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1 INTRODUCTION
Manson et al. [2005] identify the central problem in the design of software relaxed memory models:
“Thememorymodelmust strike a balance between ease-of-use for programmers and implementation
flexibility for system designers.”

There are two aspects to “ease of use.” First, programs should support compositional and local
reasoning; in this paper, we emphasize temporal safety properties [Abadi and Lamport 1993; Misra
and Chandy 1981; Pnueli 1984; Stark 1985]. Second, relaxing memory consistency should not change
the behavior of correctly synchronized programs; this property is known as sequential consistency
for data race free programs (drf-sc) [Adve and Hill 1990, 1993].

There are also two aspects of “implementation flexibility.” First, relaxed atomic access should
not require hardware synchronization (at least for the word size of the machine). Second, the
model should facilitate compiler transformations, such as the reordering of independent statements;
ideally the model should support all optimizations of synchronization-free single-threaded code.

Sailing between this Scylla and Charybdis has proven very difficult. Three lines of code can leave
the top experts in the field flabbergasted. The solutions that have been proposed are understandable
to mechanical proof assistants, but humans have been left behind.
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In this paper, we combine two ideas that humans can understand: preconditions [Hoare 1969]
and labelled partial orders (aka pomsets) [Gischer 1988; Plotkin and Pratt 1996]. The resulting model
mostly satisfies the desiderata. We sacrifice only implementability on “non-mca” processors, such
as power and arm7. As a result, however, there is only one order relation to visualize.

Perhaps you believe the problem has already been solved? Let us try to convince you otherwise.
To get a sense of the difficulties involved, consider that the existence of an execution in a relaxed

memory model may depend on code that was not executed. Let 𝑟–𝑠 be registers and 𝑏, 𝑥–𝑧 be shared
memory locations. Consider the following program, where all memory locations are initialized to 0:

𝑦:=𝑥 || 𝑟:=𝑦; if(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1} (∗)

Most programmers would be surprised to learn that this program allows an execution that sets 𝑧
to 1. To see why, imagine that a compiler does type inference and finds that 𝑥 and 𝑦 are booleans,
with value either 0 or 1. This enables the program to be optimized to the following:

𝑦:=𝑥 || 𝑟:=𝑦; if(𝑟){𝑥:= 1; 𝑧:= 1} else {𝑥:= 1}

Since 𝑥:= 1 occurs in both branches of the conditional, the compiler can then lift it, and reorder
with the independent read of 𝑦, yielding:

𝑦:=𝑥 ||𝑥:= 1; 𝑟:=𝑦; if(𝑟){𝑧:= 1}

Then 𝑧 is 1 at then end of an execution where the first thread is interleaved immediately after
executing 𝑥:= 1. Without the conditional in (∗), it is obvious that the program should not write 1:

𝑦:=𝑥 || 𝑟:=𝑦;𝑥:= 𝑟; 𝑧:= 𝑟 (oota1)

In oota1, the constant 1 arises “Out Of Thin Air” (oota) [Batty et al. 2015]. As a result, any model
of relaxed memory that supports common compiler optimizations, as above, must take into account
code that was not executed. This is why many models of relaxed memory include some form of
speculative execution, with the goal of allowing the outcome 𝑧=1 for (∗), but not oota1.

The control flow variant of oota1 is:

if(𝑥){𝑦:= 1} || if(𝑦){𝑥:= 1; 𝑧:= 1} (oota2)

This program is data-race-free. Thus, allowing an execution that writes 1 would violate drf-sc.
oota behaviors can be quite subtle. Consider the following variants of (∗):

𝑦:=𝑥 || 𝑟:=𝑦; if(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 2} (oota3)
𝑦:=𝑥 || 𝑟:=𝑦; if(𝑏){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1} || 𝑏:= 1 (oota4)

Following the reasoning above, oota3 has an execution where 𝑧=2, but it does not have an execution
where 𝑧=1. Neither does oota4. In this case, it not sound to assume that 1 is written on both sides
of the conditional, invalidating the first optimization given for (∗) above.

Pugh [1999, §2.3] initiated the modern study of relaxed memory by noting that Java 1.1 failed to
validate Common Subexpression Elimination (CSE) in the presence of aliasing. For example, given
that 𝑟2≠𝑠 , is it valid to transform the program on the left to that on the right?

(𝑟1:=𝑥; 𝑠:=𝑦; 𝑟2:=𝑥;𝐶) (𝑟1:=𝑥; 𝑟2:= 𝑟1; 𝑠:=𝑦;𝐶)
The resulting Java Memory Model (JMM) [Manson et al. 2005] greatly advanced the state of the art.

Lochbihler’s monumental study of the JMM revealed a surprising limitation. Consider the
following program [Lochbihler 2013, Fig. 8], where again all memory locations are initialized to 0:

𝑦:=𝑥 || 𝑟:=𝑦; if(𝑏){𝑟:= new D;𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑠:= new C;𝑥:= 𝑟} || 𝑏:= 1 (oota5)

oota5 “is type correct if it declares 𝑥 , 𝑦 and 𝑟 of type D. However, it has a legal execution where
they reference a C object.” The JMM allows (𝑟:=𝑦 ) to see the object created by new , by bouncing it
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through (𝑥:= 𝑟 ) and (𝑦:=𝑥). In the commitment order of the JMM, this allows the address of the
allocated object to be read (𝑟:=𝑦 ) before its type is determined (if(𝑏)).

This type of bait-and-switch behavior forced Lochbihler to partition memory by type in order to
prove type safety. This formal device means that memory cannot be used at different types over
time, making practical memory reclamation impossible. Even partitioning memory to achieve type
safety, there are implications for the Java security architecture [Lochbihler 2013, §5.4].

In both oota4 and oota5, the oota outcome occurs by baiting with the else branch, then
switching to the then branch, based on a coin flip (if(𝑏)). As confirmed by [Chakraborty and
Vafeiadis 2018; Kang et al. 2018], the promising semantics [Kang et al. 2017] and related models
[Chakraborty and Vafeiadis 2019; Jagadeesan et al. 2010; Manson et al. 2005] all allow oota behaviors
of oota4.1 Due to the similarity of oota4 and oota5, it is reasonable to conclude that these models
cannot support both type safety and realistic memory reclamation.

The C11 Memory Model [Batty et al. 2011] does not attempt to validate CSE, at least not for
relaxed atomic access (consider the case where 𝑥 and 𝑦 are aliased above). C11 does allow the
transformation for plain access, but this comes with the threat of undefined behavior should any
plain access ever possibly engage in a data race [Boehm 2007]. C11 also allows oota behaviors,
exploiting causality cycles. Undefined/oota behavior is antithetical to the goals of safe languages.

Strong models, including Sequential Consistency (SC) [Lamport 1979], RC11 [Lahav et al. 2017],
and others [Boehm and Demsky 2014; Dolan et al. 2018; Jeffrey and Riely 2016; Lahav et al. 2017],
support compositional reasoning. However, all of these models invalidate reordering of independent
statements. All require fences after relaxed reads, even on arm8.

Our Model. In our approach, a program is a set of executions. Each execution is a pomset : a
partial order over a set of read and write events. The order is intended to be read as a dependency
relation. The dependency relation is dynamic, varying between executions. Events that are not
related in an execution are independent and can be seen by a sequential observer in either order.

Cross thread dependencies arise from conflicting actions on the same variable: Roughly, we order
any two actions on the same location, at least one of which is a write. In the parlance of hardware
memory models [Alglave et al. 2014]: coe, fre, and rfe are included in the global dependency
ordering. Thus, our model realizes multi-copy atomicity (mca): when a write becomes visible to one
thread it must become visible to all [Pulte et al. 2018]. As envisioned in [Alglave 2010, §3.3], this
allows us to capture cross-thread dependencies in a single partial order.

Our key insight is that mca permits a single, global notion of time, manifest in the pomset order.
Within a thread, the dependency calculation can be viewed as the computation of preserved

program order, called ppo in hardware models. In our software model, ppo captures the essential
dependencies between events in the same thread. Consider the following program fragments:

𝐶1 : 𝑥:= 1;𝑦:= 1
𝐶2 : 𝑟:=𝑥; if(𝑟){ 𝑦:= 1} else {𝑦:= 1}
𝐶3 : 𝑥:= 1; 𝑟:=𝑥; if(𝑟){𝑦:= 1}

Each of these fragments satisfy the Hoare triple {tt} 𝐶𝑖 {𝑦 = 1}; thus, in each case, the write of 𝑦 is
independent of any code that precedes it in program order. While𝐶1 reflects syntactic independence,
𝐶2 reflects the independence derived by case analysis, and 𝐶3 reflects the independence deduced
from partial evaluation, in the restricted form of constant propagation.

Our key insight is to that logic is better than syntax to capture such dependencies.
1Call the threads s, t, and u. To get the result in the promising semantics, first execute u to get message <b:1@1>. Then t
promises <x:1@1>, which it can fulfill by reading b=0. Then execute s to get message <y:1@1>. Then execute t, reading
b=1 and y=1 and fulfill the promise by writing <x:1@1>. The execution is exactly the same in our speculative semantics
[Jagadeesan et al. 2010], removing timestamps and replacing the word promise by speculation.
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The logical perspective provides a clear intuition as to why certain compiler transformations
should be valid. Such intuitions are not always readily available in relaxed memory models. For
example, value range analysis—used in the discussion of (∗)—is difficult in many models. As another
example, models such as arm8 distinguish internal reads, which are fulfilled by a write of the same
thread, from external ones, which are fulfilled cross-thread. Unlike external reads, internal reads are
not necessarily recorded in the dependency relation. As exemplified by 𝐶3, this allows a compiler
to reorder the fulfilling write with subsequent code that depends on the read. Neither value range
analysis nor internal reads require special treatment in our model.

In §2 and §4, we define the model. We show that the model:

• validates expected litmus cases and compiler optimizations (§3-4).
• captures all C11 concurrency features (§5),
• allows compositional reasoning for temporal safety, disallowing oota behavior (§6),
• is implementable on arm8/tso without extra synchronization for relaxed access (§7), and
• satisfies the local drf-sc criterion [Dolan et al. 2018] (§8).

We conclude by discussing relating work (§9) and limitations (§10).
Batty [2017] observed that “the current crop of relaxed memory models can only be used to

calculate the behavior of a whole program…” and argued that instead, we should “consider a program
as an aggregate of components over different models, composed together.” Our work is inspired by
this call for compositionality in models of relaxed concurrency.

Our model is compositional in the normal sense of a denotational semantics: for example,
the denotation J𝐶1||𝐶2K is computed from J𝐶1K and J𝐶2K. The model obeys laws such as scope
extrusion—J𝐶 ||var𝑥;𝐷K = Jvar𝑥; (𝐶 ||𝐷)K when 𝑥 ∉ id(𝐶)—and case analysis—J𝐶K = Jif(𝑀){𝐶}
else {𝐶}K. This kind of algebraic reasoning is not supported by current models.

Our model also supports compositional reasoning about data races (§8), isolating races in space
and time. Spatial separation ensures that a race on one location does not invalidate drf-sc at other
locations. Temporal separation ensures that drf-sc can be applied within a properly synchronized
region, unaffected by races that precede or follow.

Finally, our model supports compositional reasoning about temporal safety properties (§6). Con-
sider that each thread of oota4 satisfies the following invariant: A write of 1 to𝑦 must be preceded by
a read of 1 from 𝑥 , and if 1 is written to 𝑧 then a write of 1 to 𝑥 must be preceded by a read of 1 from 𝑦.
Compositionality allows us to conclude that whole program satisfies this property. As noted above,
this reasoning fails in models based on promises, speculations, or commitments. Compositionality
for temporal safety is a verifiable criterion for claiming that a model rejects oota executions.

2 THE BASIC MODEL
The model adapts our previous work on microarchitecture [Disselkoen et al. 2019] to the architec-
tural level. In this section, we define the model and use it to give the semantics of a concurrent
language. The semantics given here is simplified: as discussed in §4, it fails to validate some impor-
tant optimizations. We give the full semantics in §4. In §5, we define extensions that incorporate
fences, read-modify-write operations, and address computation.

The model is based on partially ordered multisets [Gischer 1988; Plotkin and Pratt 1996], where
events are labelled with reads and writes, and the partial order tracks dependencies, which arise
within threads due to local dependencies and across threads due to reads and coherence.
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For example the semantics of (∗) contains the expected pomset (where ✓ indicates termination):

𝑥:= 0;𝑦:= 0; (𝑦:=𝑥 || 𝑟:=𝑦; if(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1})

W𝑦0W𝑥 0 R𝑥 0 W𝑦0 R𝑦0 W𝑥 1 ✓
(∗)

but also the unexpected one:

W𝑦0W𝑥 0 R𝑥 1 W𝑦1 R𝑦1 W𝑥 1 W𝑧1 ✓ (†)

The interesting fact about these pomsets is that there is no control dependency between reading 𝑦
and writing 𝑥 , since the (W𝑥 1) event happens on both sides of the conditional.

An attempt to replicate this execution with oota3 fails, since it introduces a cycle:

𝑥:= 0;𝑦:= 0; (𝑦:=𝑥 || 𝑟:=𝑦; if(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 2})

W𝑦0W𝑥 0 R𝑥 1 W𝑦1 R𝑦1 W𝑥 1 W𝑧1 ✓
(oota3)

In this case, (W𝑥 1) only happens on one side of the conditional, causing a control dependency
from (R𝑦1) to (W𝑥 1). Similar cycles arise when attempting to write 𝑧=1 in oota1–oota4.

In the diagrams above, there is only one order—color plays no formal role. We use color only to
help the reader see where the order comes from:

• (R𝑦1) (W𝑥 1) is a local requirement, relating reads to writes that depend on them.
• (W𝑥 1) (R𝑥 1) is a reads-from requirement, relating writes to reads they fulfill.
• (W𝑥 0) (W𝑥 1) is a coherence requirement, relating actions that touch the same location.
• (Wra𝑧1) (✓) is a fencing requirement, involving fences and synchronization actions.

Each pomset event is labeled with a precondition, in addition to the actions shown above. Whereas
read actions represent an obligation that must be fulfilled concurrently by amatchingwrite (Def. 2.7),
preconditions represent an obligation that must be satisfied sequentially via substitution (Def. 2.6).

To get a sense of how preconditions are satisfied, let us consider the evolution of the precondition
of (W𝑥 1) during the calculation of (†). First consider the else-branch of the conditional: the
semantics of “if(¬𝑟){𝑥:= 1}” contains (𝑟=0 | W𝑥 1), indicating the control dependency. The then-
branch is more complex: the semantics of “if(𝑟){𝑥:= 𝑟}” contains (𝑟≠0 ∧ 𝑟=1 | W𝑥 1) indicating
both a control and a data dependency. This can be simplified to (𝑟=1 | W𝑥 1). Combining the
two branches of the conditional, we have (𝑟=0 ∨ 𝑟=1 | W𝑥 1). Prepending 𝑟:=𝑦 substitutes [𝑦/𝑟 ],
resulting in (𝑦=0 ∨ 𝑦=1 | W𝑥 1). Prepending the initializer 𝑦:= 0 substitutes [0/𝑦], resulting in
(0=0 ∨ 0=1 | W𝑥 1). This is a tautology, which we write as (W𝑥 1). We repeat this calculation in
§2.6, after giving the formal definitions.

The same calculation fails for the write to 𝑥 in oota1–oota4. In oota3, for example, the writes
to 𝑥 on either side of the conditional cannot be combined, since one side writes 1 and the other side
writes 2.Thus, the semantics of the conditional contains (𝑟=1 | W𝑥 1), rather than (𝑟=0∨𝑟=1 | W𝑥 1).
As we shall see (Def. 2.6), in oota3 it is only possible to weaken this precondition by introducing
order from (R𝑦1) to (W𝑥 1).

2.1 Data Models
A data model consists of:

• a set of values V , ranged over by 𝑣 and ℓ ,
• a set of registers R, ranged over by 𝑟 and 𝑠 ,
• a set of expressions M, ranged over by 𝑀 , 𝑁 , and 𝐿,
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• a set of memory locations X, ranged over by 𝑥 , 𝑦, 𝑧, and 𝑏
• a set of actions A, ranged over by 𝑎, and
• a set of logical formulae Φ, ranged over by 𝜙 and𝜓 .

Let 𝜎 range over substitutions of the form [𝑥/𝑟 ] or [𝑁 /𝑥].
We require that data models satisfy the following:

• values, registers, and memory locations are disjoint,
• values include at least the constants 0 and 1,
• expressions include at least registers and values,
• expressions do not include memory locations,
• formulae include at least equalities (𝑀 = 𝑣),
• formulae are closed under negation, conjunction, disjunction, and substitution,2 and
• there is a relation ⊨ between formulae, with the expected semantics.

For the actions of a data model, we require that there are partial functions Rd and Wr : A →
(X × V), and there are subsets of A: Acq, Rel, SC, and Term, such that dom(Rd) ∩ SC ⊆ Acq,
dom(Wr) ∩ SC ⊆ Rel, and Term ⊆ Rel.

• We say that action 𝑎 is a read if 𝑎 ∈ dom(Rd). We say that 𝑎 is a write if 𝑎 ∈ dom(Wr). When
Rd(𝑎) = (𝑥, 𝑣), we say that 𝑎 reads 𝑣 from 𝑥 , and similarly for writes. We say that 𝑎 accesses 𝑥 if
it reads or writes 𝑥 .

• Actions in Acq, Rel and SC, are synchronization and fencing actions. We say that 𝑎 is an acquire
if 𝑎 ∈ Acq, 𝑎 is a release if 𝑎 ∈ Rel, and 𝑎 is SC if 𝑎 ∈ SC. We require that every SC read is an
acquire, and every SC write is a release.

• Actions in Term are termination actions. We require that termination events are releasing.

Our example language includes actions of the form (✓), which is a termination, (R𝜇 [𝛼]𝑥𝑣),
which reads 𝑣 from 𝑥 and (W𝜇 [𝛼]𝑥𝑣), which writes 𝑣 to 𝑥 . The access mode (𝜇 ::= rlx | ra | sc) is
either relaxed, release-acquire, or sequentially-consistent. ra/sc reads are acquires, and ra/sc writes
are releases. We systematically elide the rlx-mode annotation, writing (R𝑥𝑣) as shorthand for
(Rrlx𝑥𝑣).

We do not explicitly include C11-style plain access. If oota executions are disallowed for C11
relaxed access, then C11 plain access is the same as relaxed access for data race free programs; data
races on plain access result in undefined behavior [Boehm 2007].

Logical formulae include equations over locations and registers, such (𝑥=1) and (𝑟=𝑠+1). We
use expressions as formulae, coercing 𝑀 to 𝑀 ≠ 0.

Formulae are open, in that occurrences of register names and memory locations are subject to
substitutions of the form 𝜙 [𝑥/𝑟 ] and 𝜙 [𝑁 /𝑥]. Actions are not subject to substitution.

Definition 2.1. We say 𝜙 is independent of 𝑥 if, for every 𝑣 , 𝜙 ⊨ 𝜙 [𝑣/𝑥] ⊨ 𝜙 ; it is dependent
otherwise. We say 𝜙 is location independent if it is independent of every location. We say 𝜙 implies
𝜓 if 𝜙 ⊨ 𝜓 . We say 𝜙 is a tautology if tt ⊨ 𝜙 . We say 𝜙 is unsatisfiable if 𝜙 ⊨ ff .

2.2 Semantic Domain
We model single executions as pomsets with preconditions—pomsets, for short—ranged over by 𝑃 .
These extend the well-known model of partially ordered multisets [Gischer 1988] with formulae.

2Since formulae are closed under substitutions of the form 𝜙 [𝑥/𝑟 ], they must include equalities of the form (M = 𝑣) where
M is an extended expression that includes memory locations. By composition, formulae must also be closed under that
substitutions of the form 𝜙 [𝑀/𝑟 ] = 𝜙 [𝑥/𝑟 ] [𝑀/𝑥 ].
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Thepomset order relation, ≤, represents causality or dependency. We visualize pomsets as directed
graphs. For example, the semantics of var𝑥; (𝑥:= 0;𝑥:= 1 || 𝑦:=𝑥; 𝑧ra:= 1) includes:

W𝑥 0 W𝑥 1 R𝑥 1 W𝑦1 Wra𝑧1 ✓

We visualize order using arrows that indicate the reason that the order arises. (W𝑥 0) (W𝑥 1) is
a coherence requirement: the write of 1 must follow the write of 0, since these are in conflict and
in program order. (W𝑥 1) (R𝑥 1) is a reads-from requirement: the read of 𝑥 must be fulfilled
by a matching write. (R𝑥 1) (W𝑦1) is a local dependency requirement: the write to 𝑦 is data
dependent on the read of 𝑥 ; control and address dependencies are also local. (W𝑦1) (Wra𝑧1) and
(Wra𝑧1) (✓) are fencing/synchronization requirements: (Wra𝑧1) and (✓) are release actions.

Definition 2.2. A pomset with preconditions is a tuple (𝐸, ≤, 𝜆), such that

• 𝐸 is a set of events,
• ≤ ⊆ (𝐸 × 𝐸) is a partial order,
• 𝜆 : 𝐸 → (Φ × A) is a labeling, from which we derive functions Φ : 𝐸 → Φ and A : 𝐸 →A,
• ⋀︁

𝑒 Φ(𝑒) is satisfiable (consistency), and
• if 𝑑 ≤ 𝑒 then Φ(𝑒) implies Φ(𝑑) (causal strengthening).

We write pairs in (Φ × A) as (𝜙 | 𝑎), eliding 𝜙 when it is a tautology. We write 𝑑 < 𝑒 when
𝑑 ≤ 𝑒 and 𝑑 ≠ 𝑒 . We often elide explicit universal quantifiers in phrases such as “for all 𝑑 and 𝑒 in 𝐸,
if 𝑑 ≤ 𝑒 then Φ(𝑒) implies Φ(𝑑).” We lift terminology and notation from actions and formulae to
events. For example, we may say that 𝑒 is a read when A(𝑒) is a read.

Since each pomset represents a single execution, we require that all preconditions be consistent.
For example, the semantics of if(𝑟 < 0){𝑦:= 1} else {𝑧:= 1} includes pomsets with either (𝑟 <

0 | W𝑦1) or (𝑟 ≥ 0 | W𝑧1), but not with both, since (𝑟 < 0 ∧ 𝑟 ≥ 0) is unsatisfiable.
Preconditions are linked to pomset order via causal strengthening, which requires that formulae

do not weaken over time, as measured by ≤. Example addr1 (§5) requires causal strengthening.
Let P range over sets of pomsets. The semantics of a program is given as a set of pomsets P

that is closed with respect to downsets (which are similar to prefixes for strings), to augmentation
(which may add order), and to implication (which may strengthen formulae).

Definition 2.3. 𝑃 ′ is a downset of 𝑃 if 𝐸 ⊇ 𝐸 ′ ⊇ {𝑑 ∈ 𝐸 | ∃𝑒 ∈ 𝐸 ′. 𝑑 ≤ 𝑒}, ≤′ = ≤|𝐸′ , and 𝜆′ = 𝜆 |𝐸′ .
We say that 𝑃 ′ is an augment of 𝑃 if 𝐸 ′ = 𝐸, 𝜆′ = 𝜆, and ≤′ ⊇ ≤.
We say that 𝑃 ′ implies 𝑃 if 𝐸 ′ = 𝐸, ≤′ = ≤, A ′ = A, and Φ′(𝑒) implies Φ(𝑒).

In examples, we draw pomsets that are augmentation-minimal and implication-minimal.
A pomset is completed if it contains a unique termination action, ordered after all other events.

Note that, by causal strengthening, the precondition of the termination event of a completed pomset
must imply the preconditions of all other events.

The semantics of a program includes only completed pomsets and their downsets. We systemati-
cally elide the termination event in diagrams, unless it is relevant to the discussion.

2.3 Example Language
We define the language by prefixing individual reads and writes.

𝐶, 𝐷 ::= skip | 𝑟:=𝑀;𝐶 | 𝑟:=𝑥𝜇;𝐶 | 𝑥𝜇:=𝑀;𝐶

| 𝐶 || 𝐷 | var𝑥;𝐶 | if(𝑀){𝐶} else {𝐷}

We use common syntax sugar, such as extended expressions, M, which include memory loca-
tions. For example, ifM includes a single occurrence of 𝑥 , then 𝑦:=M;𝐶 is shorthand for 𝑟:=𝑥;
𝑦:=M[𝑟/𝑥];𝐶 . Each occurrence of 𝑥 in an extended expression corresponds to an separate read.
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We write if(𝑀){𝐶} as shorthand for if(𝑀){𝐶} else {skip} and if(𝑀){𝐶1} else {𝐶2};𝐷
as shorthand for if(𝑀){𝐶1;𝐷} else {𝐶2;𝐷}.

The semantic function J−K takes a command and yields a set of pomsets.

2.4 Composition and Concurrency
Parallel composition is roughly pomset union, allowing that some events may coalesce, with the
resulting precondition being the disjunction of the precondition taken from the two sides. As in our
previous work [Disselkoen et al. 2019], composition is used to define concurrency and conditionals.
Here, we also use it to define address calculation (§5).

Definition 2.4. Let 𝑃 ′ ∈ (P1 ∥ P2) when there are 𝑃1 ∈ P1 and 𝑃2 ∈ P2 such that 𝑃1 is completed
exactly when 𝑃2 is completed, there is at most one termination in 𝐸 ′, 𝐸 ′ = 𝐸1 ∪ 𝐸2, ≤′ ⊇ ≤1 ∪ ≤2,
and for all 𝑒 ∈ 𝐸 ′, either:

𝑒 ∉ 𝐸2, A ′(𝑒) = A1 (𝑒) and Φ′(𝑒) implies Φ1 (𝑒),
𝑒 ∉ 𝐸1, A ′(𝑒) = A2 (𝑒) and Φ′(𝑒) implies Φ2 (𝑒), or

A ′(𝑒) = A1 (𝑒) = A2 (𝑒) and Φ′(𝑒) implies Φ1 (𝑒) ∨ Φ2 (𝑒).

We then define:

J𝐶 || 𝐷K △
= J𝐶K ∥ J𝐷K

Consider the following pomsets:
if(𝑟 < 0){𝑦:= 1}

𝑟 < 0 | W𝑦1

if(𝑟 ≥ 0){𝑦:= 1}

𝑟 ≥ 0 | W𝑦1

The parallel composition of these programs includes pomsets with either one of the two events, but
not both. Including both would violate consistency (Def. 2.2). However, Definition 2.4 allows events
with the same label to coalesce, taking the disjunction of their preconditions. Thus, the semantics of
the combined program also includes (𝑟 < 0 ∨ 𝑟 ≥ 0 | W𝑦1). As discussed in the next subsection,
coalesced events inherit order from both sides.

The definition requires that if 𝑃 ′ ∈ (𝑃1 ∥ 𝑃2) is completed, then both 𝑃1 and 𝑃2 are completed,
and further, the termination events must coalesce in 𝑃 ′.

2.5 Conditional, Register Assignment, and Skip
Conditional execution is defined using parallel composition and filtering: (𝜙 ▷P) selects the subset
of pomsets in P whose preconditions all imply 𝜙 . Register assignment is defined using substitution:
(P𝜎) performs the substitution 𝜎 on every formula in P—actions are not subject to substitution.
The semantics of skip is defined using singleton pomsets with label ✓ .

Definition 2.5. Let 𝑃 ∈ (𝜙 ▷ P) when 𝑃 ∈ P and Φ(𝑒) implies 𝜙 . Let 𝑃 ′ ∈ (P𝜎) when there is
𝑃 ∈ P such that 𝐸 ′ = 𝐸, ≤′ = ≤, A ′ = A, and Φ′(𝑒) = Φ(𝑒)𝜎 . Let 𝑃 ∈ SKIP when 𝐸 has one
element labelled with action ✓. We then define:

Jif(𝑀){𝐶} else {𝐷}K △
=
(︁
𝑀 ▷ J𝐶K

)︁
∥
(︁
¬𝑀 ▷ J𝐷K

)︁
J𝑟:=𝑀;𝐶K △

= J𝐶K[𝑀/𝑟 ] JskipK △
= SKIP

Substitution applies to formulae, not actions. For example, (𝑥=1 | W𝑥 2) [0/𝑥] = (0=1 | W𝑥 2).
As an example of the conditional, consider the following fragments:

if(𝑠){𝑥:= 1;𝑥:= 2}

𝑠 | W𝑥 1 𝑠 | W𝑥 2 𝑠 | ✓

if(¬𝑠){𝑥:= 1;𝑥:= 3}
¬𝑠 | W𝑥 1 ¬𝑠 | W𝑥 3 ¬𝑠 | ✓

(‡)
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Putting these together, we can coalesce the (W𝑥 1) events:

𝐶cond = if(𝑠){𝑥:= 1;𝑥:= 2} else {𝑥:= 1;𝑥:= 3}

W𝑥 1 𝑠 | W𝑥 2 𝑠 | ✓ W𝑥 1 ¬𝑠 | W𝑥 3 ¬𝑠 | ✓

Let us focus on the left pomset above. It is derived from the composition:

𝑠 | W𝑥 1 𝑠 | W𝑥 2 𝑠 | ✓ ∥ ¬𝑠 | W𝑥 1

The existence of the singleton (¬𝑠 | W𝑥 1) is guaranteed by downset closure on the right pomset in
(‡). Consistency prevents any pomset in J𝐶condK from containing both (W𝑥 2) and (W𝑥 3).

Note that the definitions of consistency, downset, and composition prevent the coalescing of
(W𝑦3) in Jif(𝑠){𝑦:= 1;𝑦:= 3} else {𝑦:= 2;𝑦:= 3}K.Any pomset that included (W𝑦3) would need
to contain both (𝑠 | W𝑦1) and (¬𝑠 | W𝑦2), which violates consistency.

2.6 Prefixing
Prefixing adds a new read or write event to the beginning of a pomset. The candidate definition
given here fails to validate some compiler optimizations. We give the final definition in §4.

Maintaining downset closure complicates the definition in uninteresting ways; therefore, we
perform this closure explicitly. Let ∇P = {𝑃 ′ | 𝑃 ′ is a downset of some 𝑃 ∈ P}.

Candidate 2.6. Let (𝜙 | 𝑎) ⇒ P be the set ∇P ′ where 𝑃 ′ ∈ P ′ when there is 𝑃 ∈ P such that
(p1) 𝐸 ′ = 𝐸 ∪ {𝑑}, (p2) ≤′ ⊇ ≤, (p3a) A ′(𝑒) = A(𝑒), (p3b) A ′(𝑑) = 𝑎,

(p4a) if 𝑑 ∈ 𝐸 then Φ′(𝑑) implies 𝜙 ∨ Φ(𝑑), otherwise Φ′(𝑑) implies 𝜙 ,
(p4b) if 𝑑 does not read then either 𝑒 = 𝑑 or Φ′(𝑒) implies Φ(𝑒),
(p4c) if 𝑑 reads 𝑣 from 𝑥 then either 𝑒 = 𝑑 or Φ′(𝑒) implies Φ(𝑒) [𝑣/𝑥],
(p5a) if 𝑑 reads and 𝑒 writes then either 𝑒 = 𝑑 or Φ′(𝑒) implies Φ(𝑒) or 𝑑 ≤′ 𝑒 ,
(p5b) if 𝑑 and 𝑒 are actions in conflict then 𝑑 ≤′ 𝑒 ,
(p5c) if 𝑑 is an acquire or 𝑒 is a release then 𝑑 ≤′ 𝑒 , and
(p5d) if 𝑑 is an SC write and 𝑒 is an SC read then 𝑑 ≤′ 𝑒 .

We then define:

J𝑟:=𝑥𝜇;𝐶K △
=
⋃︁

𝑣 (R𝜇𝑥𝑣) ⇒ J𝐶K[𝑥/𝑟 ]
J𝑥𝜇:=𝑀;𝐶K △

=
⋃︁

𝑣 (𝑀 = 𝑣 | W𝜇𝑥𝑣) ⇒ J𝐶K[𝑀/𝑥]

Themainwork happens in the definition of prefixing (⇒). p1 introduces a “new” event. Coalescing
is allowed, as it was for composition (§2.4): the new event 𝑑 may coalesce with an “old” one in 𝐸.
p2 ensures that no order is removed from old events. p3 specifies the actions labelling the events.
p4 specifies the preconditions (along with p5a). p5 specifies the preserved program order.

The semantics of read and write introduce a separate pomset for each possible value read
or written. The value is fixed in each pomset. For writes, the dependence on 𝑀 appears in the
precondition (𝑀 = 𝑣). This precondition must be satisfied using the substitutions in the semantic
rules and p4c. Whereas writes introduce a precondition that must be satisfied sequentially, reads
introduce a fulfillment requirement (§2.7) that must be satisfied concurrently.

The possibilities for fulfillment are limited by the program order that is preserved by p5. Re-
quirement p5a connects the sequential semantics of write to the concurrent semantics of read;
it requires order from read to write when the precondition of the write is weakened using p4c.
The other requirements in p5 are standard. p5b captures the extended coherence requirement on
sequential actions that touch the same location. p5c imposes the order required by acquire and
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release actions. p5d imposes the additional order required by SC actions. (Recall that SC reads are
acquires, and that SC writes and termination actions are releases.)

We explain the concurrent semantics in the next section using standard litmus tests. In this
subsection, we focus on the sequential semantics. Let us revisit (†):

𝑥:= 0;𝑦:= 0; (𝑦:=𝑥 || 𝑟:=𝑦; if(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1})
W𝑦0W𝑥 0 R𝑥 1 W𝑦1 R𝑦1 W𝑥 1 W𝑧1 ✓

(†)

It is immediate from the definition that J𝑥:= 𝑟; 𝑧:= 𝑟K contains pomset candidates such as:

𝑟=0 | W𝑥 0 𝑟=0 | W𝑧0 𝑟=1 | W𝑥 1 𝑟=1 | W𝑧1 𝑟=0 | W𝑥 0 𝑟=1 | W𝑧1

Consistency (Def. 2.2) rules out the rightmost pomset, since the conjunction of preconditions
is unsatisfiable. No order is required between the writes. Combining the middle pomset with
(𝑟=0 | W𝑥 1), the conditional Jif(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1}K contains:

𝑟=1 ∨ 𝑟=0 | W𝑥 1 𝑟=1 | W𝑧1

When prefixing “𝑟:=𝑦,” we first substitute [𝑦/𝑟 ], resulting in:

𝑦=1 ∨ 𝑦=0 | W𝑥 1 𝑦=1 | W𝑧1

Adding the read action, J𝑟:=𝑦; if(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1}K contains:

(𝑦=1 ∨ 𝑦=0) ∧ (1=1 ∨ 1=0) | W𝑥 1 (𝑦=1) ∧ (1=1) | W𝑧1R𝑦1

The second conjunct in each event is required by p4c. p4c also prevents inconsistent reads such as:

(𝑦=1 ∨ 𝑦=0) ∧ (2=1 ∨ 2=0) | W𝑥 1 (𝑦=1) ∧ (1=1) | W𝑧1R𝑦2

p4c also allows predicates to weaken, in which case p5a requires order:

(𝑦=1 ∨ 𝑦=0) ∧ (1=1 ∨ 1=0) | W𝑥 1 (1=1) ∧ (1=1) | W𝑧1R𝑦1

Adding the write, J𝑦:= 0; 𝑟:=𝑦; if(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1}K substitutes [0/𝑦], resulting in:

(0=1 ∨ 0=0) ∧ (1=1 ∨ 1=0) | W𝑥 1 (1=1) ∧ (1=1) | W𝑧1R𝑦10=0 | W𝑦0

Simplifying the tautologies, we have:

W𝑥 1 W𝑧1R𝑦1W𝑦0

As discussed in the introduction of §1, this reasoning fails in oota1–oota4.
For oota1, J𝑥:= 𝑟; 𝑧:= 𝑟K contains:

𝑟=1 | W𝑥 1 𝑟=1 | W𝑧1

It is only possible to satisfy the precondition (𝑟=1) using p4c when prefixing (R𝑦1). This forces a
dependency from read to write via p5a. oota2 is similar.

For oota3, Jif(𝑟){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 2}K contains:

𝑟=1 | W𝑥 1 𝑟=1 | W𝑧1 𝑟=2 ∨ 𝑟=0 | W𝑥 2 𝑟=2 | W𝑧2

Coalescing is possible when writing 2, as on the right above, but it is not possible when writing 1,
as on the left, since (W𝑥 1) and (W𝑥 2) are different actions. When writing 1, this is no different
than oota1, and thus p5a forces a dependency from the read of 𝑦 to the writes.

For oota4, Jif(𝑏){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1}K contains:(︁
(𝑟=1 ∧ 𝑏≠0) ∨ 𝑏=0

)︁
∧
(︁
(𝑟=1 ∧ 1≠0) ∨ 1=0

)︁
| W𝑥 1 (𝑟=1 ∧ 𝑏≠0) ∧ (𝑟=1 ∧ 1≠0) | W𝑧1R𝑏1
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In an execution that reads 𝑏=1, p5a again forces a dependency from the read of 𝑦 to the writes.

2.7 Fulfillment, Local Declarations, and Top-Level Pomsets
As in our previous work [Disselkoen et al. 2019], at the point that 𝑥 is bound, we require that every
read of 𝑥 be fulfilled. Fulfillment plays the role that reads-from (rf) and coherence (co) play in other
relaxed memory models. Unlike the acyclicity requirements involving rf and co in other models,
however, fulfillment is defined compositionally—see example blocker, below.

Definition 2.7. Two actions conflict if one writes a location and the other either reads or writes
the same location. We say 𝑑 fulfills 𝑒 (on 𝑥) if (f1) 𝑑 writes 𝑣 to 𝑥 , (f2) 𝑒 reads 𝑣 from 𝑥 , (f3) 𝑑 < 𝑒 ,
and (f4) for every conflicting write 𝑐 , either 𝑐 ≤ 𝑑 or 𝑒 ≤ 𝑐 .

f3 requires that a write 𝑑 is ordered before any read 𝑒 that it fulfills; this order is typically called
reads from. f4 requires that any conflicting write 𝑐 is ordered before 𝑑 or after 𝑒; this order is
typically called extended coherence. For readability, we draw the order required by f3 using bold
green arrows and the order required by f4 using dashed red arrows. As an example, consider:

𝑥:= 1 || 𝑥:= 2 || 𝑥:= 3 || 𝑥:= 4 || 𝑥:= 5 || 𝑟:=𝑥; 𝑟:=𝑥; 𝑟:=𝑥; 𝑟:=𝑥; 𝑟:=𝑥

W𝑥 1

R𝑥 1

R𝑥 1

W𝑥 2

R𝑥 2

R𝑥 2 W𝑥 3

W𝑥 4

W𝑥 5

R𝑥 5
(co1)

A write is relevant if it is read from. In order to fulfill all of the reads on 𝑥 in the example, we pick a
total order on the relevant writes: in this case, (W𝑥 1) ≤ (W𝑥 2) ≤ (W𝑥 5). The reads slot between
these, immediately after their fulfilling write. Reads are not necessarily ordered with respect to
each other, even if they come from the same thread, as do the reads here. Irrelevant writes also float
relative to each other, as do (W𝑥 3) and (W𝑥 4). But irrelevant writes must be ordered with respect
to relevant writes and reads. The resulting order is somewhat weaker than traditional extended
coherence (eco), which requires a total order on writes, regardless of whether they are relevant.
We discuss coherence further in §3.1.

In order to be 𝑥-closed, a pomset must be “done” with 𝑥 , in both the concurrent and the sequential
semantics.The concurrent semantics requires that all reads of 𝑥 be fulfilled.The sequential semantics
requires that all formulae be independent of 𝑥 (Def. 2.1): ∀𝑣 . 𝜙 ⊨ 𝜙 [𝑣/𝑥] ⊨ 𝜙 .

Definition 2.8. Apomset is 𝑥-closed if every read on 𝑥 is fulfilled, and every formula is independent
of 𝑥 . Let 𝑃 ∈ (𝜈𝑥 .P) when 𝑃 ∈ P and 𝑃 is 𝑥-closed. We define:

Jvar𝑥;𝐶K △
= 𝜈𝑥 . J𝐶K

A pomset is top-level if it is 𝑥-closed for every location 𝑥 .

Together with f4, the definition of 𝑥-closed disallows the following execution:

var𝑥; (𝑥:= 1;𝑦ra
1 := 1 || if(𝑧1){𝑥:= 2};𝑦ra

2 := 1 || 𝑟:= 𝑧ra
2 ; 𝑠:=𝑥)

W𝑥 1 Wra𝑦11 R𝑧11 W𝑥 2 Wra𝑦21 Rra𝑧21 R𝑥 1
(blocker)

In order to close 𝑥 , we must choose whether (W𝑥 2) is preceding (W𝑥 2 W𝑥 1) or following
(R𝑥 1 W𝑥 2). This prevents (W𝑥 2) from blocking the read after parallel composition. For
example, if blocker were placed in the context 𝑧1:=𝑦1 || 𝑧2:=𝑦2 || [–], we would have:

W𝑥 1 Wra𝑦11 R𝑦11 W𝑧11 R𝑧11 W𝑥 2 Wra𝑦21 R𝑦21 W𝑧21 Rra𝑧21 R𝑥 1
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This violates the conventional, weaker statement of f4: there is no conflicting write 𝑐 such that
𝑑 < 𝑐 < 𝑒 . By requiring order on (W𝑥 2) we forbid this blocker and validate scope extrusion (§3.2).

3 PROPERTIES OF THE BASIC MODEL
It is amazing how much the semantics of §2 “gets right” out of the box, including value range
analysis, internal reads, and SC access, all of which can be complex in other models. In this section,
we walk through several litmus tests, valid rewrites and invalid rewrites. The examples show that
p5a–p5d and f3–f4 are understandable as general principles. The interaction of these principles is
limited to a single, global, pomset order. We discuss tweaks to the semantics in §4.

3.1 Litmus Tests
Pugh [2004] developed a set of litmus tests for the java memory model. Our model gives the
expected result for all but cases 16, 19 and 20 (unrolling loops): we discuss tc16 below; tc19 and
tc20 involve a thread join operation, which is not expressible in our language. Our model also
agrees with the oota examples of Batty et al. [2015, §4] and the “surprising and controversial
behaviors” of Manson et al. [2005, §8].

Buffering. Consider the store buffering and load buffering litmus tests:

𝑥:= 0;𝑦:= 0; (𝑥:= 1; 𝑟:=𝑦 || 𝑦:= 1; 𝑟:=𝑥 )
W𝑥 0 W𝑦0 W𝑥 1 R𝑦0 W𝑦1 R𝑥 0

𝑟:=𝑦;𝑥:= 1 || 𝑟:=𝑥;𝑦:= 1
R𝑦1 W𝑥 1 R𝑥 1 W𝑦1 (sb/lb)

Because there are no intra-thread dependencies, the desired outcomes are allowed, as shown.

Publication. f3–f4 and p5b–p5c ensure correct publication, prohibiting stale reads:

𝑥:= 0;𝑥:= 1;𝑦ra:= 1 || 𝑟:=𝑦ra; 𝑠:=𝑥

W𝑥 0 W𝑥 1 Wra𝑦1 Rra𝑦1 R𝑥 0
(pub1)

This pomset is disallowed, since (R𝑥 0) fails to satisfy f4: (W𝑥 0) < (W𝑥 1) < (R𝑥 0). Attempting
to satisfy this requirement, one might order (R𝑥 0) before (W𝑥 1), but this would create a cycle.

Coherence. Our model of coherence does not correspond to either Java or C11. We have chosen
the model to validate cse (unlike C11 relaxed atomics) and the local drf-sc theorem (unlike Java).

Since reads are not ordered by p5b, we allow the following unintuitive behavior. C11 includes
read-read coherence between relaxed atomics in order to forbid this:

𝑥:= 1;𝑥:= 2 || 𝑦:=𝑥; 𝑧:=𝑥
W𝑥 1 W𝑥 2 R𝑥 2 W𝑦2 R𝑥 1 W𝑧1

(co2)

Here, the reader sees 2 then 1, although they are written in the reverse order. This behavior is
allowed by Java in order to validate cse without requiring aliasing analysis.

However, our model is more coherent than Java, which permits the following:

𝑟:=𝑥;𝑥:= 1 || 𝑠:=𝑥;𝑥:= 2
R𝑥 2 W𝑥 1 R𝑥 1 W𝑥 2 (tc16)

We also forbid the following, which Java allows:

𝑥:= 1;𝑦ra:= 1 || 𝑥:= 2; 𝑧ra:= 1 || 𝑟:= 𝑧ra; 𝑟:=𝑦ra; 𝑟:=𝑥; 𝑟:=𝑥

W𝑥 1 Wra𝑦1 W𝑥 2 Wra 𝑧1 Rra 𝑧1 Rra𝑦1 R𝑥 2 R𝑥 1
(co3)
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The order from (R𝑥 1) to (W𝑥 2) is required to fulfill (R𝑥 1). The outcome is disallowed due to
the cycle. If this outcome were allowed, then racing writes would be visible, even after a full
synchronization; this would invalidate local reasoning about data races (§8).

MCA. We present a few examples that are hallmarks of mca architectures.
if(𝑧){𝑥:= 0};𝑥:= 1 || if(𝑥){𝑦:= 0};𝑦:= 1 || if(𝑦){𝑧:= 0}; 𝑧:= 1

R𝑧1 W𝑥 0 W𝑥 1 R𝑥 1 W𝑦0 W𝑦1 R𝑦1 W𝑧0 W𝑧1
(mca1)

𝑥:= 0;𝑥:= 1 || 𝑦:=𝑥 || 𝑟:=𝑦ra; 𝑠:=𝑥

W𝑥 0 W𝑥 1 R𝑥 1 W𝑦1 Rra𝑦1 R𝑥 0
(mca2)

These candidate executions are invalid, due to cycles. mca1 is an example of write subsumption
[Pulte et al. 2018, §3]. In mca2, (W𝑥 1) is delivered to the second thread, but not the third; this is
similar to the well know iriw (Independent Reads of Independent Writes) litmus test, which is also
disallowed by mca architectures if the reads within each thread are ordered.

If 𝑦ra is changed to 𝑦rlx in mca2, then there would be no order from (Rrlx𝑦1) to (R𝑥 0), and the
execution would be allowed. Since read-read dependencies do not appear in pomset order, the
execution would still be allowed if a control or address dependency were to be introduced between
the reads. See example addr2 (§10) for further discussion.

Internal Reads and Value Range Analysis. The JMM causality test cases [Pugh 2004] are justified
via compiler analysis, possibly in collusion with the scheduler: If every observed value can be
shown to satisfy a precondition, then the precondition can be dropped. For example, tc1 determines
that the following execution should be allowed, as it is in our model:

𝑥:= 0; (𝑟:=𝑥; if(𝑟 ≥ 0){𝑦:= 1} || 𝑥:=𝑦)

W𝑥 0 R𝑥 1 0 ≥ 0 | W𝑦1 R𝑦1 W𝑥 1
(tc1)

In this example, (W𝑥 0) “fulfills” the read of 𝑥 that is used in the guard of the conditional. This is
possible when prefixing (R𝑥 1) performs the substitution [𝑥/𝑟 ], but does not weaken the resulting
precondition (𝑥 ≥ 0 | W𝑦1). Subsequently prefixing (W𝑥 0) substitutes [0/𝑥], resulting in the
tautological precondition (0 ≥ 0 | W𝑦1). Note that the execution does not have an action (R𝑥 0).

Our semantics is robust with respect to the introduction of concurrent writes, as in tc9:
𝑥:= 0; (𝑟:=𝑥; if(𝑟 ≥ 0){𝑦:= 1} || 𝑥:=𝑦 || 𝑥:= − 2)

W𝑥 0 R𝑥 1 0 ≥ 0 | W𝑦1 R𝑦1 W𝑥 1 W𝑥−2 (tc9)

The calculation of this pomset is unchanged from tc1.
Examples such as tc9 present substantial difficulties in other models. When thought of in terms

of compiler optimizations, tc9 is justified by global value analysis in collusion with the thread
scheduler. This execution is disallowed by our event structure model [Jeffrey and Riely 2016]. It is
allowed by Pichon-Pharabod and Sewell [2016], at the cost of introducing dead reads.

The reasoning for tc2 is similar, but in this case no value is necessary to satisfy the precondition:
𝑟:=𝑥; 𝑠:=𝑥; if(𝑟=𝑠){𝑦:= 1} || 𝑥:=𝑦

R𝑥 1 R𝑥 1 (𝑥=𝑥) ∧ (1=1) | W𝑦1 R𝑦1 W𝑥 1
(tc2)

Note that in J𝑠:=𝑥; if(𝑟=𝑠){𝑦:= 1}K, the precondition on (W𝑦1) must imply (𝑟=𝑥 ∧ 𝑟=1). The
first is imposed by p5a, the second by p4c, ensuring that the two reads see the same value.
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Using arm8 terminology, these executions involve internal reads, which are fulfilled by a se-
quentially preceding write. Read actions always generate an event that must be fulfilled, and
therefore cannot be ignored, even if they are unused. This fact prevents internal reads from ignoring
concurrent blocking writes.

𝑥:= 1;𝑎ra:= 1; if(𝑧ra){𝑦:=𝑥} || if(𝑎ra){𝑥:= 2; 𝑧ra:= 1}

W𝑥 1 Wra𝑎1

Rra𝑎1 W𝑥 2 Wra𝑧1

Rra𝑏1 R𝑥 1 1=1 | W𝑦1 (internal1)

Here (R𝑥 1) violates f4.The precondition (1=1) is imposed by p4c.The pomset becomes inconsistent
if we change (R𝑥 1) to (R𝑥 2), since the precondition would change to (2=1).

Internal reads are notoriously difficult to get right. Consider [Podkopaev et al. 2019, Ex 3.6]:

𝑟:=𝑥;𝑦ra:= 1; 𝑠:=𝑦; 𝑧:= 𝑠 || 𝑥:= 𝑧

R𝑥 1 Wra𝑦1 R𝑦1 1=1 | W𝑧1 R𝑧1 W𝑥 1
(internal2)

This behavior is allowed in our model, as it is in arm8. Note that J𝑧:= 𝑠K includes (𝑠=1 | W𝑧1).
Prepending a read, J𝑠:=𝑦; 𝑧:= 𝑠K may update the precondition to (𝑦=1 | W𝑧1) without introducing
order. Further prepending (Wra𝑦1) results in (1=1 | W𝑧1).

Our model drops order into actions that depend on a read that can be fulfilled internally, by a
prefixed write. This is natural consequence of substitution. The arm8 model has to jump through
some hoops to ensure that internal reads are handled correctly. arm8 takes the symmetric approach:
rather than dropping order out of an internal read, arm8 drops the order into it. This difference
complicates the proof of correctness for implementing our semantics on arm8 (§7).

SC access. p5d ensures that program order between SC operations is always preserved. Combined
with f3–f4, this is sufficient to establish that programs with only SC access have only SC executions;
for example, the executions of sb/lb are banned when the all actions are sc. It is also immediate
that SC actions can be totally ordered, using any linearization of pomset order. Just as SC access in
arm8 is simplified by mca, it is simplified here by the global pomset order.

SC access is not as strict as volatile access in Java. For example, our model allows the following,
since there is no order from (Wsc𝑥 2) to (W𝑦1)—recall that SC writes are releases.

𝑟:=𝑦;𝑥 sc:= 1; 𝑠:=𝑥 || 𝑥 sc:= 2;𝑦:= 1

R𝑦1 Wsc𝑥 1 R𝑥 2 Wsc𝑥 2 W𝑦1 (sc1)

This execution is disallowed by Dolan et al. [2018, §8.2], preventing them from using stlr to
implement volatile writes on arm8. Our implementation strategy does use stlr for SC writes, as is
standard. For further discussion, see examples past and future in §8.

Watt et al. [2020, §3.1] noticed a similar difficulty in Javascript [ECMA International 2019, §27]:

𝑥 sc:= 1; 𝑟:=𝑦sc || 𝑦sc:= 1;𝑦sc:= 2;𝑥:= 2; 𝑠:=𝑥 sc

Wsc𝑥 1 Rsc𝑦1 Wsc𝑦1 Wsc𝑦2 W𝑥 2 Rsc𝑥 1
(sc2)

This execution is allowed both by our semantics and by arm8 (using stlr for SC writes and ldar
for SC reads). However, it is not allowed by Javascript 2019. In Javascript, the rules relating SC
and relaxed access are subtle. As result of these interactions, Javascript 2019 fails to satisfy drf-sc
[Watt et al. 2019]. The rules are even more complex in C11; see sc3 and sc4 in §5 for a discussion
of SC fences in C11. In our model, only p5d is required to explain SC access.

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 194. Publication date: November 2020.



Pomsets with Preconditions: A Simple Model of Relaxed Memory 194:15

3.2 Valid and Invalid Rewrites
When J𝐶K ⊇ J𝐶 ′K, we say that 𝐶 ′ is a valid transformation of 𝐶 . In this subsection, we show the
validity of specific optimizations. Let id(𝐶) be the set of locations and registers that occur in 𝐶 .

The semantics validates many peephole optimizations. Most apply only to relaxed access.

J𝑟:=𝑥; 𝑠:=𝑦;𝐶K = J𝑠:=𝑦; 𝑟:=𝑥;𝐶K if 𝑟 ≠ 𝑠 (rr)
J𝑥:=𝑀;𝑦:=𝑁;𝐶K = J𝑦:=𝑁;𝑥:=𝑀;𝐶K if 𝑥 ≠ 𝑦 (ww)
J𝑥:=𝑀; 𝑠:=𝑦;𝐶K = J𝑠:=𝑦;𝑥:=𝑀;𝐶K if 𝑥 ≠ 𝑦 and 𝑠 ∉ id(𝑀) (rw)

p5 imposes no order between events in rr–rw. Using augmentation closure, p5 also validates
roach-motel reorderings [Sevčík 2008]. For example, on read/write pairs:

J𝑥𝜇:=𝑀; 𝑠:=𝑦;𝐶K ⊇ J𝑠:=𝑦;𝑥𝜇:=𝑀;𝐶K if 𝑥 ≠ 𝑦 and 𝑠 ∉ id(𝑀) (roach1)
J𝑥:=𝑀; 𝑠:=𝑦𝜇;𝐶K ⊇ J𝑠:=𝑦𝜇;𝑥:=𝑀;𝐶K if 𝑥 ≠ 𝑦 and 𝑠 ∉ id(𝑀) (roach2)

Redundant load elimination (rl) follows from p1, taking 𝑑 ∈ 𝐸, regardless of the access mode:

J𝑟:=𝑥𝜇; 𝑠:=𝑥𝜇;𝐶K ⊇ J𝑟:=𝑥𝜇; 𝑠:= 𝑟;𝐶K (rl)

Since p5b does not impose order between reads of the same location, rr can allow the possibility
that 𝑥 = 𝑦. As a result, read optimizations are not limited by the power of aliasing analysis. By
composing rr and rl, we validate cse:

J𝑟1:=𝑥; 𝑠:=𝑦; 𝑟2:=𝑥;𝐶K ⊇ J𝑟1:=𝑥; 𝑟2:= 𝑟1; 𝑠:=𝑦;𝐶K if 𝑟2 ≠ 𝑠 (cse)

Many laws hold for the conditional, such as dead code elimination (dc) and code lifting (cl):

Jif(𝑀){𝐶} else {𝐷}K = J𝐶K if 𝑀 is a tautology (dc)
Jif(𝑀){𝐶} else {𝐶}K ⊇ J𝐶K (cl)

Code lifting also applies to program fragments inside a conditional. For example:

Jif(𝑀){𝑥:=𝑁;𝐶} else {𝑥:=𝑁;𝐷}K ⊇ J𝑥:=𝑁; if(𝑀){𝐶} else {𝐷}K

We discuss the inverse of cl in §4.
As expected, parallel composition commutes with conditionals and declarations, and conditionals

and declarations commute with each other. For example, we have scope extrusion [Milner 1999]:

J𝐶 || var𝑥;𝐷K = Jvar𝑥; (𝐶 || 𝐷)K if 𝑥 ∉ id(𝐶) (se)

Invalid Rewrites. The definition of location binding does not validate renaming of locations: if
𝑥 ≠ 𝑦 then Jvar𝑦;𝐶K ≠ Jvar𝑥;𝐶 [𝑥/𝑦]K, even if 𝐶 does not mention 𝑥 . This is consistent with
support for address calculation, which is required by realistic memory allocators.

internal2 shows that—like most relaxed models—our model fails to validate thread inlining. The
given execution is impossible if the first thread is split, as in J𝑟:=𝑥;𝑦ra:= 1 || 𝑠:=𝑦; 𝑧:= 𝑠 || 𝑥:= 𝑧K.
The write in the first thread cannot discharge the precondition in the second, now separate.

Some rewrites are invalid in a concurrent setting, such as relevant read introduction:

J𝑟:=𝑥; if(𝑟≠𝑟){𝑦:= 1}K ⊉ J𝑟:=𝑥; 𝑠:=𝑥; if(𝑟≠𝑠){𝑦:= 1}K

Observationally, these are distinguished by the context [–] || 𝑥:= 1 || 𝑥:= 2.
Write introduction is also invalid, even when duplicating an existing write:

J𝑥:= 1K ⊉ J𝑥:= 1;𝑥:= 1K

These are distinguished by the context: [–] || 𝑟:=𝑥;𝑥:= 2; 𝑠:=𝑥; if(𝑟=𝑠){𝑧:= 1}.
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4 CASE ANALYSIS, ACCESS ELIMINATION AND READ INTRODUCTION
The previous section shows the simplicity and beauty of pomsets with preconditions as a model of
relaxed memory. In this section we look at some of the complications and ugliness.

We consider the following optimizations on relaxed access: case analysis (ca), dead store elimi-
nation (ds), store forwarding (sf), read elimination (re), and irrelevant read introduction (ri). We
do not attempt to validate rewrites that eliminate ra/sc accesses, beyond those already given.

Definition 4.1. Extend the definition of prefixing (Cand. 2.6) to require:

(p6) if 𝑑 is a release, 𝑒1 is an acquire, 𝑒1 ≤ 𝑒2, then Φ(𝑒2) is location independent.

Let 𝑃 ∈ (cover𝑥P) when 𝑃 ∈ P and for every release 𝑒 ∈ 𝐸, there is some 𝑑 ∈ 𝐸 that writes 𝑥
such that 𝑑 ≤ 𝑒 .

Let 𝑃 ′ ∈ (weakenR𝑥𝑣P) when there is 𝑃 ∈ P such that 𝐸 ′ = 𝐸, ≤′ = ≤, A ′ = A, and either Φ′(𝑒)
implies Φ(𝑒) or 𝑒 is ≤-minimal3 and A(𝑒) = R𝑥𝑣 .

J𝑟:=𝑥 rlx;𝐶K △
= J𝐶K[𝑥/𝑟 ] ∪⋃︁

𝑣 (Rrlx𝑥𝑣) ⇒ weakenR𝑥𝑣 J𝐶K[𝑥/𝑟 ]
J𝑥 rlx:=𝑀;𝐶K △

= cover𝑥J𝐶K[𝑀/𝑥] ∪⋃︁
𝑣 (𝑀 = 𝑣 | Wrlx𝑥𝑣) ⇒ J𝐶K[𝑀/𝑥]

J𝑟:=𝑥𝜇;𝐶K
J𝑥𝜇:=𝑀;𝐶K

△
=
⋃︁

𝑣 (R𝜇𝑥𝑣) ⇒ J𝐶K[𝑥/𝑟 ] if 𝜇 ≠ rlx
△
=
⋃︁

𝑣 (𝑀 = 𝑣 | W𝜇𝑥𝑣) ⇒ J𝐶K[𝑀/𝑥] if 𝜇 ≠ rlx

There are four changes in the definition: To validate read elimination, we include J𝐶K[𝑥/𝑟 ]. To
ensure that read elimination does not allow stale reads, we require p6. To validate write elimination,
we include cover𝑥J𝐶K[𝑀/𝑥]. To validate case analysis, we apply weakenR𝑥𝑣 before prefixing a read.

We close this section with a read-enriched semantics that validates irrelevant read introduction.

Read Elimination and Store Forwarding. In our work on microarchitecture [Disselkoen et al. 2019],
read actions could be observed using cache effects. Candidate 2.6 maintains this perspective—for
example, it distinguishes J𝑟:=𝑥K and JskipK even though there is no context in the language of this
paper that can distinguish these programs. If one accepts that these programs should be equated at
an architectural level, then one would expect the semantics to validate read elimination (re) and
store forwarding (sf).

J𝑟:=𝑥;𝐶K ⊇ J𝐶K if 𝑟 ∉ id(𝐶) (re)
J𝑥𝜇:=𝑀; 𝑟:=𝑥;𝐶K ⊇ J𝑥𝜇:=𝑀; 𝑟:=𝑀;𝐶K (sf)

These optimizations are validated by Definition 4.1, since J𝑟:=𝑥;𝐶K ⊇ J𝐶K[𝑥/𝑟 ]. The proof of sf
also appeals to the definition of write and the definition of register assignment.

Let us revisit the internal read examples from §3.1. With read elimination, the read action (R𝑦1)
can be elided in internal2; regardless, the substitution into the write of 𝑧 is the same. On a more
troubling note, the read action (R𝑥 1) can be also elided in internal1, potentially converting
this non-execution into a valid execution, violating drf-sc. The addition of p6 to the definition of
prefixing prevents this outcome. When computing J𝑥:= 1;𝑎ra:= 1; if(𝑏ra){𝑦:=𝑥}K, p6 prevents
prefixing (Wra𝑎1) in front of:

Rra𝑏1 R𝑥 1 𝑥 = 1 | W𝑦1

In order to satisfy p6, the precondition of (W𝑦1) must be location independent.

3𝑒 is ≤-minimal if there is no 𝑑 such that 𝑑 ≤ 𝑒 .

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 194. Publication date: November 2020.



Pomsets with Preconditions: A Simple Model of Relaxed Memory 194:17

Dead Store Elimination. Dead store elimination (ds) is symmetric to redundant load elimination.

J𝑥:=𝑀;𝑥:=𝑁;𝐶K ⊇ J𝑥:=𝑁;𝐶K (ds)

The rewrite is less general than re because general store elimination is unsound. For example,
“𝑥:= 0” and “𝑥:= 0;𝑥:= 1” can be distinguished by the context “[–] || 𝑧:=𝑥”.

Using cover𝑥 , ds is validated by Definition 4.1. A write may only be removed if it is covered by a
following write. This restriction is sufficient to prevent bad executions such as:

𝑥:= 1;𝑥:= 2;𝑦ra:= 1 || 𝑟:=𝑦ra; 𝑠:=𝑥

W𝑥 1 W𝑥 2 Wra𝑦1 Rra𝑦1 R𝑥 1

In this diagram, we have included a “non-event”—dashed border—to mark the eliminated write. In
general, there may need to be many following writes, one for each subsequent release.

Case Analysis. Definition 4.1 satisfies disjunction closure.

Definition 4.2. We say that 𝑃 is a disjunct of 𝑃 ′ and its downset 𝑃 ′′ when 𝐸 = 𝐸 ′ ⊇ 𝐸 ′′, ≤ = ≤′ ⊇ ≤′′,
A = A ′ ⊇ A ′′, Φ(𝑒) implies Φ′(𝑒) ∨ Φ′′(𝑒) if 𝑒 ∈ 𝐸 ′′, and Φ(𝑒) implies Φ′(𝑒) otherwise.

We say that P is disjunction closed if 𝑃 ∈ P whenever there are {𝑃 ′, 𝑃 ′′} ⊆ P such that 𝑃 is a
disjunct of 𝑃 ′ and downset 𝑃 ′′.

Disjunction closure is sufficient to establish case analysis (ca):

J𝐶K ⊇ Jif(𝑀){𝐶} else {𝐶}K (ca)

The definition disjunction closure requires that 𝑃 ′′ is a downset of 𝑃 ′, whereas the definition of
disjunction makes no such requirement. This requirement is implied by causal strengthening: once
you take an event that has been chosen from one side of the conditional—of the form𝑀 ∧ . . .—then
all subsequent events must satisfy 𝑀 .

Candidate 2.6 is not disjunction closed. For example, consider the two sides of the composition
defined by the conditional, where 𝐶R = 𝑟:=𝑥; if(𝑀){𝑠:=𝑥}.

if(𝑁){𝐶R}

𝑁 | R𝑥 0𝑑 : 𝑁 ∧𝑀 | R𝑥 0𝑒 :

if(¬𝑁){𝐶R}

¬𝑁 | R𝑥 0𝑒 : ¬𝑁 ∧𝑀 | R𝑥 0𝑑 :

Because the reads are unordered, they can be confused when coalescing, resulting in:

if(𝑁){𝐶R} else {𝐶R}

𝑁 ∨ (¬𝑁 ∧𝑀) | R𝑥 0𝑑 : (𝑁 ∧𝑀) ∨ ¬𝑁 | R𝑥 0𝑒 :

which is:

𝑁 ∨𝑀 | R𝑥 0𝑑 : ¬𝑁 ∨𝑀 | R𝑥 0𝑒 :

But this pomset does not occur in J𝐶RK. Our solution is to weaken the preconditions on reads using
weakenR𝑥𝑣 so that both J𝐶RK and Jif(𝑁){𝐶R} else {𝐶R}K include:

R𝑥 0𝑑 : R𝑥 0𝑒 :

Note that the precondition on the reads are weaker than one would expect. This is not a problem for
reads, since they must also be fulfilled—allowing more reads increases the obligations of fulfillment.
The same solution would not work for writes—as we discussed at the end of §3, allowing more
writes is simply unsound. Fortunately, this problem does not occur when prefixing a write in front
of another write, due to the order required by p5b.
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If p5b is strengthened to include read-read coherence, then disjunction closure holds without
weakenR𝑥𝑣 . In this case, however, cse fails. This compromise may be reasonable for C11 atomics,
which are meant to be used sparingly. It is less attractive for safe languages, like Java.

Irrelevant Read Introduction. A compiler may introduce reads in order to lift code. Consider the
following example [Sevčík 2008, §1.4.5]:

Jif(𝑟){𝑠:=𝑥;𝑦:= 𝑠}K ⊉ J𝑠:=𝑥; if(𝑟){𝑦:= 𝑠}K

The right-hand program is derived from the left by introducing an irrelevant read in the else-branch,
then moving the common code out of the conditional. Definition 4.1 does not validate this rewrite.

Read introduction is only valid “modulo irrelevant reads.” We capture this idea using read
saturation. Read saturation allows us to add actions of the form (R𝑥𝑣) to the left-hand side,
validating the inclusion.

Let 𝑃 ′ ∈ read(P) when ∃𝑃 ∈ P and ∃𝐷 such that 𝐸 ′ = 𝐸⊎𝐷 , ≤′ ⊇ ≤, 𝜆′ ⊇ 𝜆, and∀𝑑 ∈ 𝐷. ∃𝑥 . ∃𝑣 .
A ′(𝑑) = (R𝑥𝑣). Note that if P ⊇ P ′, then read(P) ⊇ read(P ′).

Read introduction (ri) is valid under the saturated semantics.

readJ𝐶K ⊇ readJ𝑟:=𝑥;𝐶K if 𝑟 ∉ id(𝐶) (ri)

With ri, the model satisfies all of the transformations of Sevčík [2008, §5.3-4] except redundant
write after read elimination (see §10) and reordering with external actions, which we do not model.

5 FENCES, READ-MODIFY-WRITE, AND ADDRESS CALCULATION
We extend the model to include additional features: fences, read-modify-write actions (rmws), and
address calculation. The proofs given later in the paper extend to include these features.

Fences. Syntactic fences “F𝜈;𝐶” have corresponding actions: (F𝜈 ). The syntactic fence mode
(𝜈 ::= rel | acq | sc) is either release, acquire, or sequentially-consistent.

(Frel) is a release. (Facq) is an acquire. (Fsc) is both a release and an acquire.

JF𝜈;𝐶K △
= (F𝜈 ) ⇒ J𝐶K

With no further changes, syntactic fences would impose exactly the same order as synchronization
actions. This is sufficient to simulate sc accesses, since sc fences are very strong. However, it is
insufficient to simulate ra accesses. Thus we add the following requirements to Definition 2.6:

(p5e) if 𝑑 reads, and 𝑒 is an acquiring fence, then 𝑑 ≤′ 𝑒 , and
(p5f) if 𝑑 is a releasing fence, and 𝑒 writes, then 𝑑 ≤′ 𝑒 .

Consider the following variant of pub1:

𝑥:= 0;𝑥:= 1; Frel;𝑦:= 1 || 𝑟:=𝑦; Facq; 𝑠:=𝑥
W𝑥 0 W𝑥 1 Frel W𝑦1 R𝑦1 Facq R𝑥 0

(pub2)

p5f requires that (Frel) ≤ (W𝑦1). p5e requires that (R𝑦1) ≤ (Facq). The other order involving
fences is required by p5c. The attempted execution is invalid : the stale read (R𝑥 0) violates f4.

As for rl, redundant fence elimination (rf) follows from p1, regardless of the access mode.

JF𝜈; F𝜈;𝐶K ⊇ JF𝜈;𝐶K (rf)
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Our semantics does not suffer from overly weak fencing (sc3) or a lack of fence cumulativity
(sc4). The following examples, from Lahav et al. [2017, Figs. 5 and 6], are allowed by both the
original C11 and the model of Batty et al. [2016]. We omit 0-initialization in these examples:

𝑥:= 1 || 𝑟:=𝑥; Fsc; 𝑟:=𝑦 || 𝑦:= 1; Fsc; 𝑟:=𝑥

W𝑥 1 R𝑥 1 Fsc R𝑦0 W𝑦1 Fsc R𝑥 0 (sc3)

𝑥:= 1; 𝑧ra:= 1; || 𝑟 ra:= 𝑧; Fsc; 𝑟:=𝑦 || 𝑦:= 1; Fsc; 𝑟:=𝑥

W𝑥 1 Wra𝑧1 Rra𝑧1 Fsc R𝑦0 W𝑦1 Fsc R𝑥 0 (sc4)

The executions are disallowed, due to the evident cycles. While these results are immediate in our
model, it is worth noting that they are anything but immediate in the various models of C11.

Read-Modify-Write. We discuss rmw operations that work on a single location in memory, such
as fetch-and-add (FADD) and compare-and-swap (CAS). These operations can be modeled using
read/write actions or using an additional relation between events. The second approach is more
general and less obvious, therefore we explain it here.

In Definition 2.2, we require that a (memory model) pomset be a tuple (𝐸, ≤, 𝜆, rmw), where
rmw ⊆ ≤ relates the two events of a successful rmw. Additionally, we require that:

• If 𝑐 , 𝑒 write the same 𝑥 , 𝑐 ≤ 𝑒 and 𝑑 rmw 𝑒 then 𝑐 ≤ 𝑑 .
• If 𝑐 , 𝑒 write the same 𝑥 , 𝑑 ≤ 𝑐 and 𝑑 rmw 𝑒 then 𝑒 ≤ 𝑐 .

The constituent events of an rmw may coalesce with other events and other rmws, but we
prevent coalescing of separate rmws in the semantics of || and prefixing. We elide the obvious and
tedious semantic rules that generate rmw.

This definition ensures atomicity, disallowing executions such as [Podkopaev et al. 2019, Ex. 3.2]:

𝑥:= 0; 𝑠:= FADDrlx,rlx (𝑥, 1) || 𝑥:= 2; 𝑠:=𝑥
R𝑥 0W𝑥 0 W𝑥 2 W𝑥 1 R𝑥 1

rmw

(rmw1)

By using two actions rather than one, the definition allows examples such as the following,
which is allowed by arm8 [Podkopaev et al. 2019, Ex. 3.10]:

𝑟:=𝑦; 𝑧:= 𝑟 || 𝑟:= 𝑧;𝑥:= 0; 𝑠:= FADDrlx,ra (𝑥, 1);𝑦:= 𝑠+1

R𝑦1 W𝑧1 R𝑧1 W𝑥 0 R𝑥 0 Wra𝑥 1
rmw W𝑦1

(rmw2)

Address Calculation. In the definition of a data model, we require that locations have the form
𝑥 ::= [ℓ], where ℓ is a value. Expressions may include neither memory locations nor the operator
[𝐿]𝜇 . In our example language, we update the syntax of commands:

𝐶 ::= · · · | 𝑟:= [𝐿]𝜇;𝐶 | [𝐿]𝜇:=𝑀;𝐶

Address calculation can be encoded using the conditional. We give the semantics simply by expand-
ing this encoding. Applying this technique to Candidate 2.6, we arrive at the following:

J𝑟:= [𝐿]𝜇;𝐶K △
= ∥ℓ (𝐿 = ℓ) ▷

(︁⋃︁
𝑣 (R𝜇[ℓ]𝑣) ⇒ J𝐶K[[ℓ]]/𝑟 ]

)︁
J[𝐿]𝜇:=𝑀;𝐶K △

= ∥ℓ (𝐿 = ℓ) ▷
(︁⋃︁

𝑣 (𝑀 = 𝑣 | W𝜇[ℓ]𝑣) ⇒ J𝐶K[𝑀/[ℓ]]
)︁
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The same technique to can be applied to Definition 4.1—we elide the lengthy but obvious definition.
For degenerate programs that include only constant references (every expression [𝐿]𝜇 satisfies
𝐿 = ℓ , for some ℓ), the resulting definition produces exactly the same executions as before.

The rewrites listed in §3-4 remain valid, with the following generalization: For address expressions
[𝑀] and [𝑁], replace 𝑥 = 𝑦 by provable equality of 𝑀 and 𝑁 , and 𝑥 ≠ 𝑦 by provable inequality.

In Definition 4.1, we were able to ensure disjunction closure by performing targeted, local
weakening via weakenR𝑥𝑣 . This is much more difficult to do with address calculation, since a single
bit of syntax can refer to multiple locations. Consider that J[𝑟 ]:= 0; [0]:= !𝑟K includes both of the
following pomsets (“!” is logical negation—“!𝑀” evaluates to 1 if 𝑀 is 0, and 0 otherwise):

𝑟=0 | W [0]0𝑑 : 𝑟=0 | W [0]1𝑒 : 𝑟=1 | W [1]0𝑐 : 𝑟=1 | W [0]0𝑑 :

Thus, the disjunction closure also includes both of the following:

𝑟=0 ∨ 𝑟=1 | W [0]0𝑑 : 𝑟=0 | W [0]1𝑒 : 𝑟=1 | W [1]0𝑐 : 𝑟=0 ∨ 𝑟=1 | W [0]0𝑑 :

In this example, the 𝑑 events that coalesce come from inconsistent executions. This is possible
because the 𝑑 events originate from different commands.

Because we do not enforce order between reads, there is some danger that address calculations
could introduce anomalous behaviors that arise out of thin air (oota). Consider the following
program, where initially 𝑥 = 0, 𝑦 = 0, [0] = 0, [1] = 2, and [2] = 1. It should only be possible to
read 0, disallowing the attempted execution below:

𝑟:=𝑦; 𝑠:= [𝑟];𝑥:= 𝑠 || 𝑟:=𝑥; 𝑠:= [𝑟];𝑦:= 𝑠
R𝑦2 R[2]1 W𝑥 1 R𝑥 1 R[1]2 W𝑦2 (addr1)

Although no order is enforced between reads, the read-to-write order induced by the semantics is
sufficient to prohibit this oota behavior. Note the intermediate state of J𝑠:= [𝑟];𝑥:= 𝑠K:

𝑟=2 | R[2]1 𝑟=2 ∧ 1=1 | W𝑥 1

The precondition (𝑟=2 | W𝑥 1) is required by causal strengthening (Def. 2.2).

6 UNDERSTANDING “OUT OF THIN AIR” USING TEMPORAL LOGIC
A significant challenge for a software memory model is to relax order enough to allow efficient
implementation without admitting anomalous behaviors—called out of thin air (oota) in the
literature [Batty et al. 2015; Boehm 2018; McKenney et al. 2016]. The most famous example is oota1
from §1. Here we inline initialization in order to fit the format of our proof rules:

𝑦:= 0;𝑦:=𝑥 || 𝑥:= 0; 𝑟:=𝑦;𝑥:= 𝑟 R𝑥 1 W𝑦1W𝑦0 W𝑥 0 R𝑦1 W𝑥 1 (oota1)

Although Java does not allow oota behaviors of oota1, Lochbihler [2013] showed that it does
allow oota behaviors of oota5, also from §1. In [Jeffrey and Riely 2016], we described a logic that
rules out oota1 but not oota5 or its variant oota4. In this section, we provide a more accurate
test of oota behaviors by enhancing our previous logic with temporal features.

On first read, we suggest that readers skip to the examples and the discussion that follows,
coming back to the definitions as necessary. Example 6.2 discusses the canonical oota example
oota1; the analysis is trivial and well-known [Jeffrey and Riely 2016; Kang et al. 2017]. Example 6.3
is more interesting. There, we discuss oota4, which is a variant of Lochbihler’s oota5.
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The logic given here is not meant to be definitive; in §10, we discuss oota examples that appear
to require non-trivial extensions [Chakraborty and Vafeiadis 2019; Svendsen et al. 2018].

We adapt past linear temporal logic (PLTL) [Lichtenstein et al. 1985] to pomsets by dropping the
previous instant operator and adopting strict versions of the temporal operators. The atoms of our
logic are write and read events. Given a pomset 𝑃 and event 𝑒 , define:

𝑃, 𝑒 |=W𝑥𝑣 if A(𝑒) = W𝑥𝑣 and tt implies Φ(𝑒)
𝑃, 𝑒 |=R𝑥𝑣 if A(𝑒) = R𝑥𝑣 and tt implies Φ(𝑒)
𝑃, 𝑒 |= 𝜚 ∧ 𝜗 if 𝑃, 𝑒 |= 𝜚 and 𝑃, 𝑒 |= 𝜗

𝑃, 𝑒 |= tt
𝑃, 𝑒 |=¬𝜚 if 𝑃, 𝑒 ̸ |= 𝜚

𝑃, 𝑒 |=□- 𝜚 if ∀𝑑 < 𝑒. 𝑃, 𝑑 |= 𝜚

𝑃, 𝑒 |=◇- 𝜚 if ∃𝑑 < 𝑒. 𝑃, 𝑑 |= 𝜚

Define ff , ∨, and ⇒ as usual.
Let 𝑃 |= 𝜚 if 𝑃, 𝑒 |= 𝜚 , for all 𝑒 ∈ 𝐸.
Let P |= 𝜚 if 𝑃 |= 𝜚 , for all 𝑃 ∈ P.
Let 𝜚,P |= 𝜗 if {𝑃 | 𝑃 |= 𝜚 } ∥ P |= 𝜗.

Let 𝜚 be downclosed when {𝑃 | 𝑃 |= 𝜚 } is.
The past operators do not include the current instant, and so do not satisfy (□- 𝜚 ⇒ ◇- 𝜚 ). The order-

minimal elements always validate □- 𝜚 and invalidate ◇- 𝜚 . However, we can prove the following:

𝑃 |=(□- 𝜚 ⇒ 𝜚 ) ⇒ 𝜚 (Induction)
𝑃 |=(𝜚 ⇒ ◇- 𝜚 ) ⇒ ¬𝜚 (Coinduction)
𝑃 |=(𝜚 ⇒ ◇- 𝜗) ⇒ (◇- 𝜚 ⇒ ◇- 𝜗) (Weakening)

We present two additional proof rules. The first provides a logical view of 𝑥-closure (Def. 2.7):
𝜚 is independent of 𝑥 𝑃 |= (R𝑥𝑣 ⇒ ◇- W𝑥𝑣) ⇒ 𝜚

𝜈𝑥 . 𝑃 |= 𝜚

The second rule describes concurrent composition, in the style of Abadi and Lamport [1993]. To
simplify the presentation, we consider the special case with a single invariant.

Proposition 6.1. Let 𝜚 be downclosed. Let P1,P2 be augmentation-closed. Then:

𝜚,P1 |= 𝜚 𝜚,P2 |= 𝜚

P1 ∥ P2 |= 𝜚

Proof sketch. We will show that all downsets in the downset closures of P1 ∥ P2 satisfy
the required property. Proof proceeds by induction on downsets of 𝑃 ∈ P1 ∥ P2. The case for
empty downset follows from assumption that 𝜚 is downset closed. For the inductive case, consider
𝑃 ∈ 𝑃1 ∥ 𝑃2 where 𝑃𝑖 ∈ P𝑖 . Since P1 and P2 are augmentation closed, we can assume that the
restriction of 𝑃 to the events of 𝑃𝑖 coincides with 𝑃𝑖 , for 𝑖 = 1, 2. Consider a downset 𝑃 ′ derived
by removing a maximal element 𝑒 from 𝑃 . Suppose 𝑒 comes from 𝑃1 (the other case is symmetric).
Since 𝑃2 is a downset of 𝑃 ′ and 𝑃 ′ |= 𝜚 by induction hypothesis, we deduce that 𝑃2 |= 𝜚 . Since
𝑃1 ∈ P1, by assumption 𝜚,P1 |= 𝜚 we deduce that 𝑃 |= 𝜚 . □

Example 6.2. With all variables initialized to 0, we show that oota1 satisfies ¬W𝑥 1.
We start with the invariant:

[W𝑥 1 ⇒ ◇- R𝑦1] ∧ [W𝑦1 ⇒ ◇- R𝑥 1]
This invariant holds for each thread; thus, it holds for the aggregate program by composition.
Closing 𝑦 yields R𝑦1 ⇒ ◇- W𝑦1. Weakening the right conjunct: ◇- W𝑦1 ⇒ ◇- R𝑥 1. Chaining
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these together: R𝑦1 ⇒ ◇- R𝑥 1. Weakening: ◇- R𝑦1 ⇒ ◇- R𝑥 1. Chaining into the left conjunct:
W𝑥 1 ⇒ ◇- R𝑥 1. Closing 𝑥 , weakening, then chaining: W𝑥 1 ⇒ ◇- W𝑥 1. By coinduction, ¬W𝑥 1.

Example 6.3. Because our language lacks object creation, we cannot consider Lochbihler’s
example (oota5) directly. Instead we study oota4, which has the same temporal structure. The
essential temporal property of oota4 is: A write of 1 to 𝑦 must be preceded by a read of 1 from 𝑥 ,
and if 1 is written to 𝑧 then a write of 1 to 𝑥 must be preceded by a read of 1 from 𝑦. We show an
attempted execution that violates this invariant, eliding initialization:

𝑦:=𝑥 || 𝑟:=𝑦; if(𝑏){𝑥:= 𝑟; 𝑧:= 𝑟} else {𝑥:= 1} || 𝑏:= 1
R𝑥 1 W𝑦1 R𝑦1 W𝑥 1 W𝑧1 R𝑏1 W𝑏1 (oota4)

As we discussed in §2.6 there is a dependency from (R𝑦1) to (W𝑥 1); thus, the outcome is disallowed.
This outcome is also disallowed by our event structures model [Jeffrey and Riely 2019, §9], although
the logic given in that paper is insufficient to establish this fact. The outcome is allowed by Manson
et al. [2005], Jagadeesan et al. [2010], Kang et al. [2017], and Chakraborty and Vafeiadis [2019].

To establish that this outcome is disallowed here, we prove ¬W𝑧1, starting with invariant:

[◇- W𝑦1 ⇒ ◇- R𝑥 1] ∧ [W𝑧1 ⇒ (◇- R𝑦1 ∧ □- (W𝑥 1 ⇒ ◇- R𝑦1))]
Closing 𝑦 and chaining into the left conjunct: ◇- R𝑦1 ⇒ ◇- R𝑥 1. Chaining into the right conjunct:

W𝑧1 ⇒ (◇- R𝑥 1 ∧ □- (W𝑥 1 ⇒ ◇- R𝑥 1))
Closing 𝑥 : W𝑧1 ⇒ (◇- W𝑥 1 ∧ □- (W𝑥 1 ⇒ ◇- W𝑥 1). Applying coinduction to the right conjunct:

W𝑧1 ⇒ (◇- W𝑥 1 ∧ □- (¬W𝑥 1))
Simplifying: W𝑧1 ⇒ ff , as required.

Many examples are superficially similar, but in fact have fewer dependencies, such as (∗) from §1.
Boehm’s [2018] rfub example presents another potential form of oota behavior. Our analysis

shows that there is no oota behavior in rfub, only a false dependency:

J𝑟:=𝑦;𝑥:= 𝑟K ⊉ J𝑟:=𝑦; if(𝑟≠1){𝑧:= 1; 𝑟:= 1};𝑥:= 𝑟K (rfub)

The left command is half of oota1. The right command is dubbed rfub, for Register assignment
From an Unexecuted Branch. Boehm observes that in the context 𝑥:=𝑦 || [–], these programs have
different behaviors. Yet the oota example on the left never writes 1. Why should the unexecuted
branch change that? Because of the conditional, the write to 𝑥 in rfub is independent of the read
from 𝑦. It useful to considering the Hoare logic formulas satisfied by the two threads above: we
have {tt} rfub {𝑥 = 1} for the right thread of rfub, but not {tt} oota1 {𝑥 = 1} for the right
thread of oota1. The change in the thread from oota1 to rfub is not a valid refinement under
Hoare logic; thus, it is expected that rfub may have additional behaviors.

Understanding oota behavior is notoriously difficult, even for the greatest minds in the field!
This example shows the wisdom of using existing tools, such as preconditions and Hoare logic, to
model new problems, such as relaxed memory.

7 EFFICIENT IMPLEMENTATION ON ARM8
We show that our semantics compiles efficiently to arm8 [Deacon 2017; Pulte et al. 2018] using the
translation strategy of Podkopaev et al. [2019], which was extended to SC access by Moiseenko
et al. [2019, §5]: Relaxed access is implemented using ldr/str, non-relaxed access using ldar/stlr,
acquire and other fences using dmb.ld/dmb.sy.

We consider the fragment of our language where concurrent composition occurs only at top
level and there are no local declarations of the form (var𝑥;𝐶). We show that any consistent arm8
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execution graph for this sublanguage can be considered a top-level execution of our semantics.
The key step is constructing the order for the derived pomset candidate. We would like to take
≤ = (ob ∪ eco)∗, where ob is the arm8 acyclicity relation, and eco is the arm8 extended coherence
order. But this does not quite work.

The definition is complicated by arm8’s internal reads, manifest in rfi, which relates reads to
writes that are fulfilled by the same thread. arm8 drops ob-order into an internal read. As discussed
in §3.1, however, our semantics drops pomset order out of an internal read. To accommodate this,
we drop these dependencies from the arm8 dependency order before (dob) relation. The relation
dob′ is defined from dob by restricting the order into and out of a read that is in the codomain of
the rfi relation. More formally, let 𝑑 dob′ 𝑒 when 𝑑 dob 𝑒 and 𝑑 ∉ codom(rfi), 𝑒 ∉ codom(rfi). Let
ob′ be defined as for ob, simply replacing dob with dob′.

For pomset order, we then take ≤ = (ob′ ∪ eco)∗.

Theorem 7.1. For any consistent arm8 execution graph, the constructed candidate is a top-level
memory model pomset.

The proof for compilation into tso is very similar. The necessary properties hold for tso, where
ob is replaced by (the transitive closure of) the tso propagation relation [Alglave et al. 2014].

It is worth noting that efficient compilation is not possible for the earlier Flowing and Pop model
[Flur et al. 2016], referenced in [Lahav and Vafeiadis 2016, Fig. 4], which allows the following:

𝑟:=𝑥;𝑥:= 1 || 𝑦:=𝑥 || 𝑥:=𝑦

R𝑥 1 𝑑 : W𝑥 1 R𝑥 1 W𝑦1 R𝑦1 𝑒 : W𝑥 1
(mca3)

This type of “big detour” [Alglave et al. 2014] is outlawed by arm8.4

8 LOCAL DATA RACE FREEDOM AND SEQUENTIAL CONSISTENCY
We adapt Dolan et al.’s [2018] notion of Local Data Race Freedom (LDRF) to our setting.

The result requires that locations are properly initialized. We assume a sufficient condition: that
programs have the form “𝑥1:= 𝑣1; · · · 𝑥𝑛:= 𝑣𝑛;𝐶” where every location mentioned in 𝐶 is some 𝑥𝑖 .

We make two further restrictions to simplify the exposition. To simplify the definition of happens-
before, we ban fences and rmws. To simplify the proof, we assume there are no local declarations
of the form (var𝑥;𝐶).

To state the theorem, we require several technical definitions. The reader unfamiliar with [Dolan
et al. 2018] may prefer to skip to the examples in the proof sketch, referring back as needed.

Data Race. Data races are defined using program order (po), not pomset order (≤). In SB, for
example, (R𝑥 0) has an 𝑥-race with (W𝑥 1), but not (W𝑥 0), which is po-before it.

It is obvious how to enhance the semantics of prefixing and most other operators to define po.
When combining pomsets using the conditional, the obvious definition may result in cycles, since
po-ordered reads may coalesce—see the discussion of ca in §4. In this case we include a separate
pomset for each way of breaking these cycles.

Because we ignore the features of §5, we can adopt the simplest definition of synchronizes-
with (sw): Let 𝑑 sw 𝑒 exactly when 𝑑 fulfills 𝑒 , 𝑑 is a release, 𝑒 is an acquire, and ¬(𝑑 po

𝑒).
Let hb = (po∪ sw)+ be the happens-before relation. In pub1, for example, (W𝑥 1) happens-before

(R𝑥 0), but this fails if either ra access is relaxed.
Let 𝐿 ⊆ X be a set of locations. We say that 𝑑 has an 𝐿-race with 𝑒 (notation 𝑑 L 𝑒) when they

conflict (Def. 2.7) at some location in 𝐿 and at least one is relaxed, but are unordered by hb: neither
𝑑 hb 𝑒 nor 𝑒 hb 𝑑 .
4There is either a cycle R𝑥 1

poloc
𝑑 coe 𝑒 rfe R𝑥 1 or 𝑑 rfe R𝑥 1 data W𝑦1 rfe R𝑦1 data 𝑒 coe 𝑑 .
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Generators. We say that 𝑃 ′ generates 𝑃 if either 𝑃 augments 𝑃 ′ or 𝑃 implies 𝑃 ′. For example, the
unordered pomset (R𝑥 1) (W𝑦1) generates the ordered pomset (R𝑥 1) (𝑟 = 1 | W𝑦1).

We say that 𝑃 is a generation-minimal in P if 𝑃 ∈ P and there is no 𝑃 ≠ 𝑃 ′ ∈ P that generates 𝑃 .
Let genJ𝐶K = {𝑃 ∈ J𝐶K | 𝑃 is top-level (Def. 2.8) and generation-minimal in J𝐶K}.

Extensions. We say that 𝑃 ′ 𝐶-extends 𝑃 if 𝑃 ≠ 𝑃 ′ ∈ genJ𝐶K and 𝑃 is a downset of 𝑃 ′.

Similarity. We say that 𝑃 ′ is 𝑒-similar to 𝑃 if they differ at most in (1) pomset order adjacent to 𝑒
and (2) the value associated with event 𝑒 , if it is a read. Formally: 𝐸 ′ = 𝐸, Φ′ = Φ, ≤′ |𝐸\{𝑒 } = ≤|𝐸\{𝑒 } ,
if 𝑒 is not a read then A ′ = A, and if 𝑒 is a read then A ′ |𝐸\{𝑒 } = A|𝐸\{𝑒 } and A ′(𝑒) = A(𝑒) [𝑣 ′/𝑣],
for some 𝑣 ′, 𝑣 .

Stability. We say that 𝑃 is 𝐿-stable in 𝐶 if (1) 𝑃 ∈ genJ𝐶K, (2) 𝑃 is po-convex (nothing missing
in program order), and (3) there is no 𝐶-extension of 𝑃 with a crossing 𝐿-race: that is, there is no
𝑑 ∈ 𝐸, no 𝑃 ′ 𝐶-extending 𝑃 , and no 𝑒 ∈ 𝐸 ′ \ 𝐸 such that 𝑑 L 𝑒 . The empty pomset is 𝐿-stable.

Sequentiality. Let ⋖𝐿 = <𝐿 ∪ po, where <𝐿 is the restriction of < to events that access locations
in 𝐿. We say that 𝑃 ′ is 𝐿-sequential after 𝑃 if 𝑃 ′ is po-convex and ⋖𝐿 is acyclic in 𝐸 ′ \ 𝐸.

Theorem 8.1. Let 𝑃 be 𝐿-stable in𝐶 . Let 𝑃 ′ be a𝐶-extension of 𝑃 that is 𝐿-sequential after 𝑃 . Let 𝑃 ′′

be a 𝐶-extension of 𝑃 ′ that is po-convex, such that no subset of 𝐸 ′′ satisfies these criteria. Then either
(1) 𝑃 ′′ is 𝐿-sequential after 𝑃 or (2) there is some 𝐶-extension 𝑃 ′′′ of 𝑃 ′ and some 𝑒 ∈ (𝐸 ′′ \ 𝐸 ′) such
that (a) 𝑃 ′′′ is 𝑒-similar to 𝑃 ′′, (b) 𝑃 ′′′ is 𝐿-sequential after 𝑃 , and (c) 𝑑 L 𝑒 , for some 𝑑 ∈ (𝐸 ′′ \ 𝐸).

The theorem provides an inductive characterization of Sequential Consistency for Local Data-Race
Freedom (SC-LDRF): Any extension of a 𝐿-stable pomset is either 𝐿-sequential, or is 𝑒-similar to a
𝐿-sequential extension that includes a race involving 𝑒 .

Proof Sketch. In order to develop a technique to find 𝑃 ′′′ from 𝑃 ′′, we analyze pomset order
in generation-minimal top-level pomsets. First, we note that ≤∗ (the transitive reduction ≤) can be
decomposed into three disjoint relations. Let ppo = (≤∗ ∩ po) denote preserved program order, as
required by prefixing (Def. 2.6). The other two relations are cross-thread subsets of (≤∗ \ po), as
required by fulfillment (Def. 2.7): wr orders writes before reads, satisfying fulfillment requirement
f3; xw orders read and write accesses before writes, satisfying requirement f4. (Within a thread, f3
and f4 follow from prefixing requirement p5b, which is included in ppo.)

Using this decomposition, we can show the following.

Lemma 8.2. Suppose 𝑃 ′′ ∈ genJ𝐶K has a read 𝑒 that is maximal in (ppo ∪ wr) and such that every
po-following read is also ≤-following (𝑒 po

𝑑 implies 𝑒 ≤ 𝑑 , for every read 𝑑). Further, suppose there
is an 𝑒-similar 𝑃 ′′′ that satisfies the requirements of fulfillment. Then 𝑃 ′′′ ∈ genJ𝐶K.

The proof of the lemma follows an inductive construction of genJ𝐶K, starting from a large set
with little order, and pruning the set as order is added: We begin with all pomsets generated by
the semantics without imposing the requirements of fulfillment (including only ppo). We then
prune reads which cannot be fulfilled, starting with those that are minimally ordered. This proof is
simplified by precluding local declarations.

We can prove a similar result for (po ∪ wr)-maximal read and write accesses.
Turning to the proof of the theorem, if 𝑃 ′′ is 𝐿-sequential after 𝑃 , then the result follows from (1).

Otherwise, there must be a ⋖𝐿 cycle in 𝑃 ′′ involving all of the actions in (𝐸 ′′ \ 𝐸 ′): If there were
no such cycle, then 𝑃 ′′ would be 𝐿-sequential; if there were elements outside the cycle, then there
would be a subset of 𝐸 ′′ that satisfies these criteria.

If there is a (po ∪ wr)-maximal access, we select one of these as 𝑒 . If 𝑒 is a write, we reverse the
outgoing order in xw; the ability to reverse this order witnesses the race. If 𝑒 is a read, we switch its
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fulfilling write to a “newer” one, updating xw; the ability to switch witnesses the race. For example,
for 𝑃 ′′ on the left below, we choose the 𝑃 ′′′ on the right; 𝑒 is the read of 𝑥 , which races with (W𝑥 1).

𝑥:= 0;𝑦:= 0; (𝑥:= 1;𝑦:= 1 || if(𝑦){𝑟:=𝑥})

𝑃
𝑃 ′ \ 𝑃 𝑃 ′′ \ 𝑃 ′

W𝑦0

W𝑥 0

W𝑥 1 W𝑦1

R𝑦1 R𝑥 0

po

po

po

po

po

𝑃
𝑃 ′ \ 𝑃 𝑃 ′′′ \ 𝑃 ′

W𝑦0

W𝑥 0

W𝑥 1 W𝑦1

R𝑦1 R𝑥 1

po

po

po

po

po

It is important that 𝑒 be (po∪wr)-maximal, not just (ppo∪wr)-maximal. The latter criterion would
allow us to choose 𝑒 to be the read of𝑦, but then there would be no 𝑒-similar pomset: if an execution
reads 0 for 𝑦 then there is no read of 𝑥 , due to the conditional.

If there is no (po∪wr)-maximal access, then all cross-thread order must be from wr. In this case,
we select a (ppo∪wr)-maximal read, switching its fulfilling write to an “older” one. As an example,
consider the following; once again, 𝑒 is the read of 𝑥 , which races with (W𝑥 1).

𝑥:= 0;𝑦:= 0; (𝑟:=𝑥;𝑦:= 1 || 𝑠:=𝑦;𝑥:= 𝑠)

𝑃
𝑃 ′ \ 𝑃 𝑃 ′′ \ 𝑃 ′

W𝑦0 R𝑥 1 W𝑦1

W𝑥 0 R𝑦1 W𝑥 1

po

po

po

po

𝑃
𝑃 ′ \ 𝑃 𝑃 ′′′ \ 𝑃 ′

W𝑦0 R𝑥 0 W𝑦1

W𝑥 0 R𝑦1 W𝑥 1

po

po

po

po

This example requires (W𝑥 0). Proper initialization ensures the existence of such “older” writes. □

The premises of the theorem allow us to avoid the complications caused by “mixed races” in
[Dongol et al. 2019]. In the left pomset below, 𝑃 ′′ is not an extension of 𝑃 ′, since 𝑃 ′ is not a downset
of 𝑃 ′′. When considering this pomset, we must perform the decomposition on the right.

(𝑥:= 0;𝑥 ra:= 1) || (𝑟:=𝑥 ra)

𝑃
𝑃 ′ \ 𝑃

𝑃 ′′ \ 𝑃 ′

W𝑥 0 Wra𝑥 1

Rra𝑥 0

po
𝑃

𝑃 ′ \ 𝑃
𝑃 ′′ \ 𝑃 ′

W𝑥 0 Wra𝑥 1

Rra𝑥 0

po

This affects the inductive order in which we move across pomsets, but does not affect the set of
pomsets that are considered. This simplification is enabled by denotational reasoning.

In our language, past races are always resolved at a stable point, as in co3. As another example,
consider the following, which is disallowed here, but allowed by Java [Dolan et al. 2018, Ex. 2]. We
include an SC fence here to mimic the behavior of volatiles in the JMM.

(𝑥:= 1;𝑦ra:= 1) || (𝑥:= 2; Fsc; if(𝑦ra){𝑟:=𝑥; 𝑠:=𝑥})

W𝑥 1 Wra𝑦1 W𝑥 2 Fsc Rra𝑦1 R𝑥 1 R𝑥 2
(past)

The highlighted events are 𝐿-stable. The order from (R𝑥 1) to (W𝑥 2) is required by fulfillment,
causing the cycle. If the fence is removed, there would be no order from (W𝑥 2) to (Rra𝑦1), the
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highlighted events would no longer be 𝐿-stable, and the execution would be allowed. This more
relaxed notion of “past” is not expressible using Dolan et al.’s synchronization primitives.

The notion of “future” is also richer here. Consider [Dolan et al. 2018, Ex. 3]:
(𝑟:= 1; [𝑟]:= 42; 𝑠:= [𝑟];𝑥 ra:= 𝑟 ) || (𝑟:=𝑥; [𝑟]:= 7)

W[1]42 R[1]7 Wra𝑥 1 R𝑥 1 W[1]7
(future)

There is no interesting stable point here. The execution is disallowed because of a read from the
causal future. If we changed 𝑥 ra to 𝑥 rlx , then there would be no order from (R[1]7) to (Wrlx𝑥 1),
and the execution would be allowed. The distinction between “causal future” and “temporal future”
is not expressible in Dolan et al.’s operational semantics.

Our definition of 𝐿-sequentiality does not quite correspond to SC executions, since actions may
be elided by read/write elimination (§4). However, for any properly initialized 𝐿-sequential pomset
that uses elimination, there is larger 𝐿-sequential pomset that does not use elimination. This can be
shown inductively—in the inductive step, writes that are introduced can be ignored by existing
reads, and reads that are introduced can be fulfilled, for some value, by some preceding write.

9 OTHER RELATEDWORK
We survey related work not discussed previously.

A memory consistency model for a shared-memory multiprocessor defines the values that a read
may return. For a survey of hardware models, see [Alglave 2010]. For software models, see [Batty
2015; Lochbihler 2013]. For an attempt to bridge the two, see [Podkopaev et al. 2019]. Pulte et al.
[2019] present an operational model of arm8 in the style of [Kang et al. 2017].

In our previous work [Disselkoen et al. 2019], we introduced the notion of pomsets with pre-
conditions. In 2019, we studied micro-architecture, where failed speculative execution is visible via
cache effects. Here we presented an architectural model, which allows us to impose consistency,
ignoring failed speculative execution, and causal strengthening. In 2019, we used 3-valued pomsets,
as opposed to the simple pomsets used here; see §10 for further discussion. The previous paper was
not focused on memory models, and thus did not prove the soundness of compiler optimizations,
the absence of thin air reads, efficient implementability, or drf-sc.

Our model shares important structural elements with that of Paviotti et al. [2020], who provide
a fix for the oota problem in C11 relaxed access. Like us, they use true concurrency semantics
to identify independencies in an execution and thus calculate the preserved program order ex-
plicitly. Our definition of parallel composition allows events to coalesce, taking preconditions via
disjunction—this is mirrored by Paviotti et al.’s definition of coproduct. We only compose downsets
of completed pomsets—this is mirrored by their condition on ≤X during coproduct (discussed in
their §6.3). Nonetheless, the papers have different goals, leading to different outcomes. For example,
their model can be implemented efficiently on non-mca architectures; our model clearly can not!
Conversely, our model provides an intrinsic characterization of optimizations, such as redundant
read elimination, which only hold in their model up to observational refinement.

True concurrency techniques have been applied to relaxed memory by Cenciarelli et al. [2007],
Castellan [2016], Pichon-Pharabod and Sewell [2016], and Chakraborty and Vafeiadis [2017]. See
[Jeffrey and Riely 2019, §8] for a discussion. A partial order approach to weak memory was sketched
by Brookes [2016] and fleshed out for TSO by Kavanagh and Brookes [2019]. Their action labels
include buffers, encoding the operational behavior of TSO inside the pomsets themselves.

There is a rich literature on the use of transformations over SC executions to model relaxed
memory: Saraswat et al. [2007] aimed to describe a jmm-like model this way—drf-sc holds, but
Sevčík [2011] discovered that this model permits oota behavior. Demange et al. [2013] developed
bmm, which permits reordering of a relaxed write with a following relaxed read. bmm is designed as
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a restriction of the jmm that compiles efficiently to tso. It requires fencing on other architectures.
Lahav and Vafeiadis [2016] characterized tso as being derived by considering Write-Read (WR)
reordering and Read-After-Write (RAW) elimination. They also showed that the release-acquire
accesses of C11 are less expressive than considering WR and RAW together with thread-inlining.
Our paper is inspired by their implicit challenge: “Some memory models can be defined via
transformations. But there is more to weak memory than transformations.”

10 LIMITATIONS
Our work has several limitations, each of which provides an opportunity for future research.

We have not modeled loops or recursive functions.These introduce complexities—such as liveness
and continuity—that are orthogonal to the main topic of the paper.

We have not modeled general sequencing of the form (𝐶;𝐶 ′). The definition of prefixing (§2.6)
is relatively simple since we only prepend one action at a time.

We have not modeled mixed-size access [Flur et al. 2017; Watt et al. 2020]. arm8 captures
multibyte access using multiple events related by same instruction (si) [Alglave 2019]. To capture
the use of si when defining locally ordered before (lob), it is likely sufficient to modify p5b. To
capture the use of si when defining observation (ob), it is likely sufficient to modify f3 and f4.

We have only considered peephole optimizations—other optimizations may be valid. For example,
the model does not validate redundant write after read elimination as a peephole optimization.
Consider this example from [Sevčík 2008, §5.3.1]:

J𝑟:=𝑥;𝑥:= 𝑟; 𝑠:=𝑥; if(𝑟≠𝑠){𝑦:= 1}K ⊉ J𝑟:=𝑥; 𝑠:=𝑥; if(𝑟≠𝑠){𝑦:= 1}K

In the JMM, these are distinguished by the context 𝑥:= 1; 𝑧ra
1 := 1 || 𝑥:= 2; 𝑧ra

2 := 1 || if(𝑧ra
1 ∧ 𝑧ra

2 )
{[–]}. That is not case here, however, due to local drf-sc. Nonetheless, completed pomsets from the
left include a write to 𝑥 , which is not found on the right. This write to 𝑥 cannot be eliminated using
cover𝑥 (Def. 4.1) because there is no following write. At top-level, however, the read of 𝑥 must be
fulfilled by some write—assuming that these writes can coalesce, the optimization can be validated.

We have not attempted to validate all program transformations that involve synchronization,
fences or rmws [Morisset 2017; Vafeiadis et al. 2015]. Nonetheless, our semantics validates roach
motel (roach1, roach2), redundant load (rl), fence removal (rf), and store forwarding (sf).
We expect that dead store elimination (ds) generalizes to non-relaxed access by generalizing
cover𝑥 . Some transformations are not sound in the model, but we expect them to be provable as
metaproperties. For example, access-mode strengthening (such as replacing rlx by ra) is valid up to
an equivalence that ignores access modes on actions. Other transformations worth studying include
commuting adjacent acquires, commuting adjacent releases, and implementing non-relaxed access
using relaxed access and fences. Lock elision and access-mode weakening are also interesting,
although these are only sound in certain contexts. We expect all of these transformations to be
valid, given an appropriate notional of validity.

The logic we presented in §6 is only strong enough to prove a few examples. Svendsen et al.
[2018] presented a different a logic, capable of showing that the following program cannot write 2:

(𝑦:=𝑥 + 1 || 𝑥:=𝑦) R𝑥 1 W𝑦2 R𝑦1 W𝑥 1 (oota6)

The attempted execution is not allowed by our semantics, since there is no write to fulfill (R𝑦1).
As another example, consider the following, from Chakraborty and Vafeiadis [2019, Fig. 3]:

𝑥:= 2; if(𝑥≠2){𝑦:= 1} || 𝑥:= 1; 𝑟:=𝑥; if(𝑦){𝑥:= 3}

W𝑥 2 R𝑥 3 W𝑦1 W𝑥 1 R𝑥 2 R𝑦1 W𝑥 3
(oota7)
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The attempted execution is not allowed by our semantics, due to the evident cycle. Intuitively, it
is not possible for the left thread to read 3 for 𝑥 when the right thread reads 2. Proving this may
require a logic with modalities to deal with intervening writes and coherence. Surprisingly, this
outcome is allowed by the promising semantics [Kang et al. 2017]. Chakraborty and Vafeiadis
developed weakestmo to address this example; however, weakestmo does not address oota4.

Our model realizes multi-copy atomicity (mca). Thus it will not compile efficiently to non-mca
architectures, such as power and arm7. To do so, one cannot include the order required by f4 in
pomset order. In [Disselkoen et al. 2019], we modeled programs using 3-valued pomsets, using the
weak relation ( |>) for f4 and p5b. This does not provide a suitable model for non-mca behavior,
however, since it disallows mca2.5

In the discussion of mca2, we noted that our model does not enforce order between reads dues to
address and control dependencies. This has implications for Java’s final field semantics. Consider:

(𝑟:= 1; [𝑟]:= 0; [𝑟]:= 1;𝑥 ra:= 𝑟 ) || (𝑟:=𝑥 ra; 𝑠:= [𝑟])
W[1]0 W[1]1 Wra𝑥 1 Rra𝑥 1 R[1]0

(addr2)

If we changed the read of 𝑥 ra to 𝑥 rlx , then there would be no order from (Rrlx𝑥 1) to (R[1]0), and the
executionwould be allowed. In order to allow this relaxation in certain cases without invalidating the
publication of the “field initializer” (W[1]1), it may be desirable to distinguish address dependencies
from other dependencies—doing so would likely require two separate preconditions for each event.

5Following [Lamport 1986], 3-valued pomset require: (1) if 𝑑 ≤ 𝑒 then 𝑑 |> 𝑒 , (2) if 𝑑 ≤ 𝑒 and 𝑒 |> 𝑑 then 𝑑 = 𝑒 , and (3) if
𝑐 ≤ 𝑑 |> 𝑒 or 𝑐 |> 𝑑 ≤ 𝑒 then 𝑐 |> 𝑒 . mca2 is disallowed by (2). Top-level 3-valued pomsets also require that |> is a partial
order per-location; a sufficient condition is (4) if 𝑑 |> 𝑒 and 𝑒 |> 𝑑 then 𝑑 and 𝑒 do not touch the same location. Although
mca1 is allowed, its two-thread variant is not, due to the combination of semi-transitivity (3) and partial coherence (4). It is
plausible, perhaps, to require only that |> is a partial order and that 𝑑 |> 𝑒 when A(𝑑) and A(𝑒) conflict and 𝑑 ≤ 𝑒 .
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