AugusT 2021 KEY ET AL. 1399

Advanced Deep Learning-Based Supervised Classification of Multi-Angle Snowflake
Camera Images

C. KEY,2 A. HiCcKs,2 AND B. M. N ~a
OTAROS

a Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

(Manuscript received 18 November 2020, in final form 1 June 2021)

ABSTRACT: We present improvements over our previous approach to automatic winter hydrometeor classification by
means of convolutional neural networks (CNNs), using more data and improved training techniques to achieve higher
accuracy on a more complicated dataset than we had previously demonstrated. As an advancement of our previous proof of
concept study, this work demonstrates broader usefulness of deep CNNs by using a substantially larger and more diverse
dataset, which we make publicly available, from many more snow events. We describe the collection, processing, and sorting
of this dataset of over 25 000 high-quality Multi-Angle Snowflake Camera (MASC) image chips split nearly evenly between
five geometric classes: aggregate, columnar crystal, planar crystal, graupel, and small particle. Raw images were collected
over 32 snowfall events between November 2014 and May 2016 near Greeley, Colorado, and were processed with an
automated cropping and normalization algorithm to yield 224 3 224 pixel images containing possible hydrometeors. From
the bulk set of over 8 400 000 extracted images, a smaller dataset of 14 793 images was sorted by image quality and rec-
ognizability (Q&R) using manual inspection. A presorting network trained on the Q&R dataset was applied to all
8 400 0001 images to automatically collect a subset of 283 351 good snowflake images. Roughly 5000 representative ex-
amples were then collected from this subset manually for each of the five geometric classes. With a higher emphasis on in-
class variety than our previous work, the final dataset yields trained networks that better capture the imperfect cases and
diverse forms that occur within the broad categories studied to achieve an accuracy of 96.2% on a vastly more challenging
dataset.

SIGNIFICANCE STATEMENT: Classification of precipitation, namely, deciding to which of the several typical
classes of winter hydrometeors the observed particles belong, can enrich our understanding of polarimetric radar
signatures of snow, as well as ice cloud processes and the resulting precipitation production. The high-resolution
photographs of snowflakes collected by the Multi-Angle Snowflake Camera (MASC) are especially suitable for
snowflake classification. However, classifying particle types from MASC photographs by visual inspection is not
practical given the typical amount of MASC data. We present advanced automatic deep machine learning-based
classification of MASC images using convolutional neural networks. This study demonstrates broad usefulness of our
approach yielding trained networks that achieve extremely high classification accuracy on a large and diverse dataset
from many snow events.

KEYWORDS: Snow; Ice particles; Optical properties; Data processing; In situ atmospheric observations; Surface obser-
vations; Classification; Machine learning; Neural networks

1. Introduction images of individual snowflakes from a variety of perspectives,
or even used to generate 3D models of hydrometeors auto-
matically (Kleinkort et al. 2017). A MASC system is capable of
capturing tens to hundreds of thousands of images during a
single winter storm event, leading to datasets too large for
manual classification. This has been a major motivation for
accurate, automated snowfall classification.

Existing approaches to automated snowfall classification
from MASC images vary and include the excellent work of
Praz et al. (2017), our previous work (Hicks and Notaro% 2019),
and an unsupervised technique (requiring no human input)
from Leinonen and Berne (2020). The multinomial logistic
regression (MLR)-based method described in Praz et al. (2017)
has been demonstrated effective but requires careful definition
and algorithmic extraction of several image features from
which classifications are made. This approach has achieved an
outstanding 95% classification accuracy, but may be somewhat
rigid, relying on human-described features such as morpho-
Corresponding author. Branislav M. Notaroy, notaros@colostate.edu  logical skeleton statistics, rotational symmetry, and gray-level

Snowflake classification is important for improved weather
radar, assessment of storm structure, and characterization of
winter precipitation events from ground sensors (Zhang et al.
2011; Straka et al. 2000; Libbrecht 2017). Several types of
in situ image capturing devices used for ground-based collec-
tion of data relevant to snowflake classification include the
two-dimensional video disdrometer (Schénhuber et al. 2008),
the Precipitation Instrument Package [an improved version of
the system in Newman et al. (2009)], and the Multi-Angle
Snowflake Camera (MASC). We focus on snowflake images
collected by MASC systems in the present study. To allow
researchers to study the microphysical characteristics of
snowfall, relevant to a storm’s composition, the MASC cap-
tures high-resolution images of falling hydrometeors from
several angles. These images can be processed to extract
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Fic. 1. MASCRAD snow field site at Easton Valley Airport,
near Greeley, Colorado, under the umbrella of CSU-CHILL ra-
dar. MASC (top right of the photo), along with other surface in-
strumentation, is contained in the 2/3-scaled DFIR.

cooccurrence. Older supervised classification work in Lindqvist
et al. (2012), similarly, applies principal component analysis
coupled with Bayesian and weighted nearest-neighbor tech-
niques to classify ice-cloud particles, typically achieving accu-
racies between 80% and 90%. We have previously presented
convolutional neural networks (CNNs) as a robust alternative
that can easily be applied and generalized in a black-box
manner without expert definition of features. Both methods, of
course, require manual input to generate training and test data
labels. The work of Leinonen and Berne (2020), on the other
hand, automatically classifies snowflake images by exploring
the latent space of generative, as opposed to predictive,
models. Such unsupervised approaches are extremely promis-
ing for discriminating and classifying different hydrometeor
images in general, but an unsupervised method inherently
produces its own categories, rather than directly assigning
images to existing, known categories with which researchers
are likely already familiar.

Accordingly, we offer improvements to our existing CNN-
based, supervised approach (Hicks and Notaro¥ 2019), using
more data and improved training techniques to achieve higher
accuracy on a more complicated dataset than we had previ-
ously demonstrated. As an advancement of our previous proof
of concept study, which used a geometric dataset focused on
easily identifiable examples of each of the snowflake classes
considered, a principal goal of this work is to demonstrate
broader usefulness of deep CNNs for automated snowfall
classification by using a larger dataset containing wider in-class
variety. We present improved training methods and new, au-
tomated techniques for detection, cropping, and normalization
of snowflake images as well as quality and recognizability
preprocessing of image data. From these improvements, we
demonstrate higher overall test accuracy on a vastly more
challenging dataset than that used in our previous work.
Together, these improvements constitute an accurate, efficient,
and robust supervised machine learning approach to snowflake
classification, using deep neural networks and images collected
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FiG. 2. Example of a normalized raw MASC image. Several
snowflakes can be seen in addition to background glare (center left)
and subtle ground and sky glow (top and bottom). Note that the
ground and sky glow may not be visible in all prints or computer
monitor settings.

by the MASC or another image-based particle recording in-
strument or system.

2. Data collection and image processing

This section describes the collection of raw MASC images as
well as the automated cropping and normalization performed
on raw images to isolate potential snowflakes present in
each image.

FiG. 3. Example of a binary image produced by application of a
brightness threshold and five-pixel radius to the normalized raw
image in Fig. 2. Possible snowflake silhouettes are now apparent.
Background glare (center left) was rejected due to exceeding the
mean brightness threshold. Dimmer glare cases are reliably as-
signed to the not-flakes Q&R category.
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Fic. 4. Example crops and image chips extracted from the MASC image shown in Figs. 2 and 3. (a) Cropped image of a planar crystal.
(b) Example crop from (a) after contrast scaling. (c) Final image chip produced from contrast scaled crop in (b). (d) Cropped image of an
aggregate. (e) Example crop from (d) after contrast scaling. (f) Final image chip produced from contrast scaled crop in (e).

a. Raw image collection

The 3 458 848 raw images used to generate the training set
were collected from several winter weather events between
November 2014 and May 2016 using a modified MASC system.
The system was located at a surface instrumentation field site
established under MASC and Radar (MASCRAD) (Notaro¥
et al. 2016; Bringi et al. 2017; Kennedy et al. 2018). This is the
same site and system used for data collection in Hicks and
Notaro¥ (2019). The MASCRAD field site is located at the
Easton Valley View Airport in La Salle, near Greeley,
Colorado, shown in Fig. 1. The MASC system, along with other
ground-level instrumentation at the site, is situated within a
double fence intercomparison reference (DFIR). Raw images
from both winter storm events used in Hicks and Notaro¥
(2019) constitute a subset of the total raw image set used in the
present work. Details of the MASC system used are presented
in Hicks and Notaro¥ (2019). Although the MASC allows for
collection of snowflake imagery from multiple angles to help
determine three-dimensional shape (Kleinkort et al. 2017), we
did not make use of this feature directly for the present work.
As described in Leinonen and Berne (2020), it is common
that a given snowflake will only be captured at usable quality
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by a single camera of a multicamera system, the snowflake
often out of focus or occluded in other fields of view, so limiting
study to only snowflakes that appear at high quality in all fields
of view substantially reduces the number of useable examples.
By limiting study to single-view cases, we were able to manu-
ally classify thousands, rather than hundreds of snowflakes at a
cost of increased ambiguity due to lack of multiangle data.
Note that we did not explicitly remove cases where a single
snowflake was imaged from multiple angles when forming the
dataset for the present work.

b. Detection, cropping, and normalization

As the MASC produces raw, wide field of view images,
typically containing many snowflakes, it is necessary to isolate
individual examples for classification. All images were pro-
cessed in grayscale (single channel). To detect possible flakes in
each raw MASC image, we first normalized the entire grayscale
image, dividing all pixel values by the maximum brightness
value. An example of a normalized raw image is shown in
Fig. 2. We then converted the grayscale image into a binary
image by application of a threshold. Pixels in the grayscale
image with brightness greater than or equal to the threshold
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Fig. 5. Examples of image chips in the not-flakes quality and recognizability category. A description of this category is given in Table 1.
(first row) (left to right) a coin, background glare, sky glow seen between fence posts, and a finger. (second row) (left to right) A sensor
probe, an out of focus sensor probe, part of a pair of calipers, and a string. (third row) (left to right) A metal ball, part of a mitten,
background glare, and amplified sensor noise. (fourth row) (left to right) Background glare, sky glow seen above fence posts, background

glare, and background glare.

were assigned value 1, and pixels less than the threshold were
assigned value 0. For the present work, this threshold was set to
0.1. We then set any pixels in the binary image with value 0 to 1
if they were within a two-pixel radius (using Chebyshev dis-
tance) of any pixel that had already been assigned a value of 1
in the previous thresholding step. The example image from
Fig. 2 is shown after thresholding and application of the two-
pixel radius in Fig. 3. This radius was chosen by hand as a
reasonable value. Next, we computed sets of connected com-
ponents in the binary image. A connected component is any
group of active (value: 1) pixels that form an unbroken group.
If a connected component contained fewer than 26 active
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pixels, it was discarded. For each connected component not
discarded, we cropped a rectangular region from the original
grayscale image corresponding to its bounding box. Two such
examples produced from Fig. 3 are shown in Figs. 4a and 4d.
Cropped images were then contrast scaled linearly such that
the top 1% of brightest pixels were saturated. Figures 4b and 4e
show cropped image examples from the previous step after
contrast scaling. Note that contrast scaling destroys some in-
formation theoretically available in the images (by loss of ab-
solute brightness and saturation of some pixels). However, we
found that brightness variations between flakes were domi-
nated by differing lighting conditions, rather than useful
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FiG. 6. Examples of (left to right) bad-crop, bad, okay, and good image chips, respectively. Category descriptions are given in Table 1.

information like snowflake class, so contrast scaling was per- image was rejected if the mean value of its pixels was greater
formed to give the network input for which pixel brightness than 0.5. We then centered each remaining cropped, scaled
variations are dominated by microphysical characteristics image on a 224 3 224 black background to produce final image
rather than lighting conditions. After scaling, any cropped chips. Examples are shown Figs. 4c and 4f. Cropped images

TaBLE 1. Category names, counts, and descriptions for the quality and recognizability dataset, a balanced subset of which was used

to train a presorting network using the methods of Hicks and Notaro¥ (2019).

Category

name Count

Description

Not flakes 7020
Bad crop 1500

Bad 1977
Okay 2796

Good 1500

Object other than a snowflake present in the image; examples: sensor noise, glare, sky/ground glow, and calibration probes

Likely snowflake present, but poor cropping leaves a substantial portion of the snowflake out of the image chip,
interfering with geometric classification

Likely snowflake present, but poor lighting or focus prevent identification; image chips containing more than one
disjoint (nonaggregated) snowflake are also assigned to this class, regardless of image quality

Focus and lighting are good enough to identify coarse flake features, and likely geometric class, but are insufficient to
capture microphysical characteristics

Lighting and focus are good enough to resolve microphysical characteristics and determine snowflake geometric class
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TaBLE 2. Number of examples in each class for the geometric

dataset.

Class name Count
AG 5038
CcC 5021
GR 5000
PC 5014
SP 5126

that exceeded the 224 3 224 image chip sized were cropped to
224 3 224 pixels after centering.

This approach to cropping and normalization was arrived at for
several reasons. In contrast to simply cropping a 224 3 224 pixel

AND OCEANIC TECHNOLOGY VOLUME 38

region centered on each connected component in an image
(or similar), we found that the above method significantly
reduced the number of image chips that contained multiple,
physically disconnected snowflakes. In other words, during
heavy snowfall events, we found it was common for two or
more snowflakes to appear within 224 pixels of each other. By
cropping a tight bounding box as above, we were able to re-
cover far more closely spaced snowflakes into usable, unam-
biguous image chips. Rejection of cropped, scaled images
with mean pixel value greater than 0.5 rejected most crops of
the sky and background that did not actually contain a snow
particle. By also rejecting connected components with pixel
counts below 26, we avoided cases where a single bright pixel
caused a false detection. In general, the described cropping

Fic. 7. Examples of image chips in the aggregate (AG) class of the final geometric dataset. All image chips in the final geometric
dataset had been automatically categorized into the good Q&R category. We placed emphasis on collecting a wide variety of sizes
and forms of aggregate with varying types of constituent particles.
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and normalization approach was able to detect far more small
particles, and dim, unrimed planar crystals than the approach
used for Hicks and Notaroy (2019). Application of this
cropping algorithm to all raw MASC images from November
2014 to May 2016 produced 8 441 563 image chips.

3. Hydrometeor classification scheme and training sets

This section describes how the 8 441 563 224 3 224 pixel
image chips extracted from raw MASC images were auto-
matically sorted to quality classes and how images from the
best class were manually sorted into the five geometric cat-
egories studied. A total of 25 199 examples were manually
sorted for the final geometric dataset covering 32 snowfall
events, an event defined here as a period during which no
more than 24 h passed between collection of any two image
chips identifies as snowflakes during manual classification.
All classification was performed by a single analyst who re-
viewed each image at least three times. Overall, we are
confident the manual classifications used for training accu-
rately represent the opinions of our analyst and have made
this dataset available at Key et al. (2021). Note, however, that
our use of only one human analyst has potential to introduce
more bias relative to other work for which multiple humans
performed analysis, such as Praz et al. (2017). We had orig-
inally planned to also produce an expanded riming dataset in
addition to the presented geometric dataset, but we found
that some riming degrees were insufficiently represented for
production of a larger, balanced riming dataset from our
current pool of raw images. We hope to contribute such a
dataset in future work.

a. Quality and recognizability preprocessing

The snowflake detection, cropping, and normalization
method described in section 2b remains imperfect. Therefore,
many of the image chips produced contained bright points
from a raw image that are not snowflakes. These included
sources like glare, sensor noise, and sky/ground glow. In ad-
dition, operators of the MASC system occasionally forgot to
turn off data collection while calibrating and testing the system
after maintenance and redeployment. This led to captures of
test probes, hands, coins, and other objects to occasionally
appear in the raw image dataset. Several examples of image
chips due to nonflake objects are shown in Fig. 5.

For image chips that contain snowflakes, there is an in-
herent range of quality. Some flakes appear out of focus in
raw images. Others are poorly cropped, either due to over-
cropping by the image processing method in section 2b, or
because they originally appeared partially out of field of view
in a raw MASC image. We considered image chips containing
snowflakes to fall into four recognizability categories: bad
crop, bad, okay, and good. Image chips in the bad-crop cat-
egory are those where unambiguous recognizability of the
imaged snowflake is made difficult due to overcropping by the
processing method described in section 2b or part of the flake
appearing out of field of view in the raw image, leaving a
substantial portion of the flake absent from the image chip.
Note that cases where a flake was simply too large to fit in a
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TaBLE 3. Test accuracy results of 10 independent training runs.
Note that training runs 5 and 6 producing test accuracies identical
to two decimal places occurred by chance and was verified not to be
a mistake.

Run Test accuracy

96.56%
96.04%
96.24%
95.88%
96.00%
96.00%
96.20%
96.08%
96.68%
0 96.64%

= O 00 O U A WN -

single image chip were not included in the bad-crop category.
In our manual exploration of the dataset, such flakes were
almost exclusively in the AG class and easily identifiable
despite cropping to 224 3 224 pixels. Rather, overcropping by
the processing described in section 2b is typically due to poor
or uneven illumination of the flake causing the rectangular
bounding box of the resulting connected component to not
contain most of the pixels covered by the snowflake. Four
examples of bad-crop image chips are shown in the first col-
umn of Fig. 6. Bad image chips are those for which poor focus
or poor illumination rendered the target snowflake unrec-
ognizable. Image chips containing more than one disjoint
(nonaggregated) snow particle are also included in the bad
category, regardless of lighting and focus. We consider two
snow particles disjoint if they were clearly identifiable as dis-
crete, physically unconnected particles by our human analyst.
Four such examples are shown in the second column of Fig. 6.
Okay image chips were those that contained a recognizable
snowflake but suffered from mild blur or high background
noise that made examination of microphysical characteristics
difficult. Four examples of okay image chips are shown in the
third column of Fig. 6. Good image chips were those that were
free of substantial overcropping and clear enough to identify
relevant microphysical features. Column four of Fig. 6 shows
four examples of good image chips.

To avoid wasting human time visually inspecting images
that did not contain flakes or were of quality too poor to use,
we trained a preliminary quality and recognizability (Q&R)
classifier on a small, manually sorted subset of the 8 441 563
image chips. This classifier was implemented by necessity to
reduce the data volume needing manual inspection, and its
results were not further analyzed or verified in the present
work. To train the Q&R classifier, we collected at least 1500
examples for each of five categories: not flake, bad crop, bad,
okay, and good, with an emphasis on variety within each
class. Counts per category for the Q&R dataset are pre-
sented in Table 1 along with descriptions. When collecting
example images, we included roughly equal numbers of
examples from each geometric class in okay and good cat-
egories to avoid biasing the classifier against a given geo-
metric type. The Q&R classifier was trained using the same
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Fig. 8. Examples of image chips in the columnar crystal (CC) class of the final geometric dataset. All image chips in the final geometric
dataset had been automatically categorized into the good Q&R category. We included a variety of sizes, forms, and degrees of riming. An
example of a backlit snowflake is shown in row 2, column 2. Such cases were rare but were included whenever backlighting did not

interfere with recognizability.

methodology used for the geometric classifier in Hicks and
Notaro¥ (2019). For training, 1500 examples from each Q&
R category were drawn randomly. The trained Q&R clas-
sifier was then applied to all 8 441 563 image chips to sort
each into not-flake (3 791 326), bad-crop (723 550), bad
(3 062 288), okay (582 333), and good (282 001) categories.
Only image chips assigned by the Q&R network to the good
category were examined to produce the geometric dataset
for the present study.

b. Geometric classes

A variety of attempts have been made to classify snow-
flakes (Nakaya and Sekido 1936; Magono and Lee 1966;
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Korolev and Sussman 2000; Grazioli et al. 2014; Vazquez-
Martin et al. 2020). As in our previous work (Hicks and
Notaro% 2019), we chose to use the scheme adopted by Praz
et al. (2017) for training and testing of their multinomial
logistic regression snowflake classifier. We summarize this
scheme here.

The scheme uses the nine categories of snowflakes de-
fined in Magono and Lee (1966), with a few simplifica-
tions for data availability. Praz et al. (2017) additionally
defined the aggregate and small particle classes. Aggregates
are defined as single snowflakes that are the result of in-air
collision of two or more particles. Small Particles are snow-
flakes whose features are too small to categorize. Note that
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Fic. 9. Examples of image chips in the graupel (GR) class of the final geometric dataset. All image chips in the final geometric dataset
had been automatically categorized into the good Q&R category. We included a variety of textures and sizes and also included melting

examples when available.

this is based on the subjective opinion of the analyst, rather
than a strictly defined size threshold. Simplifications from
Magono and Lee (1966) and addition of AG and SP classes
resulted in 10 individual categories, of which only 6 were
used in Praz et al. (2017) due to data availability: aggre-
gates (AG), small particles (SP), columnar crystals (CC),
planar crystals (PC), combination of columnar and pla-
nar crystals (CPC), and graupel (GR). As in Hicks and
Notaro¥ (2019), we chose to exclude the CPC class from
the present study due to data availability. We found only a
few hundred clear examples of CPC in the good Q&R
class. CPC appeared far less commonly than the next rarest
class, GR, which had several thousand good Q&R exam-
ples. Image chips that fell into unconsidered categories,

Brought to you by Colorado State University Libraries | Unauthenticated | Downloaded 08/19/21 06:39 PM UTC

like CPC, we simply omitted from consideration for the
present work.

c. Building the geometric dataset

Our goal in collecting the geometric dataset for the present
work was to establish a large, highly varied collection of image
chips in each of the five categories considered. Deep neural
networks, like that used in Hicks and Notaro¥ (2019) and the
present work can achieve high accuracies but require substantial
training data to avoid overfitting (Simonyan and Zisserman
2015; Szegedy et al. 2015). With tens of millions of parameters,
deep CNNs like the ResNet-50 architecture (He et al. 2016)
can store substantial quantities of information to learn highly
complicated associations and trends (Zeiler and Fergus 2014).
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Fic. 10. Examples of image chips in the planar crystal (PC) class of the final geometric dataset. All image chips in the final geometric
dataset had been automatically categorized into the good Q&R category. We included difficult examples like row 1, column 2 where
possible to help differentiate such PC cases from CC examples. Emphasis was also placed on including examples that lacked easily

identifiable sixfold symmetry.

Care must therefore be taken to train such networks on large
enough datasets that they cannot simply memorize associ-
ations between specific images and their labels or extract
spurious trends.

Another important consideration is balance between classes
during training. Unless special precautions such as class-specific
learning rates are used (not used in the present study), training a
neural network on a dataset biased toward a particular class
will often bias the network toward that class. As an extreme
example, consider a network trained on a dataset of 900 GR
images and 100 PC images; the network can attain 90% ac-
curacy on the training set simply by learning to label every
image as GR. It is therefore important to present the network
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with roughly equal numbers of examples in each class during
training.

To account for these factors, we limited the number of ex-
amples in our geometric dataset for each class to the maximum
number of good Q&R examples we could find for the rarest
class considered. After CPC (not considered), GR was the
rarest class, for which we could only find roughly 5000 ex-
amples. Accordingly, we collected roughly 5000 examples of
each of the other classes considered, for a total of 25 199 ex-
amples. Exact image chip counts per class are presented in
Table 2. Figures 7-11 show representative examples from the
final AG, CC, GR, PC, and SP sets, respectively. When col-
lecting examples for each class, we put emphasis not only on
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Fic. 11. Examples of image chips in the small particle (SP) class of the final geometric dataset. All image chips in the final geometric
dataset had been automatically categorized into the good Q&R category. As small particles are, by definition, particles with features too
small to classify, there is little interesting variety among the collected examples other than various shapes and degrees of riming.

archetypical examples, but also examples we considered good
counterexamples to possible oversimplifications of each class:
e.g., AGs are always large, PCs always have sixfold symmetry,
or GR always has a smooth outline. Image chips were not
included in the geometric dataset if we could not determine
an appropriate label based on information present in the
image chip alone, i.e., no multiangle information was used
during manual sorting. We note overall that there is an in-
herent subjectivity in identification of snowflakes in single-
view images, especially for classes like GR (Fig. 9), for which
distinguishing from other heavily rimed particles is subjec-
tive, and SP (Fig. 11), for which deciding unrecognizability of
features due to small size is highly subjective. We did not
avoid using backlit examples where available, although these
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were rare, only occurring where a snow particle was imaged
while falling in front of a sufficiently bright glare point in the
background. Due to their rarity, inclusion of backlit cases
likely did not have a substantial impact on accuracy of the
trained network. Our analyst recollects seeing at most a dozen
backlit cases during manual classification, but such cases were
assigned no special designation or identifying information that
would make quantification of their impact possible without
another manual review of the dataset.

4. Convolutional neural networks methodology

A brief discussion of the network architecture is presented in
this section. We also present a summary of the training method
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G. 12. Training progress for an example training run using the methods and hyperparameters
described in section 4b.

and hyperparameters used. Note that, although the network
architecture remains the same as that in our previous work
(Hicks and Notaro% 2019), hyperparameters for training differ.

a. Neural network architecture

We used an identical ResNet-50 architecture to that in Hicks
and Notaro¥ (2019). The ResNet-50 architecture has been
demonstrated as an excellent balance between speed and ac-
curacy for image classification tasks and is described in detail
in He et al. (2016). The residual approach, in general, was
groundbreaking at the time of its publication, as it presented an
elegant solution to the vanishing gradient problem that had
previously limited scaling of CNN accuracy with increased
depth. The use of residual connections (or similar), as de-
scribed in He et al. (2016) has since been widely adopted by
deep learning researchers and practitioners. As in Hicks and
Notaro¥ (2019), we used a ResNet-50 model that had been
pretrained for general image classification on the ImageNet
database (Russakovsky et al. 2015). We also experimented
with randomly initialized (no pretraining) versions of the same
architecture but found no substantial benefit. We therefore
chose to only focus on the pretrained model for the present
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work for easy comparison with Hicks and Notaro¥ (2019). A

necessary change made to the architecture was reduction in the

number of outputs of the final, fully connected layer for our
substantially lower number of classes (the original ResNet-50
architecture trained on ImageNet had 1000 classes, not 5).
Weights in the modified fully connected layer were initialized
randomly.

b. Training method and hyperparameters

As in Hicks and Notaro¥ (2019), network performance was
determined by cross-entropy error, and network weights and
biases were optimized by stochastic gradient descent to
minimize this loss function. For training, validation, and
testing, we again limited the number of examples used in
each class to the number of examples available in the
smallest class (in the present work, GR with a total of 5000
hand-classified image chips available). The examples used
from classes with raw counts larger than the minimum
were drawn randomly. We again used a minibatch size of 10.
Beyond this, we made several changes to the hyper-
parameters and training method used in Hicks and Notaro¥
(2019). Our dataset was also substantially larger; the testing
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FiG. 13. Confusion matrix for the network trained in Fig. 12
applied to the test set. Each red or green cell corresponds to a
target class (horizontal) and output class (vertical). Row 2, column
1, for instance, shows that five image chips in the test set with target
class AG were assigned to the CC class by the trained network, and
this corresponded to 0.2% of the entire dataset. The first five cells
of the bottom row show accuracy (green) and error (red) for each
target class. Row 6, column 1, for instance, shows that, of image
chips in the test set with target class AG, 94.2% were classified
correctly by the network while 5.8% were classified incorrectly.
The first five cells of the rightmost column similarly show accuracy
and error for each output class. Row 1, column 6, for instance,
shows that, of image chips assigned by the network to the AG class,
96.3% were classified correctly while 3.7% were classified incor-
rectly. An overall network accuracy (all classes) of 96.2% is shown
in the bottom right cell. AG and PC were the most confused classes.

set alone, in this case, was comparable in size to the entire
geometric dataset used for Hicks and Notaroy (2019),
roughly 1450 examples. In the present study, we randomly
selected 500 examples from each class for a total of 2500
testing examples. The remaining 22 699 examples were ran-
domly partitioned into a training set (;90%) and a valida-
tion set (5 10%), both evenly distributed among the classes
studied. The random partitioning between training and val-
idation was unique to each training run. Only the training
and validation sets were used for hyperparameter tuning,
which was performed by a mix of expert hand tuning and
small parametric sweeps and included tuning of the mini-
batch size, learning rate, and number of training epochs.
We also trained for substantially longer than our previous
work, training for a total of 20 epochs, as opposed to 10.
The training set was shuffled (reordered) randomly every
epoch. An epoch is defined as one complete pass through the
training set, so, the present training dataset containing many
more examples than that available in Hicks and Notaro¥
(2019), this corresponds to roughly a thirtyfold increase in
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training time. We were able to extend the training time
substantially due to prevention of overfitting by the larger
training dataset used in the present work. As opposed to the
constant learning rate of 0.0003 used in Hicks and Notaro¥
(2019), we began with a leggning rate of 0.001, which was
then scaled by a factor of 1/ 10 every five epochs. We found
this led to a small but noticeable improvement in final net-
work accuracy. We expect improvements in network accu-
racy could be further improved with additional hyperparameter
tuning using more compute resources for large parametric sweeps.

5. Results and discussion

This section presents and discusses the performance of the
trained classification networks on the test dataset. The final
mean test accuracy achieved was 96.23% with a standard de-
viation of 0.29% across 10 training runs, the individual test
accuracies of which are presented in Table 3. Only the order in
which images were presented to the network and random
partitioning of nontest images between training and validation
differed between training runs. We expect we could have
achieved even higher accuracy if we had limited our dataset to
only archetypal examples, but this would have diminished the
usefulness of the dataset and resulting trained model for gen-
eral snowfall classification tasks.

Figure 12 shows accuracy and loss of a typical trained net-
work (test accuracy close to the mean) on the training and
validation set with respect to training iteration (and epoch,
indicated by alternating vertical bands) for a typical training
run. There is no evidence of overfitting, and validation accu-
racy increased nearly monotonically with iteration count.
Overfitting, if present, would be apparent in Fig. 12 as diver-
gence of the black validation accuracy and blue training ac-
curacy curves. For the training run shown, the network
achieved a validation accuracy of 96.1% and a test accuracy of
96.2%. We suspect the much larger size of the geometric
dataset is the dominant factor in improving performance over
our previous work but did not have sufficient compute time to
perform a full parametric sweep to confirm this. We found that
network performance on the validation and training sets
were comparable, indicating that training, testing, and vali-
dation datasets all sampled the underlying distribution of
snowflake geometries well. The validation accuracy standard
deviation for the 10 example runs shown in Table 3 was
0.42%, and their mean validation accuracy was 96.26%. We
attribute the larger validation accuracy standard deviation,
as compared to the test accuracy standard deviation, to
random selection of the validation set for each training run
(the test set did not change between runs). There was little
variation between training runs, with the only nominal dif-
ferences due to this random partitioning of the validation
and training sets as well as random reordering of the training
set during each epoch. Figure 13 shows a confusion matrix for
the same network, the training progress of which is shown
in Fig. 12.

In general, trained networks would confuse PC and AG
classes most often. We included many difficult examples in the
AG class that featured a prominent planar crystal with several
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Fig. 14. Examples of image chips misclassified by a trained network: (top to bottom) misclassified aggregates, misclassified columnar
crystals, misclassified graupel, misclassified planar crystals, and misclassified small particles are shown with the label assigned by the
network overlaid for each image chip.
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less-prominent particles that had adhered due to midair colli-
sions, so confusion between the two classes seems under-
standable to us. Figure 14 presents examples of image chips
misclassified by the typical network from Figs. 12 and 13.
Overall, most misclassifications appear to be blatant errors due
to imperfection of the trained model, but several stand out as
ambiguous cases or possibly even human error. Figure 14, row
2, column 2, for instance, was assigned by the network to the
AG class, having been human labeled as a columnar crystal.
Further inspection indicates this snowflake may indeed be a
simple aggregate or even a malformed planar crystal, sug-
gesting this misclassification is due human error rather than
network error. Figure 14, row 4, column 3, shows a clear planar
crystal adhered to a small aggregate of columnar crystals.
Although the planar crystal dominates the image chip, the
aggregation present indicates the network is correct to assign
this image chip to the AG class. Figure 14, row 3, column 4,
and row 5, column 2, respectively, show a GR image chip
misclassified as SP and a SP image chip misclassified as GR,
respectively. These two cases show the ambiguity of the SP
class and the difficulty of drawing a distinction between small
GR flakes and relatively large, round SP flakes. Figure 14, row
5, column 3, shows another ambiguous case. Human classified
as SP but network classified as CC, this particle shows pos-
sible CC-like features (dominant uniaxial crystal growth) but
is barely too small for our analyst to assign confidently to the
CC category.

6. Conclusions

This paper has presented improvements over our previous
approach (Hicks and Notaro¥ 2019) to automated winter hy-
drometeor classification using deep convolutional neural net-
works. Using improved training methods and a substantially
larger and more complicated dataset from many more snow
events than in our previous study, we were able to achieve over
96.2% accuracy on a test set of 2500 images. We consider this
result substantial for several reasons. The MASC is a high-
throughput sensor, collecting tens to hundreds of thousands of
detectable snowflake images during a winter storm event, so
even small accuracy improvements lead to a substantial re-
duction in the total number of misclassified snowflake images.
Namely, this is a 5 40% reduction in the fraction of incorrectly
classified snowflakes relative to the already very high geo-
metric classification accuracy result reported in our previous
work and corresponds to a 2.8% increase in overall accuracy.
Even more importantly, the dataset of 25 199 image chips
sorted by geometric class used in the present study differs
substantially from that developed for Hicks and Notaro¥
(2019). As a proof of concept study, Hicks and Notaro¥ (2019)
used a geometric dataset focused on easily identifiable examples
of each of the snowflake classes considered. To demonstrate
the broader usefulness of deep CNNs for automated snowfall
classification, the dataset used in the present study is not only
larger but also contains wider in-class variety. In using such a
dataset, we have shown that, with a few modifications to the
network training process, the geometric classification method
described in Hicks and Notaro¥ (2019) can achieve higher
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accuracy on a vastly more challenging dataset. Finally, the
paper has presented several important components of the
CNN-based, supervised approach to snowflake classification,
including an improved training method and hyperparameters
for training; new automated techniques for snowflake detec-
tion, cropping, and normalization of snowflake images; and
new quality and recognizability preprocessing of image data.
The described methodologies and techniques may be of great
use to researchers and practitioners applying the same or
similar approaches to hydrometeor classification based on the
images collected by the MASC or another image-based parti-
cle recording instrument or system.
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