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A B S T R A C T

Overstepping of metamorphic reactions is required to provide the driving force necessary for porphyroblast
nucleation and growth. Forward models of garnet nucleation and growth are presented assuming an affinity for
nucleation that corresponds to several tens of degrees or several kilobars of overstepping. The composition of
garnet that nucleates and grows is assumed to be that which provides the largest decrease in free energy. With
these assumptions, the zoning predicted for a garnet grown under isothermal, isobaric conditions is revealed to
be sufficiently similar to the zoning predicted for garnet grown under continuous near-equilibrium conditions
that distinction based on the shape of zoning profiles alone does not appear to be possible. Furthermore, the
growth of an initial garnet crystal following nucleation after overstepping depletes the affinity for subsequent
nucleation by sequestration of Mn into the existing garnet crystal. Progressive nucleation, therefore, requires
additional energy input, most likely through changes in pressure and temperature, to replenish the affinity. The
predicted zoning in garnets nucleated following substantial growth of the first nucleated garnet does not match
the typical bell-shaped profile of Rayleigh fraction but rather displays distinctly diagnostic zoning depending on
the assumed rate limiting step for growth. Diffusion controlled growth results in relatively broader and flattened
profiles whereas interface controlled growth results in later garnets having a peaked core Mn profile. This latter
profile would relax by diffusion in relatively short times (less than 1 Ma) and would thus not likely to be pre-
served, but appears to have been observed in garnet zone samples from central Vermont. Calculations for this
sample also indicate that garnet ceased growing when chlorite was exhausted, at which point considerable
affinity remained indicating that equilibrium was not achieved. Tectonic interpretations based on P–T paths
calculated assuming near-equilibrium nucleation and growth of garnet are thus likely to require reevaluation in
light of the magnitude of overstepping needed for nucleation and the possibility that equilibrium was not at-
tained at the metamorphic peak.

1. Introduction

A number of recent papers have concluded that equilibrium isograd
reactions may be overstepped by a considerable amount before nu-
cleation of a new porphyroblast occurs (e.g. Waters and Lovegrove,
2002; Wilbur and Ague, 2006; Pattison and Tinkham, 2009; Pattison
et al., 2011; Spear et al., 2014). Values of affinity estimated for the
nucleation of garnet range from 166 to 2200 J/mol oxygen, re-
presenting overstepping of up to 80° or 4–5 kbar (Waters and
Lovegrove, 2002; Wilbur and Ague, 2006; Pattison et al., 2011; Spear
et al., 2014; Castro and Spear, 2016). Implications for the interpretation
of pseudosections in light of this degree of overstepping are discussed in
Spear and Pattison (2017).

If a porphyroblast such as garnet does not nucleate until there has
been enough overstepping to build these levels of affinity, then it
cannot have grown continuously at near-equilibrium conditions as it
traverses along the rock's P–T path. Rather, the above studies suggest

that, once nucleated, garnet may grow at near isobaric-isothermal
conditions (e.g. Hollister, 1969; Spear et al., 2014). If so, the chemical
zoning recorded by the garnet cannot reflect a succession of near-
equilibrium growth stages, as has been so commonly assumed (e.g.
Spear and Selverstone, 1983; Gaidies et al., 2008). This in turn calls to
question the practice of using the chemical zoning in garnet to infer the
P–T path based on the assumption of near-equilibrium.

The question arises: if garnet nucleates at conditions considerably
above the equilibrium isograd reaction, then what controls the che-
mical zoning of the garnet? Hollister (1966) attributed the zoning of Mn
in garnet from the Kwoiek area, British Columbia to Rayleigh fractio-
nation, a process by which the growing garnet sequesters Mn (and other
elements) as it grows, depleting the reservoir from which garnet is
growing in this component. In addition, Hollister (1966) demonstrated
that the classic bell-shaped zoning profiles commonly exhibited by Mn
in garnet could be achieved by an isothermal, isobaric process (i.e.
Rayleigh fractionation with a constant partition coefficient). Whereas
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Rayleigh fractionation undoubtedly plays a major role in the develop-
ment of Mn zoning, it is essentially an equilibrium fractionation be-
tween the garnet and the reservoir. It is still necessary to maintain a
driving force for growth (i.e. affinity).

Subsequent investigations employed more comprehensive sets of
equilibrium relations between garnet and matrix phases and arrived at
essentially the same conclusions as Hollister (1966) (e.g. Spear et al.,
1990; Symmes and Ferry, 1992). Significantly, these latter models as-
sumed a continuum of near-equilibrium conditions along a P–T path to
achieve representative garnet zoning, with no role for Rayleigh pro-
cesses at constant temperature and pressure such as proposed by
Hollister (1966). Frost and Tracy (1991) examined this topic and con-
cluded that observed Ca zoning in garnet could be achieved by iso-
thermal, isobaric processes through Rayleigh fractionation.

The purpose of the present communication is to present the theo-
retical framework within which the chemical zoning of garnet can be
calculated following nucleation after considerable overstepping. Model
zoning profiles will be presented for a rock containing a single or
multiple garnets, and compared to model zoning profiles assuming
equilibrium. Criteria for identifying a garnet that has grown out of
equilibrium from its zoning pattern will be discussed. Finally, the
question of whether equilibrium is ever achieved in a rock undergoing
metamorphism will be addressed.

2. Theory

Affinity is the energy available to drive nucleation or chemical re-
action and may be defined as either the partial derivative of Gibbs
energy with reaction progress at constant temperature and pressure:

⎜ ⎟= −⎛
⎝

∂
∂

⎞
⎠ξ

A G

P,T

or the change in Gibbs energy in going from reactants to products of a
chemical reaction (−ΔG). The second definition is most appropriate for
the consideration of nucleation as was utilized by Spear and Pattison
(2017) and the first definition is most appropriate for consideration of
garnet growth under isothermal, isobaric conditions, as discussed here.

Following Gaidies et al. (2011), Pattison et al. (2011) and Spear
et al. (2014), the affinity for nucleation of a porphyroblast such as
garnet may be calculated as the difference between the G of the nu-
cleated garnet and the fictive G of a compound of the same composition
as the nucleated garnet calculated from the chemical potentials of the
garnet-free matrix phases (Fig. 1a). Inasmuch as Gibbs free energy (G)
changes with pressure and temperature, the affinity available for nu-
cleation will also vary with P and T as a function of the ΔV and ΔS of
reaction, respectively. The G of garnet is a function of composition so
the affinity for nucleation is also a function of the garnet composition.
Following the treatment in Thompson and Spaepen (1983) it was

assumed by the above authors that the most likely composition of
garnet to nucleate would be that with the greatest affinity (Fig. 1a), the
reason being that this composition generates the most available energy
to overcome the activation energy barrier for nucleation (see also dis-
cussion in Spear and Pattison, 2017).

Following nucleation out of equilibrium, garnet will grow such that
the compositions of the garnet and matrix phases evolve along their
respective free energy surfaces until eventually equilibrium is closely
attained (Fig. 1b, c). It is proposed that the composition of garnet
formed during this continuous evolution is also that which provides the
largest change in free energy: that is, the same criteria used to ascertain
the composition of garnet that would form upon nucleation. Although
the affinity required to drive the continuous reaction is most likely
considerably smaller than the affinity required for nucleation, growth
of garnet in steps that maximizes the decrease in free energy at each
increment is consistent with the general trend of the system towards
minimizing G. Furthermore, maintaining this assumption results in a
continuum of compositional changes. This assumption also requires
that the garnet is completely unreactive, such that every growth step is
essentially the same as nucleating a new garnet, which is assumed to
grow on the old garnet.

It is also implicit that the composition of garnet is not controlled by
kinetic factors (e.g. rates and mechanisms of dissolution/precipitation
at mineral surfaces, or of intergranular transport of nutrients), and that
the composition is rather being only determined by this maximum free
energy decrease. The validity of this assumption requires that the
availability of Mg, Fe, Mn and Ca is not limited at the growing garnet
interface. Additionally, the rate of garnet growth must be controlled by
kinetic factors such as diffusion of Si or Al or surface attachment or
detachment kinetics, otherwise, once nucleated, the garnet would grow
instantaneously. In other words, the diffusivities of Mg, Fe, Mn and Ca
are assumed to be rapid relative to the rate of garnet growth.

Calculating the composition of garnet requires finding the garnet
composition such that the tangent to the garnet G surface is parallel to
the tangent defined by the matrix phases. The equations needed to
calculate this most likely garnet composition are as follows. Equations
that constrain the slope of the tangent to the garnet G surface
(µiGrt−µjGrt) are, according to the above assumptions, equal to those
that constrain the slope of tangent to the matrix assemblage
(µiMatrix−µjMatrix). There are three such independent equations:
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The chemical potentials of the garnet components in the matrix
assemblage are calculated as linear combinations of matrix phase
components, for example:

(a) (b) (c)

Fig. 1. Schematic G-X diagrams for matrix + garnet showing the evolution of garnet and matrix compositions during garnet growth following overstepping. (a) Configuration at garnet
nucleation. (b) Configuration during growth. (c) Configuration at equilibrium. The composition of garnet is that which provides the maximum decrease in free energy (arrow in (a) and
(b)). Note that the figure assumes complete equilibrium among the matrix phases.
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The chemical potentials of the matrix assemblage are known from
solution of the equilibrium relations for these phases at the specified
pressure, temperature and bulk composition. The only unknowns are
therefore the three independent components of garnet, which are
solved by Newton's method using Eq. (1). The difference in energy
available for reaction is then calculated as:

− = − = − = −µ µ µ µ µ µ µ µprp
Grt

prp
Matrix

alm
Grt

alm
Matrix

sps
Grt

sps
Matrix

grs
Grt

grs
Matrix

(3)

This value is exactly equivalent to the first definition of affinity
given above. Note that the value affinity is only valid at the specific P, T
and extent of reaction of the calculations and will with reaction pro-
gress as the system approaches equilibrium. All thermodynamic cal-
culations were done in the MnNCKFMASH system using code written
for Program Gibbs with thermodynamic data from Spear and Pyle
(2010).

Forward modeling was achieved by picking an arbitrary P and T
above the equilibrium garnet isograd reaction and performing succes-
sive calculations of the garnet composition. The bulk composition used
in these calculations is that of a typical pelitic schist (Table 1). After
each iteration, the bulk composition is modified by subtracting the
garnet that was produced and the compositions of all other phases
adjusted according to their equilibrium conditions. Because the rate
limiting mechanism for garnet growth is not known, an arbitrarily small
quantity of 10−5 mol was “grown” and subtracted from the bulk
composition on each iteration.

A goal of this modeling was to compare the overstepped garnet
zoning profile (the “OS” model) with the zoning profile that would be
produced by progressive garnet growth at near equilibrium conditions
(the “EQ” model). This type of equilibrium forward modeling requires a
P–T path to be specified, and a path from 500 °C, 5 kbar to 700 °C,
10 kbar (25 bars/degree) was chosen. The P–T conditions for the OS
calculations are 657 °C, 8.925 kbar, equivalent to the conditions along
the P–T path where chlorite vanishes from the assemblage in the EQ
model. This was chosen so that the final conditions of the EQ model
would be the same as those of the OS model. Both the OS and EQ
models incorporate Rayleigh fractionation. Note that both models only
consider the reacting assemblage chlorite + biotite + muscovite
+ plagioclase + quartz and equilibria involving possible staurolite or
kyanite were not considered.

3. Results

The results of the initial set of calculations are shown in Fig. 2. As
can be seen, the general shape of the zoning is similar for both the OS

and EQ models. In particular, the Mn content decreases from core to rim
in the classic bell-shaped profile for both models, consistent with
Rayleigh fractionation. The composition of the garnet core differs
somewhat between the two models, which might be used to distinguish
between overstepping and equilibrium growth, but only if the reactive
bulk rock composition were precisely known. Ca is the only element
that displays a different zoning trend in the OS versus EQ models, al-
though the magnitude of the changes in grossular would make this
difficult to distinguish. Note that the composition at the garnet rim is
the same for both models, as it must be because both models were
terminated at 657 °C, 8.925 kbar when it is assumed that equilibrium
was achieved. It should also be noted that size of the garnets (around
7.2 mm) depends entirely on the size of the bulk composition modeled,
in this case 100 g (approximately 37 cm3).

The one zoning characteristic that does provide a suggestion of the
difference between the OS and EQ models is Fe/(Fe + Mg). For equi-
librium growth of garnet from chlorite, the Fe/(Fe + Mg) decreases
monotonically with increasing temperature and is a good proxy for
temperature because the value is not strongly pressure dependent. For
the above example, the change in Fe/(Fe + Mg) for the EQ model is
−0.079 (0.886 to 0.807) over a temperature increase of 65°. In con-
trast, the change in Fe/(Fe + Mg) for the OS model is−0.058 (0.856 to
0.798) under isothermal conditions. The reason the Fe/(Fe + Mg)
changes at all in garnet grown isothermally is the modification of the
bulk composition as garnet fractionates. Although the difference be-
tween the OS and EQ models is small, it might be used to infer garnet
growth under non-equilibrium conditions. In summary however, there
appears to be no single distinguishing characteristic in the chemical
zoning that would make the OS model simple to recognize.

One aspect of the OS model not obvious in Fig. 2 is that as garnet
grows and the bulk composition is modified by garnet fractionation, the
available affinity decreases until eventually equilibrium is attained and
the affinity is zero. At the point of nucleation, the affinity in the OS
model calculations is around 812 J/mol oxygen and decreases non-
linearly to zero after 1471 iterations. It is important to note that the
modeling presented here assumes that the affinity required to drive the
reactions responsible for garnet growth is less than that required for
garnet nucleation, so the initial garnet can continue to grow even
though the affinity is less than that required for nucleation of additional
garnets.

Table 1
Bulk rock analyses used in calculations (weight % oxides).

TM-549a TM-626b TM-626c

SiO2 55.71 55.72 57.98
Al2O3 20.84 16.16 15.82
MgO 3.61 3.97 4.17
FeO 6.38 10.76 8.76
MnO 0.17 0.44 0.05
CaO 0.97 0.64 0.36
Na2O 1.80 1.25 1.38
K2O 5.81 4.05 4.49
H2Od 4.72 6.0 7.0

a Composition determined from modal analysis of X-ray maps using ImageJ multiplied
by phase composition.

b Composition determined from average electron microprobe spot analyses with
broadened beam.

c Composition calculated by subtracting garnet from the whole rock bulk composition.
d Sufficient H2O was added to each bulk composition to ensure excess fluid at all P-T

conditions.

Fig. 2. Plot of modeled garnet composition versus radius for the OS and EQ models. Note
that the small amount of additional garnet growth in the EQ model (black) beyond the OS
model (red) occurs as a result of garnet growth after chlorite is exhausted. (For inter-
pretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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3.1. Progressive nucleation

The steady decrease in affinity as garnet fractionates in the OS
model raises a significant question regarding the process of progressive
nucleation. There are numerous studies that have concluded that nu-
cleation of garnet is progressive, principally based on the observation
that the Mn content of garnet cores correlates strongly with the size of
the garnet, with smaller garnets being Mn-poorer (e.g. Chernoff and
Carlson, 1997; Spear and Daniel, 1998, 2001; George and Gaidies,
2017). The assumption in the above studies and the present modeling is
that the diffusion of Mn along grain boundaries is rapid so that the Mn
content on the rims of all growing garnets is identical, whether based on
EQ or OS modeling. Thus, the Mn content of garnet can serve as a proxy
for time, leading to the conclusion that the smaller garnets nucleated
later than the larger garnets. If the affinity decreases as the initial
garnet grows, however, the driving force for subsequent nucleation will
decrease below the nucleation threshold (e.g. 812 J/mol oxygen in the
present study), thus prohibiting subsequent nucleation.

In order to replenish the affinity to provide the driving force for
progressive nucleation, it is necessary for P and T to steadily increase
following the nucleation of the initial garnet. This is essentially the
assumption made by Kelly et al. (2013a, 2013b) in their modeling of
garnet growth. The rate of affinity generation depends on the ΔS and
ΔV of reaction, the specific P–T path, and the rate of change of P and T.
Along the P–T path used in the above modeling calculations, the affinity
increases at a rate of approximately 12.5 J for every 1° and 25 bars
(Fig. 3a). For every millimole of garnet that is grown, the affinity de-
creases by around 117 J (Fig. 3b). An increase in P and T of around 10°

would thus be required to replenish the affinity depletion from each
millimole of garnet produced back to the threshold value for nuclea-
tion.

Assuming a constant threshold of affinity for nucleation, the rate of
nucleation will depend on the interplay of two rates: the crystal growth
rate (which determines the rate of affinity depletion) and the heating
(or loading) rate (which determines the rate of affinity replenishment).
Neither of these values is well known so rather than assume values for
crystal growth rate and heating rate, the approach taken here is to in-
troduce new garnet nuclei at arbitrarily specified Mn concentrations
(e.g. Xsps = 25, 20, 15, 10, 5). Given that the goal of this section is
calculation of the zoning profiles in a suite of progressively nucleated
garnets, this approach is warranted, provided a model for the attach-
ment of new garnet onto existing crystals can be formulated.

Kretz (1974) discussed three geometric possibilities for garnet
growth and Spear and Daniel (1998) examined the consequences for
zoning of these three models: the addition of new material in constant
radial amounts, in amounts proportional to each crystal's surface area,
and in equal mass amounts. Whereas there is no firm theoretical jus-
tification for the second and third geometric options, the addition of
material in equal radial amounts may be attributed to isothermal in-
terface-controlled growth (see Discussion below).

The rate of attachment of new material onto existing garnet crystals
depends on the rate-limiting step for garnet growth. Continuing with
the assumption of a rapid transport step, the rate of garnet growth that
is limited by interface kinetics follows from the equations for the rate of
attachment (on the garnet) and detachment (from the reactant phases):

= −r v exp( ΔG RT) (4)

where r is the rate of attachment or detachment, ν is the jump fre-
quency, ΔG is the activation energy for attachment or detachment, R is
the gas constant and T is temperature (e.g. Volmer and Marder, 1931;
Kirkpatrick, 1975). Inasmuch as there is no radial dependence in this
expression, the rate of attachment must be the same for all crystals
(Fig. 4a).

In a related model, it is assumed that each growing crystal seques-
ters material from a spherical shell of equal radius around the existing
crystal (Fig. 4a). The volume of the shell is, of course, larger for crystals
of greater radius, but the incremental radius of the shell is identical for
each. From Fig. 4a we have
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Since mass is proportional to volume, the distribution of masses is
proportional to the distribution of volumes of the shells:
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Once the incremental mass is calculated for either model, the radial
change is then
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Note that this model gives exactly the same result as assuming equal
radial increments on each crystal (Eq. (4)).

Garnet growth limited by diffusion of Al in the matrix has been
proposed by Carlson (1989, 1991) (see also Denison and Carlson, 1997)
and of Si by Spear and Daniel (2001). The distribution of new mass onto
existing crystals where growth is diffusion-limited depends on the
nature of the diffusive flux. If it is assumed that the diffusion is steady-

(a)

(b)

Fig. 3. (a) Plot of affinity generation versus temperature along the modeled P–T path. (b)
Plot showing the decrease in affinity versus garnet growth (in units of millimoles and
radius) as a result of the sequestering of Mn into the fractionating garnet core.
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state, then the gradient surrounding each crystal is identical and the
flux to each crystal surface (in units of mass/unit area) will be identical
(Fig. 4b). The total mass added to each crystal is then equal to this flux
times the surface area of the crystal. That is,

= J πrm 4 ii
2

where J is the flux and mi is the mass being added to crystal i. Inasmuch
as
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That is, the mass is distributed in proportion to the surface areas of
the crystals (i.e. proportional to the squares the radii). Large crystals
will get more mass and a slightly larger radial increase than small
crystals.

A more rigorous treatment of the predicted mass allocation for

diffusion-limited crystal growth recognizes that the diffusive halos
surrounding growing crystals evolve with time (the non-steady state or
time-dependent model; e.g., Glicksman, 2000). At short times for newly
nucleated crystals, the gradient is steep and the flux to the crystal is
large; as time progresses the gradient flattens and the flux decreases
(Fig. 4c). Theoretical analysis begins with the mass balance that equates
the rate of change of the volume of the crystal with the flux of material
arriving at the interface, known as Stefan's interface condition.

(b)(a) (c)

Fig. 4. Schematic representations of the three models for distributing mass onto crystals of different sizes. (a) Each crystal sequesters new mass from a spherical shell of radius Δr. (b) The
flux to the surface of each crystal is equal. (c) Stefan interface model. Small crystals grow more rapidly than large crystals due to larger gradient at crystal interface.

Fig. 5. Plot of XSps versus garnet radius for successively nucleated garnets in the OS
model. Allocation of new mass based on the assumption of (a) equal radial increments; (b)
constant flux to all growing garnet crystals; (c) Stefan's interface condition. Dashed line
shows Mn zoning profile if only a single garnet nucleates within the model volume.

(a)

(b)

Fig. 6. (a) Plot of XSps versus garnet radius for the successively nucleated garnets from
Fig. 5 after diffusional relaxation. Diffusion was calculated at 700 °C for total times of 0.1,
1, and 10 Ma. (b) Same plot as in (a) except profiles are drawn at constant values of
dimensionless time (Dt/a2).
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Following the treatment in Glicksman (2000), we have for Stefan's in-
terface condition:

− − =πr πr J4 (C C ) dr
dt

4 02
GB Grt

2

At sufficiently long times the flux at the interface becomes steady
state, although still dependent on the crystal size:

= −J
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That is, the radial change in garnet in a given crystal is proportional
to the inverse of the radius: small crystals increase their radius more
rapidly than do large crystals. Because the change in volume is related
to the change in radius:

= πrdV
dt
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2

and the change in mass is proportional to the change in volume (as-
suming a constant molar volume), we can write

=
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from which we can calculate the radial growth of each garnet crystal as
before.

In summary, both the distribution of mass to existing crystals for
interface controlled growth (Eq. (4)) and growth based on sequestering
material from equal spherical shells (Eq. (5)) predict equal radial in-
crements (Fig. 4a), whereas constant surface flux (Eq. (6)) predicts large
crystals grow slightly more than smaller crystals (Fig. 4b). Non steady
state diffusion controlled growth (Eq. (7)) predicts small crystals grow
more rapidly than large crystals (Fig. 4c).

The results of the progressive nucleation calculations are presented
in Fig. 5. The dashed line shows the results for a single garnet in the
sample volume and displays the bell-shaped profile typical of garnets
from the garnet zone. The shape of Xsps zoning depends on the assumed
model. For equal radial increments (Eq. (4)), equal shell volumes (Eq.

(5)), and equal flux at the interface (Eq. (6)) the profiles of Xsps for all
by the initial garnet show peaked Xsps profiles in the cores. In contrast,
the profiles for the Stefan's interface condition (Eq. (7)) show broa-
dened profiles in the cores. The Xsps profiles for the Stefan's interface
model (solid black lines in Fig. 5) are also considerably shallower for
the smaller garnets and considerably steeper for the largest (initial)
garnet than is evident in the first two models (equal radial shells and
equal flux).

The zoning profiles in Fig. 5 may be compared with observed zoning
profiles of garnets of various sizes from natural samples. There have
been a few studies in which a suite of garnets of differing sizes from a
single rock have been cut through their centers, the most notable being
that of Chernoff and Carlson (1997). Garnet crystals from that study
display Mn zoning with well-defined rounded tops at their centers,
which would suggest that the Stefan's interface model may pertain.
However, the small garnets from that study also display steep shoulders
with decreasing Mn content, in contradiction to the calculated zoning
profiles for this model.

It is important to consider the effect of diffusional relaxation on the
profiles presented in Fig. 5. To this end, numerical experiments were
performed on the profiles for the equal radius model and the results are
shown in Fig. 6. Each profile was used as the initial condition in an
explicit finite difference diffusion model with spherical geometry using
the Mn diffusion coefficient from Chakraborty and Ganguly (1992). The
grid spacing was 2 μm and sufficiently small time steps were used to
ensure numerical stability. The resulting profiles were saved after
specified increments of absolute and dimensionless time (Dt/a2). It is
clear from the plots shown in Fig. 6 that even a modest amount of
diffusion will sufficiently relax the profiles to cause the peak in the
garnet core to disappear. Spherical diffusion affects the garnet core
more than the rim so that, even after moderate diffusion has occurred,
the profiles are not so flat as those of the Stefan's interface model.

The magnitude of diffusional relaxation scales with the diffusivity
(and thus with the temperature), the length scale, and the time. The
crystals in Figs. 5 and 6 are relatively large (1.6 to 6.7 mm radius).
Garnets from typical Barrovian garnet zones are usually smaller (typi-
cally 1–3 mm) and smaller garnets will relax more quickly than larger
garnets at the same conditions. Fig. 7 is a plot of log time versus tem-
perature contoured for values of garnet radius for a value of Dt/

Fig. 7. Plot of log time versus T contoured for crystal ra-
dius at a value of dimensionless time (Dt/a2) of 0.01.
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a2 = 0.01. The time scale for diffusional relaxation of the core to the
degree shown by the dot-dashed lines in Fig. 6b (Dt/a2 = 0.01) for any
sized crystal can be read from the plot. For example, a 100 μm radius
garnet crystal would experience diffusional relaxation equivalent to Dt/
a2 = 0.01 in 0.1 Ma. Thus, it is not likely that the central core peak
would ever be preserved in natural samples unless growth and sub-
sequent cooling was quite rapid. Moreover, it is worth noting that the
central core peak Mn profiles should only be observed in smaller, later
nucleated garnets. In many petrologic studies of garnet zoning, the
composition profiles are only measured on the largest garnets, the
reason being that these should contain the most information about the
P–T path. So it is possible that the effect may have been overlooked in
many studies.

The shapes of Xsps profiles shown in Figs. 5 and 6 provide con-
straints on the rate limiting step in garnet growth. As mentioned above,
the computed profiles for the Stefan's interface model are considerably
flatter than what has been reported for progressively nucleated garnet
(e.g. Chernoff and Carlson, 1997). Examples of peaked Mn zoning in the
center of garnet cores have, in fact, been observed in garnets from the
Connecticut Valley Synclinorium, central Vermont (Fig. 8), similar to
constant radius or constant flux models, and suggests that interface
control may be rate limiting for the growth of these garnets. Similarly
peaked Mn zoning profiles in garnet have also been reported by George
and Gaidies (2017 – their Fig. 12)

3.2. Garnet growth and the approach to equilibrium

The OS models presented above for garnet growth were calculated
for isothermal, isobaric growth as a limiting case. The garnet producing
reaction was allowed to run to completion, which occurred when
chlorite (a necessary reactant) was depleted. However, the question
remains as to how close is the approach to equilibrium at the point
where garnet stopped growing.

This question was addressed for a sample from the Gile Mountain
Formation in eastern Vermont (sample TM-626), which was also ex-
amined by Spear et al. (2014). Fig. 9 displays two pseudosections for
this sample, one calculated for the whole rock bulk composition
(Fig. 9a) and the other for the bulk composition with garnet subtracted
(Fig. 9b; Table 1). Both diagrams were calculated assuming equilibrium
in the MnNCKFMASH system with only the phases quartz, muscovite,
fluid, plagioclase, chlorite, biotite, and garnet considered for simplicity.
The results of quartz inclusion in garnet (QuiG) barometry, as discussed
by Spear et al. (2014), suggested that garnet nucleated well above the
nominal isograd reaction. The intersection of garnet core isopleths as-
suming equilibrium (red star, Fig. 9a) would imply that garnet nu-
cleated at approximately 8 kbar, 575 °C, the latter a few tens of degrees
above the equilibrium garnet isograd. However, the QuiG barometry,
which records conditions of quartz inclusion entrapment in garnet,
suggests that the conditions of garnet nucleation were at least 675 °C,
10.5 kbar, and possibly as high as 690 °C, 13.7 kbar (yellow stars,
Fig. 9a).

Two additional sets of calculations were done using the bulk com-
positions from Fig. 9 in which garnet was not permitted to be a part of
the stable assemblage, but in which the composition of garnet was
calculated at each P–T point from the OS model (Fig. 1). The isopleth
for the Fe/(Fe + Mg) for the garnet core and rim are plotted in Fig. 9a
and b (green lines). The intersection of these isopleths with the QuiG
barometry are interpreted as reflecting the conditions of garnet nu-
cleation (Fig. 9a, yellow stars) and final growth (Fig. 9b, green stars). If
this interpretation is valid, then it is apparent that the P–T conditions
changed very little from garnet nucleation to final growth: that is, in
this sample garnet grew nearly isothermally and isobarically. Further-
more, examination of the isopleths for the garnet rim (red lines in
Fig. 9b) do not intersect closely, and would imply that the garnet rim
P–T conditions were at lower temperature than the core, which seems
unrealistic. The affinity required for garnet nucleation from these

(a)

(b)

(c)

Fig. 8. Mn zoning in sample TM-918c from central Vermont, USA. (a) X-ray map showing
Mn zoning in several garnets. Box shows the location of garnet in (b). (b) Close up of an
individual garnet. Line shows the location of profile in (c). (c) Profile (Mn versus radius)
of Mn zoning through the garnet core. Blank areas are quartz inclusions.
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calculations is either 1600 or 2050 J/mol O, depending on which QuiG
isopleth is used, and the affinity at the end of garnet growth is 927 or
1600 J/mol O, reflecting a decrease in affinity from nucleation to
growth of 450 to 673 J/mol O. The implication is that the rock did not
achieve equilibrium even at the end of the growth of garnet.

4. Discussion

The nucleation of garnet and other porphyroblasts requires a degree
of overstepping of the equilibrium isograd reaction. Unfortunately, the
amount of overstepping for initial nucleation is difficult to constrain, as
revealed by the wide range of estimates from the above studies, and
there are no general theoretical criteria that have been developed to
handle the complexity of real rocks. It is likely that the amount of
overstepping varies based on the bulk composition, preexisting miner-
alogy, and strain history. Nevertheless, the observational data available
at this time suggests affinities of several hundred to a few thousands of
joules/mol oxygen are required to nucleate garnet, which corresponds
to several tens of degrees or several kilobars of overstepping. In addi-
tion, the analysis presented above for sample TM-626 suggests that the
sample may never have reached an equilibrated state, even near the
peak metamorphic conditions, because the affinity for reaction never
reaches zero.

It would appear, therefore, that the traditional approach of as-
suming (explicitly or tacitly) that garnet growth occurs at near-equili-
brium conditions needs reexamination. Some studies where isopleths
from central-sectioned garnets intersect near the garnet-in isograd have
been taken as evidence for near-equilibrium growth, but it has been
demonstrated by Spear et al. (2014) that such a near-coincidence with
the garnet isograd is expected when garnet nucleates after significant
overstepping. Additionally, if garnet nucleation requires affinities of
several hundred joules to nucleate, then the nucleation and subsequent
growth of this initial garnet will deplete the reservoir of affinity needed
to nucleate additional garnets. It is not sufficient, as has been assumed
by Ketcham and Carlson (2012) and Kelly et al. (2013a, 2013b), to

decrease the affinity for nucleation to only restricted regions in the
rocks that suffer Al depletion because all of the cations incorporated
into garnet (Mn, Ca, Fe, Mg) will be depleted by initial garnet growth,
which will lower the affinity for nucleation throughout the entire rock
(Fig. 3). The well-demonstrated fact of progressive nucleation in many
rocks (e.g. Chernoff and Carlson, 1997; Spear and Daniel, 1998) thus
negates the possibility that garnet growth occurs at near-equilibrium
conditions, unless the affinity required for progressive nucleation de-
creased significantly after the initial garnet nucleated, which seems
highly unlikely.

Thus it may be that most previous studies (the author's included)
that use observed garnet zoning with thermodynamic calculations as-
suming equilibrium conditions need to be reevaluated. These include
not only studies that use garnet zoning and inverse modeling such as
with the Gibbs method (e.g. Spear and Selverstone, 1983) or forward
models that use pseudosections (e.g. Gaidies et al., 2011), but also
methods that use classical thermobarometry with inclusion suites in
garnet (e.g. St-Onge, 1987).

As the kinetics of mineral nucleation and growth and the processes
that operate on grain boundaries on the nano scale become better un-
derstood, it is likely that new methods will emerge that will permit
better elucidation of the evolution of a metamorphic rock than is cur-
rently possible. For example, the model presented here in which the
composition of garnet growing out of equilibrium is assumed to be the
composition that provides the largest decrease in free energy indicates a
direction for future research. Specifically, it has been shown that this
approach provides a means of calculating conditions of both garnet
nucleation and final growth, so it should be possible to invert the
process and calculate the changes in pressure and temperature neces-
sary to grow a garnet with an observed zoning pattern, similar to the
approach used to create Fig. 9. Such an approach may open new ave-
nues of investigation of rocks undergoing active metamorphism.

(a) (b)

Fig. 9. P-T diagrams showing the results of calculations for sample TM-626. (a) Simplified equilibrium MAD for the whole rock bulk composition. (b) Simplified equilibrium MAD for the
bulk composition with garnet removed. Black lines are MAD assemblage boundaries (all assemblages also include quartz + muscovite + plagioclase + fluid). Orange lines show the
range of inferred P-T conditions of quartz inclusion entrapment in garnet from QuiG barometry. Thin red lines are isopleths of garnet composition for the core (a) and rim (b) from the EQ
model. Thin green lines are isopleth of Fe/(Fe + Mg) in garnet for the core (a) and rim (b) from the OS model. Red and yellow stars in (a) are the inferred conditions of garnet nucleation
from the EQ and OS models. Green stars in (b) are the inferred conditions for the garnet rim from the OS model. Blue lines are contours of affinity in J/mol O. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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