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The continuously growing amount of seismic data collected worldwide is outpacing our

abilities for analysis, since to date, such datasets have been analyzed in a human-expert-

intensive, supervised fashion. Moreover, analyses that are conducted can be strongly biased

by the standard models employed by seismologists. In response to both of these challenges,

we develop a new unsupervised machine learning framework for detecting and clustering

seismic signals in continuous seismic records. Our approach combines a deep scattering

network and a Gaussian mixture model to cluster seismic signal segments and detect novel

structures. To illustrate the power of the framework, we analyze seismic data acquired during

the June 2017 Nuugaatsiaq, Greenland landslide. We demonstrate the blind detection and

recovery of the repeating precursory seismicity that was recorded before the main landslide

rupture, which suggests that our approach could lead to more informative forecasting of the

seismic activity in seismogenic areas.
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Current analysis tools for seismic data lack the capacity to
investigate the massive volumes of data collected world-
wide in a timely fashion, likely leaving crucial information

undiscovered. The current reliance on human-expert analysis of
seismic records is not only unscalable, but it can also impart a
strong bias that favors the observation of already-known signals1.
As a case in point, consider the detection and characterization of
nonvolcanic tremors, which were first observed in the south-
western Japan subduction zone two decades ago2. The complex
signals generated by such tremors are hard to detect in some
regions due to their weak amplitude. Robustly detecting new
classes of seismic signals in a model-free fashion would have a
major impact in seismology (e.g., for the purpose of forecasting
earthquakes), since we would better understand the physical
processes of seismogenic zones (subduction, faults, etc.).

Recently, techniques from machine learning have opened up
new avenues for rapidly exploring large seismic data sets with
minimum a priori knowledge. Machine-learning algorithms are
data-driven tools that approximate nonlinear relationships between
observations and labels (supervised learning) or that reveal patterns
from unlabeled data (unsupervised learning). Supervised algo-
rithms rely on the quality of the predefined labels, often obtained
via classical algorithms3,4 or even manually5–8. Inherently, super-
vised strategies are used to detect or classify specific classes of
already-known signals and, therefore, cannot be used for dis-
covering new classes of seismic signals. Unsupervised tools are
likely the best candidates to explore seismic data without using any
explicit signal model, and hence discover new classes of seismic
signals. For this reason, unsupervised methods are more relevant
for seismology, where the data are mostly unlabeled and new
classes of seismic signals should be sought. While supervised
strategies are often easier to implement, thanks to the evaluation of
a prediction error, unsupervised strategies mostly rely on implicit
models that are challenging to design. Unsupervised learning-based
studies have mostly been applied to the data from volcano-
monitoring systems, where a large variety of seismo-volcanic sig-
nals are usually observed9–12. Some unsupervised methods have
also been recently applied to induced seismicity13,14, global seis-
micity15, and local-vs-distance earthquakes16. In both cases
(supervised or unsupervised), the keystone to success lies in the
data representation, namely, we need to define an appropriate set
of waveform features for solving the task of interest. The features
can be manually defined7,17,18 or learned with appropriates tech-
niques such as artificial neural networks3,5, the latter belonging to
the field of deep learning.

In this paper, we develop a new unsupervised deep-learning
method for clustering signals in continuous multichannel seismic
time series. Our strategy combines a deep scattering network19,20

for automatic feature extraction and a Gaussian mixture model
for clustering. Deep scattering networks belong to the family of
deep convolutional neural networks, where the convolutional
filters are restricted to wavelets with modulus activations19. The
restriction to wavelets filters allows the deep scattering networks
to have explicit and physics-related properties (frequency band,
timescales of interest, amplitudes) that greatly simplifies
the architecture design in contrast with classical deep convolu-
tional neural network. Scattering networks have shown to
perform high-quality classification of audio signals20–22 and
electrocardiograms23. A deep scattering network decomposes the
signal’s structure through a tree of wavelet convolutions, modulus
operations, and average pooling, providing a stable representation
at multiple time and frequency scales20. The resulting repre-
sentation is particularly suitable for discriminating complex
seismic signals that may differ in nature (source and propagation
effects) with several orders of different durations, amplitudes, and
frequency contents. After decomposing the time series with the

deep scattering network, we exploit the representation in a two-
dimensional feature space that results from a dimension reduc-
tion for visualization and hence interpretation purposes. The two-
dimensional features are finally fed to a Gaussian mixture model
for clustering the different time segments.

The design of the wavelet filters have been conducted in many
studies, and in each case led to data-adapted filterbanks based on
intuition on the underlying physics24–26 (e.g., music classification,
speech processing, bioacoustics, etc.). In order to follow the idea
of optimal wavelet design in a fully explorative way, we propose
to learn the mother wavelet of each filterbank with respect to the
clustering loss. By imposing a reconstruction constraint to the
different layers of the deep scattering network, we guarantee to
fully fit the data distribution together with improving the clus-
tering quality. Our approach therefore preserves the structure of a
deep scattering network while learning a representation relevant
for clustering. It is an unsupervised representation learning
method located in between the time-frequency analysis widely
used in seismology and the deep convolutional neural networks.
While classical convolutional networks usually require a large
amount of the data for learning numerous coefficients, our
strategy can still work with small data sets, thanks to the
restriction to wavelet filters. In addition, the architecture of the
deep scattering network is dictated by physical intuitions (fre-
quency and timescales of interest). This is in contrast to the
tedious task of designing deep convolutional neural networks,
which today is typically pursued empirically.

In this study, we develop and apply our strategy to the con-
tinuous seismograms collected during the massive Nuugaatsiaq
landslide27. We perform a short- and a long-term cluster analysis
and identify many types of seismic signals. In particular, we
identify long-duration storm-generated signals, accelerating per-
cursory signals, and different other seismic events. Furthermore,
we discuss key properties of our network architecture.

Results
Seismic records of the 2017 Nuugaatsiaq landslide. We apply
our strategy for clustering and detecting the low-amplitude pre-
cursory seismicity to the June 2017 landslide that occurred near
Nuugaatsiaq, Greenland28. The volume of the rockfall was esti-
mated between 35 and 51 million cubic meters by differential
digital elevation models, forming a massive landslide27. This
landslide triggered tsunami waves that impacted the small town
of Nuugaatsiaq, and caused four injuries27.

The continuous seismic wavefield was recorded by a three-
component broadband seismic station (NUUG) located 30 km
away from the landslide (Fig. 1a). We select the daylong three-
component seismograms from June 17, 2017 00:00 to June 17,
2017 23:38 in order to disregard the mainshock signal (at 23:39)
and focus on seismic data recorded before. A detailed inspection
of the east component records revealed that a small event was
occurring repetitively before the landslide, starting ~9 h before the
rupture and accelerating over time28,29. The accelerating behavior
of this seismicity suggests that an unstable initiation was at work
before the landslide. This signal is not directly visible in raw
seismic records; it is of weak amplitude, has a smooth envelope,
and exhibits energy in between 2 and 8 Hz (Fig. 1b, c). While
some of these events may be visible in the seismograms filtered
between 2 and 8 Hz at times close to the landslide, a large part is
hidden in the background noise. A proper identification of this
signal cannot be done with classical detection routines such as
STA/LTA (the ratio between the short-term and the long-term
average of the seismogram30) because these techniques are only
sensitive to sharp signal changes with decent signal-to-noise
ratios15, and do not provide information on waveform similarity.
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These detection routines would potentially allow to detect a
subset of these signals with many additional other signals, and
would not allow to identify the accelerating behavior of these
specific events. For this reason, the events were not investigated
with STA/LTA, but with three-component template matching
instead in ref. 28.

The template-matching strategy consists in a search for similar
events in a time series with evaluating a similarity function (cross-
correlation) between a predefined template event (often manually
defined) and the continuous records. This method is sensitive to
the analyzed frequency band, the template duration, and quality,
making the template-matching strategy a severely supervised
strategy, yet powerful31. Revealing this kind of seismicity with an
unsupervised template-matching-based strategy could be done
with performing the cross-correlation of all time segments
(autocorrelation), testing every time segments as potential
template event32. Considering that several durations, frequency
bands, etc. should be tested, this approach is nearly impossible to
perform onto large data sets for computational limitations15.

In this study, we propose to highlight this precursory event in a
blind way over a daylong, raw seismic record. Our goal is to show
that even if the precursory signal was not visible after a detailed
manual inspection of the seismograms, it could have been

correctly detected by our approach. The reader should bear in
mind that clustering is an exploratory task33; we do not aim
at overperforming techniques like template matching, but to
provide the first preliminary statistical result that could simplify
further detailed analyses, such as template selection for template-
matching detection.

Feature extraction from a learnable deep scattering network.
A diagram of the proposed clustering algorithm is shown in
Fig. 2. The theoretical definitions are presented in “Methods”.
Our model first builds a deep scattering network that consists in a
tree of wavelet convolutions and modulus operations (Eq. (5),
“Methods”). At each layer, we define wavelet filterbank with
constant quality factor from dilations and stretching of a mother
wavelet (see Eq. (2), “Methods”). This is done according to a
geometric progression in the time domain in order to cover a
frequency range of interest. The input seismic signal is initially
convolved with a first bank of wavelets, which modulus leads to a
first-order scalogram (conv1), a time and frequency representa-
tion of one-dimensional signals widely used in seismology34. In
order to speed up computations, we low-pass filter the coefficients
in conv1, and perform a temporal downsampling (pool1) with an
average-pooling operation35. The coefficients of pool1 are then
convolved with a second wavelet bank, forming the second-order
convolution layer (conv2). These succession of operations can be
seen as a two-layer demodulation, where the input signal’s
envelope is extracted at the first layer (conv1) for several carrier
frequencies, and where the frequency content of each envelope is
decomposed again at the second layer (conv2)20.

We define a deep scattering network as the sequence of
convolution-modulus operations performed at higher orders,
allowing to scatter the signal structure through the tree of time
and frequency analyses. We finally obtain a locally invariant
signal representation by applying an average-pooling operation to
the all-order pooling layers19–21. This pooling operation is
adapted for concatenation, with an equal number of time samples
at each layer (Fig. 2). The scattering coefficients are invariant
to local time translation, small signal deformations, and signal
overlapping. They incorporate multiple timescales (at different
layers) and frequencies scales (different wavelets). The tree of
operations in a scattering network forms a deep convolutional
neural network, with convolutional filters restricted to wavelets,
and with modulus operator as activation function19. Scattering
networks are located in between (1) classical time and frequency
analysis routinely applied in seismology (2) deep convolutional
neural networks where the unconstrained filters are often hard to
interpret, and where the network architecture is often challenging
to define. In contrast, deep scattering networks can be designed in
a straightforward way, thanks to the analytic framework defined
in ref. 19.

From one layer to another, we increase the filterbanks
frequency range in order to consider at the same time small-
duration details and larger-duration histories (see Table 1, case D
for the selected architecture in this study). The number of
wavelets per octaves and number of octaves define the frequency
resolution and bandwidth of each layer. The scattering network
depth (total number of layers) controls the final temporal
resolution of the analysis. Following the recommendations
cross-validated onto audio signal classification20, we use a large
number of filters at the first layer, and we gradually increase the
number of octaves while reducing the number of wavelets per
octave from the first to the last layer (Table 1, case D). That way,
the representation is dense at the layer conv1 and gets sparser at
the higher-order layers conv2 and conv3. This has the main effect
of improving the contrast between signals of different nature20.
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Fig. 1 Geological context and seismic data. a Location of the landslide (red
star) and the seismic station NUUG (yellow triangle). The seismic station is
located in the vicinity of the small town of Nuugaatsiaq, Greenland (top-
right inset). b Raw record of the seismic wavefield collected between 21:00
UTC and 00:00 UTC on June 17, 2017. The seismic waves generated by the
landslide main rupture are visible after 23:39 UTC. c Fourier spectrogram of
the signal from b obtained over 35-s long windows.
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We finally choose the network depth based on the range of
timescales of interest. In this study, we aim at investigating mostly
impulsive earthquake-like signals that may last between several
seconds to less than 1 min. A deeper scattering network could be
of interest in order to analyze the properties of longer-duration
signals, such as seismic tremors36 or background seismic noise.

Finally, with our choice of pooling factors, we obtain a temporal
resolution of 35 s for each scattering coefficient.

Clustering seismic signals. The scattering coefficients are built
in order to be linearly separable23 so that the need for a
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Fig. 2 Deep learnable scattering network with Gaussian mixture model clustering. The network consists in a tree of convolution and modulus operations
successively applied to the multichannel time series (conv1--3). A reconstruction loss in calculated at each layer in order to constrain the network not to
cancel out any part of the signal (Eq. (13), “Methods”). From one layer to another, the convolution layers are downsampled with an average-pooling
operation (pool1--2), except for the last layer which can be directly used to compute the scattering coefficients. This allows to analyze large timescales of
the signal structure with the increasing depth of the deep scattering network at a reasonable computational cost. The scattering coefficients are finally
obtained from the equal pooling and concatenation of the pool layers, forming a stable high-dimensional and multiple time and frequency-scale
representation of input multichannel time series. We finally apply a dimension reduction to the set of scattering coefficients obtained at each channel in
order to form the low-dimensional latent space (here two-dimensional as defined in Eq. (10), “Methods”). We use a Gaussian mixture model in order to
cluster the data in the latent space (Eq. (11), “Methods”). The negative log-likelihood of the clustering is used to optimize the mother wavelet at each layer
(inset) with Adam stochastic gradient descent39 described in Eq. (14) (“Methods”). The filterbank of each layer ℓ is then obtained by interpolating the
mother wavelet in the temporal domain ψð‘Þ

0 ðtÞ with Hermite cubic splines (Eq. (9), “Methods”), and dilating it over the total number of filters J(ℓ)Q(ℓ) (Eq.
(2), “Methods”).

Table 1 Set of different tested parameters (with corresponding cumulative detection curves shown in Supplementary Fig. 1).

Data Scattering network Learning

Ref. Start End J(ℓ) Q(ℓ) K Pool. Clusters Loss (clus.) Loss (rec.)

A 15:00 23:30 3, 6, 6 8, 2, 1 7 210 10 → 4 3.79 4.20
B 15:00 23:30 3, 6, 6 8, 2, 1 11 210 10 → 3 3.42 5.40
C 15:00 23:30 3, 6, 6 8, 2, 1 15 210 10 → 3 3.17 5.49
⋆D 00:30 23:30 4, 6, 6 8, 4, 3 11 210 10 → 4 2.96 3.06
E 00:30 23:30 3, 6, 6 8, 2, 1 11 29 10 → 6 3.67 1.76
F 00:30 23:30 3, 6, 6 8, 2, 1 11 211 10 → 4 3.11 3.06

The results presented in Figs. 3 and 4 are obtained with the set of parameters D (black star and bold typeface), with the lowest clustering loss. See the Supplementary Note 3 and Supplementary Fig. 1 for
further details.
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high-dimensional scattering representation is greatly reduced. In
fact, it is even possible to enforce the learning to favor wavelets
that not only solve the task but also provide a lower-dimensional
representation of the signal. We do so by reducing the dimension
of the scattering coefficients with projection onto the first two
principal components (Eq. (10), “Methods”). This also improves
the data representation in two dimensions and eases the inter-
pretation. More flexibility could be also obtained by using the
latent representation of an autoencoder because autoencoders can
lower the dimension of any data sets with nonlinear projections.
However, such dimension reduction must be thoroughly inves-
tigated because it adds a higher-level complexity to the overall
procedure (autoencoder learning rate, architecture, etc.), and will
define the goal of future studies.

The two-dimensional scattering coefficients are used to cluster
the seismic data. We use a Gaussian mixture model37 for
clustering, where the idea is to find the set of K-normal
distributions of mean μk and covariance Σk (where k= 1…K)
that best describe the overall data (Fig. 2 inset and Eq. (11),
“Methods”). A categorical variable is also inferred in order to
allocate each data sample into each cluster, which is the final
result of our algorithm. Gaussian mixture model clustering can be
seen as a probabilistic and more flexible version of the K-means
clustering algorithm, where each covariance can be anisotropic,
the clusters can be unbalanced in term of internal variance, and
where the decision boundary is soft37.

Initialized with Gabor wavelets38, we learn the parameters
governing the shape of the wavelets with respect to the clustering
loss (Eqs. (7) and (8), “Methods”) with the Adam stochastic
gradient descent39 (Eq. (14), “Methods”). The clustering loss is
defined as the negative log-likelihood of the data to be fully
described by the set of normal distributions. We define the
wavelets onto specific knots, and interpolate them with Hermite
cubic splines onto the same time basis of the seismic data for
applying the convolution (see “Methods” for more details). We
ensure that the mother wavelet at each layer satisfies the
mathematical definition of a wavelet filter in order to keep all
the properties of a deep scattering network23. We finally add a
constraint on the network in order to prevent the learning to
dropout some signals that make the clustering task hard (e.g.,
outlier signals). This is done by imposing a reconstruction loss
from one layer to its parent signal, noticing that a signal should be
reconstructed from the sum of the convolutions of itself with a
wavelet filterbank (Eq. (13), “Methods”).

The number of clusters is also inferred by our procedure.
We initialize the Gaussian mixture clustering algorithm with
a (relatively large) number K= 10 clusters at the first epoch,
and let all of these components be used by the
expectation–minimization strategy37. This is shown at the first
epoch in the latent space in Fig. 3a, where the Gaussian
component mean and covariance are shown in color with the
corresponding population cardinality on the right inset. As
the learning evolves, we expect the representation to change the
coordinates of the two-dimensional scattering coefficients in
the latent space (black dots), leading to Gaussian components
that do not contribute anymore to fit the data distribution, and
therefore to be automatically disregarded in the next iteration.
We can therefore infer a number of clusters from a maximal
value. At the first epoch (Fig. 3a), we observe that the seismic data
samples are scattered in the latent space, and that the Gaussian
mixture model used all of the ten components.

The clustering loss decreases with the learning epochs (Fig. 3c).
We declare the clustering to be optimal when the loss stagnates
(reached after ~7000 epochs). The learning is done with batch
processing, a technique that allows for faster computation by
randomly selecting smaller subsets of the data set. This also

avoids falling into local minima (as observed ~3500 epochs), and
guarantees to reach a stable minimum that does not evolve
anymore after epoch 7000 (Fig. 3c). After 10,000 training epochs,
as expected, the scattering coefficients have been concentrated
around the clusters centroids (Fig. 3b). The set of useful
components have been reduced to four, a consequence of a
better learned representation due to the learned wavelets at the
last epoch (Fig. 3d). The cluster colors range from colder to
warmer colors, depending on the population size.

The clustering loss improves by a factor of ~4.5 between the
first and the last epoch (Fig. 3c). At the same time, the
reconstruction loss is more than 15 times smaller than at
the first training epoch (Table 1). This indicates that the basis of
wavelets filterbanks used in the deep scattering network is
powerful to accurately represent the seismic data with ensuring a
good-quality clustering at the same time.

Analysis of clusters. The temporal evolution of each clusters is
presented in Fig. 4. The within-cluster cumulative detections
obtained after training are presented in Fig. 4a for clusters 1
and 2, and in Fig. 4b for clusters 2 and 3. The two most
populated clusters (1 and 2, Fig. 4a) gather >90% of the overall
data (Fig. 3b). They both show a linear detection rate over the
day with no particular concentration in time and, therefore,
relate to the background seismic noise. Clusters 3 and 4
(Fig. 4b) show different nonlinear trends that include 10% of
the remaining data.

The temporal evolution of cluster 4 is presented in Fig. 4b. The
time segments that belong to cluster 4 are extracted and aligned
to a reference event (at the top) with local cross-correlation for
better readability (see Supplementary Note 1). These waveforms
contain seismic events localized in time with relatively high
signal-to-noise ratio and sharp envelope. These events do not
show a strong similarity in time, but they strongly differ from the
event belonging to other clusters, explaining why they have been
gathered in the same cluster. The detection rate is sparse in time,
indicating that cluster 4 is mostly related to a random background
seismicity or other signals, interest in which is beyond the scope
of this paper.

The temporal evolution of cluster 3 shows three behaviors.
First, we observe a nearly constant detection rate from the
beginning of the day to ~07:00. Second, the detection rate lowers
between 07:00 and 13:00, where only 4% of the within-cluster
detections are observed. An accelerating seismicity is finally
observed from 13:00 up to the landslide time (23:39 UTC).
The time segments belonging to cluster 3 are reported on Fig. 4d
in gray colorscale, and aligned with local cross-correlation with a
reference (top) time segment. The correlation coefficients
obtained for the best-matching lagtime are indicated in orange
color in Fig. 4e. As with the template-matching strategy, we
clearly observe the increasing correlation coefficient with the
increasing event index28, indicating that the signal-to-noise ratio
increases toward the landslide. This suggests that the repeating
event may exist earlier in the data before 15:00, but that the
detection threshold of the template-matching method is limited
by the signal-to-noise ratio28. Because our clustering approach is
probabilistic, it is possible that some time segments share
sufficient similarity with the precursory events to have been
placed in the same cluster. The pertinence of our approach could
be further tested by similarity tests specific to the precursory
signals, which is beyond the scope of this study. We note that the
probability of these 171 events to belong to the same cluster
remains high according to our clustering (Fig. 4e). We also note
that 97% of the precursory events previously found28 are
recovered.
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An interesting observation is the change of behavior in the
detection rate of this cluster at nearly 07:00 (Fig. 4b). The events
that happened before 07:00 have all a relatively high probability to
belong to cluster 3, refuting the hypothesis that noise samples
have randomly been misclassified by our strategy (Fig. 4e). The
temporal similarity of all these events in Fig. 4d is particularly
visible for later events (high index) because the signal-to-noise
ratio of these events increases toward the landslide28. The two
trends may be either related to similar signals generated at same
position (same propagation) with a different source, or by two
types of alike-looking events that differ in nature, but that may
have been gathered in the same cluster because they strongly
differ from the other clusters. This last hypothesis can be tested
with using hierarchical clustering40. Our clustering procedure
highlighted those 171 similar events in a totally unsupervised
way, without the need of defining any template from the seismic
data. The stack of the 171 waveforms is shown in black solid line
in Fig. 4d, indicating that the template of these events is defined
in a blind way thanks to our procedure. In addition, these events
have very similar properties (duration, seismic phases, envelope)
in comparison with the template defined in ref. 28.

Discussion
We have developed a novel strategy for clustering and detecting
seismic events in continuous seismic data. Our approach extends
a deterministic deep scattering network by learning the wavelet
filterbanks and applying a Gaussian mixture model. While scat-
tering networks correspond to a special deep convolutional neural
network with fixed wavelet filterbanks, we allow it to fit the data
distribution by learnability of the different mother wavelets; yet
we preserve the structure of the deep scattering network allowing
interpretability and theoretical guarantees. We combine the
powerful representation of the learnable scattering network with
Gaussian mixture clustering by learning the wavelet filters

according to the clustering loss. This allows to learn a repre-
sentation of multichannel seismic signals that maximizes the
quality of clustering, leading to an unsupervised way of exploring
possibly large data sets. We also impose a reconstruction loss as
each layer of the deep scattering network, following the ideas of
convolutional autoencoders, and preventing to learn trivial
solutions such as zero-valued filters.

Our strategy is capable of blindly recovering the small-amplitude
precursory signal reported in refs. 28,29. This indicates that wave-
form templates can be recovered from our method without the need
of any manual inspection of the seismic data prior to the clustering
process, and tedious selection of the waveform template in order to
perform high-quality detection. Such unsupervised strategy is
of strong interest for seismic data exploration, where the structure
of seismic signals can be complex (low-frequency earthquakes,
nonvolcanic tremors, distant vs. local earthquakes, etc.), and where
some class of unknown signals is likely to be disregarded by a
human expert.

In the proposed workflow, only a few parameters need be
chosen, namely the number of octaves and wavelets per octave at
each layer J(ℓ) and Q(ℓ), the number of knots K the pooling factors
and the network depth M. This choice of parameters is extremely
constrained by the underlying physics. The number of octaves at
each layer controls the lowest analyzed frequency at each layer,
and therefore, the largest timescale. The pooling factor and
number of layers M should be chosen according to the analyzed
timescale at each layer, and the final maximal timescale of interest
for the user. We discuss our choice of parameters with testing
several parameter sets summarized in Table 1 and with the cor-
responding results presented in Supplementary Fig. 1 for the
cumulative detection curves, within-cluster population sizes and
learned mother wavelets (Supplementary Note 2). All the results
obtained with different parameters show extremely similar cluster
shapes in the time domain, and the precursory signal accelerating
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shape is always recovered. We see that a low number of 3 or 4
clusters are found in almost all cases, with a similar detection
rates over the day. Furthermore, we observe that the shapes of the
learned wavelets is stable for different data-driven tests, and in
particular, the third-order wavelet is similar with all the tested
parameters (Fig. 5g). This result makes sense because the coeffi-
cients that output from the last convolutional layer conv3 are
overrepresented in comparison with the other ones. We also
observe that the procedure still works with only a few amount of
data (Fig. 5a–c), a very strong advantage compared with classical
deep convolutional neural networks that often require a large
amount of the data to be successfully applied.

Besides being adapted to small amount of the data, our strategy
can also work with large data sets, as scalability is guaranteed by
batch processing, and using only small-complexity operators
(convolution and pooling). Indeed, batch processing allows to
control the amount of data seen by the scattering network and
GMM at a single iteration, each epoch being defined when the
whole data set have been analyzed. There is no limitation to the
total amount of the data being analyzed because only the selected
segments at each iteration are fed to the network. At longer
timescales, the number of clusters needed to fit the seismic data
must change, however, with an expectation that the imbalance
between clusters should increase. We illustrate this point with
another experiment performed on the continuous seismogram
recorded at the same station over 17 days, including the date of
the landslide (from June 1, 2017 to June 18, 2017). With this
larger amount of the data, the clustering procedure still converges
and exhibit nine new clusters. The hourly within-clusters

detections of these new clusters are presented in Fig. 5. Among
the different clusters found by our strategy, we observe that >93%
of the data are identified in slowly evolving clusters, most likely
related to fluctuations of the ambient seismic noise (Fig. 5,
clusters A to E). The most populated clusters (A and B) occupy
>61% of the time, and are most likely related to a diffuse wave-
field without any particular dominating source. Interestingly, we
observe two other clusters with large population with a strong
localization in time (clusters C and D in Fig. 5). A detailed
analysis of the ocean-radiated microseismic energy41,42 allowed
us to identify the location and dominating frequency of the
sources responsible for these clusters to be identified (explained in
Supplementary Note 3 and illustrated in Supplementary Figs. 2
and 3). The seismic excitation history provided by these ocea-
nographic models of the best-matching microseismic sources
have been reported on clusters C and D in Fig. 5.

Compared with these long-duration clusters, the clustering
procedure also reports very sparse clusters where <7% of the
seismic data are present. Because of clustering instabilities caused
by the large class imbalance of the seismic data, we decided to
perform a second-order clustering on the low-populated clusters.
This strategy follows the idea of hierarchical clustering40, where
the initially identified clusters are analyzed several consecutive
times in order to discover within-cluster families. For the sake of
brevity, we do not intend to perform a deep-hierarchical clus-
tering in this paper, but to illustrate the potential strength of such
strategy in seismology, where the data are essentially class-
imbalanced. We perform a new clustering from the data obtained
in the merged low-populated clusters (F to I in Fig. 5). This
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additional clustering procedure detected two clusters presented in
Fig. 6a. These two clusters have different temporal cumulated
detections and exhibit different population sizes. A zoom of the
cumulated within-cluster detections is presented in Fig. 6b, and
show a high similarity with clusters 3 and 4 previously obtained
in Fig. 3 from the daylong seismogram. This result clearly proves

that the accelerating precursor is captured by our strategy even
when the data is highly imbalanced. If the scattering network
provides highly relevant features, clustering the seismic data with
simple clustering algorithms can be a hard task that can be solved
with hierarchical clustering, as illustrated in this study. This
problem can also be better tackled by other clustering algorithms
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such as spectral clustering43, which has the additional ability to
detect outliers. Clustering the outlier signals may then be an
alternative to GMM in that case. Another possibility would be to
use the local similarity search with hashing functions15 in order to
improve our detection database on large amount of the seismic
data.

The structure of the scattering network shares some similarities
with the FAST algorithm (for fingerprint and similarity search15)
from a architectural point of view. FAST uses a suite of deter-
ministic operations in order to extract waveforms features and
feed it to a hashing system in order to perform a similarity search.
The features are extracted from the calculation of the spectro-
gram, Haar wavelet transforms and thresholding operations.
While being similar, the FAST algorithm involves a number of
parameters that are not connected to the underlying physics. For
instance, the thresholding operation has to be manually inspec-
ted15, as well as the size of the analyzing window. In comparison,
our architecture and weights are physically informed, and do not
imply any signal windowing (only the resolution of the final result
can be controlled). FAST is not a machine-learning strategy
because no learning is involved; in contrast, we do learn the
representation of the seismic data that best solves the task of
clustering. While FAST needs a large amount of data to be run in
an optimal way15, our algorithm still works with a few number of
samples.

This work shows that learning a representation of the seismic
data in order to cluster seismic events in continuous waveforms is
a challenging task that can be tackled with deep learnable scat-
tering networks. The blind detection of the seismic precursors to
the 2017 Landslide of Nuugaatsiaq with a deep learnable scat-
tering network is a strong evidence that weak seismic events of
complex shape can be detected with a minimum amount of prior
knowledge. Discovering new classes of seismic signals in con-
tinuous data can, therefore, be better addressed with such strat-
egy, and could lead to a better forecasting of the seismic activity in
seismogenic areas.

Methods
Deep scattering network. A complex wavelet ψ 2 L is a filter localized in fre-
quency with zero average, center frequency ω0, and bandwidth δω. We define the

functional space L of any complex wavelet ψ as

L ¼ ψ 2 L2c ðCÞ;
Z

ψðtÞdt ¼ 0

� �
; ð1Þ

where L2c ðCÞ represents the space of square-integrable functions with compact
time support c on C. At each layer, the mother wavelet ψ0 2 L is used to derive a
number of JQ wavelets of the filterbank ψj with dilating the mother wavelet by
means of scaling factors λj 2 R such as

ψjðtÞ ¼ λjψ0ðtλjÞ; 8j ¼ 0¼ JQ� 1: ð2Þ

where the mother wavelet is centered at the highest possible frequency (Nyquist
frequency). The scaling factor λj= 2−j/Q is defined as powers of two in order to
divide the frequency axis in portions of octaves, depending on the desired number
of wavelets per octave Q and total number of octave J, which controls the
frequency-axis limits and resolution at each layer. The scales are designed to cover
the whole frequency axis, from the Nyquist angular frequency ω0= π down to a
smallest frequency ωQJ−1= ω0λJ defined by the user.

We define the first convolution layer of the scattering network (conv1 in Fig. 2)
as the convolution of any signal xðtÞ 2 RC (where C denotes the number of

channels) with the set of J(1)Q(1) wavelet filters ψð1Þ
j ðtÞ 2 L as

U ð1Þ
j ðtÞ ¼ x � ψð1Þ

j

��� ���ðtÞ 2 RC ´ Jð1Þ ´Qð1Þ
; ð3Þ

where * represents the convolution operation. The first layer of the scattering
network defines a scalogram, a time-frequency representation of the signal x(t)

according to the shape of the moher wavelet ψð1Þ
0 widely used in the analysis of one-

dimensional signals, including seismology.

The first-order scattering coefficients Sð1Þj ðtÞ are obtained after applying an

average-pooling operation ϕ(t) over time to the first-order scalogram U ð1Þ
j ðtÞ

Sð1Þj ðtÞ ¼ Uð1Þ
j � ϕ1

� �
ðtÞ ¼ x � ψj1

��� ��� � ϕ1� �
ðtÞ: ð4Þ

The average-pooling operation is equivalent to a low-pass filtering followed by a
downsampling operation35. It ensures the scattering coefficients to be locally stable
with respect to time, providing a representation stable to local deformations and
translations21. This property is essential in the analysis of complex signals such as
seismic signals that can often be perturbed by scattering or present a complex
source time function.

The small detailed information that has been removed by the pooling operation
with Eq. (4) could be of importance to properly cluster different seismic signals. It
is recovered by cascading the convolution, modulus, and pooling operations on
higher-order convolutions performed on the first convolution layer (thus defining
the high-order convolution layers shown in Fig. 2):

Sð‘Þj ðtÞ ¼ U ð‘Þ
j ðtÞ � ϕð‘Þj ðtÞ; ð5Þ

where U(0)(t)= x(t) is the (possibly multichannel) input signal (Fig. 2). The
scattering coefficients are obtained at each layers from the successive convolution
of the input signal with different filters banks ψ(ℓ)(t). In addition, we apply an
average-pooling operation to the output of the convolution-modulus operators in
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order to downsample the successive convolutions without aliasing. This allow for
observing larger and larger timescales in the structure of the input signal at
reasonable computational cost.

We define the relevant features S(t) of the continuous seismic signal to be the
concatenation of all-orders scattering coefficients obtained at each time t as

SðtÞ ¼ fSð‘Þg‘¼1¼M 2 RF ; ð6Þ

with M standing for the depth of the scattering network, and F= J(1)Q(1)(1 + …
(1 + J(M)Q(M))) is the total number of scattering coefficients (or features). When
dealing with multiple-channel data, we also concatenate the scattering coefficients
obtained at all channels. The feature space therefore is a high-dimensional
representation that encodes multiple time-scale properties of the signal over a time
interval [t, t + δt]. The time resolution δt of this representation then depends on
the size of the pooling operations. The choice of the scattering network depth thus
should be chosen so that the final resolution of analysis is larger than maximal
duration of the analyzed signals.

Seismic signals can have several orders of different magnitude, even for signals
lying in the same class. In order to make our analysis independent from the
amplitude, we normalize the scattering coefficient by the amplitude of their
"parent”. The scattering coefficients of order m are normalized by the amplitude of
the coefficients m− 1 down to m= 2. For the first layer (which has no parent), the
scattering coefficients are normalized by the coefficients of the absolute value of the
signal44.

Adaptive Hermite cubic splines. Instead of learning all the coefficients of the

mother wavelet ψð‘Þ
0 at each layer in the frequency domain, as one would do in a

convolutional neural network, we restrict the learning to the amplitude and the
derivative on a specific set of K knots ftk 2 cgk¼1¼K laying in the compact

temporal support c (see Eq. (1)). The mother wavelet ψð‘Þ
0 can then be approxi-

mated with Hermite cubic splines23, a third-order polynomial defined on the
interval defined by two consecutive knots τk= [tk, tk+1]. The four equality con-
straints

ψð‘Þ
0 ðtkÞ ¼ γk

ψð‘Þ
0 ðtkþ1Þ ¼ γkþ1

_ψð‘Þ
0 ðtkÞ ¼ θk

_ψð‘Þ
0 ðtkþ1Þ ¼ θkþ1

8>>>>><
>>>>>:

; ð7Þ

uniquely determine the Hermite cubic spline solution piecewise on the consecutive
time segments τk, given by

ψð‘Þ
0;Γ;ΘðtÞ ¼

XK�1

k¼1

γkf 1 xkðtÞð Þ þ γkþ1f 2 xkðtÞð Þ þ θkf 3 xkðtÞð Þ þ θkþ1f 4 xkðtÞð Þ1τk ;

ð8Þ

where Γ ¼ fγkgk¼1¼K�1 and Θ ¼ fθkgk¼1¼K�1, respectively, are the set of value
and derivative of the wavelets on the knots, where xðtÞ ¼ t�tk

tkþ1�tk
is the normalized

time on the interval τk, and where the Hermite cubic functions fi(t) are defined as

f 1ðtÞ ¼ 2t3 � 3t2 þ 1;

f 2ðtÞ ¼ �2t3 þ 3t2;

f 3ðtÞ ¼ t3 � 2t2 þ t;

f 4ðtÞ ¼ t3 � 2t2:

8>>><
>>>:

ð9Þ

We finally ensure that the Hermite spline solution lays in the wavelets
functional space L defined in Eq. (1) by additionally imposing

● the compactness of the support: γ1= θ1= θK= γK= 0,
● the null average: γk=− ∑n≠kγn,
● that the coefficients are bounded: max

t
γt<1.

The parameters γk and θk solely control the shape of the mother wavelet, and
are the only parameters that we learn in our strategy. Thanks to the above
constraints, for any value of those parameters, the obtained wavelet is guaranteed
to belong into the functional space of wavelets L defined in Eq. (1) with compact
support. By simple approximation argument, Hermite cubic splines can
approximate arbitrary functions with a quadratically decreasing error with respect
to the increasing number of knots K. Once the mother filter has been interpolated,
the entire filterbank is derived according to Eq. (2).

Clustering in a low-dimensional space. We decompose the scattering coefficients
S onto its two first-principle components by means of singular value decomposi-
tion S = UDV†, where U 2 RF ´ F and V 2 RT ´T are, respectively, the feature-
and time-dependant singular matrices gathering the singular vectors column-wise,
D are the singular values, and where T is the total number of time samples in the
scattering representation. We define the latent space L 2 R2´T as the projection of
the scattering coefficients onto the first two feature-dependent singular vectors.
Noting U ¼ fuigi2½1¼ F� and V ¼ fvjgj2½1¼T� , where ui and vj are, respectively, the

singular vectors, the latent space is defined as

R2´T 3 L ¼
X2
i¼1

Sui ð10Þ

To tackle clustering tasks, it is common to resort to centroidal-based clustering. In
such strategy, the observations are compared with cluster prototypes and associated
to the clusters with prototype the closest to the observation. The most-famous
centroidal clustering algorithm is probably the K-means algorithm. Its extension,
the Gaussian mixture model extends it by allowing nonuniform prior over the
clustering (unbalanced in the clusters) and by allowing adapting the metric used to
compare an observation to a prototype by means of a covariance matrix. To do so,
Gaussian mixture model resorts to a generative modeling of the data. When using a
Gaussian mixture model, the data are assumed to be generated according to a
mixture of K-independent normal (Gaussian) processes Nðμk;ΣkÞ as in

x �
YK
k¼1

Nðμk;ΣkÞ1ft¼kg; ð11Þ

where t is a Categorical variable governed by t � CatðπÞ. As such, the parameters
of the model are {μk, Σk, k= 1…K} ∪ {π}. The graphical model is given by p(x, t)=
p(x∣t)p(t) and the parameters are learned by maximum likelihood with the
expectation–maximization technique, where for each input x, the missing variable
(unobserved) t is inferred using expectation with respect to the posterior dis-
tribution as Ep(t∣x)(p(x∣t)p(t)). Once this latent variable estimation has been done,
the parameters are optimized with their maximum-likelihood estimator. This two-
step process is then repeated until convergence that is guaranteed45.

Learning the wavelets with gradient descent. The clustering quality is measured
in term of negative log-likelihood T with respect to the Gaussian mixture model
formulation (here calculated with the expectation–minimization method). The
negative log-likelihood is used to learn and adapt the Gaussian mixture model
parameters (via their maximum-likelihood estimates) in order to fit the model to
the data. We aim at adapting our learnable scattering filterbanks in accordance to
the clustering task to increase the clustering quality. The negative log-likelihood
will thus be used to adapt the filter-bank parameters.

This formulation alone contains a trivial optimum at which the filterbanks
disregard any nonstationary event leading to a trivial single cluster and the absence
of representation of any other event. This would be the simplest clustering task and
would minimize the negative log-likelihood. As such, it is necessary to force the
filterbanks to not just learn a representation more suited for Gaussian mixture
model clustering but also not to disregard information from the input signal. This
can be done naturally by enforcing the representation of each scattering to contain
enough information to reconstruct the layer input signal. Thus, the parameters of
the filters are learned to jointly minimize the negative log-likelihood and a loss of
reconstruction.

Reconstruction loss. The reconstruction x̂ðtÞ of any input signal x(t) can be
formally written in the single-layer case as

x̂ðtÞ ¼
XJQ
i¼1

1
CðλiÞ

X
t0
ψiðt � t0Þ x � ψi

� �
t0ð Þ

�� ��; ð12Þ

where C(λi) is a renormalization constant at scale λi, and * stands for convolution.
While some analytical constant can be derived from the analytical form of the
wavelet filter, we instead propose a learnable coefficient obtained by incorporating
a batch-normalization operator. The model thus considers
x̂ ¼ ðBatchNorm � Deconv � j � j � BatchNorm � ConvÞðxÞ. From this, the recon-
struction loss is simply given by the expression

LðxÞ ¼k x � x̂k22: ð13Þ
We use this reconstruction loss for each of the scattering layers.

Stochastic gradient descent. With all the losses defined above, we are able to
leverage some flavor of gradient descent39 in order to learn the filter parameters.
Resorting to gradient descent is here required as analytical optimum is not avail-
able for the wavelet parameters, as we do not face a convex optimization problem.
During training, we thus iterate over our data set by means of minibatches (a small
collection of examples seen simultaneously) and compute the gradients of the loss
function with respect to each of the wavelet parameters as

GðθÞ ¼ 1
jBj
X
n2B

∂T
∂θ

ðxnÞ þ
X‘
i¼1

∂LðiÞ

∂θ
xðiÞn

� � !
; ð14Þ

with B being the collection of indices in the current batch, and θ being one of the
wavelet parameters (the same is performed for all parameters of all wavelet layers).
The ℓ superscript on the reconstruction loss represent the reconstruction loss for
layer ℓ. Then, the parameter is updated following

θtþ1 ¼ θt � αGðθÞ; ð15Þ
with α the learning rate. Doing so in parallel for all the wavelet parameters
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concludes the gradient descent update of the current batch at time t. This is
repeated multiple time over different minibatches until convergence.

Data availability
The facilities of IRIS Data Services, and specifically the IRIS Data Management Center,
were used for access to waveforms and related metadata used in this study. IRIS Data
Services are funded through the Seismological Facilities for the Advancement of
Geoscience and EarthScope (SAGE) Project funded by the NSF under Cooperative
Agreement EAR-1261681. The maps were made with the Cartopy Python library
(v0.11.2. 22-Aug-2014. Met Office.). The topographic models were downloaded from the
Global Multi-Resolution Topography databse at https://www.gmrt.org.

Code availability
The codes used in the present study are freely available online at https://github.com/
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Received: 30 July 2019; Accepted: 13 July 2020;

References
1. Bergen, K. J., Johnson, P. A., Maarten, V. & Beroza, G. C. Machine learning for

data-driven discovery in solid earth geoscience. Science 363, eaau0323 (2019).
2. Obara, K., Hirose, H., Yamamizu, F. & Kasahara, K. Episodic slow slip events

accompanied by non-volcanic tremors in southwest japan subduction zone.
Geophys. Res. Lett. 31, L23602 (2004).

3. Perol, T., Gharbi, M. & Denolle, M. Convolutional neural network for
earthquake detection and location. Sci. Adv. 4, e1700578 (2018).

4. Ross, Z. E., Meier, M.-A., Hauksson, E. & Heaton, T. H. Generalized seismic phase
detection with deep learning. Bull. Seismol. Soc. Am. 108, 2894–2901 (2018).

5. Scarpetta, S. et al. Automatic classification of seismic signals at mt. vesuvius
volcano, italy, using neural networks. Bull. Seismol. Soc. Am. 95, 185–196 (2005).

6. Esposito, A. M., D’Auria, L., Giudicepietro, F., Caputo, T. & Martini, M.
Neural analysis of seismic data: applications to the monitoring of mt. vesuvius.
Ann. Geophys. 56, 0446 (2013).

7. Maggi, A. et al. Implementation of a multistation approach for automated
event classification at piton de la fournaise volcano. Seismol. Res. Lett. 88,
878–891 (2017).

8. Malfante, M. et al. Machine learning for volcano-seismic signals: challenges
and perspectives. IEEE Signal Process. Mag. 35, 20–30 (2018).

9. Esposito, A. et al. Unsupervised neural analysis of very-long-period events at
stromboli volcano using the self-organizing maps. Bull. Seismol. Soc. Am. 98,
2449–2459 (2008).

10. Unglert, K. & Jellinek, A. Feasibility study of spectral pattern recognition
reveals distinct classes of volcanic tremor. J. Volcanol. Geotherm. Res. 336,
219–244 (2017).

11. Hammer, C., Ohrnberger, M. & Faeh, D. Classifying seismic waveforms from
scratch: a case study in the alpine environment. Geophys. J. Int. 192, 425–439
(2012).

12. Soubestre, J. et al. Network-based detection and classification of
seismovolcanic tremors: example from the klyuchevskoy volcanic group in
kamchatka. J. Geophys. Res.: Solid Earth 123, 564–582 (2018).

13. Beyreuther, M., Hammer, C., Wassermann, J., Ohrnberger, M. & Megies, T.
Constructing a hidden markov model based earthquake detector: application
to induced seismicity. Geophys. J. Int. 189, 602–610 (2012).

14. Holtzman, B. K., Paté, A., Paisley, J., Waldhauser, F. & Repetto, D. Machine
learning reveals cyclic changes in seismic source spectra in geysers geothermal
field. Sci. Adv. 4, eaao2929 (2018).

15. Yoon, C. E., O’Reilly, O., Bergen, K. J. & Beroza, G. C. Earthquake detection
through computationally efficient similarity search. Sci. Adv. 1, e1501057 (2015).

16. Mousavi, S. M., Zhu, W., Ellsworth, W. & Beroza, G. Unsupervised clustering
of seismic signals using deep convolutional autoencoders. IEEE Geosci. Remote
Sens. Lett. 16, 1693–1697 (2019).

17. Köhler, A., Ohrnberger, M. & Scherbaum, F. Unsupervised pattern
recognition in continuous seismic wavefield records using self-organizing
maps. Geophys. J. Int. 182, 1619–1630 (2010).

18. Rouet-Leduc, B. et al. Machine learning predicts laboratory earthquakes.
Geophys. Res. Lett. 44, 9276–9282 (2017).

19. Bruna, J. & Mallat, S. Invariant scattering convolution networks. IEEE Trans.
Pattern Anal. Mach. Intell. 35, 1872–1886 (2013).

20. Andén, J. & Mallat, S. Deep scattering spectrum. IEEE Trans. Signal Process.
62, 4114–4128 (2014).

21. Andén, J. & Mallat, S. Scattering representation of modulated sounds. 15th
DAFx 9, 17-21 (2012).

22. Peddinti, V. et al. Deep scattering spectrum with deep neural networks. in
2014 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP) 210–214 https://doi.org/10.1109/ICASSP.2014.6853588. (IEEE,
Florence, 2014).

23. Balestriero, R., Cosentino, R., Glotin, H. & Baraniuk, R. Spline filters for end-to-
end deep learning. in Proceedings of the 35th International Conference on
Machine Learning, Vol. 80 of Proceedings of Machine Learning Research. (eds Dy,
J. & Krause, A.) 364–373 (PMLR, Stockholmsmässan, Stockholm, Sweden, 2018).

24. Ahuja, N., Lertrattanapanich, S. & Bose, N. Properties determining choice of
mother wavelet. IEE Proc.-Vis., Image Signal Process. 152, 659–664 (2005).

25. Meyer, Y. Wavelets and Operators, Vol. 1 (Cambridge University Press, 1992).
26. Coifman, R. R. & Wickerhauser, M. V. Entropy-based algorithms for best

basis selection. IEEE Trans. Inf. theory 38, 713–718 (1992).
27. Chao, W.-A. et al. The large greenland landslide of 2017: aas a tsunami

warning possible? Seismol. Res. Lett. 89, 1335–1344 (2018).
28. Poli, P. Creep and slip: seismic precursors to the nuugaatsiaq landslide

(greenland). Geophys. Res. Lett. 44, 8832–8836 (2017).
29. Bell, A. F. Predictability of landslide timing from quasi-periodic precursory

earthquakes. Geophys. Res. Lett. 45, 1860–1869 (2018).
30. Allen, R. Automatic phase pickers: their present use and future prospects. Bull.

Seismol. Soc. Am. 72, S225–S242 (1982).
31. Gibbons, S. J. & Ringdal, F. The detection of low magnitude seismic events

using array-based waveform correlation. Geophys. J. Int. 165, 149–166 (2006).
32. Brown, J. R., Beroza, G. C. & Shelly, D. R. An autocorrelation method to detect

low frequency earthquakes within tremor. Geophys. Res. Lett. 35, L16305 (2008).
33. Estivill-Castro, V. Why so many clustering algorithms: a position paper.

SIGKDD Explorations 4, 65–75 (2002).
34. Chakraborty, A. & Okaya, D. Frequency-time decomposition of seismic data

using wavelet-based methods. Geophysics 60, 1906–1916 (1995).
35. Dumoulin, V. & Visin, F. A guide to convolution arithmetic for deep learning.

Preprint at http://arXiv.org/abs/1603.07285 (2016).
36. Shelly, D. R., Beroza, G. C. & Ide, S. Non-volcanic tremor and low-frequency

earthquake swarms. Nature 446, 305 (2007).
37. Reynolds, D. Gaussian mixture models. in Encyclopedia of Biometrics (eds Li,

S. Z., Jain, A.) 827–832 https://doi.org/10.1007/978-0-387-73003-5_196.
(Springer, Boston, MA, 2009).

38. Mallat, S. in A Wavelet Tour of Signal Processing: the Sparse Way, Chap. 4, 3rd
edn. 111–112 (Academic Press, Inc., USA, 2008).

39. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint
at http://arXiv.org/abs/1412.6980 (2014).

40. Johnson, S. C. Hierarchical clustering schemes. Psychometrika 32, 241–254
(1967).

41. Ardhuin, F. et al. Ocean wave sources of seismic noise. J. Geophys. Res.: Oceans
116, C09004 (2011).

42. Li, L., Boue, P. & Campillo, M. Spatiotemporal connectivity of noise-derived
seismic body waves with ocean waves and microseism excitations. Preprint at
Eartharxiv (2019).

43. Von Luxburg, U. A tutorial on spectral clustering. Stat. Comput. 17, 395–416
(2007).

44. Sifre, L., Kapoko, M., Oyallon, E. & Lostanlen, V. Scatnet: a matlab toolbox for
scattering networks. https://github.com/scatnet/scatnet/blob/master/doc/impl/
impl.pdf?raw=true (2013).

45. Xu, L. & Jordan, M. I. On convergence properties of the em algorithm for
gaussian mixtures. Neural Comput. 8, 129–151 (1996).

Acknowledgements
L.S., P.P., and M.C. acknowledge support from the European Research Council under the
European Union Horizon 2020 research and innovation program (grant agreement no.
742335, F-IMAGE). M.C. and L.S. acknowledge the support of the Multidisciplinary
Institute in Artificial Intelligence MIAI@Grenoble Alpes (Program “Investissements
d’avenir” contract ANR-19-P3IA-0003, France). M.V.d.H. gratefully acknowledges sup-
port from the Simons Foundation under the MATH + X program and from DOE
under grant DE-SC0020345. R.B. and R.G.B. were supported by NSF grants IIS-17-30574
and IIS-18-38177, AFOSR grant FA9550-18-1-0478, ONR grant N00014-18-12571, and a
DOD Vannevar Bush Faculty Fellowship, ONR grant N00014-18-1-2047. L.S. thanks
Romain Cosentino for very helpful discussions and comments.

Author contributions
M.C. and M.V.d.H. initiated the study. P.P. proposed the case study. L.S. and R.B.
implemented the codes and performed the training. L.S., M.C., and P.P. wrote the
“Results” and “Discussion”. R.B, L.S., M.V.d.H., and R.G.B. wrote the “Methods” section.
All authors contributed to the “Abstract” and “Introduction”.

Competing interests
The authors declare no competing interests.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17841-x ARTICLE

NATURE COMMUNICATIONS | (2020)11:3972 | https://doi.org/10.1038/s41467-020-17841-x | www.nature.com/naturecommunications 11

https://www.gmrt.org
https://github.com/leonard-seydoux/scatnet
https://github.com/leonard-seydoux/scatnet
https://doi.org/10.1109/ICASSP.2014.6853588
http://arXiv.org/abs/1603.07285
https://doi.org/10.1007/978-0-387-73003-5
http://arXiv.org/abs/1412.6980
https://github.com/scatnet/scatnet/blob/master/doc/impl/impl.pdf?raw=true
https://github.com/scatnet/scatnet/blob/master/doc/impl/impl.pdf?raw=true
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-17841-x.

Correspondence and requests for materials should be addressed to L.S.

Peer review information Nature Communications thanks the anonymous reviewer(s) for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,

distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17841-x

12 NATURE COMMUNICATIONS | (2020)11:3972 | https://doi.org/10.1038/s41467-020-17841-x | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-020-17841-x
https://doi.org/10.1038/s41467-020-17841-x
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Clustering earthquake signals and background noises in continuous seismic data with unsupervised deep learning
	Results
	Seismic records of the 2017 Nuugaatsiaq landslide
	Feature extraction from a learnable deep scattering network
	Clustering seismic signals
	Analysis of clusters

	Discussion
	Methods
	Deep scattering network
	Adaptive Hermite cubic splines
	Clustering in a low-dimensional space
	Learning the wavelets with gradient descent
	Reconstruction loss
	Stochastic gradient descent

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




