
ar
X

iv
:2

00
2.

10
49

9v
1

 [c
s.D

S]
 2

4
Fe

b
20

20

Upper Tail Analysis of Bucket Sort and Random Tries∗

Ioana O. Bercea† Guy Even∗

Abstract

Bucket Sort is known to run in expected linear time when the input keys are distributed
independently and uniformly at random in the interval [0, 1). The analysis holds even when
a quadratic time algorithm is used to sort the keys in each bucket. We show how to obtain
linear time guarantees on the running time of Bucket Sort that hold with very high probability.
Specifically, we investigate the asymptotic behavior of the exponent in the upper tail probability
of the running time of Bucket Sort. We consider large additive deviations from the expectation,
of the form cn for large enough (constant) c, where n is the number of keys that are sorted.

Our analysis shows a profound difference between variants of Bucket Sort that use a quadratic
time algorithm within each bucket and variants that use a Θ(b log b) time algorithm for sorting
b keys in a bucket. When a quadratic time algorithm is used to sort the keys in a bucket, the
probability that Bucket Sort takes cn more time than expected is exponential in Θ(

√
n log n).

When a Θ(b log b) algorithm is used to sort the keys in a bucket, the exponent becomes Θ(n).
We prove this latter theorem by showing an upper bound on the tail of a random variable
defined on tries, a result which we believe is of independent interest. This result also enables us
to analyze the upper tail probability of a well-studied trie parameter, the external path length,
and show that the probability that it deviates from its expected value by an additive factor of
cn is exponential in Θ(n).

1 Introduction

The Bucket Sort algorithm sorts n keys in the interval [0, 1) as follows: (i) Distribute the keys among
n buckets, where the jth bucket consists of all the keys in the interval [j/n, (j+1)/n). (ii) Sort the
keys in each bucket. (iii) Scan the buckets and output the keys in each bucket in their sorted order.
We consider two natural classes of Bucket Sort algorithms that differ in how the keys inside each
bucket are sorted. The first class of BucketSort algorithms that we consider sorts the keys inside
a bucket using a quadratic time algorithm (such as Insertion Sort). We refer to algorithms in this
class as b2-Bucket Sort. The second class of algorithms sorts the keys in a bucket using a Θ(b log b)
algorithm for sorting b keys (such as Merge Sort). We refer to this variant as b log b-Bucket Sort.

When the n keys are distributed independently and uniformly at random, the expected running
time of Bucket Sort is Θ(n), even when a quadratic time algorithm is used to sort the keys in each
bucket [CLRS09,MU17,SMDD19]. A natural question is whether such linear time guarantees hold
with high probability. For Quick Sort, analyses of this sort have a long and rich history [Jan15,
FJ02,MH96].

In this paper, we focus on analyzing the running time of Bucket Sort with respect to large
deviations, e.g., running times that exceed the expectation by 10n. In particular, we study the
asymptotic behavior of the exponent in the upper tail of the running time.

∗This research was supported by a grant from the United States-Israel Binational Science Foundation (BSF),
Jerusalem, Israel, and the United States National Science Foundation (NSF)

†Tel Aviv University, Tel Aviv, Israel. Email: ioana@cs.umd.edu, guy@eng.tau.ac.il.

1

http://arxiv.org/abs/2002.10499v1

Rate of the upper tail. We analyze the upper tail probability of a random variable using the
notion of rate, defined as follows.1

Definition 1. Given a random variable Y with expected value µ, we define the rate of the upper

tail of Y to be the function defined on t > 0 as follows:

RY (t) ! − ln (Pr [Y ≥ µ+ t]) .

Note that we consider an additive deviation from the expectation, i.e., we bound the probability
that the random variable deviates from its expected value by an additive term of t, for sufficiently
large values of t.2 In particular, we consider values of t = cn, where n is the size of the input and
c is a constant greater than some threshold. Finally, we abbreviate and refer to RY (t) as the rate

of Y .
We study the rates of the running times of deterministic Bucket Sort algorithms in which the

input is sampled from a uniform probability distribution. We also consider parameters of tries
induced by infinite prefix-free binary strings chosen independently and uniformly at random.

1.1 Our Contributions

Our first two results derive the rates of the two classes of Bucket Sort algorithms and show that
they are different. Specifically, we prove the following:

Theorem 2. There exists a constant C > 0 such that, for all c > C, the rate Rb2(·) of the

b2-Bucket Sort algorithm on n keys chosen independently and uniformly at random in [0, 1) satisfies
Rb2(cn) = Θ(

√
n log n).

Since the expected running time of b2-Bucket Sort is Θ(n), Theorem 2 states that the probability
that b2-Bucket Sort on random keys takes more than dn time is e−Θ(

√
n logn) (for a suffciently large

constant d).3 Theorem 2 proves both a lower bound and an upper bound on the asymptotic rate
Rb2(cn). In particular, Theorem 2 rules out the possibility that the probability that the running
time of b2-Bucket Sort is greater than 100n is bounded by e−Θ(n).

We prove the lower bound on Rb2(cn) by applying multiplicative Chernoff bounds in different
regimes of large (superconstant, in fact) deviations from the mean. In such settings, the dependency
of the exponent of the Chernoff bound on the deviation from the mean can have a significant impact
on the quality of the bounds we obtain. Indeed, we employ a rarely used form of the Chernoff bound
that exhibits a δ log δ dependency in the exponent when the deviation from the mean is δ (see Eq. 17
in Appendix C and Chapter 10.1.1 in [Doe18]). Although the proof of this bound is straightforward,
the proof of Theorem 2 crucially relies on this additional (superconstant) log δ factor (see Claim 23).

For b log b-Bucket Sort on random keys, we show that the rate is linear in the size of the input:

Theorem 3. There exists a constant C > 0 such that, for all c > C, the rate Rb log b(·) of the

b log b-Bucket Sort algorithm on n keys chosen independently and uniformly at random in [0, 1)
satisfies Rb log b(cn) = Θ(n).

1Throughout the paper, ln x denotes the natural logarithm of x and log x denotes the logarithm of base 2 of x.
2One should not confuse this analysis with concentration bounds that address small deviations from the expec-

tation.
3The threshold C depends on: (1) the constant that appears in the sorting algorithm used within each bucket,

and (2) the constant that appears in the expected running time of b2-Bucket Sort.

2

We prove the lower bound on Rb log b(cn) by analyzing a random variable arising in random tries.
Specifically, we consider tries on infinite binary strings in which each bit is chosen independently
and uniformly at random. The parameter we study is called the excess path length and is defined
formally in Section 2. We show that the time it takes to sort the buckets in b log b-Bucket Sort can
be upper bounded by the excess path length in a random trie (Lemma 12). We then bound the
upper tail of the excess path length (Theorem 15) and use it to lower bound Rb log b(cn).

We also use the upper tail of the excess path length to derive the rate of a well-studied trie
parameter, the sum of root to leaf paths in a minimal trie, called the nonvoid external path

length [Knu98, SF13]. It is known that the expected value of the nonvoid external path length
in a random trie is n log n+Θ(n) [Knu98,Szp11,SF13]. We show the following:

Theorem 4. There exists a constant C > 0 such that, for all c > C, the rate R0(·) of the

nonvoid external path length of a minimal trie on n infinite binary strings chosen independently

and uniformly at random satisfies R0(cn) = Θ(n).

Note that Theorem 4 implies that the probability that the nonvoid external path length is more
than n log n+ dn is e−Θ(n) (for a sufficiently large constant d).

1.2 Related Work

Showing that Bucket Sort runs in linear expected time when the keys are distributed independently
and uniformly at random in [0, 1) is a classic textbook result [CLRS09,MU17,SMDD19]. Bounds
on the expectation as well as limiting distributions for the running time have also been studied for
different versions of Bucket Sort [MFJR00,Dev86]. We are not aware of any work that directly
addresses the rate of the running time of Bucket Sort. The upper and lower tails of the running
time of Quick Sort have been studied in depth [Jan15, FJ02], including in the regime of large
deviations [MH96].

The expected value of the nonvoid external path length of a trie is a classic result in applying the
methods of analytic combinatorics to the analysis of algorithms [Knu98,Szp11,ML92,SF13,CFV01].
We consider the case in which the binary strings are independent and random (i.e., the bits are
independent and unbiased). In [Knu98,Szp11,ML92,SF13] it is shown that for random strings, the
expected value of the nonvoid external path length is n log n+ Θ(n). The variance of the nonvoid
external path length and limiting distributions for it have also been studied extensively for different
string distributions [JR88,KPS89,VF90].

In Knuth [Knu98, Section 5.2.2], the nonvoid external path length is shown to be proportional
to the number of bit comparisons of radix exchange sort. The bound in Thm. 4 therefore applies to
the rate of the number of bit comparisons of radix exchange sort when the strings are distributed
independently and uniformly at random.

The connection between the running time of sorting algorithms and various trie parameters
(including external path length) has also been studied by Seidel [Sei10], albeit in a significantly
different model than ours. Specifically, [Sei10] analyzes the expected number of bit comparisons of
Quick Sort and Merge Sort when the input is a randomly permuted set of strings sampled from
a given distribution. In Seidel’s model, the cost of comparing two strings is proportional to the
length of their longest common prefix. Seidel shows that the running time of these algorithms
can be naturally expressed in terms of parameters of the trie induced by the input strings. We
emphasize that our analysis connects the running time of Bucket Sort to the excess path length in
the comparison model (in which the cost of comparing two keys does not depend on their binary
representation).

3

1.3 Paper Organization

Preliminaries and definitions are in Sec. 2. In Section 3, we present reductions from the running
time of b log b-Bucket Sort and the nonvoid external path length to the excess path length. The
bound on the upper tail of the excess path length is proved in Sec. 4. Section 5 proves a lower bound
on the rate of b2-Bucket Sort. Upper bounds on the rates are proved in Appendix A. Theorems 2, 3
and 4 are completed in Sec. 6. Finally, in Sec. 7, we include a discussion on the difference between
the rate of Bucket Sort and that of Quick Sort.

2 Preliminaries and Definitions

Bucket Sort. The input to Bucket Sort consists of n keys X ! {x1, . . . , xn} in the interval [0, 1).
We define bucket j to be the set of keys in the interval [j/n, (j +1)/n). Let b(X) ! (B0, . . . Bn−1)
be the occupancy vector for input X, where Bj denotes the number of keys in X that fall in bucket
j.

The buckets are separately sorted and the final output is computed by scanning the sorted
buckets in increasing order. The initial assignment of keys to buckets and the final scanning of the
sorted buckets takes Θ(n) time. We henceforth focus only on the time spent on sorting the keys in
each bucket.

We consider the two natural options for sorting buckets: (i) Sort b keys in time Θ(b2), us-
ing a sorting algorithm such as Insertion Sort or Bubble Sort. We refer to this option as
b2-Bucket Sort. (ii) Sort b keys in time Θ(b log b) using a sorting algorithm such as Merge Sort
or Heap Sort. We refer to this option as b log b-Bucket Sort. Let [n] denote the set {0, . . . , n− 1}
and let b = (B0, . . . , Bn−1) denote an arbitrary occupancy vector. We define the functions

f(b) !
∑

j∈[n]B
2
j g(b) !

∑

j∈[n],Bj>0 Bj logBj .

We let Tb2(X) and Tb log b(X) denote the running time on input X of b2-Bucket Sort and
b log b-Bucket Sort, respectively. Then, Tb2(X) = Θ(n+f(b(X)) and Tb log b(X) = Θ(n+g(b(X)). 4

Excess Path Length and Tries. We let |α| denote the length of a binary string α ∈ {0, 1}∗. For
a set L, let |L| denote the cardinality of L.

Definition 5. A set of strings {α1, . . . ,αs} is prefix-free if, for every i &= j, the string αi is not a

prefix of αj.

A trie is a rooted binary tree with edges labeled {0, 1} such that two edges emanating from
the same trie node are labeled differently. For a binary string α, let π(α) denote the trie node v,
where the path from the root to v is labeled α. We say that a trie node u is a predecessor of v if
u is in the path from the root to v. For a set U of trie nodes, the reduced trie that contains U is
denoted by T (U), namely, T (U) consists of U and all the predecessors of nodes in U . Given a set
of binary strings L, let T (L) denote the trie T (π(L)). If the set L is prefix-free and contains only
finite-length strings, then every node in π(L) is a leaf of T (L).

For a set L of prefix-free binary strings, let ϕ0(L) denote the set of minimal prefixes of strings
in L subject to the constraint that ϕ0(L) is prefix-free. The trie T (ϕ0(L)) is called the minimal

trie on L. Note that the structure of ϕ0(L) (or of T (ϕ0(L))) does not change if we append more
bits to the strings in L.

The following definition extends the definition of ϕ0(L) by requiring that the prefixes have
length at least k.

4Interestingly, the sum of squares of bin occupancies, i.e., f(b), also appears in the FKS perfect hashing con-
struction [FKS82].

4

Definition 6 (minimal k-prefixes). Let L = {α0, . . . ,αn−1} denote a set of n distinct infinite

binary strings. Given a parameter k ≥ 0, the set ofminimal k-prefixes of L, denoted by ϕk(L) !
{β0, . . . ,βn−1}, is the set that satisfies the following properties:

1. for all i ∈ [n], the string βi is a prefix of αi,

2. for all i ∈ [n], |βi| ≥ k,

3. The set ϕk(L) is prefix-free,

4.

n−1
∑

i=0

|βi| is minimal among all sets that satisfy the first 3 conditions.

The embedding of ϕk(L) in a trie maps every string in ϕk(L) to a distinct leaf of depth at
least k. The definition can be modified to handle prefix-free sets of finite strings by appending an
arbitrary infinite string (say, zeros) to each finite string. In this paper, we are interested in the
following trie parameter defined on ϕk(L):

Definition 7. The k-excess path length pk(L) of a set L of n distinct infinite binary strings is

defined as:

pk(L) !
∑

α∈ϕk(L)
(|α|− k).

In [SF13], p0(L) is called the nonvoid external path length of the minimal trie on L. When
k = 'log |L|(, we simply refer to pk(L) as the excess path length of L.

Distributions. Let Xn denote the uniform distribution over [0, 1)n. Note that if the set
X = {x0, . . . , xn−1} is chosen according to Xn, then x0, . . . , xn−1 are chosen independently and
uniformly at random from the interval [0, 1). Let µb2 (res. µb log b) denote the expected ruuning
time Tb2(X) (resp., Tb log b(X)) when X ∼ Xn. Similarly, let µf (res. µg) denote the expected values
of f(b(X)) (resp., g(b(X))) when X ∼ Xn. It is known that µf = 2n − 1 (see [CLRS09,MU17]),
and consequently, we have that µb2 = Θ(n). Since g ≤ f , we also have µg = Θ(n) as well as
µb log b = Θ(n).

Let Ln denote the uniform distribution over n infinite binary strings. Note that if L =
{α0, . . . ,αn−1} is chosen according to Ln, then all the bits of the strings are independent and
unbiased. We let µ0 denote the expected value of the external nonvoid path p0(L) when L ∼ Ln.
It is know that µ0 = n log n+Θ(n) (see [Knu98,Szp11,SF13]).

Rates. Let Rb2(·) (resp., Rb log b(·)) denote the rate of Tb2(X) (resp., Tb log b(X)) when X ∼ Xn.
Similarly, let Rf (·) (resp., Rg(·)) denote the rate of f(b(X)) (resp., g(b(X))) when X ∼ Xn.

We first note that, to study the asymptotic behavior of Rb2 (for sufficiently large deviations) it
suffices to study the asymptotic behavior of Rf . The proof of the following appears in Appendix B.

Observation 8. For every c > 0, there exist constants δ1 = Θ(c) and δ2 = Θ(c) such that:

Rf (δ1 · n) ≤ Rb2(c · n) ≤ Rf (δ2 · n).

An analogous statement holds for the rates Rb log b and Rg. The rate of the nonvoid external
path length p0(L) is denoted by R0(·).

5

3 Reductions

3.1 Balls-into-Bins Abstraction

We interpret the assignment of keys to buckets using a balls-into-bins abstraction. The keys cor-
respond to balls, and the buckets correspond to bins. The assumption that X ∼ Xn implies that
the balls choose the bins independently and uniformly at random. The value Bj then equals the
occupancy of bin j.

A similar balls-into-bins abstraction holds for the embedding of the minimal (log n)-prefixes of
L ∼ Ln in a trie (assuming n is a power of 2). Indeed, let {v0, . . . , vn−1} denote the n nodes of the
trie T (L) at depth log n. For a node vj, we say that a string α chooses vj, if the path labeled α
contains vj . Since the strings are random, each string chooses a node of depth log n independently
and uniformly at random. Let Cj denote the number of strings in L who choose node vj .5 We refer
to Cj as the occupancy of vj with respect to L and define the vector c(L) ! (C0, . . . , Cn−1).

Observation 9. When X ∼ Xn and L ∼ Ln, the occupancy vector b(X) has the same joint

probability distribution as c(L).

3.2 Lower Bounding the Rate of b log b-Bucket Sort

By Obs. 8, to prove a lower bound in Rb log b it suffices to prove a lower bound on Rg. In this section
we show how to lower bound Rg by bounding the upper tail probability of the excess path length
plogn(L). We begin with the following observation about the nonvoid external path length p0(L):

Observation 10. For every set L of n infinite prefix-free binary strings, p0(L) ≥ n log n.

Now consider an arbitrary vector c(L) and apply Observation 10 to each node of depth log n
separately. We obtain the following corollary.

Corollary 11. For every set L of n infinite prefix-free binary strings, plogn(L) ≥ g(c(L)).

We lower bound the rate of g(b(X)) as follows.

Lemma 12. For every c > 0,

PrX←Xn [g(b(X)) ≥ µg + cn] ≤ PrL←Ln [plogn(L) ≥ cn] . (1)

Proof. Recall that µg denotes the expected value of of g(b(X)). Since µg > 0, we have that
Pr [g(b(X)) ≥ µg + cn] ≤ Pr [g(b(X)) ≥ cn]. Observation 9 implies that

PrX←Xn [g(b(X)) ≥ cn] = PrL←Ln [g(c(L)) ≥ cn] .

The claim then follows by Corollary 11.

Hence, a lower bound on the rate of g(b(X)) follows by bounding the RHS of Eq. 1.

5Formally, T (L) may contain a subset of these n nodes. If a node vj at depth log n is not chosen by any string,
then define Cj = 0.

6

3.3 Lower Bounding the Rate of the Nonvoid External Path Length

In this section, we show how to use the upper tail of plogn(L) to lower bound the rate of the nonvoid
external path length p0(L).

Observation 13. For every set L of n infinite prefix-free binary strings, we have that:

p0(L) ≤ n log n+ plogn(L).

Proof. The strings in ϕ0(L) are themselves prefixes of strings in ϕlogn(L). We therefore get that
∑

α∈ϕ0(L) |α| ≤
∑

β∈ϕlog n(L)
|β|, and the claim follows.

Observation 10 implies that µ0 ≥ n log n. Together with Obs. 13 this implies that:

Corollary 14. For every L ∼ Ln and every c > 0.

Pr [p0(L) ≥ µ0 + cn] ≤ Pr [plogn(L) ≥ cn].

4 The Upper Tail of the Excess Path Length

We bound the upper tail of plogn(L) as follows:

Theorem 15. Let L ∼ Ln. For every c > 0:

Pr [plogn(L) ≥ (8c+ 16) · n] ≤ exp

(

−c− 1− ln c

4
· n
)

.

Proof. Let L = {α1, . . . ,αn} be a set of infnite random binary strings. We consider the evolution
of the set ϕlog n(L) of minimal log n-prefixes as we process the strings αi one by one. Specifically,
let L(i) ! {α1, . . . ,αi}, for 1 ≤ i ≤ n, and L0 = ∅.

Let ϕ(L(i)) !
{

sj ◦ δ(i)j

∣

∣

∣
sj ◦ δ(i)j is a prefix of αj and |si| = 'log n(for 1 ≤ j ≤ i

}

. Note that

plogn(L(i)) =
∑

j∈[i]

∣

∣

∣
δ(i)j

∣

∣

∣
.

We bound plogn(L) by considering the increase ∆i ! plogn(L(i)) − plogn(L(i−1)). Since
plogn(L(0)) = 0 and plogn(L(n)) = plogn(L), then plogn(L) =

∑n
i=1∆i.

The addition of the string αi has two types of contributions to ∆i. The first contribution is δ(i)i .
The second contribution is due to the need to extend colliding strings. Indeed, since the set L(i−1)

is prefix-free, there exists at most one j < i such that sj ◦ δ(i−1)j is a prefix of αi. If sj ◦ δ(i−1)j is a

prefix of αi, then ∆i =
∣

∣

∣
δ(i)j

∣

∣

∣
−
∣

∣

∣
δ(i−1)j

∣

∣

∣
+
∣

∣

∣
δ(i)i

∣

∣

∣
. Because δ(i)j and δ(i)i are minimal subject to being

prefix-free, we also have that
∣

∣

∣
δ(i)j

∣

∣

∣
=
∣

∣

∣
δ(i)i

∣

∣

∣
. Hence, ∆i ≤ 2 ·

∣

∣

∣
δ(i)i

∣

∣

∣
. This implies that, for every τ :

Pr [∆i ≥ 2τ] ≤ Pr
[∣

∣

∣
δ(i)i

∣

∣

∣
≥ τ

]

.

We now proceed to bound Pr
[∣

∣

∣
δ(i)i

∣

∣

∣
≥ τ

]

. Fix i ≥ 1 and let δi(') denote the prefix of length ' of

δ(i)i . We denote by n$ the number of leaves in the subtree rooted at si ◦ γi(') in the trie T (L(i−1))
(i.e., right before the string αi is processed). Formally,

n$!

∣

∣

∣

{

j < i
∣

∣

∣
si ◦ δi(') is a prefix of sj ◦ δ(i−1)j

}
∣

∣

∣
.

7

Clearly, n0 =
∣

∣

{

j < i
∣

∣ si = sj
}
∣

∣ and n∣

∣

∣
γ
(i)
i

∣

∣

∣

= 0. We bound
∣

∣

∣
γ(i)i

∣

∣

∣
by bounding the minimum '

for which n$ becomes zero as follows: define the binary random variable Z$+1 to be 1 if n$+1 ≤ 1
2 ·n$,

and 0 otherwise. Note that Pr [Z$ = 1] ≥ 1/2 and that {Z$}$ are independent. By definition,

∣

∣

∣
δ(i)i

∣

∣

∣
≥ τ =⇒

τ
∑

s=1

Zs ≤ log(1 + n0) . (2)

By the law of total probability,

Pr
[
∣

∣

∣δ
(i)
i

∣

∣

∣
≥ τ

]

≤ Pr [log(1 + n0) ≥ τ/8] + Pr
[(
∣

∣

∣
δ(i)i

∣

∣

∣
≥ τ

) ∣

∣

∣
log(1 + n0) ≤ τ/8

]

. (3)

We now bound the two terms in the RHS of Eq. 3. Note that E [n0] ≤ 1. In fact

E

[

n0

∣

∣

∧

j<i∆j = ξj
]

≤ 1 for every realization {ξj}j<i of {∆j}j<i. By Markov’s inequality:

Pr
[

1 + n0 ≥ 2τ/8
]

≤ 1 + E [n0]

2τ/8
≤ 2−τ/8+1 . (4)

To bound the second term in the RHS of Eq. 3, we apply the Chernoff bound in Eq. 18:

Pr
[
∣

∣

∣
δ(i+1)
i

∣

∣

∣
≥ τ

∣

∣

∣
log(1 + n0) ≤ τ/8

]

≤ Pr

[

τ
∑

s=1

Zs ≤
τ

8

]

(By Eq. 2)

≤ Pr

[

τ
∑

s=1

Zs ≤
2

8
· E
[

τ
∑

s=1

Zs

]]

(E [Zi] ≥ 1/2)

≤ exp

(

−1

2
· E

[

τ
∑

s=1

Zs

]

·
(

1− 2

8

)2
)

≤ exp

(

−τ

4
·
(

3

4

)2
)

= exp

(

− 9

64
· τ
)

. (5)

From Equations 3 – 5, it follows that:

Pr
[∣

∣

∣
δ(i+1)
i

∣

∣

∣
≥ τ

]

≤ 2−τ/8+1 + exp(−9τ/64) ≤ 2−τ/8+2 .

Therefore,

Pr [∆i ≥ 16 · (τ + 2))] ≤ 2−τ . (6)

Note that Eq. 6 also holds under every conditioning on the realizations of {∆j}j<i.

Let ∆′i !
1
16 · ∆i − 1 and note that Pr [∆′i ≥ τ] ≤ 2−τ+1. Let {Gi}i denote independent geo-

metric random variables, where Gi ∼ Ge(1/2). Since Pr [Gi ≥ τ] = 2−(τ−1), we conclude that ∆′i is
stochastically dominated by Gi. In fact, the random variables {∆′i}i∈[f] are unconditionally sequen-

tially dominated by {Gi}i∈[n]. By [Doe18, Lemma 8.8], it follows that
∑

i∈[n]∆
′
i is stochastically

dominated by
∑

i∈[n]Gi.6

6Note that RVs {∆}i are not independent and probably not even negatively associated. Hence, standard concen-
tration bounds do not apply to

∑
∆i.

8

The sum of independent geometric random variables is concentrated [Jan18] and so we get:

Pr





∑

i∈[n]

∆′i ≥ c · n/2



 ≤ Pr





∑

i∈[n]

Gi ≥ c · n/2





≤ exp

(

−c− 1− ln c

4
· n
)

as required.

5 Lower Bound for b2-Bucket Sort

This section deals with proving the following lower bound on the rate Rf . By Obs. 8, this also
implies a lower bound on the rate Rb2 .

Lemma 16. There exists a constant C > 0 such that, for all c > C, we have that Rf (cn) =
Ω(

√
n log n), for all sufficiently large n.

5.1 Preliminaries

Given an input X of n keys and its associated occupancy vector b(X) = (B0, B1, . . . , Bn−1), define
Si ! {j ∈ [n] | Bj ≥ i} to be the set of buckets with at least i keys assigned to them. Note that
the random variables {|Si|}i are negatively associated because they are monotone functions of bin
occupancies, which are a classical example of negatively associated RVs [DP09].

Claim 17. For every occupancy vector (B0, B1, . . . , Bn−1), the following holds:

∑

j∈[n]

(

|Bj |+ 1

2

)

=
∑

i∈[n+1]

i · |Si| . (7)

Proof. Consider an n× n matrix A filled according to the following rule:

Ai,j !

{

i if Bj ≥ i

0 otherwise.

Let S !
∑

i,j Ai,j. The sum of entries in column j equals
(|Bj |+1

2

)

. On the other hand, the sum of
entries in row i equals i · |Si|. Hence both sides of Eq. 7 equal S, and the claim follows.

Lemma 18 states that, in order to prove Lemma 16, it suffices to prove a lower bound on the upper
tail probability of the random variable

∑

i∈[n+1] i · |Si|. Specifically, , we get that:

Lemma 18. For every c, we have that

Pr [f(b(X)) ≥ µf + cn] = Pr





∑

i∈[n+1]

i |Si| ≥
(3 + c)n− 1

2



 .

Proof. By Claim 17, f(b(X)) = 2 ·
∑

i∈[n+1] i |Si| − n. The Lemma follows from the fact that
µf = 2n − 1 [CLRS09,MU17].

9

Next, we upper bound E [|Si|]. Let Ei !
(

e
i

)i
and note the following:

Claim 19. For every i ∈ {1, . . . , n}, we have that E [|Si|] ≤ n · Ei.

Proof. Fix i and let Xi,j be the indicator random variable that is 1 if Bj ≥ i and 0 otherwise.
We get that |Si| =

∑

j Xi,j. Because each key chooses a bucket independently and uniformly at
random, we have that:

Pr [Bj ≥ i] ≤
(

n

i

)

·
(

1

n

)i

≤
(en

i

)i
·
(

1

n

)i

=
(e

i

)i
= Ei .

The claim follows by linearity of expectation.

One can analytically show that:

Observation 20.
∑∞

i=1 i ·Ei ≤ 10.

5.2 Applying Chernoff Bounds in Different Regimes

In the proof of Lemma 16, we consider three thresholds on bin occupancies τ1 ≤ τ2 ≤ τ3 defined as
follows:

τ1 ! max

{

i
∣

∣

∣Ei ≥
c log n√

n

}

, τ2 !
n1/4

√
log n

, τ3 !
√
n .

Claim 21. For every c > 0, there exists a γ = γ(c) > 0, such that:

Pr





∑

i≤τ1

i · |Si| ≥ cn+
∑

i≤τ1

i · Ei · n



 ≤ exp
(

−γ
√
n log n

)

.

Proof. Fix i ≤ τ1. By the Chernoff bounds (Eq. 15-16 in Appendix C) and the definition of τ1, for
every δ > 0, there exists a c′ = c′(δ) > 0, such that:

Pr [|Si| ≥ (1 + δ)Ei · n] ≤ exp
(

−c′ · Ei · n
)

≤ exp(−c′ · c ·
√
n · log n) .

By applying a union bound over all i ≤ τ1, it follows that there exists a γ > 0 such that:

Pr





∑

i≤τ1

i |Si| ≥ (1 + δ) ·
∑

i≤τ1

iEi · n



 ≤ exp
(

−γ
√
n log n

)

.

Define δ ! c/10. By Obs. 20, δ
∑

i iEi ≤ c, and the claim follows.

Claim 22. For every c > 0, there exists a γ = γ(c) > 0 such that for n sufficiently large:

Pr





)τ2*
∑

i=+τ1,

i |Si| ≥ cn+

)τ2*
∑

i=+τ1,

iEi · n



 ≤ exp
(

−γ
√
n log n

)

.

10

Proof. For every τ1(c) < i ≤ τ2, define δi ! (c log n)/(Ei
√
n) so that

∑

i≤τ2

δi · iEi =
∑

i≤τ2

i · c log n√
n

≤ (τ2)
2 · c log n√

n
= c . (8)

Since δi > 1 for every i > τ1, by the Chernoff bound in Eq. 16:

Pr [|Si| > (1 + δi) ·Ei · n] ≤ exp (−δi · n · Ei/3)

= exp
(

−c/3 ·
√
n log n

)

.

By applying a union bound over all τ1 ≤ i ≤ τ2, it follows that there exists a constant γ > 0 such
that:

Pr





)τ2*
∑

i=+τ1,

i |Si| ≥
)τ2*
∑

i=+τ1,

(1 + δi) · iEi · n



 ≤ exp
(

−δ
√
n log n

)

. (9)

The claim follows by Eq. 8 and 9.

Claim 23. For every c > 0, there exists a γ = γ(c) > 0 such that for sufficiently large n, we have

that:

Pr





)τ3*
∑

i=+τ2,

i |Si| > cn +

)τ3*
∑

i=+τ2,

iEi · n



 ≤ exp
(

−γ
√
n log(n)

)

.

Proof. For every τ2 ≤ i ≤ τ3, define δi !
c
5 · logn

i log i·Ei·
√
n
so that the following holds for sufficiently

large n:

)τ3*
∑

i=+τ2,

δi · iEi =
c

5
·





)τ3*
∑

i=+τ2,

1

log i



 · log n√
n

(10)

≤ c

5
· τ3
log τ2

· log n√
n

≤ c

5
· log n

0.25 log n− 0.5 log log n
≤ c . (11)

For a sufficiently large n, it holds that δi > 1; moreover log δi ≥ Ω(i log i) for every τ2 ≤ i ≤ τ3. By
the Chernoff bound in Eq. 17:

Pr [|Si| > (1 + δi) · n ·Ei] ≤ exp (−δi ln(δi) · n · Ei/2) ≤ exp
(

−Ω(
√
n log n)

)

.

By applying a union bound over all τ2 ≤ i ≤ τ3, it follows that there exists a δ(c) > 0 such that:

Pr





)τ3*
∑

i=+τ2,

i |Si| >
)τ3*
∑

i=+τ2,

(1 + δi) · i · Ei · n



 ≤ exp
(

−δ
√
n log n

)

. (12)

The claim follows by Eq. 11 and 12.

Claim 24. For every c > 0, there exists a γ = γ(c) > 0 such that for sufficiently large n, we have

that:

Pr





n
∑

i=+τ3,

i |Si| > cn



 ≤ exp
(

−γ
√
n log n

)

.

11

Proof. We apply Markov’s inequality and get that there exists a c′ > 0 such that:

Pr
[

|Si| ≥
c

i

]

≤ i · Ei · n
c

≤ exp
(

−c′
√
n log n

)

,

where the last inequality holds because i ≥ τ3. The claim follows by applying a union bound over
i ≥ τ3.

5.3 Proof of Lemma 16

In order to prove Lemma 16, we apply a union bound over the Claims 21–24 and use Obs. 20. It
follows that for every c ≥ 0, there exists a γ = γ(c) > 0 such that:

Pr

[

n
∑

i=1

i |Si| > (10 + c) · n

]

≤ exp
(

−γ
√
n log n

)

.

Lemma 16 then follows from Lemma 18.

6 Proof of Theorems 2, 3 and 4

To prove Theorems 2 and 3, we employ Obs. 8 that shows a reduction from Rf (and Rg, respectively)
to Rb2 (and Rb log b respectively). The lower bound for Rf is discussed in Lemma 16. The lower
bound for Rg follows from Lemma 1 and Theorem 15. The lower bound for R0 follows from Cor. 14
and Theorem 15. Finally, we apply Lemma 25 to get matching upper bounds on Rf , Rg and R0.

7 Discussion: Comparison to Quick Sort

We note that the rate of the running time of Quick Sort is smaller than that of Bucket Sort [MH96].
Here, we refer to the version of Quick Sort that picks a pivot x uniformly at random and then
recurses on two subsets: the set of elements smaller than x and the set of elements greater than
x. Let Tqs(n) be the number of comparisons that Quick Sort makes on n randomly permuted
distinct keys. The expectation of Tqs(n) is denoted by µqs and equals Θ(n log n). McDiarmid and
Hayward [MH96] prove that for 1

lnn < ε ≤ 1:

Pr [|Tqs(n)− µqs| ≥ εµqs] = n−2ε(ln lnn−ln(1/ε)+O(log log logn)) .

Setting ε = c/ ln n (for c > 1) implies that the rate Rqs of Tqs(n) satisfies Rqs(cn) = O(log log log n).
One may wonder why the upper tails of Quick Sort and Bucket Sort exhibit different rates. We

provide some intuition by examining the distributions of occupancies induced by Quick Sort and
Bucket Sort on nodes of depth log n in a complete binary tree. Consider occupancies defined by
the Quick Sort recursion tree as follows. In each recursive call, the pivot “stays” in the inner node,
and the two lists are sent to the left and right children. Hence, every node is assigned a (possibly
empty) list of keys. We refer to the distribution of occupancies across the n nodes of depth log n
as the Quick Sort distribution.

The number of comparisons Tqs(n) is bounded by n log n (a bound on the number of comparisons
until level log n) plus the comparisons starting from level log n. Clearly, the number of comparisons
starting from level log n depends on the Quick Sort distribution.

The Quick Sort distribution is very far from the distribution of b(X) when X ∼ Xn (i.e., the
occupancy vector in Bucket Sort when the n keys are distributed uniformly at random). Specifically,

12

consider the event Z that the occupancies of the n/2 nodes of depth log n in the left subtree are
all zeros. In the Quick Sort distribution, the probability of event Z is at least 1/n, e.g., Z occurs
if the first pivot is the smallest element. In the Bucket Sort distribution, the probability of event
Z is 2−n (i.e., all the keys are in the interval (1/2, 1)).

Acknowledgments

We thank Seth Pettie for useful discussions.

References

[CFV01] Julien Clément, Philippe Flajolet, and Brigitte Vallée. Dynamical sources in information
theory: A general analysis of trie structures. Algorithmica, 29(1-2):307–369, 2001.

[CLRS09] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-

duction to algorithms. MIT press, 2009.

[Dev86] Luc Devroye. Lecture notes on bucket algorithms, volume 12. Birkhäuser Boston, 1986.

[Doe18] Benjamin Doerr. Probabilistic tools for the analysis of randomized optimization heuris-
tics. CoRR, abs/1801.06733, 2018.

[DP09] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the

analysis of randomized algorithms. Cambridge University Press, 2009.

[FJ02] James Allen Fill and Svante Janson. Quicksort asymptotics. Journal of Algorithms,
44(1):4–28, 2002.

[FKS82] Michael L Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with
o(1) worst case access time. In 23rd Annual Symposium on Foundations of Computer

Science, pages 165–169. IEEE, 1982.

[Jan15] Svante Janson. On the tails of the limiting quicksort distribution. Electronic Commu-

nications in Probability, 20, 2015.

[Jan18] Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics
& Probability Letters, 135:1–6, 2018.

[JR88] Philippe Jacquet and Mireille Regnier. Normal limiting distribution for the size and
the external path length of tries. 1988.

[Knu98] Donald Ervin Knuth. The art of computer programming, , Volume III, 2nd Edition.
Addison-Wesley, 1998.

[KPS89] Peter Kirschenhofer, Helmut Prodinger, and Wojciech Szpankowski. On the variance
of the external path length in a symmetric digital trie. Discrete Applied Mathematics,
25(1-2):129–143, 1989.

[MFJR00] Hosam Mahmoud, Philippe Flajolet, Philippe Jacquet, and Mireille Régnier. Analytic
variations on bucket selection and sorting. Acta Informatica, 36(9-10):735–760, 2000.

13

[MH96] Colin McDiarmid and Ryan Hayward. Large deviations for quicksort. J. Algorithms,
21(3):476–507, 1996.

[ML92] Hosam M Mahmoud and George S Lueker. Evolution of random search trees, volume
200. Wiley New York, 1992.

[MU17] Michael Mitzenmacher and Eli Upfal. Probability and computing: randomization and

probabilistic techniques in algorithms and data analysis. UK. Cambridge University
Press, 2017.

[Sei10] Raimund Seidel. Data-specific analysis of string sorting. In Proceedings of the twenty-

first annual ACM-SIAM symposium on Discrete algorithms, pages 1278–1286. Society
for Industrial and Applied Mathematics, 2010.

[SF13] Robert Sedgewick and Philippe Flajolet. An introduction to the analysis of algorithms.
Pearson Education India, 2013.

[SMDD19] Peter Sanders, Kurt Mehlhorn, Martin Dietzfelbinger, and Roman Dementiev. Sorting
and selection. In Sequential and Parallel Algorithms and Data Structures, pages 153–
210. Springer, 2019.

[Szp11] Wojciech Szpankowski. Average case analysis of algorithms on sequences, volume 50.
John Wiley & Sons, 2011.

[VF90] Jeffrey Scott Vitter and Philippe Flajolet. Average-case analysis of algorithms and data
structures. In Handbook of Theoretical Computer Science, Volume A: Algorithms and

Complexity, pages 431–524. 1990.

A Upper Bounds

Lemma 25. For every constant c > 0, the following hold:

1. Rf (cn) = O(
√
n log n),

2. Rg(cn) = O(n), and

3. R0(cn) = O(n).

Proof. To prove statements 1 – 2, we define Ai,j to be the event that Bj = i (occupancy of bin j
equals i) and note that:

Pr [Ai,j] =

(

n

i

)

·
(

1

n

)i

·
(

1− 1

n

)n−i
≥
(n

i

)i
·
(

1

n

)i

·
(

1− 1

n

)n

≥ 1

4
·
(

1

i

)i

= 2−2−i log i .

Fix a bin j. It follows that:

Pr [f(b(X)) ≥ cn] ≥ Pr
[

A√cn,j
]

≥ exp
(

−Ω(
√
n log n)

)

.

This implies that Rf (cn) = O(
√
n log n) for every constant c > 0.

14

For i such that i log i = Ω(n) (i.e., i = Θ(n/ log n)), we have that:

Pr [g(b(X)) = Ω(n)] ≥ Pr [Ai,j] ≥ exp (−Ω(n)) .

This implies that Rg(cn) = O(n) for every constant c > 0.

Now we consider lower bounding Pr [p0(L) ≥ µ0 + cn] for every c > 0 (statement 3). Consider the
event A in which the set L contains two binary strings α1 and α2 that share a common prefix of
length (c2 + 1) · n. When L ∼ Ln, we have that Pr [A] ≥ 2−(c/2+1)n.

On the other hand, we have that, if event A happens, then the depth of nodes π(α1) and π(α2)
is more than (c/2 + 2) · n in the trie T (ϕ0(L)) (i.e., at least c/2 + 2 bits are required to separate
α1 and α2). For the rest n − 2 binary strings, we use Obs. 10 and get that we needed at least
(n− 2) log(n− 2) bits to separate them. Since µ0 ≤ n log n+ 2n, we get that event A implies that

p0(L | A) ≥ 2 ·
(c

2
+ 2
)

· n+ (n − 2) log(n− 2) ≥ n log n+ 2n+ cn ≥ µ0 + cn .

In other words, Pr [p0(L) ≥ µ0 + cn] ≥ Pr [A] ≥ 2−(c/2+1)n, hence R0(cn) = O(n).

B Proof of Observation 8

Proof. Consider the first inequality that we need to prove:

Rf (δ1n) ≤ Rb2(cn) . (13)

Recall that µf = E [f(b(X))] = 2n − 1, and that µb2 = E [Tb2(X)]. Equation 13 is equivalent
to the inequality (where X ∼ Xn).

Pr [Tb2(X) ≥ µb2 + cn] ≤ Pr [f(b(X)) ≥ µf + δ1n] .

Recall that Tb2(X) = Θ(n+ f(b(X))). Let 0 < c1 ≤ c2 be constants such that, for sufficiently
large values of n,

c1 · (n+ f(b(X))) ≤ Tb2(X) ≤ c2 · (n+ f(b(X))) .

Let δ1 !
c−3(c2−c1)

c2
. Note that δ1 = Θ(c). Then,

Pr [Tb2(X) ≥ µb2 + c · n] ≤ Pr [c2 · (n+ f(b(X))) ≥ µb2 + c · n]
≤ Pr [c2 · (n+ f(b(X))) ≥ c1n+ c1µf + cn]

≤ Pr

[

f(b(X)) ≥ µf +
c− 3(c2 − c1)

c2
· n
]

= Pr [f(b(X)) ≥ µf + δ1n] .

The second inequality is proved in a similar fashion.

15

C Variants of Chernoff Bounds

Theorem 26. Let X1, . . . ,Xn be independent binary random variables . Let X =
∑n

i=1 Xi and

µ = E [X]. Then the following Chernoff bounds hold:

1. For every δ > 0:

Pr [X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)(1+δ)

)µ

. (14)

2. For 0 < δ ≤ 1,

Pr [X ≥ (1 + δ)µ] ≤ e−µδ
2/3 . (15)

3. For δ ≥ 1,

Pr [X ≥ (1 + δ)µ] ≤ e−µδ/3 . (16)

4. For δ ≥ e,

Pr [X ≥ (1 + δ)µ] ≤ e−µδ ln(δ)/2 . (17)

5. For 0 < δ ≤ 1,

Pr [X ≥ (1− δ)µ] ≤ e−µδ
2/3 . (18)

Proof. The bounds in Eqs. 14, 15 and 18 are proved in [MU17]. For δ > 0, define the function
f(δ) ! (1 + δ) ln(1 + δ) − δ and note that Eq. 14 states that Pr [X ≥ (1 + δ)µ] ≤ exp(−µ · f(δ)).
For δ ≥ 1, we have that f(δ) ≥ δ/3, which proves Eq. 16. For every δ > 0, f(δ) ≥ δ ln(δ)/2, which
proves Eq. 17. The bound in Eq. 17 and its proof also appear in Chapter 10.1.1 in [Doe18].

We note that the bounds 14–17 hold even when the parameter µ is an upper bound on E [X].
Moreover, they also hold when the random variables X1, . . . ,Xn are negatively associated [DP09,
Thm. 3.1]. Indeed, in the proofs of the Claims 21 – 24, we apply Eq. 14 – 17 to the random variable
|Si|, which is a sum of negatively associated indicator variables.

16

	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries and Definitions
	3 Reductions
	3.1 Balls-into-Bins Abstraction
	3.2 Lower Bounding the Rate of blogb-Bucket Sort
	3.3 Lower Bounding the Rate of the Nonvoid External Path Length

	4 The Upper Tail of the Excess Path Length
	5 Lower Bound for b2-Bucket Sort
	5.1 Preliminaries
	5.2 Applying Chernoff Bounds in Different Regimes
	5.3 Proof of Lemma 16

	6 Proof of Theorems 2, 3 and 4
	7 Discussion: Comparison to Quick Sort
	A Upper Bounds
	B Proof of Observation 8
	C Variants of Chernoff Bounds

