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Abstract

We analyze the inverse spectral problem on the half line associated with elastic
surface waves. Here, we extend the treatment of Love waves [5] to Rayleigh
waves. Under certain conditions, and assuming that the Poisson ratio is constant,
we establish uniqueness and present a reconstruction scheme for the S-wave
speed with multiple wells from the semiclassical spectrum of these waves.

Keywords: inverse spectral problem, semiclassical analysis, elastic surface
waves

(Some figures may appear in colour only in the online journal)

1. Introduction

We analyze the inverse spectral problem on the half line associated with elastic surface waves.
We discussed Love waves in a companion paper [5], and in this paper we analyze this inverse
problem for Rayleigh waves.

The remainder of the paper is organized as follows. In section 2, we give the formulation
of the inverse problems as an inverse spectral problem on the half line and treat the simple
case of recovery of a monotonic wave-speed profile. In section 3, we discuss the relevant
Bohr—Sommerfeld quantization, which is the main result of this paper as it forms the key
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component in the study of the inverse spectral problem. In section 4, we give the reconstruc-
tion scheme under appropriate assumptions, which is an adaptation of the method of Colin de
Verdiere [3].

2. Semiclassical description of Rayleigh waves
We study the elastic wave equation in X = R? x (—00, 0]. In coordinates,
('x7z)’ X = (xl,x2) 6 Rz’ < 6 R7 - (700’ 0]7

we consider solutions, u = (u1, uy, u3), satisfying the Neumann boundary condition at 90X =
{z = 0}, to the system

(9,21/!,' + Myu; = 0,
I/l(t = O,x, Z) - 07 8tlxl(t - O,.X, Z) = h(-x7 Z)’ (1)
B Da(t,x,z = 0) = 0,
p
where
0 ci3(x,z) 0 : ciu(x,z) 0 0 2.9 cipi(x,2) 0
My =— S BRI =2 N L anth g
! Jz p(x,z) Oz Z p(x,z) OxjOx ; Oxj p(x,z) 0z
72 cisu(x,2) 0 0 7i (5 Ci3kl(x»Z)) 0 i (5 Cijkz(x,Z)) 0
= pw2) 9z0m = \0z p(x2) ) Ox £~ \Ox; p(x2) ) Ox

Here, the stiffness tensor, c;j;, and density, p, are smooth and obey the following scaling:
introducing Z = f,

Cij Z
Mx,z) = Ciju (x, 7) , € €(0,e0l;
p €

Ciju(x, Z) = Ciju(x, Zp) = Clyy(x), Z <7 <0.
As discussed in [4], surface waves travel along the surface z = 0.

2.1. Surface wave equation, trace and the data

We briefly summarize the semiclassical description of elastic surface waves [4]. The operator
M can be viewed as a semiclassical pseudodifferential operator in (xy, x,) with small parameter
€. The leading-order (operator-valued) symbol associated with M;; is given by

0 0
Ho(x, &) = *%sz(% Z)&
2 (9 2 (9 2 a
—~ i;‘ Cipi(, )8 — ik; Colx, Z) - — i; (&cmd(x, Z)> & ()

Jj=

2
+ Z Ciju(x, 2)E ik

Jk=1
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Here we use the standard quantization of the symbol ([12, section 4.1]). We view Hy(x, &) as
an ordinary differential operator in Z, with domain

3
> < Cinai(x, 0) S0+ 12 Co kvz<0)> = 0}

D= {v € HX(R")
=1

For an isotropic medium we have
Ciju = ;\51';'51(1 + [10b i + dib i),

where \ = %, o= %, and A, p are the two Lamé moduli. The P-wave speed, cp, is then cp =

\/ A + 21 and the S-wave speed, cs, is then cs = +//i. We introduce

€7 gt o
PO = |-l e 0
0 0 1
Then
. Hy(x,6)
1 _
P Ho(x. OP(©) = ( " §)> :
where
0 0 .
~ 7 /l(fzz) —if¢] ( (ip3) + A5 903) + O+ 2 ¢
Hg(x» §) (gj) = 9 O3 9 9
~3z A+ 20 ) ) —if¢] (&(A%Prﬂ&@z) + 1€ 3
3)
supplemented with Neumann boundary condition
0
ilglis(0) + Z2(0) =0, @)
IAElpa(0) + (A + 2#) (0) %)

for Rayleigh waves.
We assume that Hg(x, &) has M(x, &) simple eigenvalues in its discrete spectrum

AN <A< <Ay << Agp

with eigenfunctions @, ((Z, x, £). (We note the difference in labeling as compared with [4, 5].)
We note, here, that 9¥(x, ) increases as || increases. By [4, theorem 2.1], we have

HY 0B, = Bygo Ay + Oe). 6)

Defining
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1
JQ,E(Z? X, 6) = %q)a,o(zv X, 6)’ (7)

microlocally (in x), we can construct approximate constituent solutions of the system [1], with
initial values

M
h(x,€2) = JooZ,x, D)W (%, 2).

a=0

We let W, solve the initial value problems (up to leading order)

[€07 + Aa(x, D)W, ((1,x,Z) = 0, (®)
Wa,e(O» X, Z) = 0» atWa,e(O» X, Z) = Ja,e Wa(x: Z)» (9)
a=1,..., 9 Welet Go(Z, x,1,Z', &; €) be the approximate Green’s function (microlocalized

in x), up to leading order, for Rayleigh waves. We may write [4]

m . .
gO(Z7 X, t’ Zl? 5’ E) :;)JQ,E(Z7 X, 5) (;ga;‘r,o(-x? t’ g? 6) - %ga’,’o(.x, t’ 57 6)>

X A2, )0 (Z, %, 6), (10)

where G, + o are Green’s functions for half ‘wave’ equations associated with [6] and (9). We
have the trace

M
/ DGo(Z.x,w. 2.6 d(eZ) = Y 0w — A, )AL (.6) + O ™)

a=0
(11)

from which we can extract the eigenvalues A,, o« = 1,2, ..., 91 as functions of £. We use
these to recover the profile of /i = ¢ under the following assumption

Assumption 2.1. Poisson’s ratio v, with A= %ﬂ, of the elastic solid is known and is a
constant.

For a Poisson solid, v = %. However, we only assume that v is known. We may thus express
A in terms of fi.
As for Love waves treated in [5], we will use semiclassical spectrum to do the recovery. We

also remark here that it is impossible to recover /i and A separately from semiclassical spectrum
without above assumption.

2.2. Semiclassical spectrum

We suppress the dependence on x from now on, and introduce 7 = |£|~! as another semiclas-
sical parameter. We introduce Hy;, = h>HY(€), that is,

a (.0p . o0 . - 0 “ R
— 27 - — [ [
Ho (@2) B h oz \M az) ih (az(“%H)‘aZ%) + A+ 20 (12)
\p3) 2 0 “ L 0p3 . 0 - .0 . ’
h 5z A+ 2“)—62 ) ih <—aZ()\<pz) + fimz 2 + fip3
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which has eigenvalues A\, (h) = h*A,. We invoke
Assumption 2.2. Forall Z < Z;, i(Z) = juZ;) and NZ) = \(Z;). Moreover,

0 < j0) = inf /(Z) < ju = sup2) = jZy), (13)
z<0 7<0
forallZ € [Z;,0] wehave ;\(Z) +2(Z) = (Z)). (14)

The assumption that /i attains its minimum at the boundary and its maximum in the deep
zone (Z < Zj, see [10]) is realistic in seismology. We write Ey = [1(0).

Remark 2.1. We note that if assumption 2.1 is satisfied, then [11] requires that

2

Y (2Z) = iz forall Z € [Z;,0].
1—-2v

The spectrum of Hy, is divided into two parts,
o(Hop) = 0a(Hop) U 0ess(Hop),

where the discrete spectrum o4(Hy ;) consists of a finite number of eigenvalues in (Ey, fi;) and
a lowest (subsonic) eigenvalue \g(h) < E, that is,

Ao(h) < Eg < Ai(h) < Xa(h) < ... < don(h) < fu,

and the essential spectrum oes(Ho ) = [f17, 00) [4]. (The essential spectrum is not absolutely
continuous for Rayleigh wave operator.) The lowest (subsonic) eigenvalue, \o(h), lies below
[1(0) for h sufficiently small. Its existence and uniqueness under certain conditions (which are
satisfied, here) are explained in [4, theorem 4.3]. See also the discussion in section 4.1. No such
phenomenon occurs in the case of Love waves. Again, the number of eigenvalues, 91 increases
as h decreases.

We will study how to reconstruct the profile of /i using the semiclassical spectrum as in [3].

Definition 2.1. For given E with Ey < E < [i(Z;) and positive real number N, a sequence
a(h), a=0,1,2,...is a semiclassical spectrum of Hy; mod o(h") in (—o0, E) if, for all
Aa(h) < E,

Aa(h) = pa(h) + o(h")
uniformly on every compact subset K of (—oo, E).

In the remainder of the paper, we will prove

Theorem 2.1. Under all the assumptions mentioned above and below, the function [i can
be uniquely recovered from the semiclassical spectrum of Hy,;, modulo o(h’ /%) below fir.

2.3. Reconstruction of a monotonic profile

In the case of a monotonic profile, the reconstruction of /i is straightforward as it coincides
with the corresponding reconstruction in the case of Love waves [5].

Theorem 2.2. Assume that (i(Z) is decreasing in [Z;, 0]. Then the asymptotics of the discrete
spectra \o(h), 0 < a < M as h — 0 determine the function [i(Z).
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This is a consequence of Weyl’s law. For any E < ji;, we have the Weyl’s law for Rayleigh
waves [4]:

1 .
#{Xa(h) < E} = W [Area <{(Z, O A+2)@)(1 +¢) < E})

+ Area ({(z, O 21+ < E}) + 0(1)} .

We note that Weyl’s law (in the leading order) does not depend on boundary conditions [3] and
[5]. Due to assumption [11], Area({(Z,¢) : (A + 2a)(Z2)(1 + ¢*) < E}) = 0, and we get

1
#{a() < E} = 5 [Ara({(Z.Q) : (D1 +¢) S EP+o(D]. (15)

The procedure of reconstructing the function /i from the right-hand side of [12] is given in [5,
theorem 3.2]. It uses an analogue of lemma 3.1 there:

Lemma 2.1. The second eigenvalue, \i(h), of Hy satisfies limy_oA;(h) = Ej.

In particular, similarly to remark 4.1 in [5], under assumption 2.2, using the Taylor expan-
sion of [« near the boundary in the Bohr—Sommerfeld quantization condition introduced below
(cf (23)), we get that \; (k) = Eo + O(h*/3). If /'(0) = 0, then the same method would lead to
A = Ep + O(h).

3. Bohr—-Sommerfeld quantization

For the reconstruction of the profile with (multiple) wells, we need to establish the
Bohr—Sommerfeld quantization rules for Hy ;. The semiclassical spectrum of Hy; will be
clustered for each well (or half-well), due to the fact that eigenfunctions are O(h*°) outside
a well. We will first establish the quantization rules for the half-well case and the full-well case
separately. This is in parallel with the previous paper [5].

We emphasize here that the operator for Rayleigh waves Hy;, is matrix-valued, and thus the
establishment of Bohr—Sommerfeld rules is technically more involved than for Love waves.

3.1. Half well

Here, we assume that the profile, i, has a single half-well connected to the boundary. We follow
Woodhouse and Kennett [10, 11] and rewrite Hy 0 = E¢p as a system of first-order ordinary
differential equations. We introduce

Uy = L (hdz(—ig2) + 3), 3 = (A + 20) hdzps — A (—igpa).

Then the eigenvalue problem attains the form

0 L 0
. . H .
—1¥2 A 0 0 1 —1p2
ho, zS - A+ 24 A+ 200 33 (16)
2 3 2 32 )\ 2
s Lpp Q2NN Ay,
A2/ A2/
0 —-E 1 0
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supplemented with the (Neumann) boundary condition 1, = ¢35 = 0 atZ = 0. The eigenvalues
of the matrix

1
0 -1 = 0
. K
A
A 0 0 —
AN2 32
NCE S N
A+240 A+240
0 —-E 1 0

are

E [ E
+iy [ = - — 1, +/1——. (17)
A+20 i

We assume existence of a single S turning point corresponding with a zero of /1 — %
occurring at Z = Z,.

Remark 3.1. The existence of one turning point is guaranteed for any eigenvalue, E, above
[1(0), while only the lowest eigenvalue falls below /1(0) (for 4 sufficiently small [4]). See also
the discussion in section 4.1. This lowest eigenvalue can be ignored.

Following [10, 11], we define the matrix

G = G(¢1, 92, h)
RYSAT(—h2B¢y) BB (—h2R¢)) 0 0
| RVOAI—R g kT VOBi(—h ) 0 0
B 0 0 ROAT(—h23¢y) OB (—h ) |
0 0 W VOAI(—h™2¢y)  hYBi(—h™3¢,)

where Ai and Bi are Airy functions [1] and ¢, and ¢, are phase functions; G satisfies the
equation

0 $10z01 0 0
. -0 0 0 0

ho,G = QG with Q= quj‘ 0 0 drdeds
0 0 —07¢ 0

We search for solutions of [16] of the form
<Z h"Y“”) G($1, da, ), (18)
n=0

suppressing the dependencies on E in the notation. Substituting [18] into [16], we get from the
leading order terms

AYO =v90.



Inverse Problems 36 (2020) 075016 MV de Hoop et al

If we demand that Y’ is non-singular, it follows that A5 and Q must have identical eigenvalues
given in (17), which implies that

$1(0z¢1)* =

— 1, $(0z0) =~ —1

=

A +27

3 (7 E 12\
Z)=—| = i(l— ———+—— d s
7 (2/0 1( <A+2m<y>) y)
3 ([ E 12\
D(Z) = <2/Z* (,EL(}I) - 1) dy) ) (19)

where Z* is the unique § turning point.
Next, we introduce explicit similarity transformations connecting A3 and Q. We introduce

and, therefore,

0 1-_L 0 0
A+ 2/

co | 0 0 oE

0 0 0 1-=

[

0 0 1 0

Then

R'AJR =000 ' =, (20)

where the similarity transformations, R and ®, defined by (20) (formula (56) in [11]) are given
by

1 0 0 £
o]
0 — . 1 0
R= A+240
E
0 ﬂ( - ) i—E 0
A 24
20— E 0 0 2i—E)
and
|8z |2 0 0 0
o — 0 —|0z¢1| ' 0 0
0 0 |0262]'2 0
0 0 0 — |9z 712

Writing Y™ = RT™®, expansion (18) takes the form

R <Z h"TW) DG(p1, P, h). @21)

n=0
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Denoting T = Y72 | h"~'T™, expansion (21) takes the form

R(I + hT) (g‘ gz) ,

where

E hl/6|az¢1|1/2Ai/(_h72/3¢1) h1/6|az¢l|1/2Bi/(_h72/3¢1) » a bl
! —h7 V00,1 T PAN =R g)  —hTYO 000 | TV PBI(—h R0y ) T\ a1 dy

and

B hl/6|az¢2|1/2Ai/(_h72/3¢2) hl/6|az¢2|I/ZBi/(_h72/3¢2) . ar b2
2 = _h71/6|az¢2|7l/2Ai(_h72/3¢2) _h71/6|6z¢2|71/2Bi(_h72/3¢2) — ¢ d2 .

The matrix R corresponds to a local decomposition of the displacement field into standing
P- and S-wave constituents. The interactions of these standing waves with one another are of
lower order in 7 and appear through the matrix 7' (given in [10] for the spherical case). We note

the asymptotic behavior,
E 14 1 /Z< E )1/2 ™
— — 1 cos | — — =1 dy— = |,
) ) (h V) YT

1/6 V2 a0 1—2/3 E (1P E i
h/210z¢2(2)|/“ Al (—h *qbz(Z))N—(m—l) sm(z/z (,tl(y)_l) dy — )

in the allowed (propagating) region for S waves (Bi similar), and

h810,02(2)| 2 Ai(—h 3 $5(2)) ~ (

N

1 E —1/4
V0@ A o~ (1 )
1 [Z E 12
4 1 B d 9
xexp< h/o ( ()\-1—2,&)()’)) y)
. E 1/4
h1/6|az¢l(Z)|1/2Ai/(—h72/3¢1(z)) ~ E (1 B (5\4—2/1)(Z)>

X ex 1/Z<1E>1/2d
P\ Gr2nm) @

in the forbidden (evanescent) region for P waves (Bi similar but exponentially increasing so
that any Bi term must be excluded in this region, see [10]).
The solution is then given by (see also [8] in [10])

71(,02 Ca

903 E10 0
~ R+ hT

i ¢ )<o E2> dy

U3 0
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We calculate the zeroth order explicitly,

—ipy
®3
[
V3
E E
a by (1 - 7) 02 (1 - 7) dy
E E w 2 Co
<1A A>C1 <1A A>d1 ay bz 0
~ A+20 A+ 240 ds
201 — = cr 201 — = d 2j1—E)a 20— E)b 0
f St 20 1 3 1 Qp—E)aa Qp—E)b
Cp—E)a 2p—E)by 2(i— E)ea  2(ji — E)dy
We get
| E
([ )
%3 (1, _E A)Cl @ ds
A+2/0
101001 |'PAT (=R gy - (1 - 5) L N A A
= - (1 o E _ ) h’l/ﬁ\(?ngl|’l/2Ai(—h’2/3¢1) hl/6|8Z¢2|1/2Ai’(—h’2/3¢2) <d3>
+ 20
and
AN 2[:<l—xf2ﬂ)cl Qfi— E)a, Co
Vs Qfi—E)a;  2(i— E)e ds

Qf — E) 010,60 | P AT (=12 ) <c>
—2i— EYN V5|0, 00] PAR—h )] \ D

A2
Qi —E)h'/®|9,¢, | AT (—=h  ¢y)

Using the asymptotics of the Airy functions in the allowed region for S and in the forbidden

_ (2;1 (1 - ) R R N IC )
region for P, and imposing on the expansion the boundary condition, 1} = 13 =0 at Z = 0,

we get from the zeroth order terms in A,
E \ E )‘/“ 1/0( E )’ 7
-Qp—-E)| - -1 sin | — — 1) dZ - —
) ( : )(N h z* N(Z) 4

A+20 A+20
E \" X E 14 19/ E 3 ”
) —2(;L—E)(7—1) cos Z/z* (ﬂ(—z)—l) dZ_Z

1
——Qp-E(1-=
2O )( A2 f

_<g)

There is a non-trivial solution if

1/2
4{u(0)(f(0) — E) (1 - <x+2Eﬂ><0>)

NS
tan | — i i v
<h 2 \ i) 4 @i0) — £y (5 — 1)

bl

(22)

10
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which is the implicit Bohr—Sommerfeld quantization in leading order in A, sufficient for the
further analysis. We note that in the allowed region for S and in the forbidden region for P,
the right-hand side of (22) is negative. Then (22) implies the Bohr—Sommerfeld quantization
condition in leading order in A,

1/2
a; 12 40)0) — B) (1 — £
%/ (m — 1) dz + %T + arctan ( O+ )E%) = ar + O(h),
z \# @0 ~ 7 (5 ~ 1)
(23)
for « =1,2,.... The estimate O(h) follows from Poincaré-type expansions of the Airy

functions®.

3.2. Wells separated from the boundary

3.2.1. Diagonalization of the Rayleigh matrix operator. For the semiclassical wells separated
from the boundary, Z = 0, we may apply techniques used for semiclassical matrix-valued
spectral problems on the whole line, namely semiclassical diagonalization.
The Weyl symbol of Hy, is given by
o™ (Hop) = g = qo + hg1 + s,
with

quKZf@+2m RGNS >
A+¢  A+2p¢+4)]

- 1 0 ,[1// _ 5\/ B 1 ﬂ// 0
QI_Z <;\/ﬂ/ 0 ’QZ—Z 0 5\//+2ﬂ// (24)
(see [9]). To prove this fact, we use the Moyal product defined as follows (see [2])

a*b'—il h j{a b};

L i\ 2i B
J=0

with

{a,b}(Z, ) ==[(0:07, — 920, a(Z, OB(Zy, ()iz,.c)=z.0)

(; > (=130 "a)(Z,¢) (9} "Ob)Z, )
n=0

with the property

6 For Poincaré-type expansions of the Airy functions, see, for example, https://dlmf.nist.gov/9.7.

1
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h h?
axb={ab}o+ E{a, b}, — §{a, b, + O,
{a, b}o = ab, {a, b}] = 8<a(?zb — 8Za8<b,
{a.b}, = 0adzb — 2(0,0.a)(D70:b) + 0;a0}D.

The expressions in (24) follow from the calculations below
1 ~ A ~ h NG ~1
Q*(A+2u)=<()\+2u)+i()\ +2/1),
<*(>\+2/l)*§=C(>\+2ﬂ)*C+Z(>\'+2ﬂ')*<
2.3 ~ h 1/ ~1 h NG ~1 h ? N ~ 11
=COA+20) = (N +20) + 2N+ 2000 — { 52 | (A +207)

. J/Z
= GO+ 2 + X+ 20",

. . h .
Ax(=pC— 5.
1

We use the method developed by Taylor [7, section 3.1] to diagonalize the matrix-valued
operator Hy to any order in A.

Theorem 3.1 (Diagonalization). There exists a unitary pseudodifferential operator U and
diagonal operator

~  (Hop 0
Hoy = ( 0 Ho,h,2> (25)

such that
U*HoU = Hoy, + O(h™).
Here, Hy;, i = 1,2, are pseudodifferential operators with symbols

oV (Hop1) = N+ 21 + )+ RPag + - -,
oV (Hopo) = (1 +¢*) + 26y + - - -

where
N 2p 1 1. 4022\ + 31
o = * 2 5 __)\”+ﬂ”+w
4 G+1] 2 A+ )2
i 1 [3., 4@)?
oy L3 6]
4 C+1)2 A+ [1)?

Note that the h'-order terms vanish.

Proof. We introduce a unitary operator Uy, which is the Weyl quantization of the matrix-
symbol

12
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1

o= 7o e ) e ()
TVaEsi 1) e 1)

which diagonalizes the principal symbol g, that is,

A+ 2)(1 + ¢ 0 )

-1 o
0 qo<z,oQ< ) 1)

First, we calculate the h'-order correction, that is the second term in the right-hand side of

O (02 + 0 ar B 2
0 *q*Q—q—( 0 ﬂ(1+§2))+h<71 51)+(’)(h).

It will follow that ov; = §; = 0. Later, we will also need the explicit form of diagonal entries
of the next order correction. Therefore, we keep the A2 —order terms in our calculations. We
introduce

REEDVEES 1)\/ ¢+

N&ES

—1
¢+ 1>2¢c2 1

() -
() e
() -

VEC+1

_ X
" _<\/§2—1> ERGEV s

We start with the calculation of py x Q modulo terms of order n,

A+20CV/E+1T /R +1

(O N 2 ) = (X )R (¢ + O +2i0)) k2 =V + ik
2\ (W2 + ) ke = N Gk = (X200 + ) o+ OV + ko

(@ +20VC+1 —ﬂCW)

h2 ((A//42+(/\//+2A//)) H%"‘r()\”'i-ﬂ”)cl‘m _ (A//Cz_’_()\//_'_zw)) H4+()\l/+ﬂ”)<:/€3)
8

8\ G (V420 + ) ke = G+ (A +2¢ + )

where the second term simplifies to

13
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SV 2+ D — V4 i)

n N/CES

2i NG AN 2 A~ 1 NG ~1 2
[N +2 —(N+2 1
[N +2/)¢ + ] oy A+ 2)¢(C + Dk
< 1
A2 /\/ 2A/ ~1 2 1
(¢ + N +240)] §2+1+§MC(C + Dri
— 0?1 ;\/ ~l
(¢ + Dry + N + 1) a1
A1 C NG ~1 1
_n [ PET YT TE
2i _ﬂ/ 1 (5\/4'2/1/)

¢G+1 +1

and the third term simplifies as follows,

< "¢+ N+ 2 ks + N+ @)k —"C+ NV 4 20" kg + V' + ﬂ”)%)
(

] )\// +,LL/I)CH3 + [(/\// +2.U'U)<2 4 [L”]l€4 _(;\// + ,LAL”)CIM + [(5\// + 2A//)C2 + ﬂ”]"%
G =N = (X +20) RN + Su”)
_® @+ D3/ +1 @D
8 B C(/\” + 4)&//) 2(4(/\// + 2)&//) + 42(2/\// + 3)&//) _ ﬂ”
@+ DV +1 @+ +1

Thus we get for gy * Q modulo terms of order A°,

~1 C 37 ~1 1
N AN +2
GaapV@it —ayarn\ w [ FvET YPET
A2V E+1 /2 +1 2i e (V2 —S
G+1 G+1
§2(2ﬂ//§2 - ;\//) - (5\// + zﬂ//) §(25\N + Sﬂ//)
s @+ 12/ +1 @+D/Er1
8 C(/\N +4ﬂ//) 2C4 )\// + zﬂ//) + CZ(Z/\N + 3‘&//) o
@DV (C+ D2/ +

Now, we calculate Q’1 * go * Q modulo terms of order h,

<(5\+2ﬂ)(g‘2+1) 0 )+ﬁ ( 0 X’+2g’>
0 MG +1n) T2 \-i 0
b (m(j\' +20) + KoV + 2ﬂ’)<) VE+T (k=i + rafl) /2 + 1
2\ (=maV 2 + iV 4 2000) VEFT (sl + maft) VT + 1

:((5\+2ﬂ)(éz+1) 0 )+h( 0 X’+3ﬂ’)
0 (¢ + 1) N+3i) 0 )

14
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which together with (24) shows that oy = §; = 0.
Then we calculate the terms of order 4. There are three terms.
First term: the term of order 4% in

1 ¢
VT V1| [ Gr2V@ T -y I
_\/ZC ¢21 A+20¢/C+1 i/ +1
NS

is

i (RO 20+ ka4 200C) VEFT (=l ) VT T
B\ (T 2 sV 4 200C) VE T (it CHyil!) VEH T

5\// 424" 20"
Py arte 2u ¢
_ " ¢+1 C+1] . T
-3 2(;\N+2ﬂ”)C B i -1
¢G+1 ¢+1
Second term: the term of order 4 in
1 C ~1 < NG ~1 1
f— (V42—
wqu ﬂﬁl*ﬁ ¢l \@H
o : = 2i 7[:[// = (A/ +2ﬂ/) :
VE+T J/C+1 (41 V1
is
Klﬂu C o Kzﬂ// 1 Iil(j\” +2ﬂ”) 1 + ﬂz(:\// + Z[LH) C
s 42;1 ¢l \/421+1 <2<+1
4 Al Al N N/ N N
— — —ka(\" 42 + AT +2
Kol il mum ko u)m K1 ( @) 2l
ﬂ”
__ Pt r
- Z o /\//+2ﬂ// 2.
C+l
Third term: the term of order 4> in
1 ¢
| Vet e »
¢ 1 8
VE+T O+
<2(2ﬂ//<2 _ 5\//) _ (5\// + 2[//) <(25\// + Sﬂ//)
y @+ D2+ @Dy
B C()‘“ + 4[//) 2(4(}\// + 2,&//) + C2(2)\// + 3[//) _ ﬂ//
(24 D/ +1 (C+ 12/ +1

15
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is

e ()

8>+ 1P \—¢ 1
<§2(2A//§2 /\// (5\//+2ﬂ//) §(2>\//+5A//)(§2+ 1 )
_C(A//+4A//)(C2+1) 2(4 )\//+2A//)+C2(2)\//+3ﬂ//) ~

_ h2 ( ()\//+2A//)(<2+1)2 2C(A//+2A//)(C2 )2)

S8+ 21 —C 1y
o hZ ( ()\// 42 A//) 2<(5\// + 2/1“)) T
82+ 1)\ —2¢p” — i’ >

We also need to take into account the transform of the A'-order term in ¢ (only to leading
order)

g (1) L0 ey L (1=
Q *C]1*Q— C2+1<C 1)*21<5\1_ﬂ/ 0 >*\/C2—H<§ 1>

We require the h*-order terms in hQ ' +g, xQ in the further analysis. First, we
calculate

L <
ro= k(L0 FIN)L VAT VR
>
1 VSR VTR

~1 N C ~1 NG 1
—A - A
o (u ) * o (i ) % o
20 N ~1 1 ~1 37 C
A — - A
N = i) * o (=) * 2
(A/ij\/) C (Alij\l) 1
_ ﬁ w /—421Jr 1 H C2C+ 1 ((ﬂ” 5\//)“{2 (ﬂ” é\”)"il)
20 | 3 N 4 N =Ny (@ — Nko
A A
N =) = (=X S
=T

Then, up to h2-order terms,
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1 ¢
/2 2
hO ' kg xQ = B C(Jrl <1+1 * T
<2+1 <2+1
! I ( ( ! ! 1
A + N -
_n VetV e T e Y T e
i ! ! 1 C ! I C
—\ + —
G+l "= G+l <2+1*(N ) ¢C+1
1 Al ’ 1 C ~1 ’ C
Y _
<2+1*(N ) <2+1+ <2+1*(N ) +1
¢ NV 1 o s C
- -X + -X
<2+1*(ﬂ ) i <2+1*(u ) =TT
1 (AH ;\H)K + C (;\H A”)h 1 (AH ;\”)K + C (AH ;\”)K
1 — — R — (0 — 1 —
+ﬁ fz-i—l/ 2 C21+1 / 1 fz-i—l/ 1 le_’_ll 2
4 Al N4 N Al Al NG Al NG
- = Mg+ ————= (X — - — k1 + Y
o l(u )2 an 1( )KL T l(u )1 an l(u )2
Thus, the #*-order terms in the expression for 1Q ! x g; x Q are
& (A// o ;\//) C 4k (5\// o A//) 1 & (A// o ;\//) 1 4k (A// o ;\//) C
_hj AV 1 2 I & AV 21 2(f ot

1

C N PN, ~ll NG 1 A1 NG C
+ RV — —rp (i = N —— + S\
=1 RN = i) o Ko (fi ) = K1(fl ) =T

—ra (il = N

! a3 ¢ choa 1 J ¢ L
- ”—X’/i-i-i)\”—t”,% v ”—)\”,‘i—f—i "3
+h72 m(u 2 \/@( )k m(u )1 m(u Vin
S (R ST/ WAV S U 1) WA Sy ¥ () P i (P
VE+T Ve +1 N/ S
. ﬁ” o ;\rr
I T
2 0 o=\
G+l
Finally,

. o, Loy L0 B
e *QZ*Q_h\/@T<< 1)*4<o X’+2ﬂ”)*\/<2+1(< 1)

B B O O 0 I W
T4 C+1 '+ "¢ ﬂ”§2+A”+2ﬂ” =15

By summing the h'-order terms, we arrive at

. (O 421+ 0 (0 -1
0 *q*Q-( 0 ﬂ(1+§2))+hr, r=2if (1 0)+O(h),

(26)

where r = O(1) is the classical zero-order matrix symbol.

Next, we aim to get rid of the off-diagonal terms, v, 31, while keeping the diagonal terms,
a1, 61 (which are zero in the Rayleigh case) unchanged. We construct

17
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0b
By =
c0

(1h30)*<<(ﬂ+2ﬂ)(1+<2) 0 >+h(0‘1 ﬁl))*(HhBo)

such that

0 il +¢3) SR
(A + 20+ ) + hoy 0 5
= ( 0 ﬂ(1+C2)+h51) + 0.
We choose b, ¢ according to

< . . Bi
A+200 4+ —bia(1+ ) =— S
A+2mA + b =bp(1 +C) = =fi < G i1 )
A0+ —ch+2p1+ A =—y & c=—10

A+ 1+
Hence, using (26), we get

_ 21 <01)
A+ pa+¢) \10)°

Now, we consider the 4>-order terms. Let

D— <(X+2g)(1 +¢%) 0 )
0 al+¢)

By summing the 4'- and h*-order terms, we get

QO '%qgxQ=D+hr+hr, r=2J (? 01) ,

where r; = O(1) is a classical zero-order matrix symbol and

I’2:T1+T2+T3+T4+Tj

B 5\// + 2/1// A//< B ﬂ//
I R TR B B R .
8 Z(A// + zﬂ//)c B ﬂ” 4 0 B )\// + zﬂ//
C+1 C+1 ¢ +1
B 1 ()\“ + 2A//) zc(j\// + 2/1”)
8+ D\ 20" !
a1 ;\//
i 0 " 11 2 A// // ~ I
1 CC+1 1 1 )\ +207)¢ + )\ a6
+3 0 A// )\// + ZCZ +1 )\// + A//)é- A//Cz X/ + 2A//
CZ +1
B l 1 2(/\// + 2A//)C2 o 2;\// + 12ﬂ// 0
8241 0 20'C + 144"
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Furthermore,
(1 — hBy) * (D + i (‘1) 01> + h%) «(1+ hBy)
=D + h(r; + D% By — By * D) + h* (r + 1 * By — By * r1 — BoDBy) + O(?)
=D + I*Fy + O(I),
where

e o (A 21+ D) 0
/’l rp = /’l B()( 0 ﬂ(l+<2)> B()

+ h- “h— ordertermin”(D « By — By x D)
+h*- “leading termin”(r; * By — By * 1) + hr,.

Our goal is to find the diagonal entries of 7,. We write

0 i1+ ¢%)

o (A2 +¢D) 0 A1 po0
hB°( )B 0 A+2i)

" AR
and
Ty := h- “h' — ordertermin” (D x By — By * D)
21/ }’
A+ (1 +¢?)
— [A+3a+¢d] [mi&gz)m (

which is off-diagonal. Furthermore,

2

=5 ([0rsmasa)] | Z

Ty :=h? - “leading term in™ (ry x By — By * ry) =
It follows that

Ts +T5 =

A2+

4(i)h? 2A+34 0
0 YA

Finally, we obtain the diagonal terms in 7,, that is,

;2:(042 O)=Vz+T6+T7+Tg,

0

41" h? <2 0>
A+ -+ \0 =2)7

= T6

).

0 o
with
L sy HEPRA+ 3
o= mry {4 (()\ £ 20— N 6 ) R W
;\// + Z[LN 1 1 N A1 4(ﬂ/)2(25\ + Sﬂ)
- —SN 27
4 41 2 a O\ + f1)? @7
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and

R i@ A 1 3., 4N
52c2+1{4(§ +7) (5\+ﬂ)2}4+<2+1{2ﬂ (5\4—,&)2 '
(28)

If g denotes the previously obtained symbol, then we construct B = By + hB;j + . . ., that s, B,
to get rid of the off-diagonal entries in 7,, such that

Q% qdiag _ eiB/h *q*efiB/h = exp %ad (B)*) é,

18 — <(X + 2L+ )+ hay + g + .. 0
0 A+ )+ héy + 126 +...)°

The symbol B; is constructed as B, before so that diagonal entries are unchanged. In the above,

. . . . 2
exp (%ad(B)*> g = exp <%[B, .]*> q=q-+ %[B, qlI* + % (%) [B,[B,q]"]" + ...
(29)
is a classical symbol, with
i . | . > .
1Bl = {B,q} — i {B.q}s+..., {B,q}1 = B:qz; — Bzq,
{B» 51}3 = B(<3<)<51(23z)z - 3B((3()ZQ(ZSZ)( + 3B(CSZ)Z‘A](ZSC)< - B(ZSZ)ZEI?()(-
O

3.3. Bohr-Sommerfeld quantization rules for multiple wells

Now we are ready for the establishment of Bohr—Sommerfeld rules for multiple wells. We
introduce the following assumptions on /i:

Assumption 3.1. There is a Z* < 0 such that ji'(Z*) = 0, 4"(Z*) < 0 and /i/(Z) < O for
Z e (Z,0).

Assumption 3.2. The function /i(Z) has non-degenerate critical values at a finite set

21,25, - ,Zy}

in (Z;, 0) and all critical points are non-degenerate extrema. None of the critical values of ji(Z)
are equal, that is, (Z;) # [i(Zy) if j # k.

We label the critical values of ji(Z) as E| < ... < Ey < [i; and the corresponding critical
points by Zi, . .., Zy. We denote Zy = 0, Ey = i(Zy) and Ey4 = [iy.

We define a well of order k as a connected component of {Z € (Z;,0) : [u(Z) < E;} thatis
not connected to the boundary at Z = 0. We refer to the connected component connected to the
boundary as a half well of order k. We denote J; = (Ex_1, Ex), k = 1,2,3,...and let Ny (< k)
be the number of wells of order k. The set {Z € (Z;,0) : ji(Z) < Ey} consists of Ny wells and
one half well

20
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WAE), j=1,2,-+ Ni, and WKE), (U}%, WEE) U WHE) C [Z,0).

The half well VNV"(E) is connected to the boundary at Z = 0.
Similar to Love waves [5], the semiclassical spectrum mod o(hs/ 2) in Ji is the union of
Ny + 1 spectra:

UM 24y U SHh).

Here, E’;(h) is the semiclassical spectrum associated to the well W_’?, and the spectrum f]k(h) is

the semiclassical spectrum associated to the half well W,
We have Bohr—Sommerfeld rules for separated wells,

S5 = {pa(h) s Exy < pa(h) < B and - S%9(ua(h) = 2wha},  (30)
where S5/ = SKI(E) : (Ei_1, Er) — R admits the asymptotics in &

SKIE) = S§Y(E) + hr + B2SS/(E) + - - -
and

SAh) = {va(h) : By < vo(h) < Ex and  SK(w,(h)) = 27wha},

where S¢ = SK(E) : (E_1, Ex) — R admits the asymptotics in &
< 1- ~ 1.~
SH(E) = 3SHE) + hS}(E) + Sh*S5E) + -

For the explicit forms of S and gk, we introduce the classical Hamiltonian py(Z, () =
fU(Z)(1 + ¢?) coinciding with the 2° term in o™ (Hy,,»). For any k, p,'(Jy) is a union of Ny
topological annuli A% and a half annulus A¥. The map py : A% — J, is a fibration whose fibers
Do YE)N A_]; are topological circles 'y_’]?(E) that are periodic trajectories of classical dynamics.
The map py : A% — J is a topological half circle 3*(E). If E € J; then o (E) = (Ul}liﬁf(E)) U
AX(E). The corresponding classical periods are

1~
TH(E) = / |dff and <THE) = / |dt].
+(E) 2 &)

We let ¢ be the parametrization of vf(E) by time evolution in

4z dc
T 9¢pos Pl —0zpo (31)

for a realized energy level E.
For a well Wf separated from the boundary, we get

ss/Ey = | ¢az (32)
HE)
and

, 1 d E
SE) = —— — Ei —2(= —1)@)*)|de — S|dil. (33
S/(E) 5 dE wk-(E>(M (ﬂ )(u))|f| . o|di]. (33)
J J
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Substituting (28), we obtain

. 1 d
SE) = — 33 I (E) — ZK(E) — LE), o

where

J(E) = / (E/l” -2 (E - 1) (/l’)2> |dz,
HE) H

K(E) = / i|dt|,
THE)

i3, 4@y
L(E) = — | =g — —=——— ] |dt].
(E) /wj?(E)E <2u (A+ﬂ)2>| f|

The integrations along the periodic trajectory « can be changed into integrations over
(f—(E),f+(E)), E € [Ex—1, Ex], in the Z coordinate. We get

e g
SEIE) =2 / = Iz (35)
f—(E)

e ﬂE—mAu) dz
J(E) = E I e— T
() /f_(E) ( : f @) VIE — ft)

and

E
[+ (E) » dz

e U VRE— )
ue= [ PO (3, Aae ) az
r® E 2" M+ 02 ) VIE=[)

For the half well W* connected to the boundary, we can write

K(E) =

(E) =2 (dZz =4 / dZ (36)
F(E) F(E) i

as the integration along the periodic half trajectory 7 can be changed into an integration over
(f(E),0), E € [Ex_1, E], in the Z coordinate. From (23) it follows that

4100 - B(1 - L)

A+20)(0)

Qo) - £p (5 1)

SKE) = %TW + arctan (37)

We note that Sﬁ‘j and gﬁ depend only on periodic trajectories. Moreover, we note that we only
need to consider the Bohr—Sommerfeld rules for single wells in the analysis of the inverse
problem, because of the fact that the eigenfunctions are O(h*) outside the wells.

22



Inverse Problems 36 (2020) 075016 MV de Hoop et al

4. Unique recovery of /i from the semiclassical spectrum

For the recovery of /i, we first obtain a trace formula similar as in the case of Love waves [5,
section 5.1]. As distributions on J;, we have

D OE — pa(h)

o€

Ny
1 N P .
= S S O T+ imhsyE)) (38)

j=1 mezZ

1 .15k .~k - _ 1~
+ %Zem%&) (E)h lelmSl (E) (Tk(E) + ]’l(S]f)’(E)) (1 + lthSIE(E)> +o(1),
mez

where {p,(h)} is the semiclassical spectrum of Hpj; modulo o(hs/ 2). We then introduce the
notation

1 g :
7k (E) = (1Y B TRy + imhSY(E), j=1,..., N,
5] 27Th J
1 imS k im L5k -1 I~ ol . I
Zy n 11 (E) = e St (E)gimz 5o(E)h (ET"(E)—i—h(S’{)’(E)) (1 +1mh§S’§(E)) ,

for m € Z. To further unify the notation, we write
1~ 1~
ThentB) =5 THE),  §5 T (E) = S4(E),

~ 1~
SN E) =Sk E), SN T(E) = S8,

Then
Zpyy+1(E)
1 . kNI kNl
— melmé”; KB gimsy T B)h I(T,’f,k+1(E)+h(S]f’N"H)’(E))(l+ith1§’Nk+l(E)).

4.1. Separation of clusters

In [4], it was proved that there exists a unique eigenvalue of Hy; below fi(0) for small 4. This
eigenvalue cannot be related to any well. Therefore, we first separate out this fundamental
mode to continue our presentation. We then follow [5, subsection 5.2] providing the separation
of clusters for Love waves applying [3, lemma 11.1]. We invoke

Assumption 4.1. For any k= 1,2,...and any j with 1 <j <1< Ny + 1, the classical
periods (half-period if j = Ny + 1) T;?(E) and TF(E) are weakly transverse in Jy, that is, there
exists an integer N such that the Nth derivative (T;-‘(E) — le (E)™) does not vanish.

As in the case of Love waves, we introduce the sets
B={EecJ,:3j#I TjE) =T/E)}.

while suppressing k in the notation. By the weak transversality assumption, it follows that B is
a discrete subset of J;.
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We let the distributions

Dy(E) =) 6(E — pta(h)

€L

be given on the interval J = J; modulo o [1] using (38). Since J; N (—oo, j1(0)) = () for any k,
we can ignore the lowest eigenvalue ). These distributions are determined mod o [1] by the
semiclassical spectra mod o(i°'?). We denote by Z, the finite sum defined by the right-hand
side of (38) restricted tom = 1,

Ni+1

ZNE) =Y Z} (E).
j=1

Assuming that we already have recovered [1(0), we obtain g’f(E). By analyzing the microsup-
port of Dy, and Z;, [3, lemmas 12.2 and 12.3], we find

Lemma 4.1.  Under the weak transversality assumption, the sets B and the distributions Z
mod o [1] are determined by the distributions Dy, mod o [1].

Proof. As in [3, lemma 12.2], we do not assume the weak transversality of the nonprim-
itive periods mT* m > 1. Fork = 1, Z,i (E) is associated with only the half well and can be
straightforwardedly recovered.

We now assume that Z,’j’l(E) for E € [Ey_», Ex—1) is already recovered as Zlf,?vi,l 41 (asso-
ciated with the half well) has been identified. We write 7(E) = inf; Tj?(E) and take a maximal
interval K with infK = E;_ on which 7 is smooth. On K, 71 = Tﬁ?o for a unique jy. As in the

proof of [3, lemma 12.2], we can recover Z’f’ i and L’f’ i Then we need to decide whether jj is
equal to N + 1, which can be done under the weak transversality assumption. If jo = Ny + 1,
that is, Z’f‘jo is associated with the half well, then, with the recovered S’{(E), We can recover
z j, forany m. If jo # Ni + 1, then zf j, 18 associated with some full well, and zr j, forany m
can also be recovered. The proof can be completed following the proof of [3, lemma 12.2] by
continuing this process. U

Similar to [3, lemma 12.3], we have

Lemma 4.2. Assuming that the §'’s are smooth and the a;’s do not vanish, there is a unique
splitting of Zj, as a sum

Np+1 )
Z(E) = 5 3" (@[E) + hb(ENES M 1 o(1).
j=1

It follows that the spectrum in J; mod o(hj/ %) determines the actions Sg’j (E), Sé’j (E) and
§’5(E) and g’{ (E) on Ji. This provides the separation of the data for the N wells and the half
well. Then, as in [5], we proceed with reconstructing /i from the functions Sg‘j (E), Sé’j (E) for
any k and j < N, and §’5(E), under

Assumption 4.2. The function /2 has a generic symmetry defect: if there exist X satisfying
X)) = j(Xy) < E,and for all N € N, g™M(X_) = (=DVa™(X ), then /i is globally even
with respect to %(XJr + X_) in the interval {Z : i(Z) < E}.
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4.2. Reconstruction

We note that assumption 2.1 is needed here. We summarize the procedure:

e We start by constructing the half well, W!, that is connected to the boundary between Ej
and £,.

e Inductively, we assume that we have already recovered the profile under E;_;.

e First we reconstruct the half well, W", c~>f order k between E;_; and Ej. We note that Wk
must be a continuation of the half well W*~!, or be joined with some well, Wk’1 indexed
by j of order k — 1. In either case, we only need to reconstruct a monotonic plece of the
half well W*. This can be done as in section 2.3 using Sk only.

e Secondly, we consider the reconstruction of a full well Wk between Ej_; and E, separated
from the boundary, of order k. We will show how to reconstruct in the following.

Case I. The well Wf might be a new well. Then we define the functions f : [Ex_, Ex) — [
so that W,{(E) = [f(E), f+(E)] for any E € [Ey_1, Ey).

Case II. The well Wj? might also be joining two wells of order k — 1, or extending a single
well of order kK — 1. Note that the profile under E;_; has already been recovered. The smooth
joining of two wells can be carried out under assumption 4.2. We consider now functions f_ (E)
and f4 (E) for E € [Ey_1, Ex] such that Wf is the union of three connected intervals,

WH(ED) = [f-(EQ). f-(Ex-1)) U [f-(Ei)s f(E-D)] U (f(Ex-1), f+(ED].

For an illustration, see figure 1.
For either case, we define

1 1

O(E) = fiL(E) = fL(E), W(E)=——— .
B =FE =B, VE = - g

The recovery goes through explicit reconstruction of the entire profile following from the glu-
ing procedure as outlined in [35, section 5.4]. As in the case of the Love waves, the function ®
can be recovered from Sg"’ (E), on (Ey_1, Ey). From S/;’] (E), we recover

E . E du
BY(E) = /Ek_1 ((7E — 61V (u) — 2 (; - 1) ‘I’(”)) VuE =)

E
- / (36\11’(u) - 240—1\11@{)) arctan | =" du, (39)
E, u u

k—1

Ei_ | < E < Ey, where 0 = 8v(1 — 2v). This is established in appendix A.1. We introduce

operator 7 according to
g

Er i \/E —Uu

In appendix A.2, upon setting E = z>, we prove that

Tg(E) = du.

2 2—(7’ 0 BU)(2?) = 162°0"(2%) — 19280 (2?) + 96(2 — )2 W' (%) — 960U ().

(40)
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f4(E) ) (B Z -0

Figure 1. Illustration of a well of order k (N, = 1) and associated f..

That is, we end up with a third-order inhomogeneous ordinary differential equation for ¥(z?)
nonsingular on the interval [/E;_i,/Ey). This equation needs to be supplemented with
‘initial” conditions:

For case I, W(E;_) and the asymptotic behaviors of \III(E) and V"(E) for E in a neighbor-
hood of Ej_ can be extracted from 7" o BU(FE) and its derivatives at E;_. Clearly, ¥(Ey_;) = 0.
Using the derivatives evaluated in appendix A.2 and

V(E-1) =0, E&m VE = Ex 1 V'(E) = /20" (Z1),
k—1

we obtain, for E > E;_; close to E;_1,

lim <4E\I/’(E) - %d%(T o B\I/)(Zz)) =0

ElEy_

yielding the asymptotic behavior of ¥/(E), and

d2
lim | —108E'2W/(E) + 8E/*W"(E) — — (T o BU)(Z) | =0
E|E; 4 dz2

yielding the asymptotic behavior of ¥”(E). With these, the solution to the third-order inhomo-
geneous ordinary differential equation is unique.

For case I, W(E;_,), V'(E;_;) and U"(E;_;) are all nonsingular. That is, if Ej_; is a local
maximum, ¥ and all its derivatives are smooth from above and below, and therefore they can
be recovered from the reconstruction on J;_; through one-sided limits. We note that in case
E;_, is a local maximum in the middle of two wells in J;_; the two different Ws for each
well are not smooth below Ej_j, but it does not matter as in J; (above E;_;) we use fi. from
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the monotonically increasing slopes continued from Ji_;. Thus the solution to the third-order
inhomogeneous ordinary differential equation is also unique.

With the recovery of ® and U we can recover f1. and then /i as in the case of Love waves
[5, section 5.4], again, subject to a gluing procedure.
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Appendix A. Recovery of ¥

A.1. Proof of (39)

We start with the expressions for J(E), K(E) and L(E) in section 3.3. We apply a change of
variable of integration and obtain,

£ d 1 1 E 1 1
I = /E <EE <f4(u> a f’(u)> o2 <E - 1) (ﬁ(u) - f’(u)))

du
Vu(E — u)

E 4 1 1 du
K(E)_/E du (fﬁu)‘f’(u)) wE—w 1)

k—1

L(E)/E E<EE<LL>
e EN2du \ L) fL(w)

+ Ji1(E),

Y VA N S ¢ () N du
AFr) +w)? @) ) +uw)? fLw) ) ) uE—u)
+ Ly 1(E).

For case I (cf subsection4.2), J,_1(E), K;_1(E) and L;_(E) vanish. For case IL, J;_{(E), K;_{(E)
and L;_(E) are related to the profile on [f_(Ex—1),f+(Ex—1)]:

Y E oy dz
s = [ (E” @ 2(ﬂ(Z) 1)(” (Z))) FE 2D

(A.1)
Ky 1(E) = Y z A2
0= i ey 2
(3, AN dz
H " H
Ly (E) = = | z4 — = A.
) /z E (2“ (A+/l)2> VIDE — (D) (A

where Z_ = f_(Ey_;) and Z; = f (E;_). These are already known.
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We find that

d [E , du
K(E) — K 1(E) = sz/Ekl (E —u)¥ (’Dm7

E _
LE) — L) = 3% / <\II'(u) _ 201\I/(u)) arctan |/ =" du.
dE /i u u

k—1

Following [3, lemma 13.1], we introduce an operator B defined by

B\IJE*E7E6\IJ’ 2 (F 1) o)
()/EH <( v = <u> (”)) N

E —
- / (36\1!’(14) - 2401\11(:4)) arctan y / E-ui.
E u u

k—1

Using (34), we have established that the derivative of B can be recovered from Sé’j . Then BY
itself can be recovered using BY(Ey_1) = 7w/ 204" (Zj—1)E—1.

A.2. Proof of (40)
We have

(T o BY)E) = L(E)+ L(E) + L(E) + ol4(E), (A.4)

where

E u
L(E) = / " (7@’@)—%@(@) L S N
Ep—1

VE—u/g \/_Ex/u—v
L(E) /E ! ' (—6v¥'(v) + 2 (v)) L1 g (A.6)
= —6vW' (v V)) —=—F—= dvdu, .
? o, VE—ulg | Vuu—w
L(E) = —36 / L arctan |/ W' (v) du du (A7)
’ Epy \/m Ep—y v ’ '
I(E)—24/E L larctam/u\y(v) do du (A.8)
4 E, VE—u E, Y v ' '

Upon integration by parts, we obtain

£ " , dv
L(E) = =36 - ;\/E —u </Ek1 Vol (v)m> du

S | u dv
= —36E - VoU'(v) du
E U VvVE —u E Vu—v
E 1 “ dv
+ 36 Vo' (v) du,
E, VvVE—u E, Vi —v
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Eoq “o dv
I4(E) = 24/}5}%_1 ;\/E— u (/EH \/_E\I](U)\/m> du

g [ 11 / Doy %4
= — — V(v u
B UVE—u\Jg_ Vv Vu—v

/” (v) dv du—W/E (v)dv
Ep—1 § vi—v Ep1 ¢ ’

u dv T E
/Ekl g(”)m> du = 2/Ek1 (v + E)g(v)dv,

Eroa / dv Eoa
— g)———=| du= 7T/ —g(v)dv
g, UVE—u\Jg_, Vu—uv E_, VEvU
and get
 [E 2 1
= — V() -~ —
L(E) > /Ekl (v+E) (7 (v) " (v)> NG dv,

E
, 1
L(E) = 71'/Ek_1 (—61)\1! (v) + Z\I/(v)) % do,

&

1
I(E) = 36 — VEv ) ¥'(v)—=dv,
3(E) W/EH (v v) (v)\/5 v
£ (VE I

We insert E = 72, when trivially

2

%Il(zz) - /E ;_1 +22) (7@’@) . %\If(v)) \% do,

2

2 < 1
;IQ(ZZ) = Z/Ekl (761)\1//(1)) + Z\I/(v)) ﬁ dv,

2

%13(22) = 72/~ (Vv —1z) ¥'(v)dv,
™ Epy

2, ¢ z 1
o, (- o
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By tedious calculations, we then find that

22

2d
ST = 2820 () — 8U(D) + /
T dz E

k—1

2z (7\1/’(1;) - i@(v))

1
—_dv,
Vo
2

2 z
zd—zll(f) = 682V'(z%) + 562" V(") — 8~ ‘I’(z ) + / (7@’@) - %\11(1))) L,
dz Fi v NG

d3
—1() = 112240 (%) + 30422 0" (%) + 80¥'(z?),

7 dZ3
and
2d 2 240572 2
;—Iz(z ) = —247°U'(z°) 4+ 8W¥(z7),
2 d2 2 32 )
e — (") = 48207 (27) — 32z0'(2),
2 & 2 ) 21,2 )
_d_z312(z ) = —96z" V" (z7) — 208z V" (z7) — 32W'(z°)
and
2d 2 2 /
——I3(Z )=-72 U'(v) dv,
md Ep—y
2d .,
- dz 5B = —1442' (%),
2 d3 2 231 2 1o 2
13(1 ) = —288z°W"(z°) — 144¥'(z°)
and

2

2d 1
**14(2 ) = 48/ ~U(v)dv,
md E_y v

2
29 14(z)—96 W),

2 & 1
S 12 = 1920/ (2?) — 96— U().
7 d23 2
These identities lead us to (40).
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