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GENERIC UNIQUENESS AND STABILITY FOR THE MIXED
RAY TRANSFORM

MAARTEN V. DE HOOP, TEEMU SAKSALA, GUNTHER UHLMANN, AND JIAN ZHAI

ABSTRACT. We consider the mixed ray transform of tensor fields on a three-
dimensional compact simple Riemannian manifold with boundary. We prove
the injectivity of the transform, up to natural obstructions, and establish sta-
bility estimates for the normal operator on generic three dimensional simple
manifold in the case of 1 4+ 1 and 2 + 2 tensors fields.

We show how the anisotropic perturbations of averaged isotopic travel-
times of ¢S-polarized elastic waves provide partial information about the mixed
ray transform of 2 + 2 tensors fields. If in addition we include the measure-
ment of the shear wave amplitude, the complete mixed ray transform can be
recovered. We also show how one can obtain the mixed ray transform from
an anisotropic perturbation of the Dirichlet-to-Neumann map of an isotropic
elastic wave equation on a smooth and bounded domain in three dimensional
Euclidean space.

1. INTRODUCTION

In this paper we study an inverse problem of recovering a 4-tensor field from a
family of certain line integrals.

This family

is called the mized ray transform, and it was first considered in [42, Chapter
7]. We characterize the kernel of the mixed ray transform for 1 + 1 and 2 + 2
tensor fields for generic simple 3-dimensional Riemannian manifolds and provide a
stability estimate for the corresponding L?-normal operator.

We begin by introducing the mixed ray transform in the Euclidean space. Let
f be a smooth compactly supported two tensor field on R3. We choose a point
r € R? and a unit vector ¢&. Thus x and ¢ define a line {z +t£ € R3 : t € R}.
Then we choose a vector 1 that is orthogonal to £. The mixed ray transform L, ; f
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6086 MAARTEN V. DE HOOP ET AL.
of f for (z,&,n) is given by
(1.1) Liaf(z,&m) = / fij(x+t&n'e dt.

We note that if we had chosen n = ¢ in (1.1), then we would have obtained the
(longitudinal) ray transform of f. We recall that any 2-tensor f has a unique
decomposition f;;(z) = g(x) + ¢(x)8;;, with a zero trace uf® = S B =o.

i=1Ju
Since ¢ and 7 were chosen to be orthogonal to each other we get from (1.1) that
Li1(c(x)d;5) = 0. Thus for the mixed ray transform, the only relevant tensor

fields are the trace-free ones, for which uf = 0. Notice that if f = (Vv)? for
some 1-form v € C§°(R?) then the fundamental theorem of calculus implies that
Li1f = 0. Therefore L;; always has a non-trivial natural kernel, consisting of
potential tensor fields (Vv)B, v € C3°(R?). In this paper, we will consider the
mixed ray transform on certain Riemannian manifolds and study its injectivity up
to the natural obstruction.

Let (M, g) be a simple 3-dimensional Riemannian manifold with boundary 0M.
We recall that a compact Riemannian manifold is simple if it has a strictly convex
boundary and any two points x,y € M can be connected by a unique geodesic,
contained in M, depending smoothly on z and y. We use the notation T'M for
the tangent bundle of M, T*M for the cotangent bundle, and SM for the unit
sphere bundle, defined as SM = {(z,£) € TM; |{|yg = 1}. Let 04(SM) = {(z,§) €
SM; xz € OM, (§,v), < 0} be the inward pointing unit sphere bundle on 9M, where
v is the outward pointing unit normal vector field to the boundary. We use the
notation S*r}, ® S}, k,£ > 1 for the space of k + ¢ tensor fields on M that are
symmetric with respect to first £ and last £ indices. Note that a priori we do not
pose any regularity properties for the tensor fields. To emphasize the regularity we
use the standard notations C™, C>, L2, or H™ in front of the vector space of the
corresponding tensor fields.

The mixed ray transform Ly o f of a smooth tensor field f € C=(S*7}, ® S*r},)
is given by the following formula

7(x,8) ) ) ) .
(1‘2) (Lk,éf) (337 3 Ti) = ‘/0 fi1~~~ikj1~~je (W(t))n(t)“ o 'n(t)zk’y(t)h U ﬁ(t)”dt,

where (z,£) € 0+(SM) and y(t) = 7y,¢(t) is the unit-speed geodesic given by the
initial conditions (z,£). The vector n € T, M is perpendicular to &, and 7(t) is the
parallel translation of n along the geodesic v(t). We note that n(t) L 4(t) for any
t (see Figure 1 for an illustration). By 7(z,£) we mean the exit time of , which is
the first positive time in which v hits the boundary again. Since (M, g) is simple
the exit time function 7 is smooth on 0. SM [42, Lemma 4.1.1.].

If £ =0 in (1.2), the operator Lo, is the (longitudinal) geodesic ray transform
Iy for a symmetric /-tensor field f. The most interesting case is £ = 2 which arises
from the linearization of the boundary rigidity problem, that concerns the recovery
of the Riemannian metric from its boundary distance function.

It was conjectured by Michel [30] that simple metrics are boundary rigid, which
means that they are uniquely determined, up to a diffeomorphism fixing the bound-
ary, by the boundary distance function.

Significant progress has been made in studying this problem [7,12,29,30, 34, 38,
45,46]. The linearization of the boundary rigidity problem leads to an integral
geometry problem of recovering a symmetric 2-tensor field f from its geodesic ray
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FIGURE 1. In this figure we illustrate the notations used in the
definition of the mixed ray transform (1.2). We choose an initial
point z € OM and an initial velocity & € S, M, blue arrow. The
blue line is the geodesic v given by these initial conditions. Finally
we choose n € T, M, n L £ and compute its parallel translation
along ~, this is illustrated by red arrows on ~.

transform I f (see, for instance, [41]). The problem of reconstructing a symmetric
4-tensor field f from I, f arises from the linearization of elastic ¢P-wave travel-times
[9,18].

Using the fundamental theorem of calculus, it is straightforward to see that if
f = SymVu with v € S*~'7;, and u|ppsr = 0, then I,f = 0. Here Sym is the
symmetrization operator and V is the Levi-Civita connection. We recall that the
operator I is called s-injective if its kernel coincides with the image of the operator
SymV: H} (S 1r),) — L2(S°7h;). We list here some cases where s-injectivity of
Iy is known.

e (M,g) simple, dim > 2, £ =0 [31,32], £ =1 [2].

° (M, g) simple, dim > 2, £ > 2 under curvature conditions [14, 36, 37,42].

e (M,g) simple, dim = 2, ¢ arbitrary [35].

e (M,g) simple, dim > 2, ¢ = 2: generic s-injectivity [44].

o (M, g) admits a strictly convex foliation, dim > 3, £ = 0 [49], £ = 1,2 [47],
¢ =4118].

In this paper we consider the mixed ray transform Ly, ; as a generalization of the
geodesic ray transform I, and study its kernel. As for the Euclidean case, we only
need to consider Ly, ; acting on “trace-free” tensors. First, we introduce the operator
(symmetrized tensor product with the metric) \: S¥=17} @517, — Sk, 287,
defined by

(1.3) ()\w)il,,,ikjl,_,jé = Sym(il . ik)Sym(jl .. 'jz)(gikjlwil-~'ik—1j1-~j£—1)’

where Sym(-) is the symmetrization with respect to indices listed in the argument.
The algebraic dual of the operator A is the trace operator
(1.4)

SkTM ® SZTI — 5kt / Sz 1TM7 (/’Lu)i1~~ik—1jl~~j£—1 = ui1~~ik,j1~~j/,gzw£'
Therefore we see that

Skri; © 87, = ker @ Im.
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6088 MAARTEN V. DE HOOP ET AL.

The tensors in ker p are called trace free. We use the notation B for the projection
onto the trace-free class and write

Sk, @B Sty = B({S*1h, @ Sy, }) = ker p.

We note here that Ly ;(ImA\) = 0 and Ly ¢(Bf) = Li ¢(f). Therefore, from now on
we assume f € Skr,, @8 ST,

To describe the natural kernel of L, acting on S*7}, ®B §* Ty, we introduce
the symmetrized gradient operator d’: SkT/ ® S, — SkTM ® Str}, defined by

(1.5) (d")iy.iggn e 2= SYM(J1 -+ - J0)Viy i grforide-

In (1.5) the index after the semicolon stands for the corresponding index of the
covariant derivative of a tensor field v. It was shown in [42, Chapter 7] that

Lyo(Bd'u) = Ly ¢(d'u) =0, for ue S*r), @F S17,,,  with ulsp = 0.
After these preparations we are ready to set the following definition of solenoidal-
injectivity (s-injectivity) for the mixed ray transform: Ly, is called s-injective if
Liof =0 and f € L2(S*7), @B S*r,,) imply f = dBv := Bd'v with some tensor
field v € H}(S*7), @F S¢~17),). Here

dB Hl(SkT/ ® SZ 1 - )_>L2(Sk7_/[® SE )
We also introduce the formal adjoint of d’
5 SkT]v[@SKT, SkTM(X)Se 1TM7

where ¢’ is the divergence operator

(6/u)i1mikj1mjz—1 = gJMHIui1~~ikj1~-~je;j1€+1'
We define 68 := ¢'| sk @Bgerr . One can readily check that Im(68) c Skr, @8
S¢=171,, and therefore

85 S*ry @F S'riy — SFrh, ®F 557,

However we will verify later in Lemma 2.2 that d® and —¢% are well defined and
formally adjoint to each other.

The following tensor decomposition plays an essential role in the analysis of the
mixed ray transform.

Theorem 1.1. For any f € H™(S*7), 25 S'r),), k =¢ € {1,2},m € {0,1,2,...},
there exists a unique decomposition

(1.6) f=rs+dPo,

with f € H™(S*kr,, @B Stry,), 65f5 = 0, and v € H™L(Skr), @B S-171)),
vlgp = 0. In addmon there exists a constant C' > 0 such that

(1.7) 1o ez < Clfllzm,  ollgmes < OIS fllpm-1.

This theorem will be proved in Section 2. We note that a decomposition equiva-
lent to (1.6) has been provided earlier by Sharafutdinov [42, Lemma 7.2.1]: for any
f e L2(Skr), ® S*rh,), k,£ > 1, there is a decomposition

(1.8) f=f+dv+ v,
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THE MIXED RAY TRANSFORM 6089

with puf® =0, &'f* = 0, for some v € H}(S*7), @ S*~174,), w € L2(SF17), ®
S=171,). Moreover if £ > 2 we can choose v such that uv = 0. The equivalence of
the decompositions (1.6) and (1.8) can be observed by noticing that

dBv—dveIm), and Bf—felm),
v e LP(S*ry, @F 87 rhy), f e LP(S*riy @ S'ryy),

and rearranging terms. We remark that it was shown in [42] that the solenoidal
part f*, in (1.8) is uniquely determined by f, but the uniqueness of v and w was not
proven. However the uniqueness of a quite similar decomposition has been proved
in [13].

Main result. The main purpose of this paper is to establish the s-injectivity of
Li, and Ly 5 for g in a generic subset of all simple metrics on M. We also provide
a stability estimate for the corresponding normal operators. The analogous result
for Iy = Lo is given in [44, Theorem 1.5]. We will present a detailed proof for
Ly,1. The proof is similar for Lj 2, modulo some key calculations which we will also
provide.

We then introduce some necessary notations in order to state the main result
of this paper. We write L, = Ly to emphasize the dependence on the metric
g. We denote the L?-normal operator LiLy of the mixed ray transform by Ny
(see Section 3 for the rigorous definitions). Since (M, g) is simple we can without
loss of generality assume that M C R? with a simple metric g that is smoothly
extended in whole R?. Thus we can find a small open neighborhood M; of M,
such that (M, g) is simple, (see [43, page 454]). A tensor field f defined on M will
be extended by a zero field to M; \ M . We note that this creates jumps at the
boundary M. To tackle this, the Hy-norm was introduced in [43] (see also Section
4). As the decomposition (1.6) depends on the domain, we use the notation f3, for
the solenoidal part of f on M to emphasize this. Our main result is

Theorem 1.2. Let (k,¢) = (1, 1) or (2, 2). There exists an integer mq such that
for each m > my, the set G™ (M) of simple C™-regular metrics in M, for which L,
is s-injective, is open and dense in the C™-topology. Moreover, for any g € G™,

Ifiellczan < CINGFliyar,y:  f € HY (8", @F '),

with a constant C > 0 that can be chosen locally uniformly in G™(M) in the
C™(M)-topology.

The s-injectivity of Ly ¢, k,¢ > 1, has been proved for two-dimensional simple
manifolds in [17]. On higher dimensional manifolds, the s-injective was established
in [42, Theorem 7.2.2] under restrictions on the sectional curvature of (M, g). In
both of these aforementioned papers, the sharper tensor decomposition (1.6) is not
needed. However, in this paper the decomposition (1.6) is a key component of the
proof of Theorem 1.2.

We also refer to [28] for the study of a related problem in dimension two. In
a recent paper [22] the authors showed that on globally hyperbolic stationary
Lorentzian manifolds, the light ray transform is injective up to a similar natural
obstruction that L;; has. In Appendix A we relate the mixed ray transform Ls o
to the averaged travel-times of ¢S-polarized elastic waves. However we note that
the travel-time data alone only gives us partial information about the mixed ray
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6090 MAARTEN V. DE HOOP ET AL.

transform. If in addition we include the measurement of the shear wave ampli-
tude, the complete mixed ray transform can be recovered. In Appendix B, we
will show how one can obtain the mixed ray transform from a linearization of the
Dirichlet-to-Neumann map of an elastic wave equation on a smooth bounded do-
main M C R3. Here we rely on the observation that both the travel-time and the
amplitude are encoded in the Dirichlet-to-Neumann map. We refer to [42, Chapter
7] for an alternative approach to obtain Lg 5.

Outline of the proof. In the beginning of Section 2 we find an explicit repre-
sentation for the projection B onto the space of trace-free tensors. Then we prove
Theorem 1.1 in the case k = ¢ = 2. The rest of the paper is devoted to prove
Theorem 1.2. We give detailed proof for the case k = £ = 1 in Sections 2-6, and
discuss the required modifications for the £ = ¢ = 2 in the final section.

In Sections 3—6 we study the mixed ray transform on 1+1 tensor fields f satisfying
the trace-free condition. Section 3 is dedicated to the study of the normal operator
N of the mixed ray transform on 1+ 1 tensor fields. First we show that N is an
integral operator and find its Schwartz kernel. In the second part of the section
we prove that the normal operator is a pseudo-differential operator (?DO) of order
—1. We also give an explicit coordinate-dependent formula for the principal symbol
of this operator.

Since in Theorem 1.2 we assumed that the metric is only finitely smooth we
start Section 4 by recalling some basics of the theory of ¥DO’s whose amplitudes
are only finitely smooth. This is needed to establish the continuity of N, and
several other operators, with respect to metric g in C"™-topology. We prove that
Ny is elliptic acting on the solenoidal tensor fields. This manifests the Fredholm
nature of the normal operator on some extended simple manifold. Then we can
recover the solenoidal part (on the extended manifold) of the tensor field f from
Ny f modulo a finitely smooth term. In the second part of Section 4 we compare
the solenoidal parts on original manifold and on the extended manifold. Then we
establish a reconstruction formula for the solenoidal part of tensor fields on the
original manifold. We also give a stability estimate for the normal operator (see
Theorem 4.6).

In Section 5, we prove the s-injectivity of the mixed ray transform on analytic
simple Riemannian manifolds (see Theorem 5.5). Since analytic metrics are C"-
dense in the space of all simple metrics, Theorem 5.5 can be used to prove Theorem
1.2 in Section 6.

2. DECOMPOSITION OF THE TRACE-FREE TENSOR FIELDS
We begin this section by finding an explicit formula for the projection B from

Skrt, ® Stry, onto ker u = Skl @B S,

2.1. Domain of the mixed ray transform. We choose some f € Sk7}, ® S°7),

and write
(2.1) f=Bf + v, weS* ), @87,

In Lemma 2.1 we find a representation for w in (2.1) under the assumption k> ¢>1.

Licensed to Rice Univ. Prepared on Mon Oct 11 11:56:40 EDT 2021 for download from IP 128.42.234.145.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE MIXED RAY TRANSFORM 6091

Lemma 2.1. Any tensor field f € S*r,, @ Str},, k > £ > 1 admits the decompo-
sition (2.1), where w € S*~11h, ® S, is given by the formula

w=Af := i (_1)K+1 thllbh \E-1) K f
= = 7HhK=1ah M 5

K=1
and
Bf =1d—-M\A)f,
where
ah:h(k+€+2—h) bh:(k—h)(é—h)
574 ’ 574 '

Proof. To begin we derive the following formula for the commutator of A and p

pAw = (Sym(iy ... ix)Sym(ji - . - o) Wiy i 11 s )Ginge) 94

1 i
:@(wilu-ik—ljlu-jé—l)gikjlg m!
k-1 ikje
+7wi14..ik72,ikj1~--jz—1gik71jeg
(2.2) 1 N
g WirinoaindeieSinge 9
+Sym(i1 - ik,l)Sym(jl .. ’jé*1)wil~~ik—2ikj1.‘.je_gjzgik_ljg_lgikje
k+/0+1 (k=1 -1)
= A
P VA
In the case k = ¢ =1, w is a function, and formulas (2.1) and (2.2) imply
f
2.3 = —.
(23) w=L
To proceed for the higher order tensors we assume max{k, ¢} > 2 and use the
commutator formula (2.2) to prove that for m € {2,..., min{k, ¢}} we have

(2.4) p I w = app™ 2w 4 b P A\t w, he {1,...,m — 1},
where

h
1 (k—=h)(¢—h)
2. = — r Tpi=k+ L —-2r, by =-—-"7—.
(2.5) an =1 rzz:l Tpy, T +04+3—-2r, by i,
We note that the case m = 2 is the same as (2.2). If m > 2 we do an induction
over h. The initial step of the induction follows from (2.2). For the induction we
note that pw € S*~h=17 ® S¢=h=17! . Due to (2.2) we have

1 o (kE+L—2h+1 (k—h-1){—-h-1)
m—1—h h m—2—h h h+1
I Aptw = p ((k—h)(ﬁ—h)'uw = h)(E=h) Apt T w )

Therefore if (2.5) holds for h € {1,...,m — 2}, it also holds for h + 1.
Next we note that for any m < min{k, ¢} the formulas (2.1) and (2.4) imply

:umilf = bm—l)‘;ulmilw + am—lum72w'

We denote K = m — 1. Thus for any K € {1,...,min{k, ¢} — 1}, it holds
(2.6)
1 Kk+(+2-K) (k—K)(¢-K)

K K K—
=brg A\ = by = —->——~.
wo f KAL WHag w, aK ol , Ok ]
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6092 MAARTEN V. DE HOOP ET AL.

Now we assume that ¢ < k since we are mostly interested in the case k = ¢ = 2.
The case ¢ > k can be dealt with similarly.
We choose K = ¢ — 1 and apply p to both sides of equation (2.6) to get

o f = by pAp ™ w + ag_pt T w.

We note that for any v € S™7},, uiv = z—ﬁv. This implies

k—0+3
)\f—l _ -1
PAL w0 = s W,

and we have found the formula

k—0+3
-1 _
s w‘(”“k—éﬂ

By the recursion formula (2.6) we get
(2.7)
2
w:ﬂ — b_l)\uw: ﬁ — ﬁ)\ (ﬂ — b—z)\/fw)

—1
+ae—1> pof =—=p'f= —gl/f-

a1 a1 ay ay ag a2

b1b
=20 LR f 4+ 2N R
a1 @102 a1a2

-1 K—-1p =1y
_ <(_1)K+1 h=1 h) /\Kfllqu_F <(_1)e+1 21511 h) )\eflﬂz&w

K
K=1 [T=1an h=1Ch
I K-1,
_ (Z ((_1)K+1 h=1 h) )\K—1MK> f
e .
K=1 [Th=1an
The last row is the representation we were looking for. ]

We recall that in Section 1 we had given the formal definitions for the gradient
operator

df .= Bd': H'(S*7}, @B §*~17),) — L*(S*r), ®F Str),),
and divergence operator

—0F = —¢": H'(S%7}, ®F §°7y) — LP(S*7y, @F S 1ryy)
on the trace-free class.

Lemma 2.2. The differential operators d® and —88 are well defined, formally
adjoint to each other and

1
(2.8) dBy =d'v — a—/\ud’v, ve Sty @8 S, whenk > 0> 1.
1

Proof. The operator dB is clearly well defined by its definition, and the operator
88 is well defined since p and ¢’ commute.

We note that for any u € S*r}, @5 S¢~17}, we have u?d’u = 0. Therefore opera-
tor dB has the representation (2.8). The proof of this claim is a direct consequence
of the fact that the Levi-Civita connection commutes with any contraction.

The operators d® and —§8 are formal adjoints to each other since d’ and —¢’,
and also A and p, are formal adjoints respectively. (Il
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2.2. Tensor decomposition in the kernel of p. In the L2-space of m-tensor
fields on M we use the standard definition of the inner product

(fih)g = / fi1<..imﬁj14.,jmgi1j1 coglmim (det 9)1/2(311'.
M

Assuming the result of Lemma 2.3 we are ready to present the proof of Theorem
1.1.

Lemma 2.3. Let (M, g) be a smooth Riemannian manifold. There exists a unique
solution

ue H™(S%r), @B S, k=0e{1,2}, me1,2,...
to the boundary value problem
(2.9) ABy = 68dPu="h in M™  uloy = w,
for any h € H™2(Sk7, @B §¢17),) and w € H™ = (S%7,, @B S17), |onr).
Moreover there exists C' > 0 such that the following energy estimate is valid

(2.10) llszeany < € (Ilzm-2any + 100 3 o)) -

Proof of Theorem 1.1. We consider the boundary value problem (2.9) with the zero
boundary value w = 0. Let (AP)~! be the corresponding solution operator. We
denote v := (AB)~168 f. Thus v solves the problem

(2.11) ABy=68f o =0,

and the energy estimate (2.10) implies that the projection operator onto the potential
fields Pyr := dB(AB)~168 is a bounded operator in H™(S*7}, @B Sr},). We define
a second bounded operator by setting Sy; := I — Py and call this the projection
operator onto the solenoidal tensor fields. Finally we denote f® := Sy;f and obtain

f=f+dBv, with &5f°=0.

The estimate (1.7) follows from the boundedness of the operators Sy, and (AB)~1.
O

Remark 2.4. The operators Sy; and Py, are both projections, i.e., S3; = Sy,
P2, = Par. These projections are formally self-adjoint since AP is formally self-
adjoint and thus its inverse (AB)~! is also formally self-adjoint; see [27, Theorem
10.2-2].

The rest of this section is devoted to the proof of Lemma 2.3. We first recall some
facts about the solvability of boundary value problems for elliptic systems. See for
instance [51, Section 9] for a thorough review. Recall that we can without loss of
generality assume that M C R? is a domain with a smooth boundary. We use
the notations T*M and T*R? for the cotangent bundles of M and R? respectively.

Let o € N? be a multi-index and D® = (—i)la‘ag; 052093, We say that a dif-
ferential operator A = (3, <o A% (x)D*)?,_, is a second order (homogeneously)
elliptic operator if the order of the operator Z\&\SQ A%(w)DO‘ is two for any 4, j and
the characteristic polynomial x(x,&) of the operator L does not vanish outside the
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6094 MAARTEN V. DE HOOP ET AL.

set R? x {¢ = 0} € T*R?3. Recall that the characteristic polynomial of A is defined
by
3

X('Taf) = det (O'A(J?,f)), O-A('Taf) = Z A%(x)ga ) (l‘,§) € TR’

lol=2 ig=1

We note that this is equivalent for the principal symbol o4(x,&) of A to be a
bijective linear operator for every cotangent vector (z,&) € T*R3\ {0}.

Next we define the Lopatinskij condition. Let z € OM and (z’,t) be boundary
coordinates near z, that is t~1{0} C OM.

Definition 2.5. We say that the operator A satisfies the Lopatinskij at a point
z € OM if the constant coefficient initial value problem

oA (z,O,ﬁ’, —i%) v(t)=0, tcRy, v(0)=0cR>? ¢ cTroM)\ {0},

has only the trivial solution in {u € C?(R4) : u(0) = 0, limy_o0 u(t) =0} .

For the rest of the paper we use the notations o(A) to denote the principal
symbol of an operator A. Often we do not emphasize the point in which the
principal symbol is evaluated.

Definition 2.6. We say that the boundary value problem
Au=f, in M, ulopy =w, ue€ H™(M),

(2.12) ) .
feH™ (M), we H" 2(0M), me€ 1,2...

is elliptic if:
(I) The operator A is elliptic.
(IT) The Lopatinskij condition holds for any z € M.

We aim to use techniques for the elliptic problems to prove Lemma 2.3. To do so
we first find the principal symbols of the operators d®, §% and AB. We introduce
the notation

SMTLM @F S'TLM = {f(2)| f € S*7), @F S'r, ),
for the evaluation of f € S*7}, ® S’7;, at # € M. This is just the space of all

tensors acting on the fiber T,, M that are symmetric with respect to the first & and

the last ¢ indices and trace free.

Lemma 2.7. Let (z,£) € T*M. Define operators

i SFTIM @F S* ' TLM — S*TIM ®F S'TLM,  if = Bie,

(2.13) . L
(GeW)iy.cingioge = SYM(J1 - - Jo) Wiy inggo1Eje

and

(2.14)
j?: SET M@BS*T! M — S*T. M®B ST/ M, (jgv)il...ikjl,...,jg =i ge S0
In the case k = £ = 2 the principal symbols of %dB and %55 are i? and j?
respectively. The principal symbol of AB is
o(AB): S2T! M @8 S'T! M — S*T'M @B ST M
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THE MIXED RAY TRANSFORM 6095
such that
(2.15)

_(U(AB)u)il’i’zjl = (uili’zjl |€‘52} + ui1i2h€h§j1)

— N =

T (Urinjs €&y + Urin j1 €76y + Ginjn € E Urign + Ginji €€ Uiy n) -

Proof. We refer to [51, Section 8] for the definitions of the principal symbols of
P¥DOs over vector bundles. Recall that in local coordinates differential d'u of a
tensor field u € S?T. M ® ST, M has a representation

N UTRN . . .
(d,u)ilizjljz = Sym(jl’jQ) <W2Jl - (u”2j1Fi1j2 + Wiyrjy Fizjz + uili?rrjlj’z)) :
2
Here I‘fj are the Christoffel symbols of the metric g . Therefore the principal symbol
of d’ is exactly the map (=, &) > i¢. Since p?icu = 0 for any u € S?T, M @8 S*T! M
we have due to (2.8) that
1 4
<0(dPB) = ig — —Apig = iP.
2 (d8) = e — i = iE
Similarly for §’u, u € S?*T.M ® S?*T! M we have
(0"w)iizja

_ (aui1i2j1j2

T T R I R hjz
833h - (umzjljzrilh + uZITJIJQFiQh + u2122TJ2Fj1h + uhlzjlrrjgh)> g .

Thus the principal symbol of §’ is given by
1 1 . .
TU(CS/) = TU(CSB) =J¢= JgB-

By [51, Theorem 8.44] we have —o(AF) = j?i?. The proof of (2.15) is a di-
rect computation recalling that pu = 0. However we give it here as we need the
computations later.

- U(ABu)ilizjl

B 1 4
:(J?Z?u)ilizjl = §§h (ui1i2j1§h + ui1i2h§j1 - g)‘:u (uilizjlgh + ui1i2h§j1))

1 4
:§§h <Ui1i2j1€h + Uiyion &gy — gA (Urigt&n + Uriyh€t) grt)

1

do | )
:§§h <Ui1i2j1€h + Uiyinn &gy — gSym(Zliz)Sym(hh) (Girj1 Urisn€ ))

1 1

:ifh <Uili2j1£h T inian&is 5 (giljl Urish + YirhUrizjy + Jigji Urish + gizhuriljl) 5T)
1 2 h

=3 (Wiyiny, €15 + wirian€"E5,)

1
~ 10 (Urinjs € &iy + Urisjy €6y + Girjn EE Urigh + Ginji €€ Uriyn) -

In the following lemma we show that the problem (2.9) is elliptic.
Lemma 2.8. The problem (2.9) is elliptic in the sense of Definition 2.6.
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6096 MAARTEN V. DE HOOP ET AL.

Proof. We check first the ellipticity of the principal symbol of AB. If we denote
(pl(g)u)iﬂzjl = uilizh§h€j1’ (pQ(g)u)iliZ’jl = ‘§|£27Ui1i2j1 - uilizhfhgjw
(P3(§)u)iying, = \§|_(2;Uz'1i2j1 = 9injr € Ui,

then straightforward calculations show that p,(£), @ = 1,2,3 are non-negative in
the sense of

(Pa()u,u)2 >0, we L (ST, M @F S'T; M) .
Equation (2.15) implies

(A% fgle) > Sl (€ ) pal€)u )5 () > 0.

Hence we obtain
1
(—o(AP)u,u)p> > —\€| (u,u) 2,

which proves the ellipticity of o(AB).

Next, we verify the Lopatinskij condition. For that, we choose local coordinates
(', 22,23 = t),t > 0in a neighborhood of a point ¥y € M, such that the boundary
OM is locally represented by t =0, and g;;(z0) = d;;. We set a differential operator
D = (D;)3_,, Dj = —i5%, j € {1,2} and D3 = Dy = —i. Then we denote

d§ (D) = o(d%)(wo, D), &5 (D) = 0(6%)(x0, D).

Jj=1

We need to show that the only solution for the system of ordinary differential
equations

5(¢/, DB (€, Dy)u(t) =0, teRy

(2.16) o(0) = 0,

which satisfies v(t) — 0 as t — 400, is the zero field.
Let

B B
ue S8y, @ Py, ), veS(SPmg, @ Strg,),
where S means that the function «(¢) has a rapid decrease when ¢ tends to +oo and

By means that u belongs to the kernel of the operator i associated to the Euclidean
metric. If v(0) = 0 then Lemma 2.2 implies the following Green’s formula

(2.17) / (6B (€', Dyyu, )t = — / "ty dB (€, D).

Due to denseness of rapidly decreasing tensor fields, the formula (2.17) holds for
any u and v both vanishing in the infinity and v(0) = 0.
Let v(t) be a solution of (2.16). Taking u(t) := d5(¢’, D;)v(t) in (2.17) we obtain

(2.18) dB(¢', Dy)v(t) =0, »(0)=0.

Finally we show that only zero field solves this initial value problem.
We note that (2.18) implies the following equation in coordinates

1 1 1
Y(dOB(g)v)ilinle :§Ui1i2j1§j2 + §Ui1i2j2§j1
1

T __
10 (142 Vringa  0irjaUrings F Oigjs Vigrjy + 0injoViyrjy ) § = 0.
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THE MIXED RAY TRANSFORM 6097

In the previous formula we set jo = 3 and 3 = —i%. Then we obtain the following
system of ordinary differential equations.

1 1

A (A5 (€' De)v(t)) 1,35 =Divirins — 5 (Dtvir330ia3 + Divia330i,3)

1
(2.19) 5 D (0ir8E"8in3 + Vinra diys)
r#3
=0

and, for j; # 3,

= (8. Doel)

9192713

1 1
:§Dtvi1i2j1 - E(Dtviﬁjl 0ip3 + Divi,35,0ip3
(2.20) + Dyv;, 3305, 5, + Diviy330i,5,)
' 1 1 m m
+5viiaséi — 15 D Vimjs €™ 6iz3 + Vigmg €003

m#3
+ Viym38" 0ingy + Vigm3&™ 0irj, )
=0.
Finally we solve these equations with initial value v(0) = 0, which is done in the
following sequence:
o If i1,i9 # 3, equation (2.19) gives
Dtvilizg =0,t>0, ’U(O) =0.
This implies v;,4,3 = 0 for i, 42 # 3.
o If iy #3,is =3 or is # 3,i; = 3, equation (2.19) gives
4 4
thUz‘133 = thU?)iQ?) =0,t>0, v(0)=0,
which implies v;33 and wvs;3 for i # 3.
e Finally equation (2.19) gives

3
thU333 =0,t>0, v(0)=0,

and thus V333 = 0.

We have proved that v;,;,3 = 0 and therefore equation (2.20) simplifies to

1
Dy iy, — 5 Dyv; 35,0453 + Dyvi,35, 04,3

(2.21) - Z (Viymjs §™ 0ip3 + Uigmjlgm(siﬁ)) =0,

m#3
J1#3.
o We take i1,i2 # 3 in (2.21), and get
Dyi iy, = 0,6 >0, v(0)=0.
Thus v;,4,5, = 0 for 41,12, j1 7# 3.
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6098 MAARTEN V. DE HOOP ET AL.

e The choices i1 # 3,i2 = 3 and i2 # 3,41 = 3 in (2.21), imply
4 4
thvi13j1 = th’Uginl = O,t > 0, ’U(O) = 0,
and then v;, j,;, = 0 if at most one of 71,42 equals 3.
e Finally we take iy = i; = 3 in (2.21), to get
3
thvggjz = O,t > 0, ’U(O) = 0,
and then vss3;, = 0 for jo # 3.
Thus we have proven that the zero field is the only solution of (2.18) and we have
verified the Lopatsinkij condition for (2.9). Also we have proved the ellipticity of
the boundary value problem (2.9). O

Now we are ready to give a proof for Lemma 2.3.

Proof of Lemma 2.3. We use the notation Tr: H™ (M) — H™ 2 (9M) for the trace
operator. As we have verified in Lemma 2.8 that the problem (2.9) is elliptic, it holds
due to [51, Theorem 9.32] that the operator (A5 Tr): H™(M) — (H™ 2(M) x
H™=3(dM)) is a Fredholm operator (a bounded operator with finite dimensional
kernel and co-kernel). Moreover there exists a uniform constant C' > 0 such that
the following a priori estimate holds for any v € H™ (M)

(222)  Jullnany < C (18Bullsromsqany + [Tl oy 0+ lulizsan )

As the embedding H™ (M) < H™~(M) is compact it holds due to [43, Lemma 2]
that we can write (2.22) in the form

lullzrmany < € (1APullm—2an) + I Teul oy )
for some uniform constant C, if (2.9) is uniquely solvable. This is the estimate
(2.10). In order to verify the unique solvability of the boundary value problem
(2.9), and to conclude the proof, we show that (AZ,Tr) has a trivial kernel and
co-kernel.

We show first the kernel of (AB,Tr) is trivial. Let u solve (2.9) with a source
h = 0 and boundary value w = 0. Since we have proved that AP is elliptic, it holds
that u is smooth. As d® and —8 are formally adjoint we get

/ (dBu, dBu),dV :/ (=ABuy,u),dV =0,
M M
and 4
dBu =d'u— gx\ud’u = 0.
Next we note that for any € M and v € 5?7, ®5 S'7}, holds
(dP0)igrn'n’ €°€ = ('v)igran'n’ €°¢!
if £,m € T, M are orthogonal. In the following we use the notation 7 for the

geodesic v ¢, £ € S, M and n(t) stands for the parallel transport of 1 along 7. By
straightforward computations we obtain

(223) Ll O O @R OF 0] =@ @ OF 030

Let zyp € M\ OM and z be a closest boundary point to xo. We use the notation
& € SyeM \ {0} for the direction of the unit speed geodesic vy connecting zg
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THE MIXED RAY TRANSFORM 6099

to zg. Since the geodesic v intersects OM transversally there exists a neighborhood
U C Sz, M of & such that the exit time function 7 is finite and smooth in U. Then
for any € € U and n L &, equation (2.23) and the fundamental theorem of calculus
imply

o 7(8) , .
wiji(zo)n'n’ €8 = —/0 [P ]kt (Yao,e (87" (£ ()" (£)€! (£)dt = 0.

Here 7(t) is a parallel field along the geodesic v, ¢ with n(0) = 1 and £(t) = g, (t).
In the following we use a short hand notation u = u(zg). Therefore

(2.24) ' EF =0, €U nL¢E

We choose an orthonormal basis B = {&,n,7} for the three dimensional space
T., M, where £ € U. By polarization, (2.24) implies

(2.25) w7 €8 = 0.

For any € > 0 that is small enough, equation (2.24) gives

(2:26) wiji (0 + €€)' (0 + €€)’ (€ — en)* = 0.

Therefore the coefficients of the €3, €2, ¢, 1 of the expansion of (2.26) have to vanish.
Clearly the same holds if 7 is replaced by 77 in (2.26). Now we have proven

(2.27)
w0t =0, uy (£676F —2ieink) =
ui T =0, uy (£676F — 2t =

Also we have u;;n'n’ (€ + en)* = 0, from which we derive

0, wijkx (20'¢7€F —ninink) =0,
0, wuge (206" —pi*) =0.
(2.28) w7t = 0.
Next, we note

wij (7 + 0+ €)' (7 + 0+ €€)? (€ — en)* =0,

and the roles of n and 77 can be interchanged. Collecting the coefficients for 1, €, €2

terms we get by (2.25)—(2.28)
(2.29) wigel] €€" — g 0" = 0. wyil € =0,
ik €€ —uipn' it =0, wpniEnt =0.

To continue we note that since B is an orthogonal basis, it follows that

3 3
(nu)j(z0) = 6™ uijn =Y upje = Y ujer =0, j € {1,2,3},
k=1 k=1

or equivalently

ik €68 + uin I n® + wigen i gt = 0,
(2.30) Wil ETER + wijrny’ 77377 + i P =0,
U; k:f fjﬁ +Uzgkfz77377 +u1jk§1nj =0.
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6100 MAARTEN V. DE HOOP ET AL.

It remains to show that each term in (2.30) vanishes. As (2.27) and (2.29) give 6
additional equations, the following linear systems hold true:

i€ EIER — 2uipEinint = 0,
i€ EIEN — 2uip €l it = 0,
i€ EIER + w7 n* + uin 't = 0;
27 €F — ugpn'in® = 0,
(2.31) wikn €7 €8 + uijnn 77]17 +ugn' P’ =0,
Ui kT gjf — Uik 77j = 0;
2 EF — win' i = 0,
kT €7 €8 + uijni] 77]17 +ugri' 't =0,
i) €€ — uigr'n’n® = 0.
Each system consists of three linearly independent equations for three variables,
and thus can only have trivial solutions.
Finally, we show that the boundary value problem (2.9) has a trivial cokernel.
If f € H-! we can choose a series of f; € L?, j € N that converges to f in H !
sense. For the existence of such sequence see for instance [1, Section 3]. Let ¢;, be

a sequence of smooth tensor fields approximating f; in L. Let ¢ > 0 and k,j € N
be so large that

||f - fk”H*l < €/2, ka - ¢kj\|L2 < 6/2.
Then
1f = o llm— < f = frllg— + [ fx — o, lle <e

Thus smooth tensor fields are dense in H~!.
Suppose then that

(f.h) € C®(S?h; ®F S'riy) x C®(S?7hp ®F S'rhar)

is in the co-kernel of the operator (AB, Tr). We show that (f, ) = (0,0). To verify
this we first note that the choice of (f, h) implies in particularly that

(2.32) / (APu, f),dV =0, for any u € C*(S%*1}, @5 S'7),), uloar = 0.
M

To show that (2.32) implies f = 0 is very similar to the proof of an analogous claim
n [42, Theorem 3.3.2], and thus omitted here. The second claim h = 0 follows
from the fact that the trace map is onto. Finally due to denseness of smooth tensor
fields we conclude that (AZ, Tr) has a trivial co-kernel. O

3. THE NORMAL OPERATOR OF MIXED RAY TRANSFORM OF 1 + 1 TENSORS

In this section, we show that the L?-normal operator A, of the mixed ray trans-
form L = L;; is an integral operator and find its Schwartz kernel. We also show
that N, is a pseudo-differential operator (¥DO) of order —1 and give a represen-
tation for the principal symbol. In order to do this we will assume without loss of
generality that M C R? is a smooth domain and the metric tensors g extends to
R? in such a way that any geodesic exiting M never returns to M. We make a
standing assumption, for the rest of this paper, that any tensor field, excluding the
metric g, defined in M is extended to any larger domain with zero extension.
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THE MIXED RAY TRANSFORM 6101

We begin this section by giving a formal definition of the mixed ray transform,
equivalent to (1.2), on the trace-free tensors. For a vector (z,v) € TM, we define
the contraction map

(3.1) A,: S*TIM @B S*TIM — SEFTIM, (Mo f)iy.in, = Fir g 00t - 07%
Let

Lk
Do To M — 'ULv (pv)i‘cfl = (5116 -

) ¢, ke{l,2,3},
be the projection map onto the orthocomplement of the vector v. The second linear

operator is the restriction map

(3.2) Py: S™TIM — S™TAM,  (Pof)iyein = Firojon (P01 (o)™

im

ClF

Then we can give the following definition of the mixed ray transform by the
following “distributional” representation (see for instance [42, Chapter 7.2])

7(x.€)
Lief(x,€) = /0 T Py Ay Fr ),
fec>(S*r, @8 Str,), (z,v) € 0LSM.

(3.3)

Here we used the notation th’s for the parallel translation along « from the point
v(s) to ¥(t). Symbol 7(z,§) stands for the exit time of the geodesic v = v, ¢ and
[+ is the evaluation of the tensor field f at y(t). Let us still clarify the action of
the mixed ray transform. Let f € C(S*7), ®P S°r;,) and (x,&) € 0, SM. We
set the action of Ly ¢ f (z, &) on vector v = af +n € T, M, where n L £, a € R and
7n(t) is the parallel transport of 7, to be given by integrating the following quantity
over the interval [0, 7(x, £)]

(T Py My vy, %) = (P Moy oy (T700)F)
= Firoingioge (YD) m() S (8)7 - (L),

where v¥ = (v,...,v) and in the last equation we used the formulas (3.1) and (3.2).
k
This implies the equivalence for (1.2) and (3.3).

Finally we define the target space of the mixed ray transform. Let 7: 04 (SM) —
M Dbe the restriction of the natural projection map from tangent bundle to the base
manifold. Using the pullback map 7* we construct the symmetric pullback bundle of
k-sensors on 04 (SM), and reserve the notation (94 (SM)) for the sections of this
bundle. These sections act as follows: Let f € 8;(0+(SM)) and (z,§) € 04(SM),
then, using the pairing notation, the following map is symmetric and k-linear

(f(z,&);v1,...,01) €ER, wvy...0 € T, M.

Since the exit-time function 7 is smooth in (x,&) € 9;.SM by [42, Lemma 4.1.1.],
the formula (3.3) implies that the mixed ray transform maps the elements of

O (8*7l, @B S, into C(Br (94 (SM))).

3.1. The normal operator of L;; is an integral operator. For now on we
denote Ly 1 = L for brevity and work only in the space of S7;, ®5 ST},

Let us now describe the measure we use on the target space of the mixed ray
transform. For the measure do we mean the Riemannian volume of 9SM, however
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6102 MAARTEN V. DE HOOP ET AL.

we choose a more suitable measure for 0, (SM),
dpu(2,0) = (@, 1(2))gldo = |{w, 1(2))|dS.dS..

where dS, is the surface measure of M and dS,, is the surface measure of S, M.
That is if (2/,2%) is a boundary coordinate system we have

dS, = (det g(2))*/2dz'dz?> and dS, = (det g(z))'/2dS.,,,
where dS,,, is the Euclidean measure of the unit sphere S* ¢ R®. The L?-inner
product on B1(04+(SM)) is given by
/ fi(z,w)hj(z,w) g7 du(z, w).
04 (SM)

It is shown in [42, Chapter 7] that L, originally defined on smooth tensor fields,
has a bounded extension
L: H™(Sth, ®P Sth;) = H™(B1(04+(SM))), m > 0.

In this section we consider L as an operator

L: L2(Sth; ©F Sthy) = L(B1(04 (SM)); dp),
and compute its normal operator.
Remark 3.1. Since L is a bounded operator, its adjoint

L*: L2(B1(04 (SM)); du) — L(S7h; @° S74y)
exists and is bounded. Thus the normal operator N7 := L*L is bounded on
L2(STh, @B STh,).

In the following we denote by (z(t),w(t)) € SM, t € R, the lift of the geodesic
z(t) in SM, that is issued from (z,w) € 04 (SM). Let f,h € Stj,; @5 S7},;. Then
we have

(Lf, Lh) 2, (0, (sM))

7(z,w) ) )
- / ( / (TN PV fig (2(8))? <t>dt>
o (s \Jo

::I+ + I_.

Here we wrote

_ > ou’ (s i’/", L (x(s wj/ s s,sEt\u
Ii—[9+(SM)A/O 0 (@(3)) (Pt s ()0 () (5050
(Paesy)l i (a(s £ 1)) (s 4 £) dtdsdp(z, w),

and used the fact that g=! is parallel.

We introduce new variables x := (s, z,w) € M, that is the point obtained by
following the geodesic z(s) given by the initial conditions (z,w) € 9;SM until the
time s, and £ = &(s,t, 2,w) = tw(s) € T, M, which is the scaling of the velocity
w(s), of the geodesic z(s), by the positive factor ¢t. Since (M, g) is simple, the map

R X (0,00) x 01(SM) > (s,t, (z,w)) — (2,§) e TM
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THE MIXED RAY TRANSFORM 6103
can be restricted to a diffeomorphism onto a set U C TM \ (0 U TOM), where
U = e Uz and U, := (exp,) 'M C T, M. Moreover since the geodesic flow
preserves the measure (det g)dédx of TM, we get

dtdsdp(z,w) = (—1)3|§|§(det g)déda.

For more details about this change of coordinates we refer to [25].

We denote
y:explﬂg’ :E:CE(S,Z,(U), §:€(S7it>z7w) and g: ﬁ
g
It is straightforward to see that
W(s) =&, and W(s£t) = (gradip(e.y))’ =" W55

where p(z,y) is the Riemannian distance function of g on M x M. Thus

— ou’ Ai'[ . Aj/
-/ [ P (218

(731’,‘?9 )e(Pa, )i fi3 (1)9" () (;%p G (det g)déda,

and we get

Therefore

<NLfa >L2 STM®STM) - /

| o @ Py @B (T8
M JU, !
ap 1

ke

(3.4)
(Pa, )i fii(y)g™ (W) 5.7 7e7z (det g)déda.

Since (M, g) is simple the map (T, M \ {0}) > € — exp, { =: y is a diffeomorphism
with inverse

! L 0@y
t— __ g9 2\ — _— 44 5
€ = 5 (grad2(p(e,1))?)' = —59 () L2
and moreover
_ > Op(z,y) 7 . 2p(z,y)? 2|,
lElg = p(z,y), &m=— Dy and d€ = (detg™") det Tay dy

To simplify the integral (3.4) even more we compute

T SR X . _Op Op
(Pg)u/hm/(x) = h],(x) (gl’u/(y) 8.’1}‘“/ ale>
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6104 MAARTEN V. DE HOOP ET AL.

and

(Po,o)ufis (19" () = (Po,p)ufi () = f*(y) <9m(y) - L 8p>.

dy* Oy’
Finally we have

(3.5)
WNLf h) L2 STM®STM) =

Op Op\ Op v u

- M =) =L gou P(2:y)

2/ " \ /det g(x / (gku G &rk) oxt? () (TWOI 7gmd9p>o
i 8 Op\ 0 0?p(z,y)?/2

f v) ( i (Y) — P p)_p etp(gxi(,;yy)/’dy\/detg(a:)dx.

o y)? Oy dy' ) 0y
Therefore the normal operator of mixed ray transform can be written as

B -2 dp Op ‘ 9p Op
Wil = =2 [ (o)~ 5% 8gﬂk)A (@) (5~ e )
L 1) 9p 9p *pla,y)*/2 d
" o(z,y)? Oyl Ot oxoy | Y
Here
(3.6) Al =g @) (12000, ),

with 4w’ (x,x) = g"¥ ( ). We note here that To’p(xri)gp( is the parallel transport
along the geodesic connecting y to . Thus N, is an mtegral operator with an

integral kernel

*p(x,y)*/2
—2’det%

p 8p>
KZH ’ = u’ - 7 a L )
(3.7) el@1) det g(z)p(x,y)? <gk (z) Oxv dxk (@)
Y
8 <gm(y) Oy ayi> Oy Ozt

3.2. Normal operator as a ¥DO. From now on, we rely on the fact that M c R?
and g is extended to whole R? to apply the theory of pseudo-differential operators.
In this subsection we show that the normal operator is a ¥DO of order —1 and find
its principal symbol. Since M is closed we consider certain open neighborhoods of
it.

Since (M,g) C R3 is simple and g is extended to whole R?, we can find open
domains My, My C R3 such that M ¢ M; CC M, and (M;,g), {1,2} is simple
(see [43, page 454]). We need an open extension of M in order to show that A7,
is a YDO. In the next section we explain why we need the aforementioned double
extension. We note that by this extension the normal operator N, is defined for
1+1 tensor fields over M5, and Ny, f(x) remains the same for z € M if supp f C M.

First we find more convenient representation for the kernel K near the diagonal
of My x My. To do so we use the following relations introduced in [43, Lemma 1]:
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THE MIXED RAY TRANSFORM 6105

Lemma 3.2. There exists § > 0 such that in U := {(z,y) € Max My : |z —yl. < 0}
the following hold

P(x,y) = G (@, y) (@ — )i (@ — ),

ap2 z,y i
(3.8) 75; ) 263 (2, y)(x —y)',
3?p*(z,y) (3)
axlay] Gz] ('r7y)7
where ngl.)(z, Y), Gg)(z, Y), GZ(;’) (z,y) are smooth and on the diagonal
(3.9) Gz(;-)(:c,x) = Gg) (z,z) = Gg?)(x,x) = g;;(x).
Proof. See [44, Lemma 3.1]. O

As GU™)(z,y) is a matrix depending on the points (x,y) € U we use the short-
hand notations G(™) := Gz(»;")(x,y), (?z(?) = Gg)(y,x), GMz = ng)(x,y)(x -

ori — (GWyz. 2)1/2’ @ (GMz . p)L/2”

Thus the following formula holds for the integral kernel of A, on the neighbor-
hood U of the diagonal of the extension My x Ms.

G2 6]\ qur (o)

, 2 == 2 —y. These imply

(3.10) p2(z,y) =GWz. 2,

Kijre(z,y) = =2 | giu(y) —

Gz 2 (GWz-2)*
[GP2], 62, (2@ ] (@] |detG®)
X (gku'(ﬂﬁ) - EOPRP {G ZL‘ {G ZL V/detg(x)’

From this and (3.7) we see that the integral kernel Kjjx, is smooth in My x M,
outside the diagonal, at which it has a singularity of the type |z — y|;2.
Let x € C§°(U) equal to 1 near the diagonal of My x My. We write

(311) Kijkg = XKijld + (1 — XKiij) = Kiljké + Kinké'

Since K%M € C°(M3 x My) the corresponding integral operator is a ¥DO of order
—o00, with an amplitude of order —oc.

Lemma 3.3. Let set U be as in Lemma 3.2. For any ((z,y),z) € U x R?® we define

(3.12)
2,601\ i
_ N . . Y)
M”M(x,y,z) ==2| gi(y) Gy . 4 (G(l)z . 2)2
(G921, (6931, 1500 T, 146469
X (gku/(ﬂ?) - EIOFe {G ZL- {G ZL? \/Tg(a:)'

The distribution ]\A/[/ijkg belongs to L}OC(R:S) with respect to z variable and is positively

homogeneous of order —2. Moreover M,y is smooth in U x (R?\ {0}).
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6106 MAARTEN V. DE HOOP ET AL.

Proof. We note that equation (3.8) implies that G? 2z and G@ 2 are 1-homogeneous
with respect to z. Let K, be the compact set that is the image of the closed ball
B,(0), 7 > 0 under the diffeomorphism 2’ = H 'z, where H is the square root of
G(l)(x, y). By a change to spherical coordinates we obtain

=rC

/ |Mjk£(x7yaz/)| dzl :/ |Mjk£($7yaH_lz)| ‘det H_1|d2
S2 i

| ) (gm(y) - [@(Z)H ‘1w} ) A" (2, y)

X (gku/(x) _ {G@)le} {G(Q)le] )
u’ k
X {é(Q)le] {G(Q)le}

{6(2)H_1w]

u

dw

)

J J4

det G®
where C' = 2| det H *1\%. Since the last integrand is continuous we have
et g(x

proven the first claim. . .
The second claim follows since M;jxe(z,y, H *t2) = t72M;jke(zx,y, H 2), t > 0
implies

/ Mijke(z, y, 2)p(2) dz = t/ Mijke(x, y, 2)p(tz) dz
R? R?
for every test function ¢ and t > 0. |

Due to the previous lemma and (3.11) we can write for (z,y) € Ma x M that

Kiljkf(xvy) = X(I7y)Mijkf(I7y7x - y) = ‘Ff_l (Mz]kf(ma y7£)) 5

z—y
where

(313) Mijkf(xa Y, f) = X(mv y) / e_ig.zj\zijkﬁ(xa Y, Z)dZ

Therefore M; ;i is homogeneous of order —1 in £. Since M;jy, is smooth in My x
My x (R?\ {0}) and homogeneous of order —1, it is an amplitude of order —1.
Thus the decomposition (3.11) implies that N, is a YDO of order —1. To conclude
the study of the normal operator, we state the main result of this section.

Proposition 3.4. The normal operator N, of mized ray transform is a pseudo-
differential operator of order —1 in Ms with the principal symbol

op(NL) M (2, ) | |
=— QW/RS o162 (gk’(x) B zzzk) 2z

1212 ) 123
Y et el
R N
+91¢], 7R + 3I¢l (g g + g + g gY)

—3lel, % (g7ERe + g e + g e + g ¢ gl + g’”&”)) :

£

Here z; = gij(x)27 and |z|} = gij(x)z'27.
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Remark 3.5. We note that terms g*' g% and g*¢%¢7 in (3.14) do not contribute to
the action of the symbol as we are working on the kernel of the map p. Thus we
ignore those two terms in the following calculations.

Proof. We emphasize that N7 is not properly supported. However there exists
properly supported DO A,z of order —1 such that (N,)ijxe — A;jke is smoothing.
Neglecting this technicality we obtain the principal symbol of N7, by setting z =y
n (3.13). Then formula (3.9) implies

Gg)(x,x)zi =z;, and Gz(;)(x,x)zizj = |z|§

Therefore after raising indices formulas (3.12) and (3.13) imply the first equation
of (3.14).

We proceed on to compute the Fourier transform in (3.14). We recall the fol-
lowing formula for the n—dimensional Fourier transform of the powers of a norm
given by a positive definite matrix g:

Fal51(€) = eno

Here I' is the Gamma function. In dimension 3 we have

Vdet g Fo || )(6) = 272 (( ))|£3 3§/2|§|

Thus the Fourier transform in (3.14) equals to

92 04€|3 g
C (_1291k 9 |§|g + : ‘§|g ) —- CNijl, C=— ﬁ

|§| a— n Cro = 2n/2—a

a#n+2k keZ.

dEi0el " DEDEI DERDE! 3.25/2

Finally we compute the derivatives in the formula above to find that C N**! is the
right hand side of equation (3.14). O

Remark 3.6. If g is a constant coefficient metric, then (3.14) gives the full symbol
of the normal operator. The proof is similar to [43, Section 4].

4. RECONSTRUCTION FORMULAS AND STABILITY ESTIMATES

For this section we set the assumption that the metric g is only C*-smooth in
R? for some k € N that is large enough. Nevertheless we can still assume that the
closed set M C R? is extended to simple open domains (M, g) and (Ma,g) such
that M Ccc M, CC M.

We begin this section by recalling some basic theory of YDOs whose amplitudes
are only finitely smooth. We also show that the solution operator of the boundary
value problem (2.9) depends continuously on g with respect to C*¥-topology. In the
second part of this section we show that the normal operator Ny, is elliptic on the
subspace of solenoidal tensors on M; and construct a parametrix with respect to
this subspace. In order to do this we need to have the second extension Ms as we
will use the projection operator Py, = dB(A%.,) =168 onto the potential tensors,
with respect to the largest domain M5, in the construction of the parametrix. In
addition we define the projection operator Sy, := Id — Py, onto solenoidal tensor
fields on Ms. In the final part of the section we study the stability of the normal
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6108 MAARTEN V. DE HOOP ET AL.

operator. We also provide a reconstruction formula for the solenoidal component,
with respect to M.

4.1. Pseudo-differential operators with finitely smooth amplitudes. Since
the metric is assumed to pose only finite smoothness we need to set some finite
regularity conditions also for the amplitudes of the ¥DOs we are interested in. We
use the notation A™, m € R for the space of C*-smooth amplitudes of order m in
Ms,. That is an amplitude a(z,y, ), (z,y,£) € My x My x R? in A™ are set to
satisfy only a finite amount of seminorm estimates:

|DgDIDYa(w,y,€)| < Capry(K) (14 €)™,
(xz,y) € K C My is compact, Cqp~(K) >0,

where «, 3,7 € N? are multi-indices that satisfy |al, |3],|y] < k. We repeat the
proof of [48, Theorem 2.1] to observe that for any myg, so > 0 there exists k € N
such that for any |m| < mg and |s| < sg the linear operator

A: B (VL) — H*™(3I3)

is bounded if A is a YDO in M> with an amplitude in A™ having the regularity k.
We also note that the operators with amplitudes in A™, for any m € R are finitely
pseudo-local in the following sense: If U C My is open and u € E'(Ms), then for
any k' € N and m € R there exists k¥ € N such that if A is ¥DO with a C*-smooth
amplitude in A™ then the following holds:

Aue C¥(U), ifue ().

This follows from the proof of [48, Theorem 2.2.] after minor modifications.

Using the aforementioned machinery for finitely smooth amplitudes we note that
the integral kernel Kjjr of N, as given in (3.7), is well defined and depends
continuously on the metric g in C*-topology, if k is large enough. Thus the normal
operator N7, depends continuously on the metric g and moreover the same holds
also for the functions G™ in Lemma 3.2. Thus the claim of Proposition 3.4
is unchanged if g is regular enough and the formula (3.14) shows that also the
principal symbol o(N7,) depends continuously on g in C*-topology.

We note that the volume form dV; depends on the metric tensor g. However for
any t € R there exists k € N such that if we fix a simple C*-metric go of M, then
there exists a C*-neighborhood U of g, consisting of simple metrics, on which we
can choose a uniform bi-Lipschitz constant for the norms || - || , ¢ € {1,2} for any
g1,92 € U. Recall that we are working with 1 4 1-tensors that are in the kernel
St), @B 874, of the trace operator u related to a metric tensor g. To avoid this
issue, we introduce operator

Kh: Sty ®F Sty = STar ®F ST
such that
('fﬁgf); = gaifay
Then the following subspace of 1-covariant 1-contravariant tensor fields
Sta ®F Sty = {f € STir ® ST}y, i = 0}

coincides with the image of ng, but is defined independent of the metric g. We let

b

I{Z be the inverse of ng. The continuity of the maps &,

is evident.

,Hg with respect to metric g
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Lemma 4.1. Let go € CY(M). There exists a neighborhood U C CY(M) of go,
such that the map

Kb o (AP)y) o kn: H N (STa) — Hy(STar),

where (AB)A_/Il_g is the solution operator of (2.9), with vanishing boundary value,
and the projections

oPMomb, K oSMom L*(Sty ®F St1}y) = L?(S7pr @ S7)))
depend contmuously ongelU.

Proof. We consider first a smooth metric go, and note that Lemma 2.3 implies that
the solution operator (AB)M 5" “1(S7y,) — HL(ST);) is bounded. Let € > 0
and g be any smooth metric such that llgo — gllcr < e. We write

B b B b
’%g (A )MgOK’g_K/g (A )]V[go ’%go
— b b b
(4.1) = (/igo (AB)MﬁgOﬁcg) (Iﬁlgo o AB s g 0 Ky —ngoABM’gong)
By—1 b
X (Hgo o(A )M7g0 o Iigo) ,

and choose u,v € H}(S7pr). Then by Cauchy-Schwarz inequality we obtain

f B b # B b
’<(/~£gooA M.go © Ky — Ky 0 AP n g 0 KJ)u, v

(4.2) :‘ dfomqou dfoﬁq0v>L <d§3/@;u,d§m;v>Lg

< Cllg = goller(llgller + Ngolle)lullas ol -

In the last inequality we used the uniform Lipschitz equivalence of the H'-norms.
If e < 1, then ||lg — gollcr (lgllcr + |lgollcr) < Ce, for some C' > 0, which can be
chosen uniformly whenever g is close enough to gg. Consequently (4.2) implies

ﬁ B b _ 4 AB b
155, © A% gy © Kigy — kg 0 A% prg o kgl -1 < Ce,

from which after using (4.1) it follows that

NAB) il < AP s (L4 NPl )

and moreover

(O T PR CU R 101 PR W [0:G P Py
Finally we use (4.1) again, to conclude
(4.3)  lwf o (AP)yr, o kg — K, o (AP)L o kg llm-1-m1 < Collg — goller

where Cy > 0 can be chosen uniformly in some small C'*-neighborhood U of g.
Since smooth metrics are dense in C'(M), the Lipschitz estimate (4.3) implies
that we can define the solution operator (AB)X/}’g as bounded map H~!(St},) —
H}(ST},) for g € C1(M) with the estimate (4.3) still valid. Thus the first claim of
the lemma is proven. We note that the continuity of operators Hg OPORZ, I{g OSOHZ
follows from this.

Lemma 4.1 has the following straightforward generalization.
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6110 MAARTEN V. DE HOOP ET AL.

Corollary 4.2. Lett > 0. There exists kg € N, such that for any k > ko and
go € C¥(M) there exists a neighborhood U C C*(M) of go, such that the solution
operator

w0 (AB)ypy 0 mys HITH(STar) — (HUH 0 Hg)(STar),
and the projections

/@g o P o /{Z, Iig oSy o H;: HY (St @B Sth,) — HY(STar @F S7h)

depend continuously on g € U.

4.2. Reconstruction formula. We fix a simple metric go € C*(M), where k € N
and consider a simple metric g € C*(M) in a small neighborhood of gy with respect
to C*-topology. We recall that any tensor field defined in M is extended to any

larger domain with the zero extension. Moreover we note that by conjugating all
the operators, that are to be used in this section, with nﬁg from left and mg from

right, we can work in the space of trace-free tensor fields Sy ®2 S7),, that is
invariant of any metric structure. To reduce the notations we omit the conjugation
from here onwards.

Let |D|, be a YDO with the full symbol |{|;. We begin by constructing a
parametrix for the YDO

(4.4) Mf = ( ”;'LNJ%JC ) in M;.

We note that the right hand side of (4.4) extends M in Ms, and due to Corollary
4.2, the operator M depends continuously on g. In the following we use the notation
o for a finite asymptotic expansion for the symbol of a product of two YDOs. The
principal symbol o(M) of M is given by

o(M) = ( [€lg 0 o(NL) ) .

U(PM2)

We show now that o(M) is elliptic near M. To do so we lower the (ij)-indices in
(3.14) to get:

o = ONt = 0 — 12l ot + 1206l e
+91¢1 P& € e + BIEl T (870; + 675)
= 31€l5 7 (9367 + 07 + 086" + 076 + 6;@-5’“)).
Remark 4.3. A straightforward calculation shows that
9N =0, &N =0, &N =12(¢| ;" (|¢], %€ ;¢ - €43))
and

Nj— Nf =121 (6705 — 6567) — 1€],° (67,6 — 7)) -
Therefore

1 o o
g [NZE-! 7 (MK - N el e N - lel; %6 Ni’?é-)}
=61¢], *0F€;€" — 6550} — 3[el, Z0is"e' + Blel, it €'
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THE MIXED RAY TRANSFORM 6111
Motivated by Remark 4.3 we define
B = “oC <5i 07 + 1 (G787 — 067 — [€],26,6m o — [€], %€ 5j)) -
Therefore
m — 1 _ 1 _
(45) B |elgo Ne)mn = 6705 = 071l °65€ + 1€l %0067 — 51815 68

Thus we need to characterize the remainder term in (4.5). Since —AP is elliptic
near My, with principal symbol

~o (&%) = |e26} - 3,
it has a parametrix (AB)~! with principal symbol
_ 1. _
o ((AB) 7 = Sl 6t + fel, %)

We note that near M; the parametrix (A%)~! and the solution operator (Af/lz)
of (2.9), with zero boundary value, coincide up to a finitely smoothing operator.
This implies

-1

1
o ((AR,) 7107 = Slelyteghe + o7 lel e

and

1 1
o(Par,) = o(d%(A%,)T10%) = S 181,66 + oFlel 26,€" — Sauslel; ?ete"

Therefore
(F 1 )o( €ly 0 o(N2) ) ~14,

o (Pnsy)
and we have shown that M is elliptic near Mj.

From now on we study the mapping properties of M. We use the notation &
for the full symbol of a ¥DO and S™ for the space of C*-regular symbols a(z, ¢)
of order m. Let m > 0 be given. We choose k € N to be so large that there exists
a ¥DO A of order —2, that is given by a finite asymptotic expansion of (AB)~!
with homogeneous symbols in ¢-variable, and satisfies 5(.A) 05 (AP) = Id mod S~™
near M. From here onwards we increase the regularity of the C*-smooth metric g
whenever needed without further mention. We get

&(Par,) = 5(d®) 0 5(A) 0 5(6%) mod S™™,

5(Sar,) =Id — 5(dB) 0 5(A) 0 5(65%) mod ™™,
Since AB and (A®)~! depend continuously on g we can also choose A that depends
continuously on g, with respect to C*-topology, if g is near to go. Since M is elliptic

near M; there exists a pseudo-differential operator £ = (L1, L2) of order 0, with
principle symbol (F, Id), such that

(L), &(£2)>0< |£|§(o7>ig\)m )

:&(‘Cl) (@) ‘§|q o 5'(NL) + 5’([:2) o 5'(,P]\/[2) =1Id mod S_m,
near M;. We set two operators

A=1d—dPAs%, and T;=ALi|D|,A, in Mo,

(4.6)
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and note
SMQNL ZNLSMz ZNL, SMQPMQ :PM28M2 =0.
Then we apply 6(A) from right and left to (4.6) to obtain
3(8) =5(4)* = 5(4) 0 5(L) o el 0 5 () 0 5(4)
=(A)o(L1)o[8lgod(A)od(NL)
=5(T1)o6(NL) mod S™™.

We choose ¢ > 0 and note that we have shown the existence of a bounded
operator Ky: L*(S7), ®F S7),) — H' (ST}, @5 S7}4,), Which satisfies
(4.7)

TNLf = f=dPASPF+ K f = fiy, —dPw+ Ky f,  in My f e LP(STy, &% S7yy),
where w := ((A§;)~' = A) 65 f. Since T, N7 and A depend continuously on g,
the formula (4.7) implies that also K; depends continuously on g.

We conclude this subsection by finding a reconstruction formula for the solenoidal
part fy, modulo H t_regular fields in M;. To do this we show that the linear map
L*(Sth, @% S7);) o f — dPw € H'(S7;, ®F S7},) is bounded and depends
continuously in g. First we note that the map L2(St), ®5 S7),) > f — w €
H' (87}, @5 S7};,) is bounded since A is an operator of order —2. Since f vanishes
outside M we have due to the finite pseudo-local property that the distribution
—AS8B f near M, is of regularity ¢ + 2. Thus the map

L2(Sthyy @8 S7hyr) 3 f — wloar, = —AE floar, € H'2 (ST}, ©F Sthar)

is bounded and depends continuously about the metric ¢ in C*-topology. This
implies that w solves the boundary value problem:

ABw = (1d— ABA) 6B, in My, wlon, = —Adf|or, -

As the symbol of the ¥DO (Id — ABA) 08 isin S~ for m > 0 and f is L?-regular
we have that (Id — ABA) 65 f € H'(S7},, ®® S7),, ). Corollary 4.2 implies that the
map L*(Sty, ®F S7),) 3 f—w e H?(St), @P S7), ) is bounded.

Therefore we have verified that the map

L*(Sth; @8 S7y) 3 f > dBw € HYY(ST),, @8 S7}y,)

is bounded and depends continuously on ¢ with respect to C*-topology if k € N is
large enough and g is close to go. After setting

Kaof :=—dPw+Kif, fe LSty &P Sty),
equation (4.7) implies the main result of this subsection:

Proposition 4.4. Let t > 0. There exists kg € N such that for any simple metric
g € CK(M), k > ko there exists a first order WDO, T, in My and a bounded operator

Kot L2(Sthy ®F Stp) — HY (ST}, ®F ST)1,),
such that the first reconstruction formula for the solenoidal part is valid:
(4.8) TINLf = far, + Kof in My,  for f e L%(Sth, @B S1hy).

Moreover if we fiz a simple metric go € C*(M), the operators Ti and Ko depend
continuously about g in some neighborhood of go with respect to C*-topology.
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THE MIXED RAY TRANSFORM 6113

If g is infinitely smooth, there exists a smoothing operator
Ka: L2(Sth, @P Sthy) — C%(Shy, ®F STi)),
such that
TINLE = far, + Kof in My,
for any f € L*(St), @8 ST4,).

4.3. Stability estimates for the normal operator. In the previous section we
found a reconstruction formula for the solenoidal part f3, with respect to the
extended domain M;. In this section we prove a stability estimate for the normal
operator and find a reconstruction formula for the solenoidal part fj,. However as
it turns out we need higher regularity for f to do so.

Let g € C¥(M) be a simple metric and f € L%(St), @5 S7},). We write f =
I + dBuyy,, where vy, solves a boundary value problem (2.11), on M;. Since
f = 0on M; \ M, the finite pseudo-local property of (Al&l)_lés yields v, €
CY(M; \ M). Moreover we have by (4.8) that

(49) _dB'U]\/[l = ﬂNLf - Kgf in M1 \ M.

In the following we will find a L?-estimate for vy, on My \ M. Let xo € OM.
Then for any « € M7 \ M in a small neighborhood U of x(, we choose a unit vector
¢ such that the geodesic (t) = vz, (t) in My \ M issued from x meets OM; before
it meets OM. We use the notation 7 = 7(z,£) > 0 for the time this geodesic hits
OM;. Since vy, vanishes at OM; we have as in the proof of Lemma 2.3 that

(4.10) [oar, ()i = — /OT[dBle (V)i (£)7 (t)t,

where 7(t) is a unit length vector field, parallel along v and 1(0) = 7 is perpendicular
to &. The substitution (4.9) and the continuity of the integrand give

, 7(@,€) o
oan @l | < [ TN = Kaflyn' (@077 (0)] de < CTiNLf - Kaf(a),.
0
where C depends only on the distance to dM;. Perturbing the initial direction
&, we see that the inequality above holds for linearly independent {n(k)}i:r As
2
luar, (x)|2 can be estimated by 022:1 , where the constant C is

uniform in a neighborhood of zy, we get

foar, (@),

lvar, 22 (o) < CITINLf = Ko f || 22 (a,\ar) s

first in U and then globally by using a finite covering for the pre-compact set M;\ M.
Next we estimate the H'-norm of vy, in My \ M. As we can again estimate
‘V’UMI ‘3 by

2
a{k)vj[le]ia;@ . {am }i—, orthonormal,

k=1

)

it is enough to estimate a{k)vj [le]iafZ). Recall that

&V o lin' = & [dBoar, ] ',
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for any 7, £ perpendicular to each other. Then (4.9) implies
(4.11) &7V [oa)in'| < CITINLS — Kafl,

and it remains to estimate a(k)v [le]la{k)

We choose g € OM, and local coordinates @’ on M near zg. Let (a/,x3) be
the boundary normal coordinates given in a neighborhood U C M; \ M of xy. That
is each point (2',23) = x € U is uniquely expressed as x = 7(5/0),,(t), where v is
the exterior unit normal to M and we have chosen z3 = t as the third coordinate.
We denote & = Y(,,0y,,(t). For n € T, My, that is of unit length and perpendicular
to &, the formula (4.10), in the given coordinates, has the form

(4.12) [var, (2))in' = — /Oo[dBUMl (y(£)))isn’ (t)dt.

xrs3
We can replace the exit time by oo in upper bound of integration in (4.12) since
vpr, has a line integrable zero extension outside M.

We denote the coordinate vector fields with respect to x’ variables as {X(k)}i:r
Note that these fields are orthogonal to the third coordinate frame % = Y(a,0)0 (T3)
and 7 can be given by a linear combination of {X(k)}i:r We extend 7 near « in
such a way that Vx, n = 0 at y(t). This can be done for instance with parallel
transport using Fermi coordinates given by the coordinate frame {%,X 1 X2}
along 7. Then we apply X(j) to both sides of (4.12). Since vy, € Hj (M) we
obtain

(4.13) X(k)V [’U]\/[l (J?l, l‘3)]ﬂ7i = — /OO X(k) ([dB'U]\/[l (’y(t))]igni) dt.

3
Let x be a smooth cut-off function such that x = 1 near 9M and x = 0 near 0M;
and outside M;. Then K3: f — (1 — x)X(k)dBle is finitely smoothing operator
by the fact f = 0 in M; \ M and the finite pseudo local property of the operator
X () dB (AfF;,) 7165, Equations (4.9) and (4.13) imply

oo

ng)vj[UMl (z',23)in’ =/ XX ([TINL flisn®) dt + Ky f,

x3

for some Ky: L?(My) — H'(Mi), where t > 0 is as in Proposition 4.4. Therefore
the continuity implies the existence of C, depending only on the distance to OMy,
such that the following pointwise estimate holds:

2
(4.14) |’V iloa '] < C <Z IXVx 0 (TINLf)]g + |’C4f|g> :

k=1
It remains to estimate &7V [var, (@, 23)];:£". We take 7 such that {n,7,£} form
an orthonormal parallel basis along ~. In this basis we can write
p(d'ony) = 0’ Viloanlin® + 7 Vjloa)if' + &V [oar, i€

Therefore we have

( dBUMl)
1
( Vloan )i + 3u(d o) ) €
2 1 j i ~j ~7
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By (4.11) and (4.14) we have proved
(4.15)

2
lvar |1y < C (Z IXVx o (TN L2y + ITINLfl L2y + ||’C4f||Ht(U)> :

k=1

To conclude this section we introduce a norm H2(M;) originally given in [43,44]
to be implemented in the main result of this section. By shrinking M; if necessary
we choose a finite open cover (Uj)j=1 for M\ M, such that in U; we have boundary
normal coordinates (z7, x?), as above. Let (Xj);']:l be a collection of functions that

satisfy x; € C3°(U;), x = ZJJ X; equals to 1 near M and each x, vanishes near
OM;. We set

J 2
1l agyy = /M >oxs <Z|vxﬁk>h§+|x§vvjh|3> + |l da,

1j=1 i=1
where Vj is the tangent vector to (a7 o), (23). We note that here z3 > 0 in M, \ M.
The norm H2(M,) is then defined by

3
(4.16) 1l 720y = D 1V 2l 1 agyy + Il oy
i=1
Equations (4.9) and (4.15) imply the first estimate
(4.17) loat L (arary < € (HTlNLfHﬁl(Ml) + ||/C4f||Ht(M1)> :

Finally we are ready to estimate the solenoidal part f;,. We write
f=fi, +Pv, M, f=fy+d%n inM,

and denote u = vas, — var. The construction of the potential parts implies

(4.18) ABu=0 in M™, ulon = var |onr
By Corollary 4.2, equations (4.9), (4.17) and the trace theorem we obtain the second
estimate

lvar, — omlla(ny < Clloan, [|a1/200) < Clloan || e, \an
<C (RN g oy + WK f e an,y) -

Then we use f3, = fi, + dB(vp, — var), (4.7), and (4.15) to establish our main
estimate

(4.19)
I farllzany S NTINLE = Kafll 2 + 145 (0ar, — van) 22 any
SNTNLf = Ko flle2ary + lvar, — vaa L any + [1(oar) | ar\

< (ITNL sy + TN + Sl

< C(INe Ty + 1Ko )

We note that the last estimate is valid since 77 is an operator of order 1. Lemma
4.5 guarantees that H!-regularity for f implies the finiteness of INL N g2,y This
result has been presented earlier in [43].
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Lemma 4.5. If f € H'(S7), ®F St},), then ”NLfHHﬂ(Ml) is finite.

In the following we use the notation S for the solenoidal projection on M. The
main theorem of this section is:

Theorem 4.6. Let t > 0. There exists kg € N such that for any simple metric
g € C*(M), k > ko, the following claims hold:

(1) There exists a bounded linear operator K : L2(Sth, @8 S7},) — H? (87}, @F
S7yyp,) such that

(4.20) | fill e < c(nNLfnm(Ml)Hi%anf,(Ml))? if [ € H'(S7h@5574),

for some C > 0.
(2) There exist bounded linear operators

Q: H*(Sthy, @B St4y) — S (LA(SThr @5 STiy))
K: L*(Sty @F S73p) = S (H' (SThy, ®F ST1,))
such that
(4.21) ONLf = f3 +Kf, if f € H (St} @F St}y).

Moreover for any simple metric go € C*(M), there exists a neighborhood
U C C*(M), consisting of simple metrics, such that the operators Q and
IC, in (4.21), depend continuously on g € U.

(3) If g € C(M), then the vector space

ker LN S (L*(St), ®F S7}4)) € C=(ST), @F ST}/
is finite dimensional.
(4) If g € C°(M) and L is s-injective then
I f3llzzan) < CUNLf gagaryys Jor £ € HY(SThy @F S7yy),
for some C > 0.

Proof. We note that (4.20) is the same inequality as (4.19), if we set K = K. The
first claim follows from the construction done before this theorem.

Let f € H(St); ®® S74,). To prove the reconstruction formula (4.21) for
f3;, we proceed as in the proof of [44, Proposition 5.1]. We fix a simple metric
go € C¥(M) and a neighborhood U of gy that consists of simple metrics. During
the proof we are implicitly shrinking U and increasing k without further mention.
Let ¢ € U. If we vary the initial direction £ in (4.10), we find three linearly
independent n; € T, M, i € {1,2,3} such that the right hand side of (4.10) gives
v, (2), for # € My \ M. Due to the finite pseudo-local property vy, can be
assumed to be C'-smooth in M; \ M and contained in Ht(ST]/Wl\M)' Moreover the
map H(S7),@BS7),) > f+— v, € H*'(ST}y,\ ) is bounded and due to Corollary

4.2 it depends continuously on g in C*-topology if k is large enough. On the other
hand we can use formula (4.10) and the trace theorem to define a linear operator

Ta: Ht_l(STJle\M ®° SThm) = H'%(Sthy),
which depends continuously on g, and satisfies

(422) TI‘M Un, = 7-2(dB’UM1) == 7-2 (7—1NL - ICQ) f
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In the last equation we used the substitution (4.9). Thus the right hand side of
(4.22) is a bounded map from H'(S74,@8S7},) into H=2(S7},,). After converting
the problem (4.18) into an elliptic problem with zero boundary value, Corollary 4.2
implies that the solution operator R of the boundary value problem (4.18), is a
bounded operator R: Ht_%(STé]w) — H'(ST},), depending continuously on g in
some neighborhood of gy with respect to C*-topology. We get

w:=wvp, — oy = R(Trar(var,)) = RTo(TANL — Ka) f.
Then the first reconstruction formula (4.8) implies
Fis =Fin, +
=(TiNL = K2) f + AP RT(TINL — Ka) f
=(1d+ d°RT)TANLf + Ks

where K5 = —(Id + d®R72)K2. We conclude the proof of (4.21) by setting Q :=
S(Id+dBRT3)T; and K := SK5. We emphasize that by Theorem 1.1 the solenoidal
projection S: H'(St}, @B S7),) — H*(STh, @8 ST},) is bounded, and due to Corol-
lary 4.2 the operators @ and K depend continuously on the metric ¢ in some small
neighborhood of a fixed simple metric go € C¥(M) in C*-topology, for k € N large
enough.

The remaining parts of the theorem can be proven as in [43, Theorem 2]. ([l

5. S-INJECTIVITY FOR ANALYTIC METRICS

5.1. The analytic parametrix. In this section we assume that (M, g) is a simple
manifold with a (real) analytic metric g on M up to the boundary. As in Section
4 we extend M and g to simple open domains (M7, g), (Ma,g) and M CC M; CC
M, C R3. We note that this can be done in such a way that, ¢ is analytic in a
neighborhood of My and M;, i € {1,2} have analytic boundaries. Since analytic
functions are dense this does not require the original boundary M to be analytic
(see [44, Section 3]).

We construct an analytic parametrix for operator M. We denote the set of
analytic tensor fields on M by A(M). That is every f € A(M) has an analytic
extension to some open domain containing M. For the basic theory of analytic
UDO we refer to [48, Chapter V]. Recall that a continuous linear operator from
E'(M) to D'(M) is analytic regularizing, if its range is contained in A(M).

Our first result in this section is a re-formulation of Proposition 3.4 in the analytic
setting.

Proposition 5.1. The operators N and M, from (4.4), are analytic YDOs in
M.

Proof. Our proof follows the proof of [44, Proposition 3.2].

Since ¢ is analytic in My, there exists § > 0 such that the operator A defined
by (3.6) and functions G, m € {1,2,3} from (3.8) are analytic in U = {(z,y) €
My x Msy; |x — yle < 0}. Let V be an open set such that V' x V C U. Then ]\ZW,
given in (3.12), is analytic in V x V x (R3\ {0}), and due to Lemma 3.3 distribution
]\/Zijkf is positively homogeneous of order —2 in z variable. Here we use the fact
that A is analytic in U, since the solution to an ODE with analytic coefficients is
analytic.
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Thus Mjjre(z,y,€) is analytic in V x V x (R?\ {0}) as a Fourier transform of

M;j1e in z variable. To see this, one only need to notice that M (x,y, z) is even in
z, and [26, Theorem 7.1.24] implies

(5.1)
Mijké(xa Y, f) = /

. 671‘5'21\7@1@@(%7% z)dz = 77/2 ]\ije(ﬂ%y,w)%(w -§) dw,
R s

where M , in the last integrand, is an analytic function of all its variables.
To prove that M (z,y,&) is an analytic amplitude (see [48, V, Definition 2.2]) in
V x V we proceed as follows. Let ¢ € C$°(R?). We write

Mijre(x,y, &) = ¢(§) Mijre(x,y, &) + (1 — ¢(§)) Mijre(, y, §),

and show that the first term is an amplitude of analytic regularizing operator and
the second one is an analytic amplitude. This shows that N7, is an analytic ¥DO
in V.

To prove that the operator of ¢(&) M ke(x,y, ) is analytic regularizing, we need
to show that the corresponding integral kernel

Hijre(x,y) = (2m)7° /RS eV G(E) Myjre(x,y,€) dE,  (z,y) €V XV,

is analytic. To do this we use the fact that M;;xe(x,y, £) is positively homogeneous
of order —1 in £. Then a change to spherical coordinates gives

Hijre(z,y) = (2#)*3/ / ei(”’)‘(xfy)¢(rw)Mijkg(ac,y,w)r drdw.
s2 Jo

Since a product of analytic functions is analytic and ¢ is compactly supported, this
proves that #;;x, is analytic.
Let Rg > 0 be a radius of a ball containing the support of ¢. Since F(z,y,£) :=

(1 = ¢(§) Mijre(z,y,&) equals to Mijke(w,y,§), when [€]ec > Ro and M;jke(w,y,§)
is homogeneous of order —1 in &, we can write

(5.2) F(z,y,&) = Myje (xy é) €1t [€le > Ro.

Therefore we can use the right hand side of (5.2) to extend F analytically on
VE x VE x (C3\ B(0, Ry)). Here VC is an extension of V' to C3. This implies that
for any compact K C VC x V there exist C' > 0 such that

|F(z.y.2)| <CECY (2,y) € K, [€le > Ro.

We choose R > 0 so large that Bg(¢) := Hle B r(€) C (C3?\ Bg,(0)) if
EeR3 [l > Rand B;r(é) = {2 € C: |z-§&]. < ﬁ|§|e}. Then we apply

Cauchy’s integral formula on ER(ﬁ) to find

C ] i
|D?F<w7y,5)sm<ﬁ) €l (@) € K, [¢le > R.

Therefore F' is an analytic amplitude. Since V' C U was arbitrarily chosen, we have
proven that for any o € Mi™ there exists a neighborhood V;, contained in Mji"
in which N, is an analytic ¥DO. From here we can follow the lines in the proof of
[44, Proposition 3.2] to conclude that A7, is actually an analytic DO in the whole
M.
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Next we proceed to prove that Py, = 5B(Aﬂ2)*1d8 is an analytic ¥DO. For-

mula (2.8) implies that d is an analytic operator. Also ¢ is analytic. Therefore
AB is an elliptic analytic operator in the domain €. Thus there exists an analytic
parametrix T of AB in an open set M’ containing M;. We need to show that
(Aff/b)’1 —T is analytic regularizing on M. Let the distribution f be supported in
M,. We set w := ((A§. )" —=T)f. Then APw € A(M;) and the interior analytic

1

regularity implies w € A(M3), and we have proven that (A§, )~! is an analytic

UDO in Ms.
Since |D|4 is analytic, we have proven that operator M in (4.4) is analytic. O

In Lemma 5.2 we extend the result of Lemma 2.3 to an analytic case. The proof
is similar to [44, Lemma 3.3].

Lemma 5.2. Let xg € OM, and assume that the metric g and the tensor fields u
and vy are analytic in a (two-sided) neighborhood of xy and that OM is analytic
near xqo. Let tensor field v solve

(5.3) ABv=wu in M, wvlon = vo.
Then v extends as an analytic function in some (two-sided) neighborhood of x.
The main result of this subsection is the following.

Proposition 5.3. There exists a bounded operator W : H*(St}, ®F St} ) —
L2(ST}y, ®F S7),.) such that for any 2-tensor f € L*(Stj, ®P St};) we have

fan, =WNLf +Kf
with K f analytic in M.

Proof. Since M is an elliptic analytic ¥DO in M; we can construct a parametrix
L={Ly,L5} of M in M such that
(5.4) LM =1d + K,

with £ an analytic ¥DO of order 0 in a neighborhood of M;, and K; analytically
regularizing in M7. Apply Sy, to the left and right, to (5.4) and notice NSy, =
Sv,Ni = N1, Pri,Sam, = 0. We denote W = Sy, L1] D]y, and have

WN, = S, + Ko in M.

Here Ky is analytic regularizing in M;.

We need to compare f3;, and f3, for f € L*(S7y, ®F S7,). We write f§; =
f — dBuy;,. As in the previous section, we have o, = far, dBu in M, for
u = v, — var,- Then u € HY(M;) and solves

B .
APu =0 in My, ulon, = Un,-

We note that since 0M; is analytic we have Trs, h € A(OM;) for any h analytic near
OM;. Assuppf is disjoint from OM, analytic pseudo-locality yields vy, € A(OM7).
By Lemma 5.2, u € A(M;); thus f — dBu is a linear operator mapping L?(M) into
A(M;). Then we use the relation

far, = far, + Pu=WNFf — Ko f +dPu

to complete the proof. O
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5.2. S-injectivity of 1+ 1 tensors for analytic metrics. In this subsection we
will prove s-injectivity for an analytic simple metric g.

Lemma 5.4. Let g be a smooth, simple metric in M and let f € C=(ST),887),).
If Lf = 0, then there exists a tensor field v vanishing on OM such that for f =
f — dBv we have Trp (8™ f) = 0 for any multi-indez m € N3.

Moreover, if g and f are analytic in a (two-sided) neighborhood of OM, and OM
is also analytic, then v can be chosen so that f: 0 near OM.

Proof. We fix 9 € OM and take boundary normal coordinates x = (2/,z%) in a
neighborhood U C M of xg. Then in U we have g;3 = d;3 for any ¢ = 1,2,3. We
aim first to find a tensor field v, vanishing on M, such that for f := f — dBv we
have

(5.5) fis =0, in some open neighborhood U C U of x.

Due to (2.8), this is equivalent to

1 .
(5.6) fi13 = Vavy =0, fo3 —V3va =0, f33—V3vz+ g(g“vkw) =0, inU

U‘a::’:O = O

Remember that V,v; = 9;v; —F?ivk, and the Christoffel symbols in the boundary
normal coordinates, satisfy I'5; = I'3, = I'S, = 0. We first solve the system of initial
value problems

dzv1 — T30 — T3 09 = Vv = fig,
D30y — T3av1 — 3509 = V3vz = fos,
v1(z',0) =0, wve(2’,0) =0,
for v; and vy, which are given along boundary normal geodesics 7,70y, (23). Then

using ¢ = §* we write the last equation of (5.6) in a form of the following initial
value problem

3
O3v3 = 3 (fss—G), ws(2’,0)=0,

where G depends only on v;, d;v;, ¢'%, Fz‘?@ for i € {1,2}. We have found v near
the boundary. Clearly, if g and f are analytic near OM, so is v.

We note that the convexity of the boundary implies that for (x,&) € 0+ (SM)
where x € IM NU, is close to o, ||, = 1 and the normal component of £ is small
enough, the geodesic issued from (z,¢) hits the boundary again in U. Then the
boundary value of v and Lf = 0 imply Lf(z,£) = 0. We choose the boundary
coordinates &’ such that g;;|g=z, = 0;;. We claim

(5.7) Fralemeo =0, faplemao =0,  (fi1 — fo2)lumay = 0,

for a = 1,2, 8 = 1,2 and a # 5. If this is true, then (5.5) and Z§=1 ﬁ-i(xo) =
uf(aso) = 0, give f(zo) = 0. To prove (5.7) we let & € T,,,0M, ||, = 1, and
take a curve § : (—e, ) — OM adapted to (zg,&). Let v = .: [0,1] — M be the
shortest geodesic of the metric g joining the points xzg and d(¢), i.e., y(0) = zo
and (1) = d(¢). Let n € T,,, M be perpendicular to £, and 7. be the orthogonal
projection of 7 to 4.(0). We also set n(t) = n.(t) to be the parallel transport of 7,
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along 7. Since the points (vy(t), IA.;Y(%)‘Q) and (v(t),n(t)) tend to (zo,&) and (zo,n),

respectively, uniformly for ¢ € [0,1] as ¢ — 0, we have

Foed s ! . ”.Yj(t) 1 1 I : _
s = tim [t ) s 0 gt = tim o (L (a0,300) ) = 0

We set e3 = v(xg), and e, = ML,QLCO for « = 1,2. The previous equation implies

Fna =0, me{1,2,3}, ae{l,2}, m+#a.

To obtain the last equation in (5.7) we set £ = %(el +es),n= %(el — e3), thus

%(fu — fa2) =& iy’ =0.

This completes the proof of (5.7). Since zy was an arbitrary point in M NU we
have shown that f vanishes at OM NU. It remains to show

(5.8) O fijlomay =0, m=1,2,---
We do not prove this directly but note that, if
(5.9)

agf3a|m:x0:0> a;;faﬁ|z:mo:07 6g(f11_f22)|x:z0:07 04756 {172}7 04756
holds, then due to

=0

T=Tq

= (Ouyief)

T=xq

iangii(fﬂo) = U (ax3f)
=1

(5.8) also holds. The equation above holds since the trace and the covariant deriv-
ative commute and Christoffel symbols vanish at xg.

The proof of (5.9) is similar to the proof of [29, Theorem 2.1]. We give it here
for the sake of completeness. Let m > 0 be the smallest integer for which (5.9)
does not hold. We consider a 2-tensor h;; := 8;,’; ﬁj|m:x0 acting on T, M. Since
(5.9) does not hold for m, there exists &, € Ty, M of unit length, tangent to OM,
and 19 € T,,M that is perpendicular to &y, such that néhijfé # 0. Then the
Taylor expansion of f implies that n’ fijfj is either (strictly) positive or negative
for 5173 > 0 and |z’ —xz{|. both sufficiently small and (&, n) close to (§,70). Therefore,
(Lf(z,€),n) is either (strictly) positive or negative for all (x,&) € 94 (SM) close
enough to (z9,&) and n L & close to ng. This is a contradiction.

We have completed the construction of v near . As in the proof of [44, Lemma
4.1], we can extend the construction of v anywhere near 9M.

If g and f are analytic, then v is analytic near M. Then f is analytic and thus
f =0 near OM. |

In Theorem 5.5 we use global semi-geodesic coordinates for simple manifold
(M, g), introduced in [44, Lemma 4.2], under which the metric g has the global
representation

giz =0i3, i=1,2,3.
We use the notations e;, i € {1,2,3} for the corresponding coordinate vector fields.

Theorem 5.5. Let g be a simple metric in M, that has an analytic extension.
Then L is s-injective.
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Proof. Assume that g € A(M), and the mixed ray transform of f € L?(S7), @5
S7),) vanishes. Then, by Proposition 5.3, we have f3, € A(M;). Clearly, Lf;, =0
as well.

By Lemma 5.4, there exists a smooth tensor field w that is analytic near OM
and moreover f = fy, — dBw vanishes near OM;. We denote the set of all points
x € OMj, for which the coordinate vector field ez(z) € 0+ (SMy), by (OM1)+. We
aim first to find a second tensor field v that satisfies the following global equation

(f —dBv);s =0, i€{1,2,3}, vl =0.
That is we solve the equations similar to (5.6):
(5.10)
fis=Vsv1 =0, fa3— V3o =0, fs3— Vavs+ %(guvkw) =0, inM
v|on), = 0.

Since (M, g) is simple it follows from the definition of the semi-geodesic coordinates
that each point in M can be reached by a geodesic parallel to e3 from a unique point
of (OM)4. Therefore the system (5.10) can be used to define v globally. As before,
we first determine vy and v from the system of linear boundary value problems

1 9 ; 1 9 z
{ O3v1 — I'gyv1 — 5100 = fi3,  Osv2 — I'gov1 — I'3ov2 = fo3
vilon), = v2lonm), = 0.

We note that this system has a unique global solution since M is compact. Due

to analyticity, vy, v vanish in a neighborhood U of (OMj)4. The last equation of
(5.10) takes the form of the following boundary value problem

3 ~
O3vg = 3 (f33 - G) , vslnm), =0,

where G depends only on v;, 9;v;, /%, F?@ for ¢ € {1,2}. Thus we have found v
and shown that it vanishes in U.

Now we define f# := I, — dBw — dBv. We have ff = 0 in U and fiﬁ3 =0 in
My, i = 1,2,3. Moreover, w+ v = 0 on (9M;);. On the other hand, there is
a unique v¥ € C(M;) that solves (5.10) with f replaced by fir, > and vt =0 on
(OMy) 4. Therefore f* = f5; — dPv?, with v¥ = w4 v. Since the coefficients in
the system (5.10) are analytic, and so are f}, and M, tensor field vt is analytic
in M; \ E, where E C OM; is the set where e3 is tangential to M. Thus f¥ is
analytic in M; \ E. Due to the fact that f* = 0 in U containing E, and by analytic
continuation, f* =0 in M.

We have proven fg, = dBovf in My, and v* = 0 on (OM;),. Soon we show that
v¥ = 0 also on the complement of (9M;) . If this holds, then we have

APyt =6Bfs =0, in My, von, =0.

Thus Lemma 2.3 implies v* = 0, and fir, = 0. To prove that vf = 0 on OM;
we proceed as follows: Let x € (OMy)4 and y € (OM; \ (O0M1)4). Since (Mi,g)
is simple there exists a unique geodesic v connecting y to x. Let n € T, M; be
perpendicular to 4(0). Since v¥ = 0 in (9M;), and Lf3;, = 0 we have the following
equation by (4.10)

i’ = (LdBv* n) = (Lf3,.n) = 0.
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Perturbing « in the open set (0M1)4 C M we can show that the previous equation
holds for any 7 in the linearly independent set (n;)3_;. Thus vi(y) = 0.

So far we have shown f = dBuvy,. Since supp f C M, we have that supp vy, C
M. Therefore vy, = vpr, by Lemma 5.6 that is proven analogously to [44, Propo-
sition 4.3]. This gives f;; = 0 and completes the proof of the theorem. ]

Lemma 5.6. Let f = dBv, v|gar = 0, and v € CY(M). Then v(y) = 0 for any y
such that f(y) =0, and y can be connected to a point on OM by a path that does
not intersect supp f.

6. GENERIC S-INJECTIVITY

In this section we prove Theorem 1.2 for 1 4 1 tensor fields using the Fredholm
property (4.21) of the normal operator, and the s-injectivity result for analytic
metrics. We note that by possibly conjugating all the operators with ng from left

and m'; from right, we can work with the space Stps ®5 S7},, of trace-free (1,1)-
tensor fields that is defined independent of any metric structure.
We are ready to present the proof of Theorem 1.2.

Proof of Theorem 1.2 . Let g € C™(M) be a simple metric. By formula (4.21), in
Theorem 4.6 we have

QN =S+K, N:=Np,S:=8wm,,

with SQ = Q, N§ = N. After applying S from the left to the above identity, we
have

ON =S8+ SK.
Thus K = SK and similarly S = K. As S is self adjoint we also have £* = SK* =
K*S. If we set Q := S(Id + K*)Q, then previous observations yield

ON =8Id+K*)ON =SId+ K*)(Id+K) =S+ K*+ K+ K*K =S+ K,

where K = K* + K + K*K is a compact self-adjoint operator L3(S7), @8 S14,) —
SL?(St), @B St},). This implies
(6.1) ON+P=1d+K on L*(S7h; @° S74,).

We are ready to show that the set of s-injective metrics is open in C"™-topology,
for any m € N that is large enough. In the following we will indicate the dependence
on g by placing the subscript g on the operators N, S, etc. Suppose that L, is
s-injective for some simple metric go € C™(M). Then Ny, is s-injective as well,
and moreover the operator on right hand side of (6.1) has a finite dimensional
kernel on the space of solenoidal tensor fields. By using the s-injectivity of Ny,

as in the proof of [44, Theorem 1.5], we can construct a finite rank operator Qj :
L2(St),, @F St}y,) — L*(S7h, ®F S7}4) such that

(6.2) Id + K% = (Qgo + Qo)Nyy + Py, on LA(S7}, @F STy

is one-to-one, where ICgO = IEgO + QoN,, is compact. Thus according to Fredholm

alternative (Id —|—I€go)’1 is bounded. We choose f € H' (S}, ®" St}, ) and apply
the operator Id + ICgO to the solenoidal part fj, . of f to obtain

1 f3r,g0 lL2(ar) <C (Hégo'/\[.qof||1:11(M1) + ||QoNqof\|L2(M1)) < ClNgo flla2(ar,)-
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This is the stability estimate of Theorem 1.2 for ¢ = gg. Next verify the same
estimate, with uniform C for g € C™ (M) that is close enough to gy with respect
to C"™-topology, for any m large enough. To do this we first write analogously

(6.3) (Qy + Qo) + Py =Id + K.

We note here that the finite rank operator Qg is the same as in (6.2), and the
compact operator ICg = I%g + Qo as an operator in L?(ST}, @8 S7},), depends
continuously on g. Therefore if & is large enough, it holds that the operator Id—l—ng
remains invertible, with a uniform bound for its inverse, whenever g is close enough
to go in C™-topology. After applying (6.3) to f = f3, , € H'(S7ar, ®8 SThr ), We
have

1irglzzon < C (N Az + oz ) < CUNGFllaeqar,),

with C' > 0 independent of ¢g in a small neighborhood of gy in C"™-topology. This
implies that also ¢ is s-injective.

The proof of the theorem can be completed by using s-injectivity of L, for
analytic metric g (Theorem 5.5), and the fact that analytic metrics are dense in
C™(M). O

7. ELLIPTICITY OF THE NORMAL OPERATOR AND ADAPTATION OF THE PROOFS
FOR 2 + 2 TENSOR FIELDS

In this section, we will first show the ellipticity of the normal operator for 2 + 2
tensors (restricted to the subspace of solenoidal tensors). To be more specific, we
will show that the operator M = (|D|, N1, Par,)? is elliptic. Then we will sketch
adaptions needed to prove Theorems 1.2, 4.6 and 5.5 for 2 4 2 tensor fields.

7.1. Parametrix of the normal operator for solenoidal 2 + 2 tensor fields.
In the following we study the action of the principal symbol o(N7). We note that
in 1+ 1 case, the principal symbol (3.14) can be written as

o(NL)TH(,€)
k i j
:_2 /detg(l_)/l:t eig-z(éﬁ_zuz >guu'(l_)(5;/_%> ZJZ
3 g9

K Kl

L

—27

el
We recall the notation (P,,)t := 0} — w'w;. Thus for f € T, M ®" T, M we have

/ (55 - wkwu) g* (2) (6L — w'wy) Wwldw.
Sy Mgt

—2m

WO Dy =Te [P ol

We do not derive an explicit formula for the principal symbol of the normal operator
in the case of 2 4 2 tensors, but sketch the main steps to conclude that for any
f € ST’ M @B S*T! M, we have analogously to the 1 + 1 case,

T oW a= i [ IR il
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Let f,h € S%r), @B S27,,. Then, for the geodesic v with initial conditions
(z,w) € 04 SM, we have

(Lf, Lh) 25,00, (sM)))

(zw) _
-/ ( [ T e, >)ifijkz(w(t))wk(t)wz(t)dt>
a4 (sm) \Jo

7(z.w) ’or - 1 ’ ’
(/O (T arks (Paogs) e (i) Vi hirjrirer (a:(5) oo™ (5)w” (8)d8>

9" (2)g" (2)dn(z,w).
By an analogous argument to one in Section 3 we show that N is an integral
operator, whose Schwartz kernel near the diagonal can be written as

Kiirjjrkrre (2,y)

e ap e i e

(G(l)z s det g(x)
(7.2) [é@ } G<2 G(z) h/ {@(2)4
x| gruly) = GMyz. GMy. 2

[G?2]. [G?2] @], [GPz] ,
X\ Giw! (LL') - G 1)2 P gz"u’ G(l)z e )

where z = x — y and

A () = g (2)g" (@) (TO0E )

Va,~Vo(,9) ) b

Therefore Ny, is a YDO of order —1, and formula (7.1) is valid.
For now on we use the short hand notation P = Py, and aim to show that

sy i= (o2 Z8T) o g eman o)

implies f = 0, which proves that the zeroth order operator M = (|D|, N, P)T is
elliptic.

Let &€ € T, M. We choose w, @ € S, M such that {€ := gi w, @} is an orthonor-
mal basis of T, M. We also simplify

Q' (W) = (Po)i(Pu)jwte.
If ([¢lg 0 o(NL)(@,8),0(P)Tf =0, then
JEo(P) = jeida((AP)™1)5€ = jg,
where j?,i? are given in (2.13) and (2.14), implies
(7.3) € fisne = ¥ fijne = 0.
Thus it suffices to prove that fijkgwf =0 and fijkgi/ =0.
Next we note that (7.1) gives

QW) f = QM (W) fiy = QUM (@) foyer = Q”“(“’}“)f”kl
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Therefore we have
& fijmwtw! = QW) f =0, & "ol = Q@) f = 0,
w4 w

& fiimwa! = €Q <7> = %éjfijklwkwl - %éjfijkl@ka’l =0,

and

(7.4) & fijmwt o =0Q(w)f =0, W fiju@* e =wQ@)f =0.

Since we assumed f € S*T! M ®PB ST M, the trace-free condition yf = 0 and (7.3)
yield

fiimw'w® = fiimww! = = fiu@’ 0" = — fijud' ok
After applying (7.4) to previous equation we get

k k

i g kel i~j~k~l ~i~G kol ~i G~k
fijw' W w 0" = fijuw'@? 050" = fijud'd? w0’ = fijue'w! O w' = 0.

Then we compute
2o =) -5)Q () 1
=fiim(w — 0) (w — @) (w + @)F(w + @)

=fiimww ool + fiin@t @I O — Afipeteiwb !

=fijpw'w Wbl + 5 f; @ oGkt

=6fijklwiijkwl
=0.
Therefore we can conclude that f = 0.

The rest of the proof of Proposition 4.4 for 2 4+ 2 tensor fields is as presented
earlier.

7.2. A sketch of proof for Theorem 4.6 in 2+2 case. For 2 € M7\ M, choose
¢ such that the geodesic v = ;¢ hits the boundary 0M; before OM and minimizes
the distance between x and dM;. As we have proven Proposition 4.4 for 2 4 2
tensor fields, formula (4.9) holds and (4.10) is to be replaced by

(7.5) [oar, (@))igrn' P’ €F = — /0 T[dBle (Y(O)igwen' (E)F (£)5* (£)3* (1),

where nn L £ Choose n,7 such that B = {n,7,£} form an orthonormal basis of
T, (M, \ M).
Therefore we have
|[oar, (@))ijen'n? €5 < C[(TINLf = K2 f)(@)], -
We need to show that there exists C' > 0, uniform for any = € M; \ M such that
(7.6) ([oar, (@)]ijrws,, wh,wh | < CHTINLf = Ko f)(@)],, wm, € B.

k

As |var, ()]2 can be estimated by the sum of all the terms | [vaz, (2)]ijrwh,, wh,, wk, |7,

the following L?-estimate holds
loar, | zcamany < CITINLF = Ko f |l 2(ai\an)-
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To prove (7.6) we need to repeat the steps between (2.25) and (2.31). First, we
have

[oan, (@)]igr (0 +7)' (0 + DY " — ' €8 — P €F) = 2loar, ()]igrn' P €"
Then
|[var, (@))ijen' TP ER| < C[(TINLS = Kaf ) ()], -

For z in a neighborhood of o € OM, there exists ¢y > 0 such that v, ¢, meets
OM; before meeting OM for any € < ¢g. Then we can obtain

[oar, (2)]ijk (1 + €€)'(n + €€)? (€ — en)*| < CI(TINLF — K2 f)(@)],,-

Choosing four distinct real numbers 0 < €7, €a, €3, €4 < €g, by invertibility of the
Vandermonde matrix

1 g €& &
1 e €& &
1 e € & |
1 e €1 €

we have the estimates

i€ ", Juijn (£'676% — 20E0n")

wigr, (207678 — '/ ")
< C|(TINLf — Kaf)(2)],,-

Here, the constant C' depends on €1, €3, €3, €4, which could be chosen such that C is
uniform in a neighborhood of zy. One can then just continue the steps and get the
estimates (7.6) with C' uniform in a neighborhood of zy. We omit the details here.
Finally, by a compactness argument, we have (7.6) with C' uniform in M; \ M.

Next we estimate the H'-norm of vp, in My \ M. As earlier we can estimate
[V, |2 by the sum of all terms

)

. . 2
‘wf;MVg[le(a?)]ijkw:nlwfnzwﬁls‘ ,  Wp, € B.

Recall that we have

U ot o ok [AB i oG kL
w Vdv”fl]wkwm1wm2w - [d UMl]ijkzwmlwm2w w-,

if w # Wiy, , Win,. We only need to estimate the terms

(7.7) @ZVZ[UMI (a:)]ijkwfmwﬁ'mwk, W # W, WH# W,
and
(7.8) ﬁZVg[le (x)]zjktﬁzijk

We start with the term (7.7) and as earlier we work in boundary normal coordinates
(2, x3) of M near some fixed boundary point xg € OM.
We have the following identity analogous to (4.12):

[oar, (2))i3whe, wh,, = —/ [A%0nr, (Vo ()ijasth,, (Dwh,, ()AL, wp, € {n,7},
T3
and (4.13) has become
(7.9)
Xy Velvar, ())ijawh, wh,, = —/ Xy ([A50ar, (e () )igsstwhy,, (Hwh,, (£)) dt.
T3
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That is we have estimated (7.7) when w = £ and w € {n,77}. To estimate for
the remaining case of (7.7) we denote w = £ and w = 1. Then it must hold that

W, € {£,7n} and
(Vo (@) 6 = §" Vi v, (2)]pk€” + 0™ Vi [0ag, (2)]pien® + 07 Vi [var, (2)]piei?-

Straightforward computation yields

[ 0500t ] Wi, w0, 1€ (%(W[’UMl (@)ijre + Vi[var, (x)]ij€)>w wh,n"€"

_ 11_0 <5ie (E™ Y [0ag, (@)]pjkE® + 0™ Vin [z, (2)] pst”

o, <x>]pjkn~p) wiy wh, e’
e (smvm [oat, (2)]pin? + 17V [oas, ()]

Y o, <x>1pw)w:‘mwa2nw).

Taking wy,ws € {£,7} in the above formula, we can get desired estimates for

o [oar, (J?)]ijkwimw%zﬂk-

It remains to estimate the terms appearing in (7.8). Set @w = £ in (7.8) and write

[ Ml]uuw wwk e’

1 iy
(5 (Felonn @i + Valoan (D) ) Tt

- 16 ( (BT mloan @D + 17Vl O
T oar, ()] ) 00w’

10) + 65 (imvm [Was, (@)]pie€” + 0" Vin [var, (2)]pien”

7" Vo (@) i ) T w "
8t (€7 Vi [oar, (2)]pse€” + 7" Voo, (@)’

TV o (@) ) B!
+ (" Vmlvan, (@)]pie” + 1" Von[ons, (@) pier”

+ 10" Vinloag, (;v)]pm“ﬂ’) @%z) :

We drop out all the terms in the right hand side of (7.10) that do not have the
normal derivative £™V,,, to obtain

1 o 1 o
§V£[UM1 (2)]ijp @ wiwk et — 10( i€ Von [ar, (2) ]P0 0w wh €’
+ 608"V [va, (z)]pikfplﬁiijkée + 0ik€" Vi [vag, (a:)]pjgﬁpﬁ?iijkfg

+ &MV onlow, (x)}piggp@i§é> )

Licensed to Rice Univ. Prepared on Mon Oct 11 11:56:40 EDT 2021 for download from IP 128.42.234.145.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE MIXED RAY TRANSFORM 6129

If w = £ the simplified version of the right hand side of (7.10) is

3 Velonn (@0 64e" = 5 (3™ T foa, P TE ¢

+ Vo [0nr, ()] pinP B ER + 8™V [oar, (2)]pje @' €PETECER
+ &MV on[on, (x)]pigfp@ife) )

Which is always a nonzero multiple of V,[var, (7)];x@'€7€F¢4, and thus can be

estimated.

For w = n or w = 7, the situations are analogous, and we only consider the first
case. We get

1 . 1 .

5 Velons, (@)’ n*e" — 10 (5ie§mvm[UM1 (@) pgrP @' n*¢*

+ 6" Vo s, (2)]ps P00 EE 4+ €7V mlonr, (x)]pwﬁp@ié%) :

for the simplified version of the right hand side of (7.10). Here the last two terms
have already been estimated and the first term vanishes if @ # £. Therefore we have
also found a formula for V,[vas, (2)]ijx@ 7 n*¢" that contains the only tangential
derivatives and dBvyy, .

As earlier we can find C' > 0 depending only on the distance to dM;, which
satisfies the following pointwise estimate:

2
|wry, Veloar, (€)]ijrws,, wh,wh, | < C (Z IXV x0 (TINL g + |’C4fg> s Wy, € B.
k=1

To complete the proof of the second claim of Theorem 4.6 we refine operator 7T
using equation (7.5). The rest of the proof of Theorem 4.6 is analogous to what we
did earlier.

7.3. A sketch of proof for Theorem 5.5 in 2 4+ 2 case. We sketch here the
required changes needed for the proofs of Theorems 5.5 and 1.2 for 2 4+ 2 tensors
fields.

First we note that the formula (7.2) implies the claim of Proposition 5.1 for 2+ 2
tensor fields. We note that Proposition 5.3 is analogous to 1+ 1 case, since we have
proved Theorem 4.6 for 2 + 2 tensor fields. Then we arrive at Lemma 5.4, which
requires some modifications.

Proof of Lemma 5.4 in 2+ 2 case. We fix zg € OM and take the boundary normal
coordinates x = (2, 23) in a neighborhood U C M of xq. In these coordinates we
have g;3 = d;3, in U, for any i = 1,2,3. We aim to find a (trace-free) 3-tensor field
v, vanishing on &M, such that for f := f — dBv we have

(7.11) ﬁ-jkg =0, insome open U C U, that contains z,
which is, due to (2.8), equivalent to

1 1 1 )
fijk3 — §v3Uijk: - §Vkvij3 + To <6j39mnvnvimk +0i39™" Vi Vjmi
(7.12)

+ 9ikg"" VnUims + gikgmnvnvjm:s) =0, inU.
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The order for determining the components of v is quite similar to what is outlined
in the proof of Lemma 2.3. Let us first consider the case kK = 3. Then the above
equation becomes

1 .
(7.13) fijas — V3viz + A <5j3gmnvnvz’m3 + 5z’39mnvn%‘m3) =0, inU.

Remember that

Vevijk = Ovigk — (L vmsk + Dfpvime + Tipvijm)
and the Christoffel symbols, in the boundary normal coordinates, satisfy I'5; =
I3, =T3, =0. If i,j # 3 we can write (7.13) as an ODE system, with respect
to the travel-time variable x3, for the unknowns v,gs3, o, 8 # 3, which can thus be

determined.
If i = 3 and j # 3 we write (7.13) in the form

6 1 .
f3j33 — 5V3U3j3 + =9 PVavpj3 =0, inU, «fB€{l,2}.

Thus vs;3 can be found by solving the corresponding initial value problems. Finally
we set i = j = 3 and the system (7.13) takes the form

7 2 . .
f3333 — 3V311333 + =9 PV avp33 =0, inU, «o,fB€{l,2}

Now we have determined v;;3, next we consider the case k # 3. For 4,5 # 3,
equation (7.12) gives an ODE system for vagk, o, 8 € {1,2}. Then take i = 3 and
j # 3, we get a system for vzag, o # 3. Finally, take i = j = 3, we get a system for

V33k -

Thus we have found a tensor field v that vanishes at the boundary and solves
(7.11). We claim that constructed v is trace-free. To see this, we multiply ¢’% to
both sides of (7.12) and get

1 , 1 .
_5v3(vijkgjk) + 1_0513vm(vmjkgjk) = 0.
First take ¢ # 3, we have

Vs (vijeg’™) = 95(p); — T%; () = 0.

Since 'k, = 0 for k = 3, the above identity gives an ODE system for (v1,xg7!, va;1g7!).
Consequently, v;;xg’% = 0 for i # 3. Then we take i = 3 and conclude that
vgjkgjk = 0. The claim is proved.

It is easy to see that if f and g are analytic near OM, so is v.

Similar to the proof of Lemma 5.4, we can show that

(7.14) 0’y fijee€t€t =0,
at the chosen boundary point zy, whenever £ is tangential to the boundary and

n L & Weset e3 = v(xg), and e, = mi,auo for « = 1,2. Setting £ = e, and ) = e;,
a € {1,2}, i€ {1,2,3}, i # a, then the previous equation implies

fiiaa =0, i€{1,2,3}, ae{1,2},i+#a.
This means that the following terms vanish

f11227 f22117 f3311> f3322-
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Then take & = e, n = %(62 + e3), we can conclude that f2311 = 0. Similarly

fiz22 = 0. Let us summarize what we have right now:
fijoza = Ov i’j € {1a2a3}a a € {172}a i,j 7£ Q.

Take £ = (el + e2) and 1 = e3, we obtain that f33;2 = 0.

Let € > O If we set n = e1 + eeq and £ = e5 — eeq, then equation (7.14) implies
that the coefficients of the powers of the e satisfy

(7.15)
faaaa_4faﬂa5+fﬁﬁﬂﬁ :07 and fﬁaaa_fﬁﬂﬁa :07 a#ﬂu 04756 {172}
By (7.11) and the trace-free condition, we have faaaa = —faﬁa[g = f[gﬁgﬁ and

fgmm = —fgma. Together with (7.15), we have

faaaa = faﬁa,@‘ = fﬁaaa =0 « 7£ 5) OA,B € {1a2}

Taking £ = e1 + eeg and 1) = e3 + e3 — eeq in (7.14) and collecting coefficients of
1,€, €2, €3, we have

—fa222 + 2f3112 = 0,
—fa111 + 23921 = 0.

Together with the relation resulted from trace-free condition f3222 + f3112 = f3111 +
f3221 = 0, we obtain f3222 = f3112 = f3111 = f3221 = 0. Therefore we can conclude
that f vanishes at xg. Since xg was an arbitrary point in M N U we have shown
that f vanishes at M N U.

Similar to the proof of Lemma 5.4, we can prove

(7.16) P fijhtlo—ao =0, PEN, 4,4k €€ {1,2,3},

and conclude the proof. |

The adaptations needed for the proof of Theorem 5.5 in the 2 + 2 case are
straightforward and therefore omitted. The rest of the proof for Theorem 1.2 is
analogous to 1 4 1 case.

APPENDIX A. LINEARIZATION OF ANISOTROPIC ELASTIC TRAVEL TOMOGRAPHY

In this appendix, we effectively study linearized travel-time tomography prob-
lems for polarized elastic waves. For our purposes this means the determination of
some elastic parameters by measuring the travel times of ¢S-polarized waves — see
the definition below. We use the typical notations and terminologies of the seismo-
logical literature; see for instance [8]. We let C = Cjjki(x) be a smooth stiffness
tensor on R? which satisfies the symmetry

(A].) Cijkg(il,') = Cjikz(x) = Ckgij(il,'), T e Rg.

We also assume that the density of mass p(x) is a smooth function of z and define
density—normalized elastic moduli

Cijre(z)

A=Al = =00
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The elastic wave operator P, associated with the elastic moduli A, is a matrix
valued second order partial differential operator given by

02 o 0
Py = 5%@ - Z (Aijkz(x)@@) + lower order terms.
3k

For every (z,p) € T*R3? we define a square matrix I'(z, p), by
(A.2) ik (w,p) ==Y Agje(2)p;pe-

j.
This is known as the Christoffel matriz. Due to (A.1) the matrix I'(x, p) is symmet-
ric. We also assume that I'(z,p) is positive definite for every (z,p) € T*R3\ {0}.
The principal symbol o (¢, x,w, p) of the operator P is then a matrix-valued map
given by
o(t,z,w,p) = w?l —T(z,p), (t,z,w,p) € T RT3,

Since the matrix I'(x,p) is positive definite and symmetric, it has three positive
eigenvalues G™(x,p), m € {1,2,3}, which are homogeneous of degree 2 in the
momentum variable p.

We assume that

(A.3) G'(z,p) > G™(z,p), m € {23}, (z,p) € TR\ {0}.

It was shown in [15] that v/G? is a Legendre transform of some Finsler metric F.
Thus the bicharacteristic curves of w? — G (z, p) are given by the co-geodesic flow of
F. We recall that a bicharacteristic curve is a smooth curve on T*R!'*3, on which
w? — GY(z,p) vanishes, that solves the Hamilton’s equation for the Hamiltonian
w? — GY(x,p). We consider a second order pseudo-differential operator p :=
g—; — GYx,D), D := i(0y4,,04,,0.,). Since G! is related to a Finsler metric the
operator Op is of real principal type (the bi-characteristic curves exit any compact
set). The solutions u of the corresponding scalar VDE Opu = f represent g P-waves
(quasi-pressure waves) and moreover the wavefront set of u(t,-) propagates along
the bicharacteristics of w? — G!(z, p) [19,23].

Next, we describe the propagation of the slower ¢S and ¢Ss waves (quasi-shear
waves), that are given as solutions to the scalar equations with the operators
Os, = g—; — G™(z,D), m € {2,3}. In the anisotropic case the unit level sets
(G™)~H1} c T*R?, m € {2,3}, also referred to as slowness surfaces, typically will
have points in common. See [11] for a study of different types of intersections. The
size and codimension of their intersection set depends on the additional symmetries
that the stiffness tensor may have. Thus in general the smaller eigenvalues G2, G®
are only continuous. We denote by D. = (G?)~*{1} N (G3)7!{1} the set of de-
generate eigenvalues, and note that outside this set G' € {G?,G?} yields a smooth
Hamiltonian H(z,p) = $G(z,p). Let U C (T*R3\ {0})\ D, be an open set, then a
local Hamiltonian flow 8: D — U of H exists, where D is the maximal flow domain
of # that satisfies

(A.4) 0(t, (z,p)) €U, (x,p) € (UNG{1}).

In general it is possible that the momentum gradient D,H vanishes at some point
(z,p) € U, which would cause problems in translating between Hamiltonian and
Lagrangian formalisms. For this reason the operators Og, may not be of real
principal type in U. See for instance [33, Section 1.2] for the connection between
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different definitions for real principal type operators. We make a standing assump-
tion that D, H does not vanish in U. In other words we exclude the occurrence of
inflection points. We choose (zg,po) € U N G~1{1} and say that the elastic travel-
time 7. from (xg,po) to (z,p) € O(Ry, (zo,po)) N U is the smallest ¢ for which
0(t, (z0,p0)) = ().

Under these two assumptions for the Hamiltonian H in U we are ready to set an
inverse problem for anisotropic elastic travel-times. We suppose that there exists
an open set M C R? and open sets ¥, %/ C OM such that for any z € ¥,2’ € &
there is a unique characteristic curve of H contained in T*M N U whose spatial
projection y connects x to x’, where T*M is the cotangent bundle of M. Thus for
any ¢ € X, 7’ € ¥ there exists a unique triplet

(7e; (z,p); (2, p")) € Ry xUxU  which satisfies  0(e, (z,p)) = («/,p') € G"{1}.

Therefore 7, is the elastic travel-time from (z, p) to (z',p’) and we call dg(z,2’) :=
T. the elastic distance between x and z’. We arrive in an inverse problem of
anisotropic elastic travel-time tomography:

Problem A.1. What can one infer about G in T*M when boundary distance data
(A.5) {dg(z,2") e Ry 12 €%, 2’ €Y'}
is given?

We note that in general the sets ¥ and ¥’ can be very small, and (A.5) may not
contain any information about G in some open set of T*M. This is illustrated in
Figure 2.

FI1GURE 2. If there exists a set O C M such that all characteristic
curves whose terminal points are contained in X U Y’ avoid the set
T*0O, then data (A.5) does not provide information about G on
T*0.

Problem A.1 is highly non-linear and perturbations to anisotropic elasticity have
been largely unresolved. In the following we consider linearizations of this problem.
Since we have assumed that on the set U the eigenvalues G2 and G are distinct,
they and the corresponding unit length eigenvector fields are smooth on U (see
for instance [20, Chapter 11, Theorem 2]). In the following we recall a coordinate
representation of the Hamilton’s equation that the characteristic curve (¢, (xo, po)),
(o,po) € U N G~{1} satisfies. Let ¢ = g(x,p) be a polarization vector of G on
U. In other words it is the unit (with respect to Euclidean metric) eigenvector of
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the Christoffel matrix associated with the eigenvalue G. Then we can write the
eigenvalue G as

G(z,p) =Tirg'q" = Aijreg'dp’p*,  (2,p) € U.

From now on we denote the characteristic curve 0(t, (xo,p0)) by (x(t),p(t)) € U.
Therefore the polarization vector ¢ = ¢(z(t),p(t)) is also seen as a function of
the time variable ¢ implicitly. The following Hamilton’s equation holds true on

(=(t),p(t))

b = o H(w,p) = A"
Pm
(A'6) bS] 18A"k£ S
and  pr = 5 —H(x,p) = —§ﬁqlqujp£-

Next, we recall the linearization scheme for the elastic distance d¢, that leads to an
integral geometric problem of 4-tensor fields. This procedure has been introduced
earlier in geophysical literature (see for instance [10]) using Fermat’s principle. It
is well known that characteristic curves of Hamiltonian flow satisfy this principle
(see for instance [3]). For the convenience of the reader we give the proof and the
exact claim below.

Since Dy, H does not vanish on U, the Legendre transform, that maps a co-vector
to a vector, is well defined. Using the inverse of this map we define a Lagrangian
function L on the image of U under this transform. That is

L(.’ﬂ, y) = p((E,y) Y- H(LE,p((E,y))
If (z(t),y(t)) = (x(t),&(t)) is the image of a characteristic curve of H, under the
Legendre transform, then on this curve L = 1/2 and the following Euler-Lagrange
equations hold true

0 d /o .
8xiL(x’y) % (ayiL(x,y)) =0, foreveryie{l,23}.

Let x(t) be the base projection of a characteristic curve and x4(t) any smooth one-
parameter variation of this curve that fixes the start point = z4(0) and end point
2’ = x4(7.). We choose the notation V for the variation field V (¢) = %xs (t)]s=o of
xs(t). Then using integration by parts, we obtain

d [T — /OTC (DIL(x’j;) - % (DyL(a:,a's))) -Vdt

ds Jo
Thus Euler-Lagrange equations imply that characteristic curves are the critical
points of the energy functional

Ly) = / " L(y(t). (),

L(zs(t), 4(t))dt

s=0 s=0

where ~ is any C''-smooth curve. This is the version of Fermat’s principle we need.
We note that the characteristic curves are not necessarily local minimizers of the
energy functional.

We now have the framework to linearize the travel-time tomography problem
A.1. Let A be a smooth one-parameter family of elastic moduli. Suppose that
we can choose sets U, M, X, Y such that the discussion above holds for any s, if A
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is replaced by A;. Since the Legendre transforms depend on the parameter s we
obtain a family of Lagrangians

Ls(z,y) = ps(2,y) -y — Ho(x, ps(2,y)),
which satisfy

d d d d
(A7) &Ls(xay) - &ps Y- d_SHS - DpHs : &ps

If the data (A.5) is independent of s, then due to Fermat’s principle, equations
(A.6) (A.7), and the assumption that ¢4 is a unit vector on U, we obtain

d

0=Ldg(e,
ds a(z,7) 50
d [T

Lg(x4(t), 2s(t))dt

) _ ATC %Ls(x(t)vx(t))dt

:E .

Te d
=— —H dt
/0 ds s(zap)

s=0

(A.8)

Te 1 d . -
= - 2 (A vata®l vintdt
s=0 /0 2ds [( S)kaqsqs]pp
AL
:_/ %quqkp]pzdt,
0

where A}, = L (A)ijrels=0, and (z,p) = (2(t),p(t)) is the characteristic curve
of the reference model. Thus the linearization of anisotropic elastic travel-time dg
leads to an integral problem for 4-tensor fields.

In the following we will see that a similar linearization scheme applies in the case
when A is isotropic for any s. Recall that in isotropic medium the elastic moduli
can be written as

(Ag) Ccl = Czojké e /\6z’j5k€ + u (5ik5j€ + 5i€5jk) .

s=0

The functions A\(x), p(x) > 0 are known as the Lamé parameters.
If the mass density p is given it follows from (A.9) that the isotropic Christoffel
matrix is

A
(A.10) SPiP + % (Siklpl? + pivk) »

whose eigenvectors are p and any unit vector ¢ that is perpendicular to p. Moreover

the corresponding eigenvalues are
(A.11)

G' =Tup'p" = (A - 2“) P p= 1 and Gi=G? =G =Tug'q" = Zppl2
P ‘p|e 14
In particular G' or G are both smooth and do not have inflection points. Thus
any smooth one-parameter family Ay of isotropic elastic moduli satisfies all the
additional assumptions we had to impose earlier for the general anisotropic case.
We recall that for isotropic elasticity, there are two different wave-speeds, namely,

P-wave (Pressure, longitudinal wave) speed cp = ,/H% and S-wave (Shear,

transverse wave) speed cg = £ Therefore we can consider M, in Problem
peed cg e ;

A.1, as a Riemannian manifold with conformally Euclidean metric gp = cIZst2
or gs = c§2d32, where ds? is the Euclidean metric.
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We repeat the earlier linearization scheme with respect to smaller eigenvalue G
and obtain

d
0 :d—sdg(x,a:’)

= —% /OTC (log (C%’))/dt.

This equation follows from (A.11) and from the initial condition (z,p) € G~1{1}.
Moreover in this case 7, is the Riemannian distance between z,z’ € M with
respect to the metric gs. Therefore we have shown that the linearization of elastic
travel-times in isotropic case leads to an integral geometry problem on functions.
In our final example we consider the linearization of the averaged quasi-shear
wave travel-times in weakly anisotropic medium. Suppose that we are given a fam-
ily Ay = %O + s% of elastic moduli on some open and precompact domain of

s=0

R3. Here C° is an isotropic stiffness tensor having the form (A.9), C is an arbi-
trary anisotropic stiffness tensor, which satisfies the symmetry (A.1), and s is a
real parameter close to zero. We note that for |s| small enough the largest eigen-
value G of the Christoffel matrix I'y of A, is always distinct from the smaller
ones. Therefore, G1(x,p) and the corresponding gs-unit eigenvector field ¢s(z,p)
are smooth in all variables (x,p, s). As the elastic moduli A; is isotropic at s = 0,
we have the degeneracy of eigenvalues, G3(x, p) = G (x, p) and, hence, G%(z,p) and
G3(x,p) may not be smooth when s tends to zero. However, G2(x,p) + G2(z,p) =
Tr (L) (z,p) — G(z,p) is smooth in (x, p, s), and strictly positive for p # 0. There-
fore, we introduce the smooth one-parameter family of averaged ¢S-Hamiltonians,

_ LYo s
(A.12) H = 7 (G;+G3),

inheriting the homogeneity of order 2 in p-variable. Since Hj is conformally Eu-
clidean, we note that, for |s| sufficiently small, /H, is, in fact, a smooth family of
co-Finsler metrics, with s-uniformly lower bounded injectivity radii while H, does
not have inflection points. We briefly analyze the Hamiltonian flow associated with
H, — which may be thought of as describing the propagation of singularities of an
artificial wave — see below. In the following we will show that, up to the first order,
the travel time along this flow can be identified with the average of travel times
associated with the two ¢S-waves. This identification has been originally proposed
in [9].

First we note that it follows from [9, equations (24) and (26)] that for z, 2’ € R3
that are close enough we can write the average ¢S-travel time as

daz(x,2") + dgs (v, 2")

(A.13)

2
/ 1 5 Cijke 2
=dgs(x, ) —s/ ZZ((SZ’“ — C&PiPk) PiDe dt + O(s7),
zo(t) = ke P

where xo(t) is the gs-geodesic connecting = to ' and p = p(t) is the momentum
of xo(t). We recall that the term d§; — ¢%p;py, in (A.13), is the projection onto the
orthocomplement of p.

Next we study the linearization of H,-travel times dg, (z,2"). Let po(t) €
T;O(t)R?’ be the momentum of the gg-geodesic connecting z to z’. Thus (z¢(t), po(t))
is a characteristic curve of Hy, with initial value (z,p) € T*R3, |plys = 1. In ad-
dition we denote dy_ (z,2") = 7. that is the gs-distance between z and z’. We
note that due to the uniform lower bound for the injectivity radii of v/Hj, for every
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s € (—e¢,¢€) there exists a v/ Hg-distance minimizing geodesic z(t) from z to 2/,
possibly after choosing 2’ closer to 2 and choosing € > 0 small enough.
We consider the following system of linear ODEs

D I I D I I 3
—es<t>=—<es,—qs> (D). ¢l(0) =1l € TR,
(A.14) dt e/ ..

mEnlygs =6, and  (nf,qs(0))gs =0, I,J€{1,2}.

Here q,(t) = qs(zs(t),ps(t)) and £ is the covariant derivative with respect to
Riemannian metric gg along the \/H-geodesic z,(t) from z to 2’. Both solutions
el of (A.14) satisfy (el, qs>gs = 0, due to the assumption |gs|4s = 1, hence it also

holds that <e£ el >gs = 6!/ along z,. Therefore we have shown that for any s

the vector fields {gs, el,e?} form a gg-orthonormal frame moving along x,. With

respect to this basis we can write in T’ .. (t)R3
= . (Fse;) : e; (Fsei) : ez

G?+G% = (c5) *Tr (Fs) ) for Ty =
(Tse?) el (Dael)-e3

S S

Since e}(t) and eZ(t) are orthogonal to ig(t), and we assumed that they are gs-
normalized, we obtain

d Iy J
& [(Pses) ! 63}
Finally we assume that H-travel-time dy_ (z,2’) from x to 2’ is the constant ..
Then we run through the same linearization process as earlier and obtain

= Sl () ()" T e 1)
s=0

d e d
0=—d N=—- — H (zo(t), po(t))dt
ot o) = = [ L o0, po(0)at]
Te C’L . . Te C’L o X
(A15) :_/ ékfa-,:]ij(el)z(el)kdt_/ ékzxsz(GQ)z(GQ)kdt,
o 4cgp o degp

i =do(t), el :=el(t), T € {1,2}.

In the last equation we also transformed the momentum variable into the velocity
variable.

If we write the right hand side of (A.13) using the basis {0, e}, e3} we notice
that the first order term equals to the right hand side of (A.15). Therefore we have
verified that H,-travel times and average of travel times associated with the two
gS-waves coincide up to the first order. We also note that up to a constant the
integrands in the right hand side of (A.15) are the same as in [42, Problem 7.1.1].

Finally we note that the polarization vector qo(t), coincides with the velocity
field &o(t) of the geodesic z((t) in the reference medium gg. Thus we have, due to
(A.14), that e/ (t) is given by a parallel translation of n/ € T, R? along the reference
ray xo(t). We have shown that an anisotropic perturbation of an averaged isotropic
shear wave travel-time leads to an integral geometry problem on the 4-tensor field
fijke = %% which is related to the mixed ray transform Lssf for the
metric gs. However we want to emphasize that the travel-time dp_(x,x), of the
aforementioned artificial wave, is given only by the averaged ¢S-Hamiltonian H,,
in (A.12), that is independent of the choice of the initial values ! in (A.14), which
yield the shear wave polarization vector fields el (¢) in formula (A.15).
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To conclude the first part of the appendix we note that (A.15) implies that
the travel-time data alone only gives us partial information about the mixed ray
transform. However, if in addition we include the measurement of the shear wave
amplitude, the complete mixed ray transform can be obtained. In Appendix B, we
will show how one can recover the mixed ray transform from the linearization of
the Dirichlet-to-Neumann map of an elastic wave equation on M, by probing with
Gaussian beams. We also refer to [42, Chapter 7] for an alternative derivation of
the mixed ray transform.

APPENDIX B. THE RELATION OF THE MRT AND THE DIRICHLET-TO-NEUMANN
MAP

In this section, we give another derivation of the mixed ray transform from the
inverse boundary value problem for elastic wave equations. We let M C R? be a
bounded domain with smooth boundary M and x = (2!, 2%, 2®) be the Cartesian
coordinates. The system of equations describing elastic waves can be written as

2

pos —div(Ce(w) =0, (t,2) € (0,T) x M,
(B.1) ot )
u=nh, on(0,T)x90M, wu(0,z)=—u(0,z)=0, ze€M.

ot

Here, u denotes the displacement vector and

e(u) = (45(u) = % (gg; * ZZZ>

is the linear strain tensor. Furthermore, C = (Cjjre) = (Cijre(z)) is the stiffness
tensor and p = p(z) is the density of mass. As in Appendix A we assume that
Cijke and p are all smooth functions, and the elastic tensor C is assumed to have
the symmetries as in (A.1). In addition we assume the operator — div(Ce(+)) to be
elliptic, in the following sense: There exists § > 0 such that for any 3 x 3 real-valued
symmetric matrix (g;;),

3 3
> Cijmeeijere =06 e
1,9,k £=1 5,j=1
Under these assumptions we let Ac to be the Dirichlet-to-Neumann map for the
elastic wave equation (B.1) (see for instance [16]), given by

Ac : C2([0,T); HY>(0M)) 5 h = Ce(u)vlo.yxons € L2([0, T); H-Y/(9M)).

Where T" > 0 is large enough. The following inverse problem is of fundamental
importance in seismology:

Problem B.1. Can we reconstruct the elastic tensor C and the density p from the
Dirichlet-to-Neuman map Ac?

We note that this problem is open for a general anisotropic C. For isotropic
medium, the uniqueness is shown under certain geometrical assumptions [6,24, 39,
40,46]. The uniqueness of transversely isotropic tensors is proved under piecewise
analytic assumption in [16], as well as fully anisotropic tensors under piecewise
homogeneous assumption. In contrast to the elastic problem, the corresponding
inverse problem for scalar wave equation has been solved in [4,5]. In this second
appendix, instead of studying Inverse Problem B.1 for general anisotropic elastic
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tensors, we consider a linearization of the problem around isotropic elasticity. We
will see that the linearization leads to a family of ray transforms on four tensors.
From here we consider a one parameter family of anisotropic perturbations sC
around the isotropic elasticity C? of the form (A.9), that is we study an elastic
tensor Cy = CY + sC. We note that the map Cy — Ac, is Frechét differentiable at
CY, and the Frechét derivative is Aco : C Ac.o (C) :=limsg %(Acfu-sc — Aco).
We will study the injectivity of the linear map Aco, whose action is given by
(B.2)  (Aco(C)hi,ha)o1)xom = Cijre(2) 0y, w; (2, 1) Dy, ve(z, t)dadt,
(0,T)x M

and w (v) solves the elastic wave equation (backward one) with the isotropic elastic
tensor CO,

pZ — div(Cow) =0, in (0,T) x M,
w=nhy, on (0,T)x oM,
w(0,z) = Zw(0,2) =0, z€ M,

pZy — div(C%) =0, in (0,T) x M,

v=hgy, on (0,T)x9IM,

o(T,z) = Zo(T,2) =0, z€M.

A similar linearization for the time-harmonic elastic wave equation can be found in
52].

| %\Text we summarize the construction of Gaussian beam solutions to (B.3) used

in [50, Section 3]. We also refer to [21] for more discussions on Gaussian beams

solutions. Assume that M cC M C R?, where M is open and bounded, the

Riemannian metric gp/s with respect to C° is known on M and the Riemann-

ian manifold (M, gp,g) is simple. We choose a maximal unit-speed geodesic vy in

(M,gp/s), and extend it to M assuming that once leaving M it will not return

back to it. Then ¥(t) = (¢t + a,~(t)) is a null-geodesic in the Lorentzian manifold

((0,T) x M, —dt? + gp/s) joining two points on (0,77) x M, as long as for a > 0

and T large enough. Let us first take an asymptotic solution M, to the elastic wave

equation on (0,77) x M,

9?M,
o2

representing S-waves, of the form

—div(COM,) = O(g ™),

p

N+1
M, =x Z 0 'a; | €%,
i=0

where g is a large parameter and all the vector fields (aj)jy;gl and the phase function

@ depend on time ¢ and on location x. Here Y is a real valued cut-off function that
is compactly supported and equal to 1 in a neighborhood of 1. The phase function
¢ satisfies Dy = (t), where D is the gradient with respect to the Euclidean
metric on M. The imaginary part of the spatial Hessian of the phase function ¢ is
positive definite, i.e. 3(D?p) > 0. In addition we have

(B4) ag(9(t)) = As(9(t))e(9(t)),
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where e(d(t)) = n(t) is an arbitrary parallel vector field along +(t), perpendicular
to 4(t), that is 2n(t) = 0, n(t) L 4(t), and the amplitude Ag can be chosen such
that

(B.5) Asly = det(Ys) " 2egt2p712,

where Ys(x,t) is well defined on ) and is given as a solution of a second order ODE.
Furthermore, we have

(B.6) det(S(D?p))| det(Ys)|* = co

on ¥ with ¢y a constant. Let hy = M,|o,1yxonm, then one can determine the
remainder R, satisfying zero boundary and initial conditions, such that

(B.7) w=M,+ R,

is a solution to the first equation in (B.3). For any m € N we can choose large
enough N such that the remainder term R, satisfies the estimate || R,|| g1 (arx (0,7)) =
O(p™™). We also take

N+1
(B.8) v=DM,+R,=x Z o Va; | e ¢ R,
3=0

for a solution of the backward elastic wave equation in (B.3) with hy = E|(O,T)X8M~

We multiply the identity (B.2) by 0~ % and use the representations (B.7) for w
and (B.8) for v, then due to the estimate [21, equation (3.33)] and the substitution
ug = X0, [a0] 0z, ¢ [a0]¢ We obtain

(B.9)
ey [T 203 1
0 2(Aco(C)hi, ha)(o,r)xom :Qﬁ/ / e " ¥ugdadt + O(0™ ), o0 — oo
0 M

Note that one can use the Fermi coordinates (7,2’), as constructed in [50], under
which the Euclidean volume form is dzdt = c¢idr A dz’, moreover 7 = V2t and
2’ = 0 on . Notice that DSp = 0 on ¥. Then after using the method of stationary
phase to the integral

. <k,
/e 2032y ctda’

with the phase function f := i23¢ and amplitude u := ugcd as in [26, Theorem
7.5.5.], we can write the right hand side of (B.9) into the form

(—i’l‘()% / ‘det D2%¢(19(7))|_5 u(V(7)) e (I(r))dr + O(0™h), o — oo.
0
Next we use the properties (B.5) and (B.6) to observe that

uo(0()) =|AsOu e Trper] | = |det(¥s)| "5 o im0k (OIme)

Jdet D*Sp(9(7))
NG

Since ¢g is a known constant, we have verified that

. 1, Cz ] . .
(B.10) 0 Zglgn 0 2(Aco(C)ha, ha)o,r)xom =/ ;MC?;%'(ﬂm(ﬂ%(ﬂm(ﬂdt
o0 9

0714 (0 (6 () e (2).
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Finally we use the notation v for raising the indices of a co-vector v; under the

metric gg, that is we have v; = c§2vi. Then due to formula (B.10) we have recovered
Critj+Chrjei
% k,zJJrG kit c SQ
PCs

from Aco (C) along the arbitrarily chosen geodesic v with respect to the metric gg
for any parallel vector field i along ~ that is perpendicular to 4.

For P-waves, we can construct solutions concentrating near a null geodesic ¥(t) =
(t+ «,7(t)) in the Lorentzian manifold ((0,T) x M, —dt?> + gp). For the solutions
w,v constructed as (B.7), (B.8), we can take

the mixed ray transform of the tensor field f;jre == Th © S%7),,

apg — ApD(p,
where the P-wave amplitude satisfies
Aply = det(Yp) " /2ep! 212,

Similar as above, we end up with the (longitudinal) ray transform

0:/Cijk[;yi(t),'yj(t);yk(t)’.ye(t)dt'

6
PCPp
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