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SIGNIFICANCE STATEMENT: Classification of precipitation, namely, deciding to which of the several typical 

classes of winter hydrometeors the observed particles belong, can enrich our understanding of polarimetric radar 

signatures of snow, as well as ice cloud processes and the resulting precipitation production. The high-resolution 

photographs of snowflakes collected by the Multi-Angle Snowflake Camera (MASC) are especially suitable for 

snowflake classification. However, classifying particle types from MASC photographs by visual inspection is not 

practical given the typical amount of MASC data. We present advanced automatic deep machine learning–based 

classification of MASC images using convolutional neural networks. This study demonstrates broad usefulness of our 

approach yielding trained networks that achieve extremely high classification accuracy on a large and diverse dataset 

from many snow events. 
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ABSTRACT: We present improvements over our previous approach to automatic winter hydrometeor classification by 

means of convolutional neural networks (CNNs), using more data and improved training techniques to achieve higher 

accuracy on a more complicated dataset than we had previously demonstrated. As an advancement of our previous proof of 

concept study, this work demonstrates broader usefulness of deep CNNs by using a substantially larger and more diverse 

dataset, which we make publicly available, from many more snow events. We describe the collection, processing, and sorting 

of this dataset of over 25 000 high-quality Multi-Angle Snowflake Camera (MASC) image chips split nearly evenly between 

five geometric classes: aggregate, columnar crystal, planar crystal, graupel, and small particle. Raw images were collected 

over 32 snowfall events between November 2014 and May 2016 near Greeley, Colorado, and were processed with an 

automated cropping and normalization algorithm to yield 224 3 224 pixel images containing possible hydrometeors. From 

the bulk set of over 8 400 000 extracted images, a smaller dataset of 14 793 images was sorted by image quality and rec- 

ognizability (Q&R) using manual inspection. A presorting network trained on the Q&R dataset was applied to all 

8 400 0001 images to automatically collect a subset of 283 351 good snowflake images. Roughly 5000 representative ex- 

amples were then collected from this subset manually for each of the five geometric classes. With a higher emphasis on in- 

class variety than our previous work, the final dataset yields trained networks that better capture the imperfect cases and 

diverse forms that occur within the broad categories studied to achieve an accuracy of 96.2% on a vastly more challenging 

dataset. 
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1. Introduction 

Snowflake classification is important for improved weather 

radar, assessment of storm structure, and characterization of 

winter precipitation events from ground sensors (Zhang et al. 

2011; Straka et al. 2000; Libbrecht 2017). Several types of 

in situ image capturing devices used for ground-based collec- 

tion of data relevant to snowflake classification include the 

two-dimensional video disdrometer (Schönhuber et al. 2008), 

the Precipitation Instrument Package [an improved version of 

the system in Newman et al. (2009)], and the Multi-Angle 

Snowflake Camera (MASC). We focus on snowflake images 

collected by MASC systems in the present study. To allow 

researchers to study the microphysical characteristics of 

snowfall, relevant to a storm’s composition, the MASC cap- 

tures high-resolution images of falling hydrometeors from 

several angles. These images can be processed to extract 
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images of individual snowflakes from a variety of perspectives, 

or even used to generate 3D models of hydrometeors auto- 

matically (Kleinkort et al. 2017). A MASC system is capable of 

capturing tens to hundreds of thousands of images during a 

single winter storm event, leading to datasets too large for 

manual classification. This has been a major motivation for 

accurate, automated snowfall classification. 

Existing approaches to automated snowfall classification 

from MASC images vary and include the excellent work of 

Praz et al. (2017), our previous work (Hicks and Notaro~s 2019), 

and an unsupervised technique (requiring no human input) 

from Leinonen and Berne (2020). The multinomial logistic 

regression (MLR)-based method described in Praz et al. (2017) 

has been demonstrated effective but requires careful definition 

and algorithmic extraction of several image features from 

which classifications are made. This approach has achieved an 

outstanding 95% classification accuracy, but may be somewhat 

rigid, relying on human-described features such as morpho- 

logical skeleton statistics, rotational symmetry, and gray-level 
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FIG. 1. MASCRAD snow field site at Easton Valley Airport, 

near Greeley, Colorado, under the umbrella of CSU–CHILL ra- 

dar. MASC (top right of the photo), along with other surface in- 

strumentation, is contained in the 2/3-scaled DFIR. FIG. 2. Example of a normalized raw MASC image. Several 
snowflakes can be seen in addition to background glare (center left) 

and subtle ground and sky glow (top and bottom). Note that the 

cooccurrence. Older supervised classification work in Lindqvist 

et al. (2012), similarly, applies principal component analysis 

coupled with Bayesian and weighted nearest-neighbor tech- 

niques to classify ice-cloud particles, typically achieving accu- 

racies between 80% and 90%. We have previously presented 

convolutional neural networks (CNNs) as a robust alternative 

that can easily be applied and generalized in a black-box 

manner without expert definition of features. Both methods, of 

course, require manual input to generate training and test data 

labels. The work of Leinonen and Berne (2020), on the other 

hand, automatically classifies snowflake images by exploring 

the latent space of generative, as opposed to predictive, 

models. Such unsupervised approaches are extremely promis- 

ing for discriminating and classifying different hydrometeor 

images in general, but an unsupervised method inherently 

produces its own categories, rather than directly assigning 

images to existing, known categories with which researchers 

are likely already familiar. 

Accordingly, we offer improvements to our existing CNN- 

based, supervised approach (Hicks and Notaro~s 2019), using 

more data and improved training techniques to achieve higher 

accuracy on a more complicated dataset than we had previ- 

ously demonstrated. As an advancement of our previous proof 

of concept study, which used a geometric dataset focused on 

easily identifiable examples of each of the snowflake classes 

considered, a principal goal of this work is to demonstrate 

broader usefulness of deep CNNs for automated snowfall 

classification by using a larger dataset containing wider in-class 

variety. We present improved training methods and new, au- 

tomated techniques for detection, cropping, and normalization 

of snowflake images as well as quality and recognizability 

preprocessing of image data. From these improvements, we 

demonstrate higher overall test accuracy on a vastly more 

challenging dataset than that used in our previous work. 

Together, these improvements constitute an accurate, efficient, 

and robust supervised machine learning approach to snowflake 

classification, using deep neural networks and images collected 

ground and sky glow may not be visible in all prints or computer 

monitor settings. 

 
 

by the MASC or another image-based particle recording in- 

strument or system. 

 

2. Data collection and image processing 

This section describes the collection of raw MASC images as 

well as the automated cropping and normalization performed 

on raw images to isolate potential snowflakes present in 

each image. 

 

FIG. 3. Example of a binary image produced by application of a 

brightness threshold and five-pixel radius to the normalized raw 

image in Fig. 2. Possible snowflake silhouettes are now apparent. 

Background glare (center left) was rejected due to exceeding the 

mean brightness threshold. Dimmer glare cases are reliably as- 

signed to the not-flakes Q&R category. 
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FIG. 4. Example crops and image chips extracted from the MASC image shown in Figs. 2 and 3. (a) Cropped image of a planar crystal. 

(b) Example crop from (a) after contrast scaling. (c) Final image chip produced from contrast scaled crop in (b). (d) Cropped image of an 

aggregate. (e) Example crop from (d) after contrast scaling. (f) Final image chip produced from contrast scaled crop in (e). 

 

a. Raw image collection 

The 3 458 848 raw images used to generate the training set 

were collected from several winter weather events between 

November 2014 and May 2016 using a modified MASC system. 

The system was located at a surface instrumentation field site 

established under MASC and Radar (MASCRAD) (Notaro~s 

et al. 2016; Bringi et al. 2017; Kennedy et al. 2018). This is the 

same site and system used for data collection in Hicks and 

Notaro~s (2019). The MASCRAD field site is located at the 

Easton Valley View Airport in La Salle, near Greeley, 

Colorado, shown in Fig. 1. The MASC system, along with other 

ground-level instrumentation at the site, is situated within a 

double fence intercomparison reference (DFIR). Raw images 

from both winter storm events used in Hicks and Notaro~s 

(2019) constitute a subset of the total raw image set used in the 

present work. Details of the MASC system used are presented 

in Hicks and Notaro~s (2019). Although the MASC allows for 

collection of snowflake imagery from multiple angles to help 

determine three-dimensional shape (Kleinkort et al. 2017), we 

did not make use of this feature directly for the present work. 

As described in Leinonen and Berne (2020), it is common 

that a given snowflake will only be captured at usable quality 

by a single camera of a multicamera system, the snowflake 

often out of focus or occluded in other fields of view, so limiting 

study to only snowflakes that appear at high quality in all fields 

of view substantially reduces the number of useable examples. 

By limiting study to single-view cases, we were able to manu- 

ally classify thousands, rather than hundreds of snowflakes at a 

cost of increased ambiguity due to lack of multiangle data. 

Note that we did not explicitly remove cases where a single 

snowflake was imaged from multiple angles when forming the 

dataset for the present work. 

 

b. Detection, cropping, and normalization 

As the MASC produces raw, wide field of view images, 

typically containing many snowflakes, it is necessary to isolate 

individual examples for classification. All images were pro- 

cessed in grayscale (single channel). To detect possible flakes in 

each raw MASC image, we first normalized the entire grayscale 

image, dividing all pixel values by the maximum brightness 

value. An example of a normalized raw image is shown in 

Fig. 2. We then converted the grayscale image into a binary 

image by application of a threshold. Pixels in the grayscale 

image with brightness greater than or equal to the threshold 
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FIG. 5. Examples of image chips in the not-flakes quality and recognizability category. A description of this category is given in Table 1. 

(first row) (left to right) a coin, background glare, sky glow seen between fence posts, and a finger. (second row) (left to right) A sensor 

probe, an out of focus sensor probe, part of a pair of calipers, and a string. (third row) (left to right) A metal ball, part of a mitten, 

background glare, and amplified sensor noise. (fourth row) (left to right) Background glare, sky glow seen above fence posts, background 

glare, and background glare. 

 

 
were assigned value 1, and pixels less than the threshold were 

assigned value 0. For the present work, this threshold was set to 

0.1. We then set any pixels in the binary image with value 0 to 1 

if they were within a two-pixel radius (using Chebyshev dis- 

tance) of any pixel that had already been assigned a value of 1 

in the previous thresholding step. The example image from 

Fig. 2 is shown after thresholding and application of the two- 

pixel radius in Fig. 3. This radius was chosen by hand as a 

reasonable value. Next, we computed sets of connected com- 

ponents in the binary image. A connected component is any 

group of active (value: 1) pixels that form an unbroken group. 

If a connected component contained fewer than 26 active 

 
pixels, it was discarded. For each connected component not 

discarded, we cropped a rectangular region from the original 

grayscale image corresponding to its bounding box. Two such 

examples produced from Fig. 3 are shown in Figs. 4a and 4d. 

Cropped images were then contrast scaled linearly such that 

the top 1% of brightest pixels were saturated. Figures 4b and 4e 

show cropped image examples from the previous step after 

contrast scaling. Note that contrast scaling destroys some in- 

formation theoretically available in the images (by loss of ab- 

solute brightness and saturation of some pixels). However, we 

found that brightness variations between flakes were domi- 

nated by differing lighting conditions, rather than useful 
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FIG. 6. Examples of (left to right) bad-crop, bad, okay, and good image chips, respectively. Category descriptions are given in Table 1. 
 

information like snowflake class, so contrast scaling was per- 

formed to give the network input for which pixel brightness 

variations are dominated by microphysical characteristics 

rather than lighting conditions. After scaling, any cropped 

 

image was rejected if the mean value of its pixels was greater 

than 0.5. We then centered each remaining cropped, scaled 

image on a 224 3 224 black background to produce final image 

chips. Examples are shown Figs. 4c and 4f. Cropped images 
 

TABLE 1. Category names, counts, and descriptions for the quality and recognizability dataset, a balanced subset of which was used 

to train a presorting network using the methods of Hicks and Notaro~s (2019). 

Category 

name Count Description 

Not flakes 7020 Object other than a snowflake present in the image; examples: sensor noise, glare, sky/ground glow, and calibration probes 

Bad crop 1500 Likely snowflake present, but poor cropping leaves a substantial portion of the snowflake out of the image chip, 

interfering with geometric classification 

Bad 1977 Likely snowflake present, but poor lighting or focus prevent identification; image chips containing more than one 

disjoint (nonaggregated) snowflake are also assigned to this class, regardless of image quality 

Okay 2796 Focus and lighting are good enough to identify coarse flake features, and likely geometric class, but are insufficient to 

capture microphysical characteristics 

Good 1500 Lighting and focus are good enough to resolve microphysical characteristics and determine snowflake geometric class 
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TABLE 2. Number of examples in each class for the geometric 

dataset. 
 

Class name Count 

AG 5038 

CC 5021 

GR 5000 

PC 5014 

SP 5126 

 
that exceeded the 224 3 224 image chip sized were cropped to 

224 3 224 pixels after centering. 

This approach to cropping and normalization was arrived at for 

several reasons. In contrast to simply cropping a 224 3 224 pixel 

region centered on each connected component in an image 

(or similar), we found that the above method significantly 

reduced the number of image chips that contained multiple, 

physically disconnected snowflakes. In other words, during 

heavy snowfall events, we found it was common for two or 

more snowflakes to appear within 224 pixels of each other. By 

cropping a tight bounding box as above, we were able to re- 

cover far more closely spaced snowflakes into usable, unam- 

biguous image chips. Rejection of cropped, scaled images 

with mean pixel value greater than 0.5 rejected most crops of 

the sky and background that did not actually contain a snow 

particle. By also rejecting connected components with pixel 

counts below 26, we avoided cases where a single bright pixel 

caused a false detection. In general, the described cropping 

 
 

 

FIG. 7. Examples of image chips in the aggregate (AG) class of the final geometric dataset. All image chips in the final geometric 

dataset had been automatically categorized into the good Q&R category. We placed emphasis on collecting a wide variety of sizes 

and forms of aggregate with varying types of constituent particles. 
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and normalization approach was able to detect far more small 

particles, and dim, unrimed planar crystals than the approach 

used  for  Hicks  and  Notaro~s  (2019).  Application  of  this 

cropping algorithm to all raw MASC images from November 

2014 to May 2016 produced 8 441 563 image chips. 

 

3. Hydrometeor classification scheme and training sets 

This section describes how the 8 441 563 224 3 224 pixel 

image chips extracted from raw MASC images were auto- 

matically sorted to quality classes and how images from the 

best class were manually sorted into the five geometric cat- 

egories studied. A total of 25 199 examples were manually 

sorted for the final geometric dataset covering 32 snowfall 

events, an event defined here as a period during which no 

more than 24 h passed between collection of any two image 

chips identifies as snowflakes during manual classification. 

All classification was performed by a single analyst who re- 

viewed each image at least three times. Overall, we are 

confident the manual classifications used for training accu- 

rately represent the opinions of our analyst and have made 

this dataset available at Key et al. (2021). Note, however, that 

our use of only one human analyst has potential to introduce 

more bias relative to other work for which multiple humans 

performed analysis, such as Praz et al. (2017). We had orig- 

inally planned to also produce an expanded riming dataset in 

addition to the presented geometric dataset, but we found 

that some riming degrees were insufficiently represented for 

production of a larger, balanced riming dataset from our 

current pool of raw images. We hope to contribute such a 

dataset in future work. 

a. Quality and recognizability preprocessing 

The snowflake detection, cropping, and normalization 

method described in section 2b remains imperfect. Therefore, 

many of the image chips produced contained bright points 

from a raw image that are not snowflakes. These included 

sources like glare, sensor noise, and sky/ground glow. In ad- 

dition, operators of the MASC system occasionally forgot to 

turn off data collection while calibrating and testing the system 

after maintenance and redeployment. This led to captures of 

test probes, hands, coins, and other objects to occasionally 

appear in the raw image dataset. Several examples of image 

chips due to nonflake objects are shown in Fig. 5. 

For image chips that contain snowflakes, there is an in- 

herent range of quality. Some flakes appear out of focus in 

raw images. Others are poorly cropped, either due to over- 

cropping by the image processing method in section 2b, or 

because they originally appeared partially out of field of view 

in a raw MASC image. We considered image chips containing 

snowflakes to fall into four recognizability categories: bad 

crop, bad, okay, and good. Image chips in the bad-crop cat- 

egory are those where unambiguous recognizability of the 

imaged snowflake is made difficult due to overcropping by the 

processing method described in section 2b or part of the flake 

appearing out of field of view in the raw image, leaving a 

substantial portion of the flake absent from the image chip. 

Note that cases where a flake was simply too large to fit in a 

TABLE 3. Test accuracy results of 10 independent training runs. 

Note that training runs 5 and 6 producing test accuracies identical 

to two decimal places occurred by chance and was verified not to be 

a mistake. 
 

Run Test accuracy 

1 96.56% 

2 96.04% 

3 96.24% 

4 95.88% 

5 96.00% 

6 96.00% 

7 96.20% 

8 96.08% 

9 96.68% 

10 96.64% 

 

 
single image chip were not included in the bad-crop category. 

In our manual exploration of the dataset, such flakes were 

almost exclusively in the AG class and easily identifiable 

despite cropping to 224 3 224 pixels. Rather, overcropping by 

the processing described in section 2b is typically due to poor 

or uneven illumination of the flake causing the rectangular 

bounding box of the resulting connected component to not 

contain most of the pixels covered by the snowflake. Four 

examples of bad-crop image chips are shown in the first col- 

umn of Fig. 6. Bad image chips are those for which poor focus 

or poor illumination rendered the target snowflake unrec- 

ognizable. Image chips containing more than one disjoint 

(nonaggregated) snow particle are also included in the bad 

category, regardless of lighting and focus. We consider two 

snow particles disjoint if they were clearly identifiable as dis- 

crete, physically unconnected particles by our human analyst. 

Four such examples are shown in the second column of Fig. 6. 

Okay image chips were those that contained a recognizable 

snowflake but suffered from mild blur or high background 

noise that made examination of microphysical characteristics 

difficult. Four examples of okay image chips are shown in the 

third column of Fig. 6. Good image chips were those that were 

free of substantial overcropping and clear enough to identify 

relevant microphysical features. Column four of Fig. 6 shows 

four examples of good image chips. 

To avoid wasting human time visually inspecting images 

that did not contain flakes or were of quality too poor to use, 

we trained a preliminary quality and recognizability (Q&R) 

classifier on a small, manually sorted subset of the 8 441 563 

image chips. This classifier was implemented by necessity to 

reduce the data volume needing manual inspection, and its 

results were not further analyzed or verified in the present 

work. To train the Q&R classifier, we collected at least 1500 

examples for each of five categories: not flake, bad crop, bad, 

okay, and good, with an emphasis on variety within each 

class. Counts per category for the Q&R dataset are pre- 

sented in Table 1 along with descriptions. When collecting 

example images, we included roughly equal numbers of 

examples from each geometric class in okay and good cat- 

egories to avoid biasing the classifier against a given geo- 

metric type. The Q&R classifier was trained using the same 
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FIG. 8. Examples of image chips in the columnar crystal (CC) class of the final geometric dataset. All image chips in the final geometric 

dataset had been automatically categorized into the good Q&R category. We included a variety of sizes, forms, and degrees of riming. An 

example of a backlit snowflake is shown in row 2, column 2. Such cases were rare but were included whenever backlighting did not 

interfere with recognizability. 

 
 

methodology used for the geometric classifier in Hicks and 

Notaro~s (2019). For training, 1500 examples from each Q& 

R category were drawn randomly. The trained Q&R clas- 

sifier was then applied to all 8 441 563 image chips to sort 

each into not-flake (3 791 326), bad-crop (723 550), bad 

(3 062 288), okay (582 333), and good (282 001) categories. 

Only image chips assigned by the Q&R network to the good 

category were examined to produce the geometric dataset 

for the present study. 

b. Geometric classes 

A variety of attempts have been made to classify snow- 

flakes (Nakaya and Sekido 1936; Magono and Lee 1966; 

 
Korolev and Sussman 2000; Grazioli et al. 2014; Vazquez- 

Martin et al. 2020). As in our previous work (Hicks and 

Notaro~s 2019), we chose to use the scheme adopted by Praz 

et al. (2017) for training and testing of their multinomial 

logistic regression snowflake classifier. We summarize this 

scheme here. 

The scheme uses the nine categories of snowflakes de- 

fined in Magono and Lee (1966), with a few simplifica- 

tions for data availability. Praz et al. (2017) additionally 

defined the aggregate and small particle classes. Aggregates 

are defined as single snowflakes that are the result of in-air 

collision of two or more particles. Small Particles are snow- 

flakes whose features are too small to categorize. Note that 
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FIG. 9. Examples of image chips in the graupel (GR) class of the final geometric dataset. All image chips in the final geometric dataset 

had been automatically categorized into the good Q&R category. We included a variety of textures and sizes and also included melting 

examples when available. 

 
 

this is based on the subjective opinion of the analyst, rather 

than a strictly defined size threshold. Simplifications from 

Magono and Lee (1966) and addition of AG and SP classes 

resulted in 10 individual categories, of which only 6 were 

used in Praz et al. (2017) due to data availability: aggre- 

gates (AG), small particles (SP), columnar crystals (CC), 

planar crystals (PC), combination of columnar and pla- 

nar crystals (CPC), and graupel (GR). As in Hicks and 

Notaro~s (2019), we chose to exclude the CPC class from 

the present study due to data availability. We found only a 

few hundred clear examples of CPC in the good Q&R 

class. CPC appeared far less commonly than the next rarest 

class, GR, which had several thousand good Q&R exam- 

ples. Image chips that fell into unconsidered categories, 

 
like CPC, we simply omitted from consideration for the 

present work. 

c. Building the geometric dataset 

Our goal in collecting the geometric dataset for the present 

work was to establish a large, highly varied collection of image 

chips in each of the five categories considered. Deep neural 

networks, like that used in Hicks and Notaro~s (2019) and the 

present work can achieve high accuracies but require substantial 

training data to avoid overfitting (Simonyan and Zisserman 

2015; Szegedy et al. 2015). With tens of millions of parameters, 

deep CNNs like the ResNet-50 architecture (He et al. 2016) 

can store substantial quantities of information to learn highly 

complicated associations and trends (Zeiler and Fergus 2014). 
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FIG. 10. Examples of image chips in the planar crystal (PC) class of the final geometric dataset. All image chips in the final geometric 

dataset had been automatically categorized into the good Q&R category. We included difficult examples like row 1, column 2 where 

possible to help differentiate such PC cases from CC examples. Emphasis was also placed on including examples that lacked easily 

identifiable sixfold symmetry. 

 
 

Care must therefore be taken to train such networks on large 

enough datasets that they cannot simply memorize associ- 

ations between specific images and their labels or extract 

spurious trends. 

Another important consideration is balance between classes 

during training. Unless special precautions such as class-specific 

learning rates are used (not used in the present study), training a 

neural network on a dataset biased toward a particular class 

will often bias the network toward that class. As an extreme 

example, consider a network trained on a dataset of 900 GR 

images and 100 PC images; the network can attain 90% ac- 

curacy on the training set simply by learning to label every 

image as GR. It is therefore important to present the network 

 
with roughly equal numbers of examples in each class during 

training. 

To account for these factors, we limited the number of ex- 

amples in our geometric dataset for each class to the maximum 

number of good Q&R examples we could find for the rarest 

class considered. After CPC (not considered), GR was the 

rarest class, for which we could only find roughly 5000 ex- 

amples. Accordingly, we collected roughly 5000 examples of 

each of the other classes considered, for a total of 25 199 ex- 

amples. Exact image chip counts per class are presented in 

Table 2. Figures 7–11 show representative examples from the 

final AG, CC, GR, PC, and SP sets, respectively. When col- 

lecting examples for each class, we put emphasis not only on 
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FIG. 11. Examples of image chips in the small particle (SP) class of the final geometric dataset. All image chips in the final geometric 

dataset had been automatically categorized into the good Q&R category. As small particles are, by definition, particles with features too 

small to classify, there is little interesting variety among the collected examples other than various shapes and degrees of riming. 

 
 

archetypical examples, but also examples we considered good 

counterexamples to possible oversimplifications of each class: 

e.g., AGs are always large, PCs always have sixfold symmetry, 

or GR always has a smooth outline. Image chips were not 

included in the geometric dataset if we could not determine 

an appropriate label based on information present in the 

image chip alone, i.e., no multiangle information was used 

during manual sorting. We note overall that there is an in- 

herent subjectivity in identification of snowflakes in single- 

view images, especially for classes like GR (Fig. 9), for which 

distinguishing from other heavily rimed particles is subjec- 

tive, and SP (Fig. 11), for which deciding unrecognizability of 

features due to small size is highly subjective. We did not 

avoid using backlit examples where available, although these 

 
were rare, only occurring where a snow particle was imaged 

while falling in front of a sufficiently bright glare point in the 

background. Due to their rarity, inclusion of backlit cases 

likely did not have a substantial impact on accuracy of the 

trained network. Our analyst recollects seeing at most a dozen 

backlit cases during manual classification, but such cases were 

assigned no special designation or identifying information that 

would make quantification of their impact possible without 

another manual review of the dataset. 

 

4. Convolutional neural networks methodology 

A brief discussion of the network architecture is presented in 

this section. We also present a summary of the training method 
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FIG. 12. Training progress for an example training run using the methods and hyperparameters 

described in section 4b. 

 
 

and hyperparameters used. Note that, although the network 

architecture remains the same as that in our previous work 

(Hicks and Notaro~s 2019), hyperparameters for training differ. 

a. Neural network architecture 

We used an identical ResNet-50 architecture to that in Hicks 

and  Notaro~s  (2019).  The  ResNet-50  architecture  has  been 

demonstrated as an excellent balance between speed and ac- 

curacy for image classification tasks and is described in detail 

in He et al. (2016). The residual approach, in general, was 

groundbreaking at the time of its publication, as it presented an 

elegant solution to the vanishing gradient problem that had 

previously limited scaling of CNN accuracy with increased 

depth. The use of residual connections (or similar), as de- 

scribed in He et al. (2016) has since been widely adopted by 

deep learning researchers and practitioners. As in Hicks and 

Notaro~s (2019), we used a ResNet-50 model that had been 

pretrained for general image classification on the ImageNet 

database (Russakovsky et al. 2015). We also experimented 

with randomly initialized (no pretraining) versions of the same 

architecture but found no substantial benefit. We therefore 

chose to only focus on the pretrained model for the present 

 

work for easy comparison with Hicks and Notaro~s (2019). A 

necessary change made to the architecture was reduction in the 

number of outputs of the final, fully connected layer for our 

substantially lower number of classes (the original ResNet-50 

architecture trained on ImageNet had 1000 classes, not 5). 

Weights in the modified fully connected layer were initialized 

randomly. 

b. Training method and hyperparameters 

As in Hicks and Notaro~s (2019), network performance was 

determined by cross-entropy error, and network weights and 

biases were optimized by stochastic gradient descent to 

minimize this loss function. For training, validation, and 

testing, we again limited the number of examples used in 

each class to the number of examples available in the 

smallest class (in the present work, GR with a total of 5000 

hand-classified image chips available). The examples used 

from classes with raw counts larger than the minimum 

were drawn randomly. We again used a minibatch size of 10. 

Beyond this, we made several changes to the hyper- 

parameters and training method used in Hicks and Notaro~s 

(2019). Our dataset was also substantially larger; the testing 
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FIG. 13. Confusion matrix for the network trained in Fig. 12 

applied to the test set. Each red or green cell corresponds to a 

target class (horizontal) and output class (vertical). Row 2, column 

1, for instance, shows that five image chips in the test set with target 

class AG were assigned to the CC class by the trained network, and 

this corresponded to 0.2% of the entire dataset. The first five cells 

of the bottom row show accuracy (green) and error (red) for each 

target class. Row 6, column 1, for instance, shows that, of image 

chips in the test set with target class AG, 94.2% were classified 

correctly by the network while 5.8% were classified incorrectly. 

The first five cells of the rightmost column similarly show accuracy 

and error for each output class. Row 1, column 6, for instance, 

shows that, of image chips assigned by the network to the AG class, 

96.3% were classified correctly while 3.7% were classified incor- 

rectly. An overall network accuracy (all classes) of 96.2% is shown 

in the bottom right cell. AG and PC were the most confused classes. 

 

 

set alone, in this case, was comparable in size to the entire 

geometric  dataset  used  for  Hicks  and  Notaro~s  (2019), 

roughly 1450 examples. In the present study, we randomly 

selected 500 examples from each class for a total of 2500 

testing examples. The remaining 22 699 examples were ran- 

domly partitioned into a training set (;90%) and a valida- 

tion set (;10%), both evenly distributed among the classes 

studied. The random partitioning between training and val- 

idation was unique to each training run. Only the training 

and validation sets were used for hyperparameter tuning, 

which was performed by a mix of expert hand tuning and 

small parametric sweeps and included tuning of the mini- 

batch size, learning rate, and number of training epochs. 

We also trained for substantially longer than our previous 

work, training for a total of 20 epochs, as opposed to 10. 

The training set was shuffled (reordered) randomly every 

epoch. An epoch is defined as one complete pass through the 

training set, so, the present training dataset containing many 

more  examples  than that  available  in  Hicks  and  Notaro~s 

(2019), this corresponds to roughly a thirtyfold increase in 

training time. We were able to extend the training time 

substantially due to prevention of overfitting by the larger 

training dataset used in the present work. As opposed to the 

constant learning rate of 0.0003 used in Hicks and Notaro~s 

(2019), we began with a learning rate of 0.001, which was 

then scaled by a factor of 1/ 10 every five epochs. We found 

this led to a small but noticeable improvement in final net- 

work accuracy. We expect improvements in network accu- 

racy could be further improved with additional hyperparameter 

tuning using more compute resources for large parametric sweeps. 

 

5. Results and discussion 

This section presents and discusses the performance of the 

trained classification networks on the test dataset. The final 

mean test accuracy achieved was 96.23% with a standard de- 

viation of 0.29% across 10 training runs, the individual test 

accuracies of which are presented in Table 3. Only the order in 

which images were presented to the network and random 

partitioning of nontest images between training and validation 

differed between training runs. We expect we could have 

achieved even higher accuracy if we had limited our dataset to 

only archetypal examples, but this would have diminished the 

usefulness of the dataset and resulting trained model for gen- 

eral snowfall classification tasks. 

Figure 12 shows accuracy and loss of a typical trained net- 

work (test accuracy close to the mean) on the training and 

validation set with respect to training iteration (and epoch, 

indicated by alternating vertical bands) for a typical training 

run. There is no evidence of overfitting, and validation accu- 

racy increased nearly monotonically with iteration count. 

Overfitting, if present, would be apparent in Fig. 12 as diver- 

gence of the black validation accuracy and blue training ac- 

curacy curves. For the training run shown, the network 

achieved a validation accuracy of 96.1% and a test accuracy of 

96.2%. We suspect the much larger size of the geometric 

dataset is the dominant factor in improving performance over 

our previous work but did not have sufficient compute time to 

perform a full parametric sweep to confirm this. We found that 

network performance on the validation and training sets 

were comparable, indicating that training, testing, and vali- 

dation datasets all sampled the underlying distribution of 

snowflake geometries well. The validation accuracy standard 

deviation for the 10 example runs shown in Table 3 was 

0.42%, and their mean validation accuracy was 96.26%. We 

attribute the larger validation accuracy standard deviation, 

as compared to the test accuracy standard deviation, to 

random selection of the validation set for each training run 

(the test set did not change between runs). There was little 

variation between training runs, with the only nominal dif- 

ferences due to this random partitioning of the validation 

and training sets as well as random reordering of the training 

set during each epoch. Figure 13 shows a confusion matrix for 

the same network, the training progress of which is shown 

in Fig. 12. 

In general, trained networks would confuse PC and AG 

classes most often. We included many difficult examples in the 

AG class that featured a prominent planar crystal with several 
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FIG. 14. Examples of image chips misclassified by a trained network: (top to bottom) misclassified aggregates, misclassified columnar 

crystals, misclassified graupel, misclassified planar crystals, and misclassified small particles are shown with the label assigned by the 

network overlaid for each image chip. 
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less-prominent particles that had adhered due to midair colli- 

sions, so confusion between the two classes seems under- 

standable to us. Figure 14 presents examples of image chips 

misclassified by the typical network from Figs. 12 and 13. 

Overall, most misclassifications appear to be blatant errors due 

to imperfection of the trained model, but several stand out as 

ambiguous cases or possibly even human error. Figure 14, row 

2, column 2, for instance, was assigned by the network to the 

AG class, having been human labeled as a columnar crystal. 

Further inspection indicates this snowflake may indeed be a 

simple aggregate or even a malformed planar crystal, sug- 

gesting this misclassification is due human error rather than 

network error. Figure 14, row 4, column 3, shows a clear planar 

crystal adhered to a small aggregate of columnar crystals. 

Although the planar crystal dominates the image chip, the 

aggregation present indicates the network is correct to assign 

this image chip to the AG class. Figure 14, row 3, column 4, 

and row 5, column 2, respectively, show a GR image chip 

misclassified as SP and a SP image chip misclassified as GR, 

respectively. These two cases show the ambiguity of the SP 

class and the difficulty of drawing a distinction between small 

GR flakes and relatively large, round SP flakes. Figure 14, row 

5, column 3, shows another ambiguous case. Human classified 

as SP but network classified as CC, this particle shows pos- 

sible CC-like features (dominant uniaxial crystal growth) but 

is barely too small for our analyst to assign confidently to the 

CC category. 

 

6. Conclusions 

This paper has presented improvements over our previous 

approach (Hicks and Notaro~s 2019) to automated winter hy- 

drometeor classification using deep convolutional neural net- 

works. Using improved training methods and a substantially 

larger and more complicated dataset from many more snow 

events than in our previous study, we were able to achieve over 

96.2% accuracy on a test set of 2500 images. We consider this 

result substantial for several reasons. The MASC is a high- 

throughput sensor, collecting tens to hundreds of thousands of 

detectable snowflake images during a winter storm event, so 

even small accuracy improvements lead to a substantial re- 

duction in the total number of misclassified snowflake images. 

Namely, this is a ;40% reduction in the fraction of incorrectly 

classified snowflakes relative to the already very high geo- 

metric classification accuracy result reported in our previous 

work and corresponds to a 2.8% increase in overall accuracy. 

Even more importantly, the dataset of 25 199 image chips 

sorted by geometric class used in the present study differs 

substantially  from  that  developed  for  Hicks  and  Notaro~s 

(2019). As a proof of concept study, Hicks and Notaro~s (2019) 

used a geometric dataset focused on easily identifiable examples 

of each of the snowflake classes considered. To demonstrate 

the broader usefulness of deep CNNs for automated snowfall 

classification, the dataset used in the present study is not only 

larger but also contains wider in-class variety. In using such a 

dataset, we have shown that, with a few modifications to the 

network training process, the geometric classification method 

described  in  Hicks  and  Notaro~s  (2019)  can  achieve  higher 

accuracy on a vastly more challenging dataset. Finally, the 

paper has presented several important components of the 

CNN-based, supervised approach to snowflake classification, 

including an improved training method and hyperparameters 

for training; new automated techniques for snowflake detec- 

tion, cropping, and normalization of snowflake images; and 

new quality and recognizability preprocessing of image data. 

The described methodologies and techniques may be of great 

use to researchers and practitioners applying the same or 

similar approaches to hydrometeor classification based on the 

images collected by the MASC or another image-based parti- 

cle recording instrument or system. 
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