)) for the sections of this
bundle. These sections act as follows: Let f ∈ βk(∂+(SM)) and (x, ξ) ∈ ∂+(SM),
then, using the pairing notation, the following map is symmetric and k-linear

〈f(x, ξ); v1, . . . , vk〉 ∈ R, v1 . . . vk ∈ TxM.

Since the exit-time function τ is smooth in (x, ξ) ∈ ∂+SM by [42, Lemma 4.1.1.],
the formula (3.3) implies that the mixed ray transform maps the elements of
C∞(Skτ ′M ⊗B S�τ ′M ) into C∞(βk(∂+(SM))).

3.1. The normal operator of L1,1 is an integral operator. For now on we
denote L1,1 = L for brevity and work only in the space of Sτ ′M ⊗B Sτ ′M .

Let us now describe the measure we use on the target space of the mixed ray
transform. For the measure dσ we mean the Riemannian volume of ∂SM , however
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6102 MAARTEN V. DE HOOP ET AL.

we choose a more suitable measure for ∂+(SM),

dμ(z, ω) = |〈ω, ν(z)〉g|dσ = |〈ω, ν(z)〉g|dSzdSω,

where dSz is the surface measure of ∂M and dSω is the surface measure of SzM .
That is if (z′, z3) is a boundary coordinate system we have

dSz = (det g(z))1/2dz1dz2 and dSω = (det g(z))1/2dSω0
,

where dSω0
is the Euclidean measure of the unit sphere S

2 ⊂ R3. The L2-inner
product on β1(∂+(SM)) is given by∫

∂+(SM)

fi(z, ω)hj(z, ω)g
ijdμ(z, ω).

It is shown in [42, Chapter 7] that L, originally defined on smooth tensor fields,
has a bounded extension

L : Hm(Sτ ′M ⊗B Sτ ′M ) → Hm(β1(∂+(SM))), m ≥ 0.

In this section we consider L as an operator

L : L2(Sτ ′M ⊗B Sτ ′M ) → L2(β1(∂+(SM)); dμ),

and compute its normal operator.

Remark 3.1. Since L is a bounded operator, its adjoint

L∗ : L2(β1(∂+(SM)); dμ) → L2(Sτ ′M ⊗B Sτ ′M )

exists and is bounded. Thus the normal operator NL := L∗L is bounded on
L2(Sτ ′M ⊗B Sτ ′M ).

In the following we denote by (x(t), ω(t)) ∈ SM, t ∈ R, the lift of the geodesic
x(t) in SM , that is issued from (z, ω) ∈ ∂+(SM). Let f, h ∈ Sτ ′M ⊗B Sτ ′M . Then
we have

〈Lf, Lh〉L2(β1(∂+(SM)))

=

∫
∂+(SM)

(∫ τ(z,ω)

0

(T 0,t
γ )uo (Pω(t))

i
ufij(x(t))ω

j(t)dt

)
(∫ τ(z,ω)

0

(T 0,s
γ )u

′

o′ (Pω(s))
i′

u′ h̄i′j′(x(s))ω
j′(s)ds

)
goo

′
(z)dμ(z, ω)

=:I+ + I−.

Here we wrote

I± =

∫
∂+(SM)

∫
R

∫ ∞

0

gou
′
(x(s))(Pω(s))

i′

u′ h̄i′j′(x(s))ω
j′(s)(T s,s±t

γ )uo

(Pω(s±t))
i
ufij(x(s± t))ωj(s± t) dtdsdμ(z, ω),

and used the fact that g−1 is parallel.
We introduce new variables x := x(s, z, ω) ∈ M , that is the point obtained by

following the geodesic x(s) given by the initial conditions (z, ω) ∈ ∂+SM until the
time s, and ξ := ξ(s, t, z, ω) := tω(s) ∈ TxM , which is the scaling of the velocity
ω(s), of the geodesic x(s), by the positive factor t. Since (M, g) is simple, the map

R× (0,∞)× ∂+(SM) � (s, t, (z, ω)) �→ (x, ξ) ∈ TM
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can be restricted to a diffeomorphism onto a set U ⊂ TM \ (0 ∪ T∂M), where
U =

⊔
x∈M Ux and Ux := (expx)

−1M ⊂ TxM . Moreover since the geodesic flow
preserves the measure (det g)dξdx of TM , we get

dtdsdμ(z, ω) = (−1)3|ξ|2g(det g)dξdx.

For more details about this change of coordinates we refer to [25].
We denote

y = expx ξ, x = x(s, z, ω), ξ = ξ(s,±t, z, ω) and ξ̂ =
ξ

|ξ|g
.

It is straightforward to see that

ωj(s) = ξ̂j , and ωj(s± t) = (gradgyρ(x, y))
j = gij(y)

∂ρ

∂yi
,

where ρ(x, y) is the Riemannian distance function of g on M ×M . Thus

I± =

∫
M

∫
Ux

gou
′
(x)(P

̂ξ)
i′

u′ h̄i′j′(x)ξ̂
j′

(T 0,|ξ|g
γ
x,̂ξ

)uo (P∂yρ)
i
ufij(y)g

kj(y)
∂ρ

∂yk
1

|ξ|2g
(det g)dξdx,

and we get

I+ = I−.

Therefore

〈NLf, h〉L2(Sτ ′
M⊗Sτ ′

M ) =2

∫
M

∫
Ux

gou
′
(x)(P

̂ξ)
i′

u′ h̄i′j′(x)ξ̂
j′(T 0,|ξ|g

γ
x,̂ξ

)uo

(P∂yρ)
i
ufij(y)g

kj(y)
∂ρ

∂yk
1

|ξ|2g
(det g)dξdx.

(3.4)

Since (M, g) is simple the map (TxM \ {0}) � ξ �→ expx ξ =: y is a diffeomorphism
with inverse

ξi = −1

2
(gradgx(ρ(x, y))

2)i = −1

2
gij(x)

∂ρ(x, y)2

∂xj
,

and moreover

|ξ|g = ρ(x, y), ξ̂m = −∂ρ(x, y)

∂xm
and dξ = (det g−1)

∣∣∣∣ det ∂2ρ(x, y)2/2

∂x∂y

∣∣∣∣dy.
To simplify the integral (3.4) even more we compute

(P
̂ξ)

i′

u′ h̄i′j′(x) = h̄i′

j′(x)

(
gi′u′(y)− ∂ρ

∂xu′
∂ρ

∂xi′

)
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and

(P∂yρ)
i
ufij(y)g

kj(y) = (P∂yρ)
i
uf

k
i (y) = f ik(y)

(
giu(y)−

∂ρ

∂yu
∂ρ

∂yi

)
.

Finally we have

〈NLf, h〉L2(Sτ ′
M⊗Sτ ′

M ) =

− 2

∫
M

h̄k�(x)
1√

det g(x)

∫
M

(
gku′(x)− ∂ρ

∂xu′
∂ρ

∂xk

)
∂ρ

∂x�
gou

′
(x)

(
T 0,ρ(x,y)
γx,−grad

g
xρ

)u

o

× f ij(y)

ρ(x, y)2

(
giu(y)−

∂ρ

∂yu
∂ρ

∂yi

)
∂ρ

∂yj

∣∣∣∣ det ∂2ρ(x, y)2/2

∂x∂y

∣∣∣∣dy√det g(x)dx.

(3.5)

Therefore the normal operator of mixed ray transform can be written as

(NLf)k�(x) =
−2√

det g(x)

∫
M

(
gku′(x)− ∂ρ

∂xu′
∂ρ

∂xk

)
Auu′

(x, y)

(
giu(y)−

∂ρ

∂yu
∂ρ

∂yi

)
× f ij(y)

ρ(x, y)2
∂ρ

∂yj
∂ρ

∂x�

∣∣∣∣ det ∂2ρ(x, y)2/2

∂x∂y

∣∣∣∣dy.
Here

(3.6) A(x, y)uu
′
:= gou

′
(x)

(
T 0,ρ(x,y)
γx,−grad

g
xρ(x,y)

)u

o
,

with Auu′
(x, x) = guu

′
(x). We note here that T 0,ρ(x,y)

γx,−grad
g
xρ(x,y)

is the parallel transport

along the geodesic connecting y to x. Thus NL is an integral operator with an
integral kernel

Kijk�(x, y) =

−2

∣∣∣∣ det ∂2ρ(x,y)2/2
∂x∂y

∣∣∣∣√
det g(x)ρ(x, y)2

(
gku′(x)− ∂ρ

∂xu′
∂ρ

∂xk

)
Auu′

(x, y)

×
(
giu(y)−

∂ρ

∂yu
∂ρ

∂yi

)
∂ρ

∂yj
∂ρ

∂x�
.

(3.7)

3.2. Normal operator as a ΨDO. From now on, we rely on the fact thatM ⊂ R3

and g is extended to whole R3 to apply the theory of pseudo-differential operators.
In this subsection we show that the normal operator is a ΨDO of order −1 and find
its principal symbol. Since M is closed we consider certain open neighborhoods of
it.

Since (M, g) ⊂ R3 is simple and g is extended to whole R3, we can find open
domains M1,M2 ⊂ R3 such that M ⊂ M1 ⊂⊂ M2 and (Mi, g), {1, 2} is simple
(see [43, page 454]). We need an open extension of M in order to show that NL

is a ΨDO. In the next section we explain why we need the aforementioned double
extension. We note that by this extension the normal operator NL is defined for
1+1 tensor fields over M2, and NLf(x) remains the same for x ∈ M if supp f ⊂ M .

First we find more convenient representation for the kernel K near the diagonal
of M2 ×M2. To do so we use the following relations introduced in [43, Lemma 1]:
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Lemma 3.2. There exists δ > 0 such that in U := {(x, y) ∈ M2×M2 : |x−y|e < δ}
the following hold

ρ2(x, y) = G
(1)
ij (x, y)(x− y)i(x− y)j ,

∂ρ2(x, y)

∂xj
= 2G

(2)
ij (x, y)(x− y)i,

∂2ρ2(x, y)

∂xi∂yj
= −2G

(3)
ij (x, y),

(3.8)

where G
(1)
ij (x, y), G

(2)
ij (x, y), G

(3)
ij (x, y) are smooth and on the diagonal

(3.9) G
(1)
ij (x, x) = G

(2)
ij (x, x) = G

(3)
ij (x, x) = gij(x).

Proof. See [44, Lemma 3.1]. �

As G(m)(x, y) is a matrix depending on the points (x, y) ∈ U we use the short-

hand notations G(m) := G
(m)
ij (x, y), G̃

(2)
ij := G

(2)
ij (y, x), G(m)z := G

(m)
ij (x, y)(x −

y)i, z := x− y. These imply

(3.10) ρ2(x, y) = G(1)z · z, ∂ρ

∂xj
=

[
G(2)z

]
j

(G(1)z · z)1/2 ,
∂ρ

∂yj
=

[
G̃(2)z

]
j

(G(1)z · z)1/2 .

Thus the following formula holds for the integral kernel of NL on the neighbor-
hood U of the diagonal of the extension M2 ×M2.

Kijk�(x, y) =− 2

⎛⎝giu(y)−

[
G̃(2)z

]
i

[
G̃(2)z

]
u

G(1)z · z

⎞⎠ Auu′
(x, y)(

G(1)z · z
)2

×
(
gku′(x)−

[
G(2)z

]
k

[
G(2)z

]
u′

G(1)z · z

)[
G̃(2)z

]
j

[
G(2)z

]
�

∣∣ detG(3)
∣∣√

det g(x)
.

From this and (3.7) we see that the integral kernel Kijk� is smooth in M2 × M2

outside the diagonal, at which it has a singularity of the type |x− y|−2
e .

Let χ ∈ C∞
0 (U) equal to 1 near the diagonal of M2 ×M2. We write

(3.11) Kijk� = χKijk� + (1− χKijk�) =: K1
ijk� +K2

ijk�.

Since K2
ijk� ∈ C∞(M2×M2) the corresponding integral operator is a ΨDO of order

−∞, with an amplitude of order −∞.

Lemma 3.3. Let set U be as in Lemma 3.2. For any ((x, y), z) ∈ U×R3 we define

M̃ijk�(x, y, z) :=− 2

⎛⎝giu(y)−

[
G̃(2)z

]
i

[
G̃(2)z

]
u

G(1)z · z

⎞⎠ Auu′
(x, y)(

G(1)z · z
)2

×
(
gku′(x)−

[
G(2)z

]
k

[
G(2)z

]
u′

G(1)z · z

)[
G̃(2)z

]
j

[
G(2)z

]
�

∣∣ detG(3)
∣∣√

det g(x)
.

(3.12)

The distribution M̃ijk� belongs to L1
loc(R

3) with respect to z variable and is positively

homogeneous of order −2. Moreover M̃ijk� is smooth in U × (R3 \ {0}).
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Proof. We note that equation (3.8) implies that G(2)z and G̃(2)z are 1-homogeneous
with respect to z. Let Kr be the compact set that is the image of the closed ball
Br(0), r > 0 under the diffeomorphism z′ = H−1z, where H is the square root of
G(1)(x, y). By a change to spherical coordinates we obtain∫
Kr

|M̃ijk�(x, y, z
′)| dz′ =

∫
Br

|M̃ijk�(x, y,H
−1z)| | detH−1|dz

=rC

∫
S2

∣∣∣∣(giu(y)− [
G̃(2)H−1ω

]
u

[
G̃(2)H−1ω

]
i

)
Auu′

(x, y)

×
(
gku′(x)−

[
G(2)H−1ω

]
u′

[
G(2)H−1ω

]
k

)
×
[
G̃(2)H−1ω

]
j

[
G(2)H−1ω

]
�

∣∣∣∣ dω,
where C = 2| detH−1|

∣∣ detG(3)
∣∣

√
det g(x)

. Since the last integrand is continuous we have

proven the first claim.

The second claim follows since M̃ijk�(x, y,H
−1tz) = t−2M̃ijk�(x, y,H

−1z), t > 0
implies ∫

R3

M̃ijk�(x, y, z)ϕ(z) dz = t

∫
R3

M̃ijk�(x, y, z)ϕ(tz) dz

for every test function ϕ and t > 0. �

Due to the previous lemma and (3.11) we can write for (x, y) ∈ M2 ×M2 that

K1
ijk�(x, y) = χ(x, y)M̃ijk�(x, y, x− y) = F−1

ξ (Mijk�(x, y, ξ))

∣∣∣∣
x−y

,

where

Mijk�(x, y, ξ) = χ(x, y)

∫
e−iξ·zM̃ijk�(x, y, z)dz.(3.13)

Therefore Mijk� is homogeneous of order −1 in ξ. Since Mijk� is smooth in M2 ×
M2 × (R3 \ {0}) and homogeneous of order −1, it is an amplitude of order −1.
Thus the decomposition (3.11) implies that NL is a ΨDO of order −1. To conclude
the study of the normal operator, we state the main result of this section.

Proposition 3.4. The normal operator NL of mixed ray transform is a pseudo-
differential operator of order −1 in M2 with the principal symbol

σp(NL)
ijk�(x, ξ)

=− 2
√
det g(x)

∫
R3

e−iξ·z
(
gki(x)− zizk

|z|2g

)
zjz�

|z|4g
dz

=−
√
π

3 · 25/2

(
− 12gik|ξ|−1

g (gjl − |ξ|−2
g ξjξl)

+ 9|ξ|−5
g ξiξjξkξl + 3|ξ|−1

g (gjkgil + gikgjl + gklgij)

− 3|ξ|−3
g (gijξkξl + gikξjξl + gilξjξk + gjkξiξl + gjlξiξk + gklξiξj)

)
.

(3.14)

Here zi = gij(x)z
j and |z|2g = gij(x)z

izj.

Licensed to Rice Univ. Prepared on Mon Oct 11 11:56:40 EDT 2021 for download from IP 128.42.234.145.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE MIXED RAY TRANSFORM 6107

Remark 3.5. We note that terms gklgij and gklξiξj in (3.14) do not contribute to
the action of the symbol as we are working on the kernel of the map μ. Thus we
ignore those two terms in the following calculations.

Proof. We emphasize that NL is not properly supported. However there exists
properly supported ΨDO Aijk� of order −1 such that (NL)ijk�−Aijk� is smoothing.
Neglecting this technicality we obtain the principal symbol of NL by setting x = y
in (3.13). Then formula (3.9) implies

G
(2)
ij (x, x)zi = zj , and G

(1)
ij (x, x)zizj = |z|2g.

Therefore after raising indices formulas (3.12) and (3.13) imply the first equation
of (3.14).

We proceed on to compute the Fourier transform in (3.14). We recall the fol-
lowing formula for the n−dimensional Fourier transform of the powers of a norm
given by a positive definite matrix g:

F [|x|αg ](ξ) = cn,α
1√
det g

|ξ|−α−n
g , cn,α = 2n/2−αΓ(

n−α
2 )

Γ(α2 )
, α �= n+ 2k, k ∈ Z.

Here Γ is the Gamma function. In dimension 3 we have√
det g Fx[|x|−6

g ](ξ) = 2−9/2Γ(− 3
2 )

Γ(3)
|ξ|3g =

√
π

3 · 27/2 |ξ|
3
g,

√
det g Fx[|x|−4

g ](ξ) = 2−5/2Γ(− 1
2 )

Γ(2)
|ξ|g = −

√
π

23/2
|ξ|g.

Thus the Fourier transform in (3.14) equals to

C

(
−12gik

∂2|ξ|g
∂ξj∂ξl

+
∂4|ξ|3g

∂ξi∂ξj∂ξk∂ξl

)
=: CN ijkl, C = −

√
π

3 · 25/2 .

Finally we compute the derivatives in the formula above to find that CN ijkl is the
right hand side of equation (3.14). �

Remark 3.6. If g is a constant coefficient metric, then (3.14) gives the full symbol
of the normal operator. The proof is similar to [43, Section 4].

4. Reconstruction formulas and stability estimates

For this section we set the assumption that the metric g is only Ck-smooth in
R3 for some k ∈ N that is large enough. Nevertheless we can still assume that the
closed set M ⊂ R3 is extended to simple open domains (M1, g) and (M2, g) such
that M ⊂⊂ M1 ⊂⊂ M2.

We begin this section by recalling some basic theory of ΨDOs whose amplitudes
are only finitely smooth. We also show that the solution operator of the boundary
value problem (2.9) depends continuously on g with respect to Ck-topology. In the
second part of this section we show that the normal operator NL is elliptic on the
subspace of solenoidal tensors on M1 and construct a parametrix with respect to
this subspace. In order to do this we need to have the second extension M2 as we
will use the projection operator PM2

= dB(ΔB
M2

)−1δB onto the potential tensors,
with respect to the largest domain M2, in the construction of the parametrix. In
addition we define the projection operator SM2

:= Id−PM2
onto solenoidal tensor

fields on M2. In the final part of the section we study the stability of the normal
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operator. We also provide a reconstruction formula for the solenoidal component,
with respect to M .

4.1. Pseudo-differential operators with finitely smooth amplitudes. Since
the metric is assumed to pose only finite smoothness we need to set some finite
regularity conditions also for the amplitudes of the ΨDOs we are interested in. We
use the notation Am, m ∈ R for the space of Ck-smooth amplitudes of order m in
M2. That is an amplitude a(x, y, ξ), (x, y, ξ) ∈ M2 × M2 × R3 in Am are set to
satisfy only a finite amount of seminorm estimates:

|Dα
ξ D

β
xD

γ
ya(x, y, ξ)| ≤ Cα,β,γ(K) (1 + |ξ|e)m−|α| ,

(x, y) ∈ K ⊂ M2 is compact, Cα,β,γ(K) > 0,

where α, β, γ ∈ N3 are multi-indices that satisfy |α|, |β|, |γ| ≤ k. We repeat the
proof of [48, Theorem 2.1] to observe that for any m0, s0 > 0 there exists k ∈ N
such that for any |m| ≤ m0 and |s| ≤ s0 the linear operator

A : Hs(M1) → Hs−m(M1)

is bounded if A is a ΨDO in M2 with an amplitude in Am having the regularity k.
We also note that the operators with amplitudes in Am, for any m ∈ R are finitely
pseudo-local in the following sense: If U ⊂ M2 is open and u ∈ E ′(M2), then for
any k′ ∈ N and m ∈ R there exists k ∈ N such that if A is ΨDO with a Ck-smooth
amplitude in Am then the following holds:

Au ∈ Ck′
(U), if u ∈ Ck′

(U).

This follows from the proof of [48, Theorem 2.2.] after minor modifications.
Using the aforementioned machinery for finitely smooth amplitudes we note that

the integral kernel Kijk� of NL, as given in (3.7), is well defined and depends
continuously on the metric g in Ck-topology, if k is large enough. Thus the normal
operator NL depends continuously on the metric g and moreover the same holds
also for the functions G(m) in Lemma 3.2. Thus the claim of Proposition 3.4
is unchanged if g is regular enough and the formula (3.14) shows that also the
principal symbol σ(NL) depends continuously on g in Ck-topology.

We note that the volume form dVg depends on the metric tensor g. However for
any t ∈ R there exists k ∈ N such that if we fix a simple Ck-metric g0 of M , then
there exists a Ck-neighborhood U of g0, consisting of simple metrics, on which we
can choose a uniform bi-Lipschitz constant for the norms ‖ · ‖Ht

gi
, i ∈ {1, 2} for any

g1, g2 ∈ U . Recall that we are working with 1 + 1-tensors that are in the kernel
Sτ ′M ⊗B Sτ ′M of the trace operator μ related to a metric tensor g. To avoid this
issue, we introduce operator

κ�
g : Sτ

′
M ⊗B Sτ ′M → SτM ⊗B Sτ ′M ,

such that

(κ�
gf)

i
j = gaifaj .

Then the following subspace of 1-covariant 1-contravariant tensor fields

SτM ⊗B Sτ ′M = {f ∈ SτM ⊗ Sτ ′M , f i
i = 0}

coincides with the image of κ�
g, but is defined independent of the metric g. We let

κ�
g be the inverse of κ�

g. The continuity of the maps κ�
g, κ

�
g with respect to metric g

is evident.
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Lemma 4.1. Let g0 ∈ C1(M). There exists a neighborhood U ⊂ C1(M) of g0,
such that the map

κ�
g ◦ (ΔB)−1

M,g ◦ κ�
g : H

−1(SτM ) → H1
0 (SτM ),

where (ΔB)−1
M,g is the solution operator of (2.9), with vanishing boundary value,

and the projections

κ�
g ◦ PM ◦ κ�

g, κ
�
g ◦ SM ◦ κ�

g : L
2(SτM ⊗B Sτ ′M ) → L2(SτM ⊗B Sτ ′M )

depend continuously on g ∈ U .

Proof. We consider first a smooth metric g0, and note that Lemma 2.3 implies that
the solution operator (ΔB)−1

M,g0
: H−1(Sτ ′M ) → H1

0 (Sτ
′
M ) is bounded. Let ε > 0

and g be any smooth metric such that ‖g0 − g‖C1 < ε. We write

κ�
g ◦ (ΔB)−1

M,g ◦ κ�
g − κ�

g0 ◦ (Δ
B)−1

M,g0
◦ κ�

g0

=
(
κ�
g ◦ (ΔB)−1

M,g ◦ κ�
g

)(
κ�
g0 ◦Δ

B
M,g0 ◦ κ�

g0 − κ�
g ◦ΔB

M,g ◦ κ�
g

)
×
(
κ�
g0 ◦ (Δ

B)−1
M,g0

◦ κ�
g0

)
,

(4.1)

and choose u, v ∈ H1
0 (SτM ). Then by Cauchy-Schwarz inequality we obtain∣∣∣〈(κ�

g0 ◦Δ
B
M,g0 ◦ κ�

g0 − κ�
g ◦ΔB

M,g ◦ κ�
g)u, v

〉∣∣∣
=
∣∣∣〈dBg0κ�

g0u, d
B
g0κ

�
g0v〉L2

g0
−〈dBg κ�

gu, d
B
g κ

�
gv〉L2

g

∣∣∣
≤ C‖g − g0‖C1(‖g‖C1 + ‖g0‖C1)‖u‖H1

g0
‖v‖H1

g0
.

(4.2)

In the last inequality we used the uniform Lipschitz equivalence of the H1-norms.
If ε � 1, then ‖g − g0‖C1(‖g‖C1 + ‖g0‖C1) ≤ Cε, for some C > 0, which can be

chosen uniformly whenever g is close enough to g0. Consequently (4.2) implies

‖κ�
g0 ◦Δ

B
M,g0 ◦ κ�

g0 − κ�
g ◦ΔB

M,g ◦ κ�
g‖H1→H−1 ≤ Cε,

from which after using (4.1) it follows that

‖(ΔB)−1
M,g‖H−1→H1 ≤ ‖(ΔB)−1

M,g0
‖H−1→H1

(
1 + ε‖(ΔB)−1

M,g‖H−1→H1

)
,

and moreover

‖(ΔB)−1
M,g‖H−1→H1 ≤

(
1− Cε‖(ΔB)−1

M,g0
‖H−1→H1

)−1

‖(ΔB)−1
M,g0

‖H−1→H1 .

Finally we use (4.1) again, to conclude

(4.3) ‖κ�
g ◦ (ΔB)−1

M,g ◦ κ�
g − κ�

g0 ◦ (Δ
B)−1

M,g0
◦ κ�

g0‖H−1→H1 ≤ C0‖g − g0‖C1 ,

where C0 > 0 can be chosen uniformly in some small C1-neighborhood U of g0.
Since smooth metrics are dense in C1(M), the Lipschitz estimate (4.3) implies
that we can define the solution operator (ΔB)−1

M,g as bounded map H−1(Sτ ′M ) →
H1

0 (Sτ
′
M ) for g ∈ C1(M) with the estimate (4.3) still valid. Thus the first claim of

the lemma is proven. We note that the continuity of operators κ�
g ◦P ◦κ�

g, κ
�
g ◦S ◦κ�

g

follows from this. �

Lemma 4.1 has the following straightforward generalization.
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Corollary 4.2. Let t > 0. There exists k0 ∈ N, such that for any k ≥ k0 and
g0 ∈ Ck(M) there exists a neighborhood U ⊂ Ck(M) of g0, such that the solution
operator

κ�
g ◦ (ΔB)−1

M,g ◦ κ�
g : H

t−1(SτM ) → (Ht+1 ∩H1
0 )(SτM),

and the projections

κ�
g ◦ PM ◦ κ�

g, κ
�
g ◦ SM ◦ κ�

g : H
t(SτM ⊗B Sτ ′M ) → Ht(SτM ⊗B Sτ ′M )

depend continuously on g ∈ U .

4.2. Reconstruction formula. We fix a simple metric g0 ∈ Ck(M), where k ∈ N
and consider a simple metric g ∈ Ck(M) in a small neighborhood of g0 with respect
to Ck-topology. We recall that any tensor field defined in M is extended to any
larger domain with the zero extension. Moreover we note that by conjugating all
the operators, that are to be used in this section, with κ�

g from left and κ�
g from

right, we can work in the space of trace-free tensor fields SτM ⊗B Sτ ′M , that is
invariant of any metric structure. To reduce the notations we omit the conjugation
from here onwards.

Let |D|g be a ΨDO with the full symbol |ξ|g. We begin by constructing a
parametrix for the ΨDO

(4.4) Mf =

(
|D|gNLf
PM2

f

)
, in M1.

We note that the right hand side of (4.4) extends M in M2, and due to Corollary
4.2, the operatorM depends continuously on g. In the following we use the notation
◦ for a finite asymptotic expansion for the symbol of a product of two ΨDOs. The
principal symbol σ(M) of M is given by

σ(M) =

(
|ξ|g ◦ σ(NL)
σ(PM2

)

)
.

We show now that σ(M) is elliptic near M1. To do so we lower the (ij)-indices in
(3.14) to get:

σ(NL)
kl
ij = CNkl

ij = C

(
− 12|ξ|−1

g δki δ
l
j + 12|ξ|−2

g δki ξjξ
l)

+ 9|ξ|−5
g ξiξjξ

kξl + 3|ξ|−1
g (δkj δ

l
i + δki δ

l
j)

− 3|ξ|−3
g (gijξ

kξl + δki ξjξ
l + δliξjξ

k + δkj ξiξ
l + δljξiξ

k)

)
.

Remark 4.3. A straightforward calculation shows that

gijNkl
ij = 0, ξjNkl

ij = 0, ξiNkl
ij = 12|ξ|−1

g

(
|ξ|−2

g ξkξjξ
l − ξkδlj

)
and

Nkl
ji −Nkl

ij = 12
(
|ξ|−1

g (δki δ
l
j − δkj δ

l
i)− |ξ|−3

g (δki ξjξ
l − δkj ξiξ

l)
)
.

Therefore

|ξ|g
[
Nkl

ij +
1

4

(
Nkl

ji −Nkl
ij − |ξ|−2

g ξjξ
j′Nkl

j′i − |ξ|−2
g ξiξ

i′Nkl
i′j

)]
=6|ξ|−2

g δki ξjξ
l − 6δki δ

l
j − 3|ξ|−2

g gijξ
kξl + 3|ξ|−4

g ξiξjξ
kξl.
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Motivated by Remark 4.3 we define

Emn
ij = − 1

6C

(
δmi δnj +

1

4

(
δni δ

m
j − δmi δnj − |ξ|−2

g ξjξ
mδni − |ξ|−2

g ξiξ
mδnj

))
.

Therefore

(4.5) Emn
ij |ξ|gσ(NL)

kl
mn = δki δ

l
j − δki |ξ|−2

g ξjξ
l +

1

2
|ξ|−2

g gijξ
kξl − 1

2
|ξ|−4

g ξiξjξ
kξl.

Thus we need to characterize the remainder term in (4.5). Since −ΔB is elliptic
near M1, with principal symbol

−σ(ΔB) = |ξ|2gδi� −
1

3
ξ�ξ

i,

it has a parametrix (ΔB)−1 with principal symbol

−σ((ΔB)−1)ki =
1

2
|ξ|−4

g ξiξ
k + |ξ|−2

g δki .

We note that near M1 the parametrix (ΔB)−1 and the solution operator (ΔB
M2

)−1

of (2.9), with zero boundary value, coincide up to a finitely smoothing operator.
This implies

iσ((ΔB
M2

)−1δB)kli =
1

2
|ξ|−4

g ξiξ
kξl + δki |ξ|−2

g ξl,

and

σ(PM2
) = σ(dB(ΔB

M2
)−1δB)klij =

1

2
|ξ|−4

g ξiξjξ
kξ� + δki |ξ|−2

g ξjξ
l − 1

2
gij |ξ|−2

g ξkξl.

Therefore (
E Id

)
◦
(

|ξ|g ◦ σ(NL)
σ(PM2

)

)
= Id,

and we have shown that M is elliptic near M1.
From now on we study the mapping properties of M. We use the notation σ̃

for the full symbol of a ΨDO and Sm for the space of Ck-regular symbols a(x, ξ)
of order m. Let m > 0 be given. We choose k ∈ N to be so large that there exists
a ΨDO A of order −2, that is given by a finite asymptotic expansion of (ΔB)−1

with homogeneous symbols in ξ-variable, and satisfies σ̃(A)◦ σ̃(ΔB) = Id mod S−m

near M1. From here onwards we increase the regularity of the Ck-smooth metric g
whenever needed without further mention. We get

σ̃(PM2
) = σ̃(dB) ◦ σ̃(A) ◦ σ̃(δB) mod S−m,

σ̃(SM2
) = Id− σ̃(dB) ◦ σ̃(A) ◦ σ̃(δB) mod S−m.

Since ΔB and (ΔB)−1 depend continuously on g we can also choose A that depends
continuously on g, with respect to Ck-topology, if g is near to g0. Since M is elliptic
near M1 there exists a pseudo-differential operator L = (L1,L2) of order 0, with
principle symbol (E, Id), such that

(σ̃(L1), σ̃(L2)) ◦
(

|ξ|g ◦ σ̃(NL)
σ̃(PM2

)

)
=σ̃(L1) ◦ |ξ|g ◦ σ̃(NL) + σ̃(L2) ◦ σ̃(PM2

) = Id mod S−m,

(4.6)

near M1. We set two operators

Λ = Id− dBAδB, and T1 = ΛL1|D|gΛ, in M2,
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and note

SM2
NL = NLSM2

= NL, SM2
PM2

= PM2
SM2

= 0.

Then we apply σ̃(Λ) from right and left to (4.6) to obtain

σ̃(Λ) =σ̃(Λ)2 = σ̃(Λ) ◦ σ̃(L1) ◦ |ξ|g ◦ σ̃(NL) ◦ σ̃(Λ)
=σ̃(Λ) ◦ σ̃(L1) ◦ |ξ|g ◦ σ̃(Λ) ◦ σ̃(NL)

=σ̃(T1) ◦ σ̃(NL) mod S−m.

We choose t > 0 and note that we have shown the existence of a bounded
operator K1 : L

2(Sτ ′M ⊗B Sτ ′M ) → Ht(Sτ ′M1
⊗B Sτ ′M1

), which satisfies
(4.7)
T1NLf = f−dBAδBf+K1f = fs

M1
−dBw+K1f, in M1 f ∈ L2(Sτ ′M ⊗BSτ ′M ),

where w :=
(
(ΔB

M1
)−1 −A

)
δBf . Since T1, NL and A depend continuously on g,

the formula (4.7) implies that also K1 depends continuously on g.
We conclude this subsection by finding a reconstruction formula for the solenoidal

part fs
M1

modulo Ht-regular fields in M1. To do this we show that the linear map

L2(Sτ ′M ⊗B Sτ ′M ) � f �→ dBw ∈ Ht+1(Sτ ′M ⊗B Sτ ′M ) is bounded and depends
continuously in g. First we note that the map L2(Sτ ′M ⊗B Sτ ′M ) � f �→ w ∈
H1(Sτ ′M1

⊗BSτ ′M1
) is bounded since A is an operator of order −2. Since f vanishes

outside M we have due to the finite pseudo-local property that the distribution
−AδBf near ∂M1 is of regularity t+ 2. Thus the map

L2(Sτ ′∂M ⊗B Sτ ′∂M ) � f → w|∂M1
= −AδBf |∂M1

∈ Ht+ 3
2 (Sτ ′∂M1

⊗B Sτ ′∂M1
)

is bounded and depends continuously about the metric g in Ck-topology. This
implies that w solves the boundary value problem:

ΔBw =
(
Id−ΔBA

)
δBf, in M1, w|∂M1

= −Aδf |∂M1
.

As the symbol of the ΨDO
(
Id−ΔBA

)
δB is in S−m for m > 0 and f is L2-regular

we have that
(
Id−ΔBA

)
δBf ∈ Ht(Sτ ′M1

⊗B Sτ ′M1
). Corollary 4.2 implies that the

map L2(Sτ ′M ⊗B Sτ ′M ) � f �→ w ∈ Ht+2(Sτ ′M1
⊗B Sτ ′M1

) is bounded.
Therefore we have verified that the map

L2(Sτ ′M ⊗B Sτ ′M ) � f �→ dBw ∈ Ht+1(Sτ ′M1
⊗B Sτ ′M1

)

is bounded and depends continuously on g with respect to Ck-topology if k ∈ N is
large enough and g is close to g0. After setting

K2f := −dBw +K1f, f ∈ L2(Sτ ′M ⊗B Sτ ′M ),

equation (4.7) implies the main result of this subsection:

Proposition 4.4. Let t > 0. There exists k0 ∈ N such that for any simple metric
g ∈ Ck(M), k ≥ k0 there exists a first order ΨDO, T1 in M2 and a bounded operator

K2 : L
2(Sτ ′M ⊗B Sτ ′M ) → Ht(Sτ ′M1

⊗B Sτ ′M1
),

such that the first reconstruction formula for the solenoidal part is valid:

(4.8) T1NLf = fs
M1

+K2f in M1, for f ∈ L2(Sτ ′M ⊗B Sτ ′M ).

Moreover if we fix a simple metric g0 ∈ Ck(M), the operators T1 and K2 depend
continuously about g in some neighborhood of g0 with respect to Ck-topology.
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If g is infinitely smooth, there exists a smoothing operator

K̃2 : L
2(Sτ ′M ⊗B Sτ ′M ) → C∞(Sτ ′M1

⊗B Sτ ′M1
),

such that

T1NLf = fs
M1

+ K̃2f in M1,

for any f ∈ L2(Sτ ′M ⊗B Sτ ′M ).

4.3. Stability estimates for the normal operator. In the previous section we
found a reconstruction formula for the solenoidal part fs

M1
with respect to the

extended domain M1. In this section we prove a stability estimate for the normal
operator and find a reconstruction formula for the solenoidal part fs

M . However as
it turns out we need higher regularity for f to do so.

Let g ∈ Ck(M) be a simple metric and f ∈ L2(Sτ ′M ⊗B Sτ ′M ). We write f =
fs
M1

+ dBvM1
, where vM1

solves a boundary value problem (2.11), on M1. Since

f = 0 on M1 \ M , the finite pseudo-local property of (ΔB
M1

)−1δB yields vM1
∈

C1(M1 \M). Moreover we have by (4.8) that

(4.9) −dBvM1
= T1NLf −K2f in M1 \M.

In the following we will find a L2-estimate for vM1
on M1 \ M . Let x0 ∈ ∂M .

Then for any x ∈ M1 \M in a small neighborhood U of x0, we choose a unit vector
ξ such that the geodesic γ(t) = γx,ξ(t) in M1 \M issued from x meets ∂M1 before
it meets ∂M . We use the notation τ = τ (x, ξ) > 0 for the time this geodesic hits
∂M1. Since vM1

vanishes at ∂M1 we have as in the proof of Lemma 2.3 that

(4.10) [vM1
(x)]iη

i = −
∫ τ

0

[dBvM1
(γ(t))]ijη

i(t)γ̇j(t)dt,

where η(t) is a unit length vector field, parallel along γ and η(0) = η is perpendicular
to ξ. The substitution (4.9) and the continuity of the integrand give∣∣[vM1

(x)]iη
i
∣∣ ≤ ∫ τ(x,ξ)

0

∣∣[T1NLf −K2f ]ijη
i(t)γ̇j(t)

∣∣dt ≤ C |(T1NLf −K2f)(x)|g ,

where C depends only on the distance to ∂M1. Perturbing the initial direction
ξ, we see that the inequality above holds for linearly independent {η(k)}3k=1. As

|vM1
(x)|2g can be estimated by C

∑3
k=1

∣∣∣[vM1
(x)]iη

i
(k)

∣∣∣2, where the constant C is

uniform in a neighborhood of x0, we get

‖vM1
‖L2(M1\M) ≤ C‖T1NLf −K2f‖L2(M1\M),

first in U and then globally by using a finite covering for the pre-compact setM1\M .
Next we estimate the H1-norm of vM1

in M1 \ M . As we can again estimate
|∇vM1

|2g by

C
3∑

k,�=1

∣∣∣∣αj
(k)∇j [vM1

]iα
i
(�)

∣∣∣∣2, {α(k)}3k=1 orthonormal,

it is enough to estimate αj
(k)∇j [vM1

]iα
i
(�). Recall that

ξj∇j [vM1
]iη

i = ξj
[
dBvM1

]
ij
ηi,
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for any η, ξ perpendicular to each other. Then (4.9) implies

(4.11)
∣∣ξj∇j [vM1

]iη
i
∣∣ ≤ C |T1NLf −K2f |g ,

and it remains to estimate αi
(k)∇j [vM1

]iα
j
(k).

We choose x0 ∈ ∂M , and local coordinates x′ on ∂M near x0. Let (x′, x3) be
the boundary normal coordinates given in a neighborhood U ⊂ M1 \M of x0. That
is each point (x′, x3) = x ∈ U is uniquely expressed as x = γ(x′,0),ν(t), where ν is
the exterior unit normal to ∂M and we have chosen x3 = t as the third coordinate.
We denote ξ = γ̇(x′,0),ν(t). For η ∈ TxM1, that is of unit length and perpendicular
to ξ, the formula (4.10), in the given coordinates, has the form

(4.12) [vM1
(x)]iη

i = −
∫ ∞

x3

[dBvM1
(γ(t))]i3η

i(t)dt.

We can replace the exit time by ∞ in upper bound of integration in (4.12) since
vM1

has a line integrable zero extension outside M1.
We denote the coordinate vector fields with respect to x′ variables as {X(k)}2k=1.

Note that these fields are orthogonal to the third coordinate frame d
dt = γ̇(x′,0),ν(x3)

and η can be given by a linear combination of {X(k)}2k=1. We extend η near γ in
such a way that ∇X(k)

η = 0 at γ(t). This can be done for instance with parallel

transport using Fermi coordinates given by the coordinate frame { d
dt , X(1), X(2)}

along γ. Then we apply X(k) to both sides of (4.12). Since vM1
∈ H1

0 (M1) we
obtain

Xj
(k)∇j [vM1

(x′, x3)]iη
i =−

∫ ∞

x3

X(k)

(
[dBvM1

(γ(t))]i3η
i
)
dt.(4.13)

Let χ be a smooth cut-off function such that χ = 1 near ∂M and χ = 0 near ∂M1

and outside M1. Then K3 : f �→ (1 − χ)X(k)d
BvM1

is finitely smoothing operator
by the fact f = 0 in M1 \M and the finite pseudo local property of the operator
X(k)d

B(ΔB
M1

)−1δB. Equations (4.9) and (4.13) imply

Xj
(k)∇j [vM1

(x′, x3)]iη
i =

∫ ∞

x3

χX(k)

(
[T1NLf ]i3η

i
)
dt+K4f,

for some K4 : L
2(M1) → Ht(M1), where t > 0 is as in Proposition 4.4. Therefore

the continuity implies the existence of C, depending only on the distance to ∂M1,
such that the following pointwise estimate holds:

(4.14)
∣∣ηj∇j [vM1

]iη
i
∣∣ ≤ C

(
2∑

k=1

|χ∇X(k)
(T1NLf)|g + |K4f |g

)
.

It remains to estimate ξj∇j [vM1
(x, x3)]iξ

i. We take η̃ such that {η, η̃, ξ} form
an orthonormal parallel basis along γ. In this basis we can write

μ(d′vM1
) = ηj∇j [vM1

]iη
i + η̃j∇j [vM1

]iη̃
i + ξj∇j [vM1

]iξ
i.

Therefore we have

ξj
(
−dBvM1

)
ξi

=ξj
(
−∇j [vM1

]i +
1

3
μ(d′vM1

)gij

)
ξi

=− 2

3
ξj∇j [vM1

]iξ
i +

1

3

(
ηj∇j [vM1

]iη
i + η̃j∇j [vM1

]iη̃
i
)
.
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By (4.11) and (4.14) we have proved
(4.15)

‖vM1
‖H1(U) ≤ C

(
2∑

k=1

‖χ∇X(k)
(T1NLf)‖L2(U) + ‖T1NLf‖L2(U) + ‖K4f‖Ht(U)

)
.

To conclude this section we introduce a norm H̃2(M1) originally given in [43,44]
to be implemented in the main result of this section. By shrinking M1 if necessary
we choose a finite open cover (Uj)

J
j=1 for M1\M , such that in Uj we have boundary

normal coordinates (x′
j , x

3
j ), as above. Let (χj)

J
j=1 be a collection of functions that

satisfy χj ∈ C∞
0 (Uj), χ :=

∑J
j χj equals to 1 near ∂M and each χj vanishes near

∂M1. We set

‖h‖2
H̃1(M1)

=

∫
M1

J∑
j=1

χj

(
2∑

i=1

|∇
X

(k)
j

h|2g + |x3
j∇Vj

h|2g

)
+ |h|2g dx,

where Vj is the tangent vector to γ(x′
j ,0),ν

(x3
j). We note that here x3 > 0 in M1 \M .

The norm H̃2(M1) is then defined by

(4.16) ‖h‖H̃2(M1)
=

3∑
i=1

‖∇X(k)
h‖H̃1(M1)

+ ‖h‖H1(M1).

Equations (4.9) and (4.15) imply the first estimate

(4.17) ‖vM1
‖H1(M1\M) ≤ C

(
‖T1NLf‖ ˜H1(M1)

+ ‖K4f‖Ht(M1)

)
.

Finally we are ready to estimate the solenoidal part fs
M . We write

f = fs
M1

+ dBvM1
in M1, f = fs

M + dBvM in M,

and denote u = vM1
− vM . The construction of the potential parts implies

(4.18) ΔBu = 0 in M int, u|∂M = vM1
|∂M .

By Corollary 4.2, equations (4.9), (4.17) and the trace theorem we obtain the second
estimate

‖vM1
− vM‖H1(M) ≤ C‖vM1

‖H1/2(∂M) ≤ C‖vM1
‖H1(M1\M)

≤C
(
‖T1NLf‖ ˜H1(M1)

+ ‖K4f‖Ht(M1)

)
.

Then we use fs
M = fs

M1
+ dB(vM1

− vM ), (4.7), and (4.15) to establish our main
estimate

‖fs
M‖L2(M) ≤ ‖T1NLf −K2f‖L2(M) + ‖dB(vM1

− vM )‖L2(M)

≤ ‖T1NLf −K2f‖L2(M) + ‖vM1
− vM‖H1(M) + ‖(vM1

)‖H1(M1\M)

≤ C

(
‖T1NLf‖ ˜H1(M1)

+ ‖T1NLf‖L2(M1) + ‖K4f‖Ht(M1)

)
≤ C

(
‖NLf‖ ˜H2(M1)

+ ‖K4f‖Ht(M1)

)
.

(4.19)

We note that the last estimate is valid since T1 is an operator of order 1. Lemma
4.5 guarantees that H1-regularity for f implies the finiteness of ‖NLf‖ ˜H2(M1)

. This

result has been presented earlier in [43].
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Lemma 4.5. If f ∈ H1(Sτ ′M ⊗B Sτ ′M ), then ‖NLf‖ ˜H2(M1)
is finite.

In the following we use the notation S for the solenoidal projection on M . The
main theorem of this section is:

Theorem 4.6. Let t > 0. There exists k0 ∈ N such that for any simple metric
g ∈ Ck(M), k ≥ k0, the following claims hold:

(1) There exists a bounded linear operator K̃ : L2(Sτ ′M⊗BSτ ′M ) → Ht(Sτ ′M1
⊗B

Sτ ′M1
) such that

(4.20) ‖fs
M‖L2(M) ≤ C

(
‖NLf‖ ˜H2(M1)

+‖K̃f‖Ht(M1)

)
, if f ∈ H1(Sτ ′M⊗BSτ ′M ),

for some C > 0.
(2) There exist bounded linear operators

Q : H̃2(Sτ ′M1
⊗B Sτ ′M1

) → S
(
L2(Sτ ′M ⊗B Sτ ′M )

)
,

K : L2(Sτ ′M ⊗B Sτ ′M ) → S
(
Ht(Sτ ′M1

⊗B Sτ ′M1
)
)

such that

(4.21) QNLf = fs
M +Kf, if f ∈ H1(Sτ ′M ⊗B Sτ ′M ).

Moreover for any simple metric g0 ∈ Ck(M), there exists a neighborhood
U ⊂ Ck(M), consisting of simple metrics, such that the operators Q and
K, in (4.21), depend continuously on g ∈ U .

(3) If g ∈ C∞(M), then the vector space

kerL ∩ S
(
L2(Sτ ′M ⊗B Sτ ′M )

)
⊂ C∞(Sτ ′M ⊗B Sτ ′M )

is finite dimensional.
(4) If g ∈ C∞(M) and L is s-injective then

‖fs
M‖L2(M) ≤ C‖NLf‖ ˜H2(M1)

, for f ∈ H1(Sτ ′M ⊗B Sτ ′M ),

for some C > 0.

Proof. We note that (4.20) is the same inequality as (4.19), if we set K̃ = K4. The
first claim follows from the construction done before this theorem.

Let f ∈ H1(Sτ ′M ⊗B Sτ ′M ). To prove the reconstruction formula (4.21) for
fs
M , we proceed as in the proof of [44, Proposition 5.1]. We fix a simple metric
g0 ∈ Ck(M) and a neighborhood U of g0 that consists of simple metrics. During
the proof we are implicitly shrinking U and increasing k without further mention.
Let g ∈ U . If we vary the initial direction ξ in (4.10), we find three linearly
independent ηi ∈ TxM, i ∈ {1, 2, 3} such that the right hand side of (4.10) gives
vM1

(x), for x ∈ M1 \ M . Due to the finite pseudo-local property vM1
can be

assumed to be C1-smooth in M1 \M and contained in Ht(Sτ ′M1\M ). Moreover the

map H1(Sτ ′M ⊗BSτ ′M ) � f �→ vM1
∈ Ht(Sτ ′M1\M ) is bounded and due to Corollary

4.2 it depends continuously on g in Ck-topology if k is large enough. On the other
hand we can use formula (4.10) and the trace theorem to define a linear operator

T2 : Ht−1(Sτ ′M1\M ⊗B Sτ ′M1\M ) → Ht− 1
2 (Sτ ′∂M ),

which depends continuously on g, and satisfies

(4.22) TrM vM1
= T2(dBvM1

) = T2 (T1NL −K2) f.
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In the last equation we used the substitution (4.9). Thus the right hand side of

(4.22) is a bounded map fromH1(Sτ ′M⊗BSτ ′M ) intoHt− 1
2 (Sτ ′∂M ). After converting

the problem (4.18) into an elliptic problem with zero boundary value, Corollary 4.2
implies that the solution operator R of the boundary value problem (4.18), is a

bounded operator R : Ht− 1
2 (Sτ ′∂M ) → Ht(Sτ ′M ), depending continuously on g in

some neighborhood of g0 with respect to Ck-topology. We get

u := vM1
− vM = R(TrM (vM1

)) = RT2(T1NL −K2)f.

Then the first reconstruction formula (4.8) implies

fs
M =fs

M1
+ dBu

=(T1NL −K2)f + dBRT2(T1NL −K2)f

=(Id + dBRT2)T1NLf +K5f,

where K5 = −(Id + dBRT2)K2. We conclude the proof of (4.21) by setting Q :=
S(Id+dBRT2)T1 and K := SK5. We emphasize that by Theorem 1.1 the solenoidal
projection S : Ht(Sτ ′M ⊗BSτ ′M ) → Ht(Sτ ′M ⊗BSτ ′M ) is bounded, and due to Corol-
lary 4.2 the operators Q and K depend continuously on the metric g in some small
neighborhood of a fixed simple metric g0 ∈ Ck(M) in Ck-topology, for k ∈ N large
enough.

The remaining parts of the theorem can be proven as in [43, Theorem 2]. �

5. S-injectivity for analytic metrics

5.1. The analytic parametrix. In this section we assume that (M, g) is a simple
manifold with a (real) analytic metric g on M up to the boundary. As in Section
4 we extend M and g to simple open domains (M1, g), (M2, g) and M ⊂⊂ M1 ⊂⊂
M2 ⊂ R3. We note that this can be done in such a way that, g is analytic in a
neighborhood of M2 and Mi, i ∈ {1, 2} have analytic boundaries. Since analytic
functions are dense this does not require the original boundary ∂M to be analytic
(see [44, Section 3]).

We construct an analytic parametrix for operator M. We denote the set of
analytic tensor fields on M by A(M). That is every f ∈ A(M) has an analytic
extension to some open domain containing M . For the basic theory of analytic
ΨDO we refer to [48, Chapter V]. Recall that a continuous linear operator from
E ′(M) to D′(M) is analytic regularizing, if its range is contained in A(M).

Our first result in this section is a re-formulation of Proposition 3.4 in the analytic
setting.

Proposition 5.1. The operators NL and M, from (4.4), are analytic ΨDOs in
M2.

Proof. Our proof follows the proof of [44, Proposition 3.2].
Since g is analytic in M2, there exists δ > 0 such that the operator A defined

by (3.6) and functions G(m), m ∈ {1, 2, 3} from (3.8) are analytic in U = {(x, y) ∈
M2 ×M2; |x− y|e < δ}. Let V be an open set such that V × V ⊂ U . Then M̃ijk�,
given in (3.12), is analytic in V ×V ×(R3\{0}), and due to Lemma 3.3 distribution

M̃ijk� is positively homogeneous of order −2 in z variable. Here we use the fact
that A is analytic in U , since the solution to an ODE with analytic coefficients is
analytic.
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Thus Mijk�(x, y, ξ) is analytic in V × V × (R3 \ {0}) as a Fourier transform of

M̃ijk� in z variable. To see this, one only need to notice that M̃(x, y, z) is even in
z, and [26, Theorem 7.1.24] implies

Mijk�(x, y, ξ) =

∫
R3

e−iξ·zM̃ijk�(x, y, z) dz = π

∫
S2

M̃ijk�(x, y, ω)δ0(ω · ξ) dω,

(5.1)

where M̃ , in the last integrand, is an analytic function of all its variables.
To prove that M(x, y, ξ) is an analytic amplitude (see [48, V, Definition 2.2]) in

V × V we proceed as follows. Let φ ∈ C∞
0 (R3). We write

Mijk�(x, y, ξ) = φ(ξ)Mijk�(x, y, ξ) + (1− φ(ξ))Mijk�(x, y, ξ),

and show that the first term is an amplitude of analytic regularizing operator and
the second one is an analytic amplitude. This shows that NL is an analytic ΨDO
in V .

To prove that the operator of φ(ξ)Mijk�(x, y, ξ) is analytic regularizing, we need
to show that the corresponding integral kernel

Hijk�(x, y) = (2π)−3

∫
R3

eiξ·(x−y)φ(ξ)Mijk�(x, y, ξ) dξ, (x, y) ∈ V × V,

is analytic. To do this we use the fact that Mijk�(x, y, ξ) is positively homogeneous
of order −1 in ξ. Then a change to spherical coordinates gives

Hijk�(x, y) = (2π)−3

∫
S2

∫ ∞

0

ei(rω)·(x−y)φ(rω)Mijk�(x, y, ω)r drdω.

Since a product of analytic functions is analytic and φ is compactly supported, this
proves that Hijk� is analytic.

Let R0 > 0 be a radius of a ball containing the support of φ. Since F (x, y, ξ) :=
(1 − φ(ξ))Mijk�(x, y, ξ) equals to Mijk�(x, y, ξ), when |ξ|e > R0 and Mijk�(x, y, ξ)
is homogeneous of order −1 in ξ, we can write

(5.2) F (x, y, ξ) = Mijk�

(
x, y,

ξ

|ξ|e

)
|ξ|−1

e , |ξ|e > R0.

Therefore we can use the right hand side of (5.2) to extend F analytically on
V C×V C× (C3 \B(0, R0)). Here V C is an extension of V to C3. This implies that
for any compact K ⊂ V C × V C there exist C > 0 such that

|F (x, y, z)| ≤ C|ξ|−1
e , (x, y) ∈ K, |ξ|e > R0.

We choose R > 0 so large that B̃R(ξ) :=
∏3

i=1 Bi,R(ξ) ⊂ (C3 \ BR0
(0)) if

ξ ∈ R3, |ξ|e > R and Bi,R(ξ) := {z ∈ C : |z − ξi|e ≤ 1
2R |ξ|e}. Then we apply

Cauchy’s integral formula on B̃R(ξ) to find

|Dα
ξ F (x, y, ξ)| ≤ α!

(
C

2R

)|α|
|ξ|−|α|−1

e , (x, y) ∈ K, |ξ|e > R.

Therefore F is an analytic amplitude. Since V ⊂ U was arbitrarily chosen, we have
proven that for any x0 ∈ M int

2 there exists a neighborhood Vx0
contained in M int

2

in which NL is an analytic ΨDO. From here we can follow the lines in the proof of
[44, Proposition 3.2] to conclude that NL is actually an analytic ΨDO in the whole
M2.
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Next we proceed to prove that PM2
= δB(ΔB

M2
)−1dB is an analytic ΨDO. For-

mula (2.8) implies that dB is an analytic operator. Also δB is analytic. Therefore
ΔB is an elliptic analytic operator in the domain Ω. Thus there exists an analytic
parametrix T of ΔB in an open set M ′ containing M2. We need to show that
(ΔB

M2
)−1−T is analytic regularizing on M2. Let the distribution f be supported in

M2. We set w := ((ΔB
M2

)−1 − T )f . Then ΔBw ∈ A(M2) and the interior analytic

regularity implies w ∈ A(M2), and we have proven that (ΔB
M2

)−1 is an analytic
ΨDO in M2.

Since |D|g is analytic, we have proven that operator M in (4.4) is analytic. �

In Lemma 5.2 we extend the result of Lemma 2.3 to an analytic case. The proof
is similar to [44, Lemma 3.3].

Lemma 5.2. Let x0 ∈ ∂M , and assume that the metric g and the tensor fields u
and v0 are analytic in a (two-sided) neighborhood of x0 and that ∂M is analytic
near x0. Let tensor field v solve

(5.3) ΔBv = u in M, v|∂M = v0.

Then v extends as an analytic function in some (two-sided) neighborhood of x0.

The main result of this subsection is the following.

Proposition 5.3. There exists a bounded operator W : H1(Sτ ′M1
⊗B Sτ ′M1

) →
L2(Sτ ′M1

⊗B Sτ ′M1
) such that for any 2-tensor f ∈ L2(Sτ ′M ⊗B Sτ ′M ) we have

fs
M1

= WNLf +Kf

with Kf analytic in M1.

Proof. Since M is an elliptic analytic ΨDO in M1 we can construct a parametrix
L = {L1,L2} of M in M1 such that

(5.4) LM = Id +K1,

with L an analytic ΨDO of order 0 in a neighborhood of M1, and K1 analytically
regularizing in M1. Apply SM2

to the left and right, to (5.4) and notice NLSM2
=

SM2
NL = NL, PM2

SM2
= 0. We denote W = SM2

L1|D|g, and have

WNL = SM2
+K2 in M1.

Here K2 is analytic regularizing in M1.
We need to compare fs

M1
and fs

M2
for f ∈ L2(Sτ ′M ⊗B Sτ ′M ). We write fs

Mi
=

f − dBvMi
. As in the previous section, we have fs

M1
= fs

M2
+ dBu in M1 for

u = vM2
− vM1

. Then u ∈ H1(M1) and solves

ΔBu = 0 in M1, u|∂M1
= vM2

.

We note that since ∂M1 is analytic we have TrM1
h ∈ A(∂M1) for any h analytic near

∂M1. As suppf is disjoint from ∂M1, analytic pseudo-locality yields vM2
∈ A(∂M1).

By Lemma 5.2, u ∈ A(M1); thus f �→ dBu is a linear operator mapping L2(M) into
A(M1). Then we use the relation

fs
M1

= fs
M2

+ dBu = WN f −K2f + dBu

to complete the proof. �
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5.2. S-injectivity of 1+ 1 tensors for analytic metrics. In this subsection we
will prove s-injectivity for an analytic simple metric g.

Lemma 5.4. Let g be a smooth, simple metric in M and let f ∈ C∞(Sτ ′M⊗BSτ ′M ).

If Lf = 0, then there exists a tensor field v vanishing on ∂M such that for f̃ =
f − dBv we have TrM (∂mf̃) = 0 for any multi-index m ∈ N3.

Moreover, if g and f are analytic in a (two-sided) neighborhood of ∂M , and ∂M

is also analytic, then v can be chosen so that f̃ = 0 near ∂M .

Proof. We fix x0 ∈ ∂M and take boundary normal coordinates x = (x′, x3) in a
neighborhood U ⊂ M of x0. Then in U we have gi3 = δi3 for any i = 1, 2, 3. We
aim first to find a tensor field v, vanishing on ∂M , such that for f̃ := f − dBv we
have

(5.5) f̃i3 = 0, in some open neighborhood Ũ ⊂ U of x0.

Due to (2.8), this is equivalent to

f13 −∇3v1 = 0, f23 −∇3v2 = 0, f33 −∇3v3 +
1

3
(gk�∇kv�) = 0, in U

v|x3=0 = 0.
(5.6)

Remember that ∇jvi = ∂jvi−Γk
jivk, and the Christoffel symbols in the boundary

normal coordinates, satisfy Γk
33 = Γ3

k3 = Γ3
3k = 0. We first solve the system of initial

value problems ⎧⎨⎩
∂3v1 − Γ1

31v1 − Γ2
31v2 = ∇3v1 = f13,

∂3v2 − Γ1
32v1 − Γ2

32v2 = ∇3v2 = f23,
v1(x

′, 0) = 0, v2(x
′, 0) = 0,

for v1 and v2, which are given along boundary normal geodesics γ(x′,0),ν(x3). Then

using gi3 = δi3 we write the last equation of (5.6) in a form of the following initial
value problem

∂3v3 =
3

2
(f33 −G) , v3(x

′, 0) = 0,

where G depends only on vi, ∂jvi, g
jk, Γk

j� for i ∈ {1, 2}. We have found v near
the boundary. Clearly, if g and f are analytic near ∂M , so is v.

We note that the convexity of the boundary implies that for (x, ξ) ∈ ∂+(SM)
where x ∈ ∂M ∩U , is close to x0, |ξ|g = 1 and the normal component of ξ is small
enough, the geodesic issued from (x, ξ) hits the boundary again in U . Then the

boundary value of v and Lf = 0 imply Lf̃(x, ξ) = 0. We choose the boundary
coordinates x′ such that gij |x=x0

= δij . We claim

(5.7) f̃3α|x=x0
= 0, f̃αβ |x=x0

= 0, (f̃11 − f̃22)|x=x0
= 0,

for α = 1, 2, β = 1, 2 and α �= β. If this is true, then (5.5) and
∑3

i=1 f̃ii(x0) =

μf̃(x0) = 0, give f̃(x0) = 0. To prove (5.7) we let ξ ∈ Tx0
∂M , |ξ|g = 1, and

take a curve δ : (−ε, ε) → ∂M adapted to (x0, ξ). Let γ = γε : [0, 1] → M be the
shortest geodesic of the metric g joining the points x0 and δ(ε), i.e., γ(0) = x0

and γ(1) = δ(ε). Let η ∈ Tx0
M be perpendicular to ξ, and ηε be the orthogonal

projection of η to γ̇ε(0). We also set η(t) = ηε(t) to be the parallel transport of ηε
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along γε. Since the points (γ(t), γ̇(t)
|γ̇(t)|g ) and (γ(t), η(t)) tend to (x0, ξ) and (x0, η),

respectively, uniformly for t ∈ [0, 1] as ε → 0, we have

ηkf̃kjξ
j = lim

ε→0

∫ 1

0

ηk(t)f̃kj(γ(t))
γ̇j(t)

|γ̇(t)|g
dt = lim

ε→0

1

|γ̇ε(0)|g

〈
Lf̃ (x0, γ̇ε(0)) , ηε

〉
= 0.

We set e3 = ν(x0), and eα = ∂
∂x′α |x0

for α = 1, 2. The previous equation implies

f̃mα = 0, m ∈ {1, 2, 3}, α ∈ {1, 2}, m �= α.

To obtain the last equation in (5.7) we set ξ = 1√
2
(e1 + e2), η = 1√

2
(e1 − e2), thus

1

2
(f11 − f22) = ξif̃ijη

j = 0.

This completes the proof of (5.7). Since x0 was an arbitrary point in ∂M ∩ U we

have shown that f̃ vanishes at ∂M ∩ U . It remains to show

(5.8) ∂m
x3
f̃ij |x=x0

= 0, m = 1, 2, · · ·
We do not prove this directly but note that, if
(5.9)

∂m
x3
f̃3α|x=x0

=0, ∂m
x3
f̃αβ |x=x0

=0, ∂m
x3
(f̃11 − f̃22)|x=x0

=0, α, β ∈ {1, 2}, α �= β

holds, then due to

3∑
i=1

∂x3
f̃ii(x0) = μ

(
∂x3

f̃
) ∣∣∣∣

x=x0

= (∂x3
μf̃)

∣∣∣∣
x=x0

= 0

(5.8) also holds. The equation above holds since the trace and the covariant deriv-
ative commute and Christoffel symbols vanish at x0.

The proof of (5.9) is similar to the proof of [29, Theorem 2.1]. We give it here
for the sake of completeness. Let m > 0 be the smallest integer for which (5.9)

does not hold. We consider a 2-tensor hij := ∂m
x3
f̃ij |x=x0

acting on Tx0
M . Since

(5.9) does not hold for m, there exists ξ0 ∈ Tx0
M of unit length, tangent to ∂M ,

and η0 ∈ Tx0
M that is perpendicular to ξ0, such that ηi0hijξ

j
0 �= 0. Then the

Taylor expansion of f̃ implies that ηif̃ijξ
j is either (strictly) positive or negative

for x3 > 0 and |x′−x′
0|e both sufficiently small and (ξ, η) close to (ξ0, η0). Therefore,

〈Lf̃(x, ξ), η〉 is either (strictly) positive or negative for all (x, ξ) ∈ ∂+(SM) close
enough to (x0, ξ0) and η ⊥ ξ close to η0. This is a contradiction.

We have completed the construction of v near x0. As in the proof of [44, Lemma
4.1], we can extend the construction of v anywhere near ∂M .

If g and f are analytic, then v is analytic near ∂M . Then f̃ is analytic and thus
f̃ = 0 near ∂M . �

In Theorem 5.5 we use global semi-geodesic coordinates for simple manifold
(M1, g), introduced in [44, Lemma 4.2], under which the metric g has the global
representation

gi3 = δi3, i = 1, 2, 3.

We use the notations ei, i ∈ {1, 2, 3} for the corresponding coordinate vector fields.

Theorem 5.5. Let g be a simple metric in M , that has an analytic extension.
Then L is s-injective.
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Proof. Assume that g ∈ A(M), and the mixed ray transform of f ∈ L2(Sτ ′M ⊗B

Sτ ′M ) vanishes. Then, by Proposition 5.3, we have fs
M1

∈ A(M1). Clearly, Lf
s
M1

= 0
as well.

By Lemma 5.4, there exists a smooth tensor field w that is analytic near ∂M
and moreover f̃ := fs

M1
− dBw vanishes near ∂M1. We denote the set of all points

x ∈ ∂M1, for which the coordinate vector field e3(x) ∈ ∂±(SM1), by (∂M1)±. We
aim first to find a second tensor field v that satisfies the following global equation

(f̃ − dBv)i3 = 0, i ∈ {1, 2, 3}, v|(∂M1)+ = 0.

That is we solve the equations similar to (5.6):

f̃13 −∇3v1 = 0, f̃23 −∇3v2 = 0, f̃33 −∇3v3 +
1

3
(gk�∇kv�) = 0, in M1

v|(∂M1)+ = 0.

(5.10)

Since (M, g) is simple it follows from the definition of the semi-geodesic coordinates
that each point in M can be reached by a geodesic parallel to e3 from a unique point
of (∂M)+. Therefore the system (5.10) can be used to define v globally. As before,
we first determine v1 and v2 from the system of linear boundary value problems{

∂3v1 − Γ1
31v1 − Γ2

31v2 = f̃13, ∂3v2 − Γ1
32v1 − Γ2

32v2 = f̃23
v1|(∂M1)+ = v2|(∂M1)+ = 0.

We note that this system has a unique global solution since M is compact. Due
to analyticity, v1, v2 vanish in a neighborhood U of (∂M1)+. The last equation of
(5.10) takes the form of the following boundary value problem

∂3v3 =
3

2

(
f̃33 −G

)
, v3|(∂M1)+ = 0,

where G depends only on vi, ∂jvi, g
jk, Γk

j� for i ∈ {1, 2}. Thus we have found v
and shown that it vanishes in U .

Now we define f � := fs
M1

− dBw − dBv. We have f � = 0 in U and f �
i3 = 0 in

M1, i = 1, 2, 3. Moreover, w + v = 0 on (∂M1)+. On the other hand, there is

a unique v� ∈ C(M1) that solves (5.10) with f̃ replaced by fs
M1

, and v� = 0 on

(∂M1)+. Therefore f � = fs
M1

− dBv�, with v� = w + v. Since the coefficients in

the system (5.10) are analytic, and so are fs
M1

and ∂M1, tensor field v� is analytic

in M1 \ E, where E ⊂ ∂M1 is the set where e3 is tangential to ∂M . Thus f � is
analytic in M1 \E. Due to the fact that f � = 0 in U containing E, and by analytic
continuation, f � = 0 in M1.

We have proven fs
M1

= dBv� in M1, and v� = 0 on (∂M1)+. Soon we show that

v� = 0 also on the complement of (∂M1)+. If this holds, then we have

ΔBv� = δBfs
M1

= 0, in M1, v�|∂M1
= 0.

Thus Lemma 2.3 implies v� = 0, and fs
M1

= 0. To prove that v� = 0 on ∂M1

we proceed as follows: Let x ∈ (∂M1)+ and y ∈ (∂M1 \ (∂M1)+). Since (M1, g)
is simple there exists a unique geodesic γ connecting y to x. Let η ∈ TyM1 be
perpendicular to γ̇(0). Since v� = 0 in (∂M1)+ and Lfs

M1
= 0 we have the following

equation by (4.10)

v�iη
i = 〈LdBv�, η〉 = 〈Lfs

M1
, η〉 = 0.
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Perturbing x in the open set (∂M1)+ ⊂ ∂M we can show that the previous equation
holds for any η in the linearly independent set (ηi)

3
i=1. Thus v

�(y) = 0.
So far we have shown f = dBvM1

. Since supp f ⊂ M , we have that supp vM1
⊂

M . Therefore vM1
= vM , by Lemma 5.6 that is proven analogously to [44, Propo-

sition 4.3]. This gives fs
M = 0 and completes the proof of the theorem. �

Lemma 5.6. Let f = dBv, v|∂M = 0, and v ∈ C1(M). Then v(y) = 0 for any y
such that f(y) = 0, and y can be connected to a point on ∂M by a path that does
not intersect supp f .

6. Generic s-injectivity

In this section we prove Theorem 1.2 for 1 + 1 tensor fields using the Fredholm
property (4.21) of the normal operator, and the s-injectivity result for analytic
metrics. We note that by possibly conjugating all the operators with κ�

g from left

and κ�
g from right, we can work with the space SτM ⊗B Sτ ′M , of trace-free (1, 1)-

tensor fields that is defined independent of any metric structure.
We are ready to present the proof of Theorem 1.2.

Proof of Theorem 1.2 . Let g ∈ Cm(M) be a simple metric. By formula (4.21), in
Theorem 4.6 we have

QN = S +K, N := NL, S := SM2
,

with SQ = Q, NS = N . After applying S from the left to the above identity, we
have

QN = S + SK.

Thus K = SK and similarly KS = K. As S is self adjoint we also have K∗ = SK∗ =

K∗S. If we set Q̃ := S(Id +K∗)Q, then previous observations yield

Q̃N =S(Id +K∗)QN = S(Id +K∗)(Id +K) = S + K∗ +K +K∗K = S + K̃,

where K̃ = K∗ + K + K∗K is a compact self-adjoint operator L2(Sτ ′M ⊗B Sτ ′M ) →
SL2(Sτ ′M ⊗B Sτ ′M ). This implies

(6.1) Q̃N + P = Id + K̃ on L2(Sτ ′M ⊗B Sτ ′M ).

We are ready to show that the set of s-injective metrics is open in Cm-topology,
for anym ∈ N that is large enough. In the following we will indicate the dependence
on g by placing the subscript g on the operators N , S, etc. Suppose that Lg0 is
s-injective for some simple metric g0 ∈ Cm(M). Then Ng0 is s-injective as well,
and moreover the operator on right hand side of (6.1) has a finite dimensional
kernel on the space of solenoidal tensor fields. By using the s-injectivity of Ng0 ,
as in the proof of [44, Theorem 1.5], we can construct a finite rank operator Q0 :
L2(Sτ ′M1

⊗B Sτ ′M1
) → L2(Sτ ′M ⊗B Sτ ′M ) such that

(6.2) Id +K�
g0 = (Q̃g0 +Q0)Ng0 + Pg0 on L2(Sτ ′M ⊗B Sτ ′M )

is one-to-one, where K�
g0

:= K̃g0 +Q0Ng0 is compact. Thus according to Fredholm

alternative (Id+ K̃g0)
−1 is bounded. We choose f ∈ H1(Sτ ′M1

⊗B Sτ ′M1
) and apply

the operator Id +K�
g0 to the solenoidal part fs

M,g0
of f to obtain

‖fs
M,g0‖L2(M) ≤C

(
‖Q̃g0Ng0f‖H̃1(M1)

+ ‖Q0Ng0f‖L2(M1)

)
≤ C‖Ng0f‖H̃2(M1)

.
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This is the stability estimate of Theorem 1.2 for g = g0. Next verify the same
estimate, with uniform C for g ∈ Cm(M) that is close enough to g0 with respect
to Cm-topology, for any m large enough. To do this we first write analogously

(6.3) (Q̃g +Q0)Ng + Pg = Id +K�
g.

We note here that the finite rank operator Q0 is the same as in (6.2), and the

compact operator K�
g := K̃g +Q0Ng, as an operator in L2(Sτ ′M ⊗B Sτ ′M ), depends

continuously on g. Therefore if k is large enough, it holds that the operator Id+K�
g

remains invertible, with a uniform bound for its inverse, whenever g is close enough
to g0 in Cm-topology. After applying (6.3) to f = fs

M,g ∈ H1(SτM1
⊗B Sτ ′M1

), we
have

‖fs
M,g‖L2(M) ≤ C

(
‖Ngf‖H̃2(M1)

+ ‖Ngf‖L2(M1)

)
≤ C‖Ngf‖H̃2(M1)

,

with C > 0 independent of g in a small neighborhood of g0 in Cm-topology. This
implies that also g is s-injective.

The proof of the theorem can be completed by using s-injectivity of Lg for
analytic metric g (Theorem 5.5), and the fact that analytic metrics are dense in
Cm(M). �

7. Ellipticity of the normal operator and adaptation of the proofs

for 2 + 2 tensor fields

In this section, we will first show the ellipticity of the normal operator for 2 + 2
tensors (restricted to the subspace of solenoidal tensors). To be more specific, we
will show that the operator M = (|D|gNL, PM2

)T is elliptic. Then we will sketch
adaptions needed to prove Theorems 1.2, 4.6 and 5.5 for 2 + 2 tensor fields.

7.1. Parametrix of the normal operator for solenoidal 2 + 2 tensor fields.
In the following we study the action of the principal symbol σ(NL). We note that
in 1 + 1 case, the principal symbol (3.14) can be written as

σ(NL)
ijk�(x, ξ)

=− 2
√
det g(x)

∫
R3

e−iξ·z
(
δku − zuz

k

|z|g

)
guu

′
(x)

(
δiu′ −

zizu′

|z|2g

)
zjz�

|z|4g
dz

=
−2π

|ξ|g

∫
SxM∩ξ⊥

(
δku − ωkωu

)
guu

′
(x)

(
δiu′ − ωiωu′

)
ωjω�dω.

We recall the notation (Pω)
i
j := δij − ωiωj . Thus for f ∈ T ′

xM ⊗B T ′
xM we have

〈σ(NL)(x, ξ)f, f〉g =
−2π

|ξ|g

∫
SxM∩ξ⊥

|(Pω)
i
uω

jfij |2gdω.

We do not derive an explicit formula for the principal symbol of the normal operator
in the case of 2 + 2 tensors, but sketch the main steps to conclude that for any
f ∈ S2T ′

xM ⊗B S2T ′
xM , we have analogously to the 1 + 1 case,

(7.1) 〈σ(NL)(x, ξ)f, f〉g =
2π

|ξ|g

∫
SxM∩ξ⊥

|(Pω)
i
a(Pω)

j
bω

kωlfijkl|2gdω.
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Let f, h ∈ S2τ ′M ⊗B S2τ ′M . Then, for the geodesic γ with initial conditions
(z, ω) ∈ ∂+SM , we have

〈Lf, Lh〉L2(β2(∂+(SM)))

=

∫
∂+(SM)

(∫ τ(z,ω)

0

(T 0,t
γ )uvab (Pω(t))

i
v(Pω(t))

j
ufijk�(x(t))ω

k(t)ω�(t)dt

)
(∫ τ(z,ω)

0

(T 0,s
γ )u

′v′

a′b′ (Pω(s))
i′

v′(Pω(s))
j′

u′ h̄i′j′k′�′(x(s))ω
k′
(s)ω�′(s)ds

)
gaa

′
(z)gbb

′
(z)dμ(z, ω).

By an analogous argument to one in Section 3 we show that NL is an integral
operator, whose Schwartz kernel near the diagonal can be written as

Kii′jj′kk′�′(x, y)

=
2Auu′vv′

(x, y)(
G(1)z · z)

)3 [
G̃(2)z

]
�

[
G̃(2)z

]
�′

[
G(2)z

]
j

[
G(2)z

]
j′

| detG(3)|√
det g(x)

×

⎛⎝gku(y)−

[
G̃(2)z

]
k

[
G̃(2)z

]
u

G(1)z · z

⎞⎠⎛⎝gk′v(y)−

[
G̃(2)z

]
k′

[
G̃(2)z

]
v

G(1)z · z

⎞⎠
×
(
giu′(x)−

[
G(2)z

]
i

[
G(2)z

]
u′

G(1)z · z

)(
gi′v′(x)−

[
G(2)z

]
i′

[
G(2)z

]
v′

G(1)z · z

)
,

(7.2)

where z = x− y and

Auu′vv′
(x, y) = gau

′
(x)gbv

′
(x)

(
T 0,ρ(x,y)
γx,−∇g

xρ(x,y)

)uv

ab
.

Therefore NL is a ΨDO of order −1, and formula (7.1) is valid.
For now on we use the short hand notation P = PM2

and aim to show that

σ(M)f :=

(
|ξ|g ◦ σ(NL)f

σ(P)f

)
= 0, (x, ξ) ∈ T ∗M2 \ {0},

implies f = 0, which proves that the zeroth order operator M = (|D|gNL, P)T is
elliptic.

Let ξ ∈ TxM . We choose ω, ω̃ ∈ SxM such that {ξ̂ := ξ
|ξ|g , ω, ω̃} is an orthonor-

mal basis of TxM . We also simplify

Qijkl
ab (ω) := (Pω)

i
a(Pω)

j
bω

kωl.

If (|ξ|g ◦ σ(NL)(x, ξ), σ(P))Tf = 0 , then

jBξ σ(P) = jBξ i
B
ξ σ((Δ

B)−1)jBξ = jBξ ,

where jBξ , i
B
ξ are given in (2.13) and (2.14), implies

(7.3) ξ̂�fijk� = ξ̂kfijk� = 0.

Thus it suffices to prove that fijk�ω
� = 0 and fijk�ω̃

� = 0.
Next we note that (7.1) gives

Q(ω)f := Qijkl
ab (ω)fijkl = Qijkl

ab (ω̃)fijkl = Qijkl
ab

(
ω̃ + ω√

2

)
fijkl = 0.
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Therefore we have

ξ̂jfijklω
kωl = ξ̂Q(ω)f = 0, ξ̂jfijklω̃

kω̃l = ξ̂Q(ω̃)f = 0,

ξ̂jfijklω
kω̃l = ξ̂Q

(
ω + ω̃√

2

)
f − 1

2
ξ̂jfijklω

kωl − 1

2
ξ̂jfijklω̃

kω̃l = 0,

and

(7.4) ω̃jfijklω
kωl = ω̃Q(ω)f = 0, ωjfijklω̃

kω̃l = ωQ(ω̃)f = 0.

Since we assumed f ∈ S2T ′
xM⊗BS2T ′

xM , the trace-free condition μf = 0 and (7.3)
yield

fijklω
iωk = fijklω

jωl = −fijklω̃
j ω̃l = −fijklω̃

iω̃k.

After applying (7.4) to previous equation we get

fijklω
iωjωkω̃l = fijklω

iω̃jω̃kω̃l = fijklω̃
iω̃jωkω̃l = fijklω̃

iωjω̃kωl = 0.

Then we compute

2(ω − ω̃)(ω − ω̃)Q

(
ω + ω̃√

2

)
f

=fijkl(ω − ω̃)i(ω − ω̃)j(ω + ω̃)k(ω + ω̃)l

=fijklω
iωjωkωl + fijklω̃

iω̃jω̃kω̃l − 4fijklω
iω̃jωkω̃l

=fijklω
iωjωkωl + 5fijklω̃

iω̃jω̃kω̃l

=6fijklω
iωjωkωl

=0.

Therefore we can conclude that f = 0.
The rest of the proof of Proposition 4.4 for 2 + 2 tensor fields is as presented

earlier.

7.2. A sketch of proof for Theorem 4.6 in 2+2 case. For x ∈ M1 \M , choose
ξ such that the geodesic γ = γx,ξ hits the boundary ∂M1 before ∂M and minimizes
the distance between x and ∂M1. As we have proven Proposition 4.4 for 2 + 2
tensor fields, formula (4.9) holds and (4.10) is to be replaced by

(7.5) [vM1
(x)]ijkη

iηjξk = −
∫ τ

0

[dBvM1
(γ(t))]ijk�η

i(t)ηj(t)γ̇k(t)γ̇�(t)dt,

where η ⊥ ξ. Choose η, η̃ such that B = {η, η̃, ξ} form an orthonormal basis of
Tx(M1 \M).

Therefore we have

|[vM1
(x)]ijkη

iηjξk| ≤ C |(T1NLf −K2f)(x)|g .

We need to show that there exists C > 0, uniform for any x ∈ M1 \M int, such that

(7.6) |[vM1
(x)]ijkw

i
m1

wj
m2

wk
m3

| ≤ C |(T1NLf −K2f)(x)|g , wmh
∈ B.

As |vM1
(x)|2g can be estimated by the sum of all the terms

∣∣[vM1
(x)]ijkw

i
m1

wj
m2

wk
m3

∣∣2,
the following L2-estimate holds

‖vM1
‖L2(M1\M) ≤ C‖T1NLf −K2f‖L2(M1\M).
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To prove (7.6) we need to repeat the steps between (2.25) and (2.31). First, we
have

[vM1
(x)]ijk

(
(η + η̃)i(η + η̃)jξk − ηiηjξk − η̃iη̃jξk

)
= 2[vM1

(x)]ijkη
iη̃jξk.

Then

|[vM1
(x)]ijkη

iη̃jξk| ≤ C |(T1NLf −K2f)(x)|g .
For x in a neighborhood of x0 ∈ ∂M , there exists ε0 > 0 such that γx,ξ−εη meets

∂M1 before meeting ∂M for any ε < ε0. Then we can obtain

|[vM1
(x)]ijk(η + εξ)i(η + εξ)j(ξ − εη)k| ≤ C |(T1NLf −K2f)(x)|g .

Choosing four distinct real numbers 0 < ε1, ε2, ε3, ε4 < ε0, by invertibility of the
Vandermonde matrix ⎛⎜⎜⎝

1 ε1 ε21 ε31
1 ε2 ε22 ε32
1 ε3 ε23 ε33
1 ε4 ε24 ε34

⎞⎟⎟⎠ ,

we have the estimates

|uijkξ
iξjηk|,

∣∣uijk

(
ξiξjξk − 2ηiξjηk

)∣∣ , ∣∣uijk

(
2ηiξjξk − ηiηjηk

)∣∣
≤ C |(T1NLf −K2f)(x)|g .

Here, the constant C depends on ε1, ε2, ε3, ε4, which could be chosen such that C is
uniform in a neighborhood of x0. One can then just continue the steps and get the
estimates (7.6) with C uniform in a neighborhood of x0. We omit the details here.
Finally, by a compactness argument, we have (7.6) with C uniform in M1 \M .

Next we estimate the H1-norm of vM1
in M1 \ M . As earlier we can estimate

|∇vM1
|2g by the sum of all terms∣∣w�

m4
∇�[vM1

(x)]ijkw
i
m1

wj
m2

wk
m3

∣∣2 , wmh
∈ B.

Recall that we have

w�∇�[vM1
]ijkw

i
m1

wj
m2

wk =
[
dBvM1

]
ijk�

wi
m1

wj
m2

wkw�,

if w �= wm1
, wm2

. We only need to estimate the terms

(7.7) w̃�∇�[vM1
(x)]ijkw

i
m1

wj
m2

wk, w �= w̃, w �= wmh
,

and

(7.8) w̃�∇�[vM1
(x)]ijkŵ

iwjwk.

We start with the term (7.7) and as earlier we work in boundary normal coordinates
(x′, x3) of M near some fixed boundary point x0 ∈ ∂M .

We have the following identity analogous to (4.12):

[vM1
(x)]ij3w

i
m1

wj
m2

= −
∫ ∞

x3

[dBvM1
(γx,ξ(t))]ij33w

i
m1

(t)wj
m2

(t)dt, wmh
∈ {η, η̃},

and (4.13) has become

X�
(k)∇�[vM1

(x)]ij3w
i
m1

wj
m2

=−
∫ ∞

x3

X(k)

(
[dBvM1

(γx,ξ(t))]ij33w
i
m1

(t)wj
m2

(t)
)
dt.

(7.9)
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That is we have estimated (7.7) when w = ξ and w̃ ∈ {η, η̃}. To estimate for
the remaining case of (7.7) we denote w̃ = ξ and w = η. Then it must hold that
wmh

∈ {ξ, η̃} and

[μ∇vM1
(x)]jk = ξm∇m[vM1

(x)]pjkξ
p + ηm∇m[vM1

(x)]pjkη
p + η̃m∇m[vM1

(x)]pjkη̃
p.

Straightforward computation yields[
dBvM1

]
ijk�

wi
m1

wj
m2

ηkξ� =

(
1

2
(∇�[vM1

(x)]ijk +∇k[vM1
(x)]ij�)

)
wi

m1
wj

m2
ηkξ�

− 1

10

(
δi� (ξ

m∇m[vM1
(x)]pjkξ

p + ηm∇m[vM1
(x)]pjkη

p

+ η̃m∇m[vM1
(x)]pjkη̃

p

)
wi

m1
wj

m2
ηkξ�

+ δj�

(
ξm∇m[vM1

(x)]pikξ
p + ηm∇m[vM1

(x)]pikη
p

+ η̃m∇m[vM1
(x)]pikη̃

p

)
wi

m1
wj

m2
ηkξ�

)
.

Taking w1, w2 ∈ {ξ, η̃} in the above formula, we can get desired estimates for
ξ�∇�[vM1

(x)]ijkw
i
m1

wj
m2

ηk.
It remains to estimate the terms appearing in (7.8). Set w̃ = ξ in (7.8) and write[

dBvM1

]
ijk�

ŵiwjwkξ�

=

(
1

2
(∇�[vM1

(x)]ijk +∇k[vM1
(x)]ij�)

)
ŵiwjwkξ�

− 1

10

((
δi�ξ

m∇m[vM1
(x)]pjkξ

p + ηm∇m[vM1
(x)]pjkη

p

+ η̃m∇m[vM1
(x)]pjkη̃

p
)
ŵiwjwkξ�

+ δj�

(
ξm∇m[vM1

(x)]pikξ
p + ηm∇m[vM1

(x)]pikη
p

+ η̃m∇m[vM1
(x)]pikη̃

p
)
ŵiwjwkξ�

+ δik

(
ξm∇m[vM1

(x)]pj�ξ
p + ηm∇m[vM1

(x)]pj�η
p

+ η̃m∇m[vM1
(x)]pj�η̃

p
)
ŵiwjwkξ�

+
(
ξm∇m[vM1

(x)]pi�ξ
p + ηm∇m[vM1

(x)]pi�η
p

+ η̃m∇m[vM1
(x)]pi�η̃

p
)
ŵiξ�

)
.

(7.10)

We drop out all the terms in the right hand side of (7.10) that do not have the
normal derivative ξm∇m, to obtain

1

2
∇�[vM1

(x)]ijkŵ
iwjwkξ� − 1

10

(
δi�ξ

m∇m[vM1
(x)]pjkξ

pŵiwjwkξ�

+ δj�ξ
m∇m[vM1

(x)]pikξ
pŵiwjwkξ� + δikξ

m∇m[vM1
(x)]pj�ξ

pŵiwjwkξ�

+ ξm∇m[vM1
(x)]pi�ξ

pŵiξ�
)
.
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If w = ξ the simplified version of the right hand side of (7.10) is

1

2
∇�[vM1

(x)]ijkŵ
iξjξkξ� − 1

10

(
δi�ξ

m∇m[vM1
(x)]pjkξ

pξjξkŵiξ�

+ ξm∇m[vM1
(x)]pikξ

pŵiξk + δikξ
m∇m[vM1

(x)]pj�ŵ
iξpξjξ�ξk

+ ξm∇m[vM1
(x)]pi�ξ

pŵiξ�
)
.

Which is always a nonzero multiple of ∇�[vM1
(x)]ijkŵ

iξjξkξ�, and thus can be
estimated.

For w = η or w = η̃, the situations are analogous, and we only consider the first
case. We get

1

2
∇�[vM1

(x)]ijkŵ
iηjηkξ� − 1

10

(
δi�ξ

m∇m[vM1
(x)]pjkξ

pŵiηjηkξ�

+ δikξ
m∇m[vM1

(x)]pj�ξ
pŵiηjηkξ� + ξm∇m[vM1

(x)]pi�ξ
pŵiξ�

)
,

for the simplified version of the right hand side of (7.10). Here the last two terms
have already been estimated and the first term vanishes if ŵ �= ξ. Therefore we have
also found a formula for ∇�[vM1

(x)]ijkŵ
iηjηkξ� that contains the only tangential

derivatives and dBvM1
.

As earlier we can find C > 0 depending only on the distance to ∂M1, which
satisfies the following pointwise estimate:∣∣w�

m4
∇�[vM1

(x)]ijkw
i
m1

wj
m2

wk
m3

∣∣ ≤ C

(
2∑

k=1

|χ∇X(k)
(T1NLf)|g + |K4f |g

)
, wmh

∈ B.

To complete the proof of the second claim of Theorem 4.6 we refine operator T2
using equation (7.5). The rest of the proof of Theorem 4.6 is analogous to what we
did earlier.

7.3. A sketch of proof for Theorem 5.5 in 2 + 2 case. We sketch here the
required changes needed for the proofs of Theorems 5.5 and 1.2 for 2 + 2 tensors
fields.

First we note that the formula (7.2) implies the claim of Proposition 5.1 for 2+2
tensor fields. We note that Proposition 5.3 is analogous to 1+1 case, since we have
proved Theorem 4.6 for 2 + 2 tensor fields. Then we arrive at Lemma 5.4, which
requires some modifications.

Proof of Lemma 5.4 in 2 + 2 case. We fix x0 ∈ ∂M and take the boundary normal
coordinates x = (x′, x3) in a neighborhood U ⊂ M of x0. In these coordinates we
have gi3 = δi3, in U , for any i = 1, 2, 3. We aim to find a (trace-free) 3-tensor field

v, vanishing on ∂M , such that for f̃ := f − dBv we have

(7.11) f̃ijk3 = 0, in some open Ũ ⊂ U, that contains x0,

which is, due to (2.8), equivalent to

fijk3 −
1

2
∇3vijk −

1

2
∇kvij3 +

1

10

(
δj3g

mn∇nvimk + δi3g
mn∇nvjmk

+ gjkg
mn∇nvim3 + gikg

mn∇nvjm3

)
= 0, in Ũ .

(7.12)
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The order for determining the components of v is quite similar to what is outlined
in the proof of Lemma 2.3. Let us first consider the case k = 3. Then the above
equation becomes

(7.13) fij33 −∇3vij3 +
1

5

(
δj3g

mn∇nvim3 + δi3g
mn∇nvjm3

)
= 0, in Ũ .

Remember that

∇�vijk = ∂�vijk −
(
Γm
i�vmjk + Γm

j�vimk + Γm
k�vijm

)
,

and the Christoffel symbols, in the boundary normal coordinates, satisfy Γk
33 =

Γ3
k3 = Γ3

3k = 0. If i, j �= 3 we can write (7.13) as an ODE system, with respect
to the travel-time variable x3, for the unknowns vαβ3, α, β �= 3, which can thus be
determined.

If i = 3 and j �= 3 we write (7.13) in the form

f3j33 −
6

5
∇3v3j3 +

1

5
gαβ∇αvβj3 = 0, in U, α, β ∈ {1, 2}.

Thus v3j3 can be found by solving the corresponding initial value problems. Finally
we set i = j = 3 and the system (7.13) takes the form

f3333 −
7

5
∇3v333 +

2

5
gαβ∇αvβ33 = 0, in U, α, β ∈ {1, 2}.

Now we have determined vij3, next we consider the case k �= 3. For i, j �= 3,
equation (7.12) gives an ODE system for vαβk, α, β ∈ {1, 2}. Then take i = 3 and
j �= 3, we get a system for v3αk, α �= 3. Finally, take i = j = 3, we get a system for
v33k.

Thus we have found a tensor field v that vanishes at the boundary and solves
(7.11). We claim that constructed v is trace-free. To see this, we multiply gjk to
both sides of (7.12) and get

−1

2
∇3(vijkg

jk) +
1

10
δi3∇m(vmjkg

jk) = 0.

First take i �= 3, we have

∇3(vijkg
jk) = ∂3(μv)i − Γk

3i(μv)k = 0.

Since Γk
3i = 0 for k = 3, the above identity gives an ODE system for (v1jkg

jl, v2jkg
jl).

Consequently, vijkg
jk = 0 for i �= 3. Then we take i = 3 and conclude that

v3jkg
jk = 0. The claim is proved.

It is easy to see that if f and g are analytic near ∂M , so is v.
Similar to the proof of Lemma 5.4, we can show that

(7.14) ηiηj f̃ijk�ξ
kξ� = 0,

at the chosen boundary point x0, whenever ξ is tangential to the boundary and
η ⊥ ξ. We set e3 = ν(x0), and eα = ∂

∂x′α |x0
for α = 1, 2. Setting ξ = eα and η = ei,

α ∈ {1, 2}, i ∈ {1, 2, 3}, i �= α, then the previous equation implies

f̃iiαα = 0, i ∈ {1, 2, 3}, α ∈ {1, 2}, i �= α.

This means that the following terms vanish

f̃1122, f̃2211, f̃3311, f̃3322.
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Then take ξ = e1, η = 1√
2
(e2 + e3), we can conclude that f̃2311 = 0. Similarly

f̃1322 = 0. Let us summarize what we have right now:

f̃ijαα = 0, i, j ∈ {1, 2, 3}, α ∈ {1, 2}, i, j �= α.

Take ξ = 1√
2
(e1 + e2) and η = e3, we obtain that f3312 = 0.

Let ε > 0. If we set η = e1 + εe2 and ξ = e2 − εe1, then equation (7.14) implies
that the coefficients of the powers of the ε satisfy
(7.15)

f̃αααα − 4f̃αβαβ + f̃ββββ = 0, and f̃βααα − f̃βββα = 0, α �= β, α, β ∈ {1, 2}.

By (7.11) and the trace-free condition, we have f̃αααα = −f̃αβαβ = f̃ββββ and

f̃βααα = −f̃βββα. Together with (7.15), we have

f̃αααα = f̃αβαβ = f̃βααα = 0 α �= β, α, β ∈ {1, 2}.

Taking ξ = e1 + εe2 and η = e3 + e2 − εe1 in (7.14) and collecting coefficients of
1, ε, ε2, ε3, we have

−f̃3222 + 2f̃3112 = 0,

−f̃3111 + 2f̃3221 = 0.

Together with the relation resulted from trace-free condition f̃3222+ f̃3112 = f̃3111+
f̃3221 = 0, we obtain f̃3222 = f̃3112 = f̃3111 = f̃3221 = 0. Therefore we can conclude
that f̃ vanishes at x0. Since x0 was an arbitrary point in ∂M ∩ U we have shown

that f̃ vanishes at ∂M ∩ U .
Similar to the proof of Lemma 5.4, we can prove

(7.16) ∂p
x3
f̃ijk�|x=x0

= 0, p ∈ N, i, j, k, � ∈ {1, 2, 3},

and conclude the proof. �

The adaptations needed for the proof of Theorem 5.5 in the 2 + 2 case are
straightforward and therefore omitted. The rest of the proof for Theorem 1.2 is
analogous to 1 + 1 case.

Appendix A. Linearization of anisotropic elastic travel tomography

In this appendix, we effectively study linearized travel-time tomography prob-
lems for polarized elastic waves. For our purposes this means the determination of
some elastic parameters by measuring the travel times of qS -polarized waves – see
the definition below. We use the typical notations and terminologies of the seismo-
logical literature; see for instance [8]. We let C = Cijkl(x) be a smooth stiffness
tensor on R3 which satisfies the symmetry

(A.1) Cijk�(x) = Cjik�(x) = Ck�ij(x), x ∈ R3.

We also assume that the density of mass ρ(x) is a smooth function of x and define
density–normalized elastic moduli

A = Aijk�(x) =
Cijk�(x)

ρ(x)
.
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6132 MAARTEN V. DE HOOP ET AL.

The elastic wave operator P , associated with the elastic moduli A, is a matrix
valued second order partial differential operator given by

Pik = δik
∂2

∂t2
−
∑
j,k

(
Aijk�(x)

∂

∂xj

∂

∂x�

)
+ lower order terms.

For every (x, p) ∈ T ∗R3 we define a square matrix Γ(x, p), by

(A.2) Γik(x, p) :=
∑
j,�

Aijk�(x)pjp�.

This is known as the Christoffel matrix. Due to (A.1) the matrix Γ(x, p) is symmet-
ric. We also assume that Γ(x, p) is positive definite for every (x, p) ∈ T ∗R3 \ {0}.

The principal symbol σ(t, x, ω, p) of the operator P is then a matrix-valued map
given by

σ(t, x, ω, p) = ω2I − Γ(x, p), (t, x, ω, p) ∈ T ∗R1+3.

Since the matrix Γ(x, p) is positive definite and symmetric, it has three positive
eigenvalues Gm(x, p), m ∈ {1, 2, 3}, which are homogeneous of degree 2 in the
momentum variable p.

We assume that

(A.3) G1(x, p) > Gm(x, p), m ∈ {2, 3}, (x, p) ∈ T ∗R3 \ {0}.

It was shown in [15] that
√
G1 is a Legendre transform of some Finsler metric F .

Thus the bicharacteristic curves of ω2−G1(x, p) are given by the co-geodesic flow of
F . We recall that a bicharacteristic curve is a smooth curve on T ∗R1+3, on which
ω2 − G1(x, p) vanishes, that solves the Hamilton’s equation for the Hamiltonian
ω2 − G1(x, p). We consider a second order pseudo-differential operator �P :=
∂2

∂t2 − G1(x,D), D := i(∂x1
, ∂x2

, ∂x3
). Since G1 is related to a Finsler metric the

operator �P is of real principal type (the bi-characteristic curves exit any compact
set). The solutions u of the corresponding scalar ΨDE �Pu = f represent qP -waves
(quasi-pressure waves) and moreover the wavefront set of u(t, ·) propagates along
the bicharacteristics of ω2 −G1(x, p) [19, 23].

Next, we describe the propagation of the slower qS1 and qS2 waves (quasi-shear
waves), that are given as solutions to the scalar equations with the operators

�Sm
:= ∂2

∂t2 − Gm(x,D), m ∈ {2, 3}. In the anisotropic case the unit level sets

(Gm)−1{1} ⊂ T ∗R3, m ∈ {2, 3}, also referred to as slowness surfaces, typically will
have points in common. See [11] for a study of different types of intersections. The
size and codimension of their intersection set depends on the additional symmetries
that the stiffness tensor may have. Thus in general the smaller eigenvalues G2, G3

are only continuous. We denote by Dc = (G2)−1{1} ∩ (G3)−1{1} the set of de-
generate eigenvalues, and note that outside this set G ∈ {G2, G3} yields a smooth
Hamiltonian H(x, p) = 1

2G(x, p). Let U ⊂ (T ∗R3 \{0})\Dc be an open set, then a
local Hamiltonian flow θ : D → U of H exists, where D is the maximal flow domain
of θ that satisfies

(A.4) θ(t, (x, p)) ∈ U, (x, p) ∈ (U ∩G−1{1}).
In general it is possible that the momentum gradient DpH vanishes at some point
(x, p) ∈ U , which would cause problems in translating between Hamiltonian and
Lagrangian formalisms. For this reason the operators �Sm

may not be of real
principal type in U . See for instance [33, Section 1.2] for the connection between
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different definitions for real principal type operators. We make a standing assump-
tion that DpH does not vanish in U . In other words we exclude the occurrence of
inflection points. We choose (x0, p0) ∈ U ∩G−1{1} and say that the elastic travel-
time τc from (x0, p0) to (x, p) ∈ θ(R+, (x0, p0)) ∩ U is the smallest t for which
θ(t, (x0, p0)) = (x, p).

Under these two assumptions for the Hamiltonian H in U we are ready to set an
inverse problem for anisotropic elastic travel-times. We suppose that there exists
an open set M ⊂ R3 and open sets Σ,Σ′ ⊂ ∂M such that for any x ∈ Σ, x′ ∈ Σ
there is a unique characteristic curve of H contained in T ∗M ∩ U whose spatial
projection γ connects x to x′, where T ∗M is the cotangent bundle of M . Thus for
any x ∈ Σ, x′ ∈ Σ there exists a unique triplet

(τc; (x, p); (x
′, p′)) ∈ R+×U×U which satisfies θ(τc, (x, p)) = (x′, p′) ∈ G−1{1}.

Therefore τc is the elastic travel-time from (x, p) to (x′, p′) and we call dG(x, x
′) :=

τc the elastic distance between x and x′. We arrive in an inverse problem of
anisotropic elastic travel-time tomography :

Problem A.1. What can one infer about G in T ∗M when boundary distance data

(A.5) {dG(x, x′) ∈ R+ : x ∈ Σ, x′ ∈ Σ′}
is given?

We note that in general the sets Σ and Σ′ can be very small, and (A.5) may not
contain any information about G in some open set of T ∗M . This is illustrated in
Figure 2.

Σ

γ

x

x′

Σ′

O

M

Figure 2. If there exists a set O ⊂ M such that all characteristic
curves whose terminal points are contained in Σ∪Σ′ avoid the set
T ∗O, then data (A.5) does not provide information about G on
T ∗O.

Problem A.1 is highly non-linear and perturbations to anisotropic elasticity have
been largely unresolved. In the following we consider linearizations of this problem.
Since we have assumed that on the set U the eigenvalues G2 and G3 are distinct,
they and the corresponding unit length eigenvector fields are smooth on U (see
for instance [20, Chapter 11, Theorem 2]). In the following we recall a coordinate
representation of the Hamilton’s equation that the characteristic curve θ(t, (x0, p0)),
(x0, p0) ∈ U ∩ G−1{1} satisfies. Let q = q(x, p) be a polarization vector of G on
U . In other words it is the unit (with respect to Euclidean metric) eigenvector of
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the Christoffel matrix associated with the eigenvalue G. Then we can write the
eigenvalue G as

G(x, p) = Γikq
iqk = Aijk�q

iqkpjp�, (x, p) ∈ U.

From now on we denote the characteristic curve θ(t, (x0, p0)) by (x(t), p(t)) ∈ U .
Therefore the polarization vector q = q(x(t), p(t)) is also seen as a function of
the time variable t implicitly. The following Hamilton’s equation holds true on
(x(t), p(t))

ẋm =
∂

∂pm
H(x, p) = Aijkmqiqkpj

and ṗm = − ∂

∂xm
H(x, p) = −1

2

∂Aijk�

∂xm
qiqjpjp�.

(A.6)

Next, we recall the linearization scheme for the elastic distance dG, that leads to an
integral geometric problem of 4-tensor fields. This procedure has been introduced
earlier in geophysical literature (see for instance [10]) using Fermat’s principle. It
is well known that characteristic curves of Hamiltonian flow satisfy this principle
(see for instance [3]). For the convenience of the reader we give the proof and the
exact claim below.

Since DpH does not vanish on U , the Legendre transform, that maps a co-vector
to a vector, is well defined. Using the inverse of this map we define a Lagrangian
function L on the image of U under this transform. That is

L(x, y) := p(x, y) · y −H(x, p(x, y)).

If (x(t), y(t)) = (x(t), ẋ(t)) is the image of a characteristic curve of H, under the
Legendre transform, then on this curve L ≡ 1/2 and the following Euler-Lagrange
equations hold true

∂

∂xi
L(x, y)− d

dt

(
∂

∂yi
L(x, y)

)
= 0, for every i ∈ {1, 2, 3}.

Let x(t) be the base projection of a characteristic curve and xs(t) any smooth one-
parameter variation of this curve that fixes the start point x = xs(0) and end point
x′ = xs(τc). We choose the notation V for the variation field V (t) = ∂

∂sxs(t)|s=0 of
xs(t). Then using integration by parts, we obtain

d

ds

∫ τc

0

L(xs(t), ẋs(t))dt

∣∣∣∣
s=0

=

∫ τc

0

(
DxL(x, ẋ)−

d

dt
(DyL(x, ẋ))

)
· V dt

∣∣∣∣
s=0

.

Thus Euler-Lagrange equations imply that characteristic curves are the critical
points of the energy functional

L(γ) =
∫ τc

0

L(γ(t), γ̇(t))dt,

where γ is any C1-smooth curve. This is the version of Fermat’s principle we need.
We note that the characteristic curves are not necessarily local minimizers of the
energy functional.

We now have the framework to linearize the travel-time tomography problem
A.1. Let As be a smooth one-parameter family of elastic moduli. Suppose that
we can choose sets U,M,Σ,Σ′ such that the discussion above holds for any s, if A
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is replaced by As. Since the Legendre transforms depend on the parameter s we
obtain a family of Lagrangians

Ls(x, y) = ps(x, y) · y −Hs(x, ps(x, y)),

which satisfy

(A.7)
d

ds
Ls(x, y) =

d

ds
ps · y −

d

ds
Hs −DpHs ·

d

ds
ps.

If the data (A.5) is independent of s, then due to Fermat’s principle, equations
(A.6) (A.7), and the assumption that qs is a unit vector on U , we obtain

0 =
d

ds
dG(x, x

′)

∣∣∣∣
s=0

=
d

ds

∫ τc

0

Ls(xs(t), ẋs(t))dt

∣∣∣∣
s=0

=

∫ τc

0

d

ds
Ls(x(t), ẋ(t))dt

∣∣∣∣
s=0

=−
∫ τc

0

d

ds
Hs(x, p)dt

∣∣∣∣
s=0

= −
∫ τc

0

1

2

d

ds

[
(As)ijk�q

i
sq

k
s

]
pjp�dt

∣∣∣∣
s=0

=−
∫ τc

0

A′
ijk�

2
qiqkpjp�dt,

(A.8)

where A′
ijk� = d

ds (As)ijk�|s=0, and (x, p) = (x(t), p(t)) is the characteristic curve
of the reference model. Thus the linearization of anisotropic elastic travel-time dG
leads to an integral problem for 4-tensor fields.

In the following we will see that a similar linearization scheme applies in the case
when As is isotropic for any s. Recall that in isotropic medium the elastic moduli
can be written as

(A.9) C0 = C0
ijk� = λδijδk� + μ (δikδj� + δi�δjk) .

The functions λ(x), μ(x) > 0 are known as the Lamé parameters.
If the mass density ρ is given it follows from (A.9) that the isotropic Christoffel

matrix is

(A.10)
λ

ρ
pipk +

μ

ρ

(
δik|p|2e + pipk

)
,

whose eigenvectors are p and any unit vector q that is perpendicular to p. Moreover
the corresponding eigenvalues are
(A.11)

G1 = Γikp̂
ip̂k =

(
λ+ 2μ

ρ

)
|p|2e, p̂ =

p

|p|e
and G := G2 = G3 = Γikq

iqk =
μ

ρ
|p|2e.

In particular G1 or G are both smooth and do not have inflection points. Thus
any smooth one-parameter family As of isotropic elastic moduli satisfies all the
additional assumptions we had to impose earlier for the general anisotropic case.

We recall that for isotropic elasticity, there are two different wave-speeds, namely,

P -wave (Pressure, longitudinal wave) speed cP =
√

λ+2μ
ρ and S -wave (Shear,

transverse wave) speed cS =
√

μ
ρ . Therefore we can consider M , in Problem

A.1, as a Riemannian manifold with conformally Euclidean metric gP = c−2
P ds2

or gS = c−2
S ds2, where ds2 is the Euclidean metric.
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We repeat the earlier linearization scheme with respect to smaller eigenvalue G
and obtain

0 =
d

ds
dG(x, x

′)

∣∣∣∣
s=0

= −1

2

∫ τc

0

(
log

(
c2S
))′

dt.

This equation follows from (A.11) and from the initial condition (x, p) ∈ G−1{1}.
Moreover in this case τc is the Riemannian distance between x, x′ ∈ ∂M with
respect to the metric gS . Therefore we have shown that the linearization of elastic
travel-times in isotropic case leads to an integral geometry problem on functions.

In our final example we consider the linearization of the averaged quasi-shear
wave travel-times in weakly anisotropic medium. Suppose that we are given a fam-

ily As := C0

ρ + sC
ρ of elastic moduli on some open and precompact domain of

R3. Here C0 is an isotropic stiffness tensor having the form (A.9), C is an arbi-
trary anisotropic stiffness tensor, which satisfies the symmetry (A.1), and s is a
real parameter close to zero. We note that for |s| small enough the largest eigen-
value G1

s of the Christoffel matrix Γs of As is always distinct from the smaller
ones. Therefore, G1

s(x, p) and the corresponding gS-unit eigenvector field qs(x, p)
are smooth in all variables (x, p, s). As the elastic moduli As is isotropic at s = 0,
we have the degeneracy of eigenvalues, G2

0(x, p) = G3
0(x, p) and, hence, G

2
s(x, p) and

G3
s(x, p) may not be smooth when s tends to zero. However, G2

s(x, p) +G3
s(x, p) =

Tr (Γs) (x, p)−G1(x, p) is smooth in (x, p, s), and strictly positive for p �= 0. There-
fore, we introduce the smooth one-parameter family of averaged qS-Hamiltonians,

(A.12) Hs :=
1

4

(
G2

s +G3
s

)
,

inheriting the homogeneity of order 2 in p-variable. Since H0 is conformally Eu-
clidean, we note that, for |s| sufficiently small,

√
Hs is, in fact, a smooth family of

co-Finsler metrics, with s-uniformly lower bounded injectivity radii while Hs does
not have inflection points. We briefly analyze the Hamiltonian flow associated with
Hs – which may be thought of as describing the propagation of singularities of an
artificial wave – see below. In the following we will show that, up to the first order,
the travel time along this flow can be identified with the average of travel times
associated with the two qS -waves. This identification has been originally proposed
in [9].

First we note that it follows from [9, equations (24) and (26)] that for x, x′ ∈ R3

that are close enough we can write the average qS-travel time as

dG2
s
(x, x′) + dG3

s
(x, x′)

2

= dgS (x, x
′)− s

∫
x0(t)

1

4

∑
ijk�

(
δik − c2Spipk

)
pjp�

Cijk�

ρ
dt+O(s2),

(A.13)

where x0(t) is the gS-geodesic connecting x to x′ and p = p(t) is the momentum
of x0(t). We recall that the term δik − c2Spipk, in (A.13), is the projection onto the
orthocomplement of p.

Next we study the linearization of Hs-travel times dHs
(x, x′). Let p0(t) ∈

T ∗
x0(t)

R3 be the momentum of the gS-geodesic connecting x to x′. Thus (x0(t), p0(t))

is a characteristic curve of H0, with initial value (x, p) ∈ T ∗R3, |p|gS = 1. In ad-
dition we denote dHs

(x, x′) = τc that is the gS-distance between x and x′. We
note that due to the uniform lower bound for the injectivity radii of

√
Hs, for every
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s ∈ (−ε, ε) there exists a
√
Hs-distance minimizing geodesic xs(t) from x to x′,

possibly after choosing x′ closer to x and choosing ε > 0 small enough.
We consider the following system of linear ODEs

D

dt
eIs(t) = −

〈
eIs,

D

dt
qs

〉
gS

qs(t), eIs(0) = ηIs ∈ TxR
3,

〈ηIs , ηJs 〉gS = δIJ , and 〈ηIs , qs(0)〉gS = 0, I, J ∈ {1, 2}.
(A.14)

Here qs(t) = qs(xs(t), ps(t)) and D
dt is the covariant derivative with respect to

Riemannian metric gS along the
√
Hs-geodesic xs(t) from x to x′. Both solutions

eIs of (A.14) satisfy
〈
eIs, qs

〉
gS

≡ 0, due to the assumption |qs|gS ≡ 1, hence it also

holds that
〈
eIs , e

J
s

〉
gS

≡ δIJ along xs. Therefore we have shown that for any s

the vector fields {qs, e1s, e2s} form a gS-orthonormal frame moving along xs. With
respect to this basis we can write in T ∗

xs(t)
R3

G2
s +G3

s = (cS)
−2Tr

(
Γ̂s

)
, for Γ̂s =

⎛⎝ (Γse
1
s) · e1s (Γse

1
s) · e2s

(Γse
2
s) · e1s (Γse

2
s) · e2s

⎞⎠ .

Since e10(t) and e20(t) are orthogonal to ẋ0(t), and we assumed that they are gS-
normalized, we obtain

d

ds

[
(Γse

J
s ) · eJs

] ∣∣∣∣
s=0

=
Cijk�

ρ
pj0p

�
0

(
eJ0
)i (

eJ0
)k

, J ∈ {1, 2}.

Finally we assume that Hs-travel-time dHs
(x, x′) from x to x′ is the constant τc.

Then we run through the same linearization process as earlier and obtain

0 =
d

ds
dHs

(x, x′) = −
∫ τc

0

d

ds
Hs(x0(t), p0(t))dt

∣∣∣∣
s=0

=−
∫ τc

0

Cijk�

4c6Sρ
ẋj ẋ�(e1)i(e1)kdt−

∫ τc

0

Cijk�

4c6Sρ
ẋj ẋ�(e2)i(e2)kdt,

ẋ = ẋ0(t), e
I := eI0(t), I ∈ {1, 2}.

(A.15)

In the last equation we also transformed the momentum variable into the velocity
variable.

If we write the right hand side of (A.13) using the basis {ẋ0, e
1
0, e

2
0} we notice

that the first order term equals to the right hand side of (A.15). Therefore we have
verified that Hs-travel times and average of travel times associated with the two
qS -waves coincide up to the first order. We also note that up to a constant the
integrands in the right hand side of (A.15) are the same as in [42, Problem 7.1.1].

Finally we note that the polarization vector q0(t), coincides with the velocity
field ẋ0(t) of the geodesic x0(t) in the reference medium gS . Thus we have, due to
(A.14), that eI0(t) is given by a parallel translation of ηI0 ∈ TxR

3 along the reference
ray x0(t). We have shown that an anisotropic perturbation of an averaged isotropic
shear wave travel-time leads to an integral geometry problem on the 4-tensor field

fijk� := 1
2
Cki�j+Ckj�i

ρc6S
which is related to the mixed ray transform L2,2f for the

metric gS . However we want to emphasize that the travel-time dHs
(x, x), of the

aforementioned artificial wave, is given only by the averaged qS-Hamiltonian Hs,
in (A.12), that is independent of the choice of the initial values ηIs in (A.14), which
yield the shear wave polarization vector fields eI0(t) in formula (A.15).
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To conclude the first part of the appendix we note that (A.15) implies that
the travel-time data alone only gives us partial information about the mixed ray
transform. However, if in addition we include the measurement of the shear wave
amplitude, the complete mixed ray transform can be obtained. In Appendix B, we
will show how one can recover the mixed ray transform from the linearization of
the Dirichlet-to-Neumann map of an elastic wave equation on M , by probing with
Gaussian beams. We also refer to [42, Chapter 7] for an alternative derivation of
the mixed ray transform.

Appendix B. The relation of the MRT and the Dirichlet-to-Neumann

map

In this section, we give another derivation of the mixed ray transform from the
inverse boundary value problem for elastic wave equations. We let M ⊂ R

3 be a
bounded domain with smooth boundary ∂M and x = (x1, x2, x3) be the Cartesian
coordinates. The system of equations describing elastic waves can be written as

ρ
∂2u

∂t2
− div(Cε(u)) = 0, (t, x) ∈ (0, T )×M,

u = h, on (0, T )× ∂M, u(0, x) =
∂

∂t
u(0, x) = 0, x ∈ M.

(B.1)

Here, u denotes the displacement vector and

ε(u) = (εij(u)) =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
is the linear strain tensor. Furthermore, C = (Cijk�) = (Cijk�(x)) is the stiffness
tensor and ρ = ρ(x) is the density of mass. As in Appendix A we assume that
Cijk� and ρ are all smooth functions, and the elastic tensor C is assumed to have
the symmetries as in (A.1). In addition we assume the operator − div(Cε(·)) to be
elliptic, in the following sense: There exists δ > 0 such that for any 3×3 real-valued
symmetric matrix (εij),

3∑
i,j,k,�=1

Cijk�εijεk� ≥ δ

3∑
i,j=1

ε2ij .

Under these assumptions we let ΛC to be the Dirichlet-to-Neumann map for the
elastic wave equation (B.1) (see for instance [16]), given by

ΛC : C2([0, T ];H1/2(∂M)) � h �→ Cε(u)ν|(0,T )×∂M ∈ L2([0, T ];H−1/2(∂M)).

Where T > 0 is large enough. The following inverse problem is of fundamental
importance in seismology:

Problem B.1. Can we reconstruct the elastic tensor C and the density ρ from the
Dirichlet-to-Neuman map ΛC?

We note that this problem is open for a general anisotropic C. For isotropic
medium, the uniqueness is shown under certain geometrical assumptions [6, 24, 39,
40, 46]. The uniqueness of transversely isotropic tensors is proved under piecewise
analytic assumption in [16], as well as fully anisotropic tensors under piecewise
homogeneous assumption. In contrast to the elastic problem, the corresponding
inverse problem for scalar wave equation has been solved in [4, 5]. In this second
appendix, instead of studying Inverse Problem B.1 for general anisotropic elastic
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tensors, we consider a linearization of the problem around isotropic elasticity. We
will see that the linearization leads to a family of ray transforms on four tensors.

From here we consider a one parameter family of anisotropic perturbations sC
around the isotropic elasticity C0 of the form (A.9), that is we study an elastic
tensor Cs = C0+ sC. We note that the map Cs �→ ΛCs

is Frechét differentiable at

C0, and the Frechét derivative is Λ̇C0 : C �→ Λ̇C0(C) := lims→0
1
s (ΛC0+sC − ΛC0).

We will study the injectivity of the linear map Λ̇C0 , whose action is given by

(B.2) 〈Λ̇C0(C)h1, h2〉(0,T )×∂M =

∫
(0,T )×M

Cijk�(x)∂xi
wj(x, t)∂xk

v�(x, t)dxdt,

and w (v) solves the elastic wave equation (backward one) with the isotropic elastic
tensor C0, ⎧⎪⎨⎪⎩

ρ∂2w
∂t2 − div(C0w) = 0, in (0, T )×M,

w = h1, on (0, T )× ∂M,

w(0, x) = ∂
∂tw(0, x) = 0, x ∈ M,⎧⎪⎨⎪⎩

ρ∂2v
∂t2 − div(C0v) = 0, in (0, T )×M,

v = h2, on (0, T )× ∂M,

v(T, x) = ∂
∂tv(T, x) = 0, x ∈ M.

(B.3)

A similar linearization for the time-harmonic elastic wave equation can be found in
[52].

Next we summarize the construction of Gaussian beam solutions to (B.3) used
in [50, Section 3]. We also refer to [21] for more discussions on Gaussian beams

solutions. Assume that M ⊂⊂ M̃ ⊂ R3, where M̃ is open and bounded, the

Riemannian metric gP/S with respect to C0 is known on M̃ and the Riemann-
ian manifold (M, gP/S) is simple. We choose a maximal unit-speed geodesic γ in

(M, gP/S), and extend it to M̃ assuming that once leaving M it will not return
back to it. Then ϑ(t) = (t + α, γ(t)) is a null-geodesic in the Lorentzian manifold

((0, T )× M̃,−dt2 + gP/S) joining two points on (0, T )× ∂M , as long as for α > 0
and T large enough. Let us first take an asymptotic solution M� to the elastic wave

equation on (0, T )× M̃ ,

ρ
∂2M�

∂t2
− div(C0M�) = O(�−N ),

representing S -waves, of the form

M� = χ

⎛⎝N+1∑
j=0

�−jaj

⎞⎠ ei�ϕ,

where � is a large parameter and all the vector fields (aj)
N+1
j=0 and the phase function

ϕ depend on time t and on location x. Here χ is a real valued cut-off function that
is compactly supported and equal to 1 in a neighborhood of ϑ. The phase function
ϕ satisfies Dϕ|ϑ(t) = γ̇(t), where D is the gradient with respect to the Euclidean
metric on M . The imaginary part of the spatial Hessian of the phase function ϕ is
positive definite, i.e. �(D2ϕ) > 0. In addition we have

(B.4) a0(ϑ(t)) = AS(ϑ(t))e(ϑ(t)),
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where e(ϑ(t)) = η(t) is an arbitrary parallel vector field along γ(t), perpendicular
to γ̇(t), that is D

dtη(t) = 0, η(t) ⊥ γ̇(t), and the amplitude AS can be chosen such
that

(B.5) AS |ϑ = det(YS)
−1/2c

−1/2
S ρ−1/2,

where YS(x, t) is well defined on ϑ and is given as a solution of a second order ODE.
Furthermore, we have

(B.6) det(�(D2ϕ))| det(YS)|2 ≡ c0

on ϑ with c0 a constant. Let h1 = M�|(0,T )×∂M , then one can determine the
remainder R� satisfying zero boundary and initial conditions, such that

(B.7) w = M� +R�

is a solution to the first equation in (B.3). For any m ∈ N we can choose large
enoughN such that the remainder termR� satisfies the estimate ‖R�‖H1(M×(0,T )) =
O(�−m). We also take

(B.8) v = M� +R′
� = χ

⎛⎝N+1∑
j=0

�−jaj

⎞⎠ e−i�ϕ +R′
�,

for a solution of the backward elastic wave equation in (B.3) with h2 = M�|(0,T )×∂M .

We multiply the identity (B.2) by �−
1
2 and use the representations (B.7) for w

and (B.8) for v, then due to the estimate [21, equation (3.33)] and the substitution

u0 := χ2∂xi
ϕ [a0]j∂xk

ϕ [a0]� we obtain

�−
1
2 〈Λ̇C0(C)h1, h2〉(0,T )×∂M =�

3
2

∫ T

0

∫
M

e−2�
ϕu0 dxdt+O(�−1), � → ∞.

(B.9)

Note that one can use the Fermi coordinates (τ, x′), as constructed in [50], under

which the Euclidean volume form is dxdt = c3Sdτ ∧ dx′, moreover τ =
√
2t and

x′ = 0 on ϑ. Notice that D�ϕ = 0 on ϑ. Then after using the method of stationary
phase to the integral ∫

e−2�
ϕu0c
3
Sdx

′

with the phase function f := i2�ϕ and amplitude u := u0c
3
S as in [26, Theorem

7.5.5.], we can write the right hand side of (B.9) into the form

(−iπ)
3
2

∫
ϑ

∣∣detD2�ϕ(ϑ(τ ))
∣∣− 1

2 u0(ϑ(τ ))c
3
S(ϑ(τ ))dτ +O(�−1), � → ∞.

Next we use the properties (B.5) and (B.6) to observe that

u0(ϑ(τ )) =|AS |2∂xi
ϕ ej∂xk

ϕ e�

∣∣∣
ϑ(t)

= | det(YS)|−1c−1
S ρ−1γ̇i(t)ηj(t)γ̇k(t)η�(t)

=

∣∣detD2�ϕ(ϑ(τ ))
∣∣ 12

√
c0

ρ−1γ̇i(t)ηj(t)γ̇k(t)η�(t).

Since c0 is a known constant, we have verified that

0 = lim
�→∞

�−
1
2 〈Λ̇C0(C)h1, h2〉(0,T )×∂M =

∫
ϑ

Cijk�

ρ
c2S γ̇i(t)ηj(t)γ̇k(t)η�(t)dt.(B.10)
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Finally we use the notation vi for raising the indices of a co-vector vi under the
metric gS , that is we have vi = c−2

S vi. Then due to formula (B.10) we have recovered

the mixed ray transform of the tensor field fijk� :=
1
2
Cki�j+Ckj�i

ρc6S
∈ S2τ ′M ⊗ S2τ ′M ,

from Λ̇C0(C) along the arbitrarily chosen geodesic γ with respect to the metric gS
for any parallel vector field η along γ that is perpendicular to γ̇.

For P -waves, we can construct solutions concentrating near a null geodesic ϑ(t) =
(t+ α, γ(t)) in the Lorentzian manifold ((0, T )×M,−dt2 + gP ). For the solutions
w, v constructed as (B.7), (B.8), we can take

a0 = APDϕ,

where the P -wave amplitude satisfies

AP |ϑ = det(YP )
−1/2c

−1/2
P ρ−1/2.

Similar as above, we end up with the (longitudinal) ray transform

0 =

∫
γ

Cijk�

ρc6P
γ̇i(t)γ̇j(t)γ̇k(t)γ̇�(t)dt.
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