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ABSTRACT: Deep-ultraviolet (DUV) photodetectors based on

wide-band-gap semiconductors have attracted significant interest 4 UVC Light
across a wide range of applications in the industrial, biological,
environmental, and military fields due to their solar-blind nature. As
one of the most promising wide-band-gap materials, #-Ga,O; provides
great application potential over detection wavelengths ranging from  gq.0,
230 to 280 nm owing to its superior optoelectronic performance,
stability, and compatibility with conventional fabrication techniques.
Although various innovative approaches and device configurations
have been applied to achieve highly performing B-Ga,0; DUV
photodetectors, the highest demonstrated responsivity of the f-Ga,0;  gj substrate
photodetectors has only been around 10° A/W. Here, we demonstrate
a }-Ga,0, phototransistor with an ultrahigh responsivity of 2.4 X 107
A/W and a specific detectivity of 1.7 X 10'° Jones, achieved by engineering a photogating effect. A -Ga,0;/MgO heterostructure
with an Al,O; encapsulation layer is employed not only to reduce photogenerated electron/hole recombination but also to suppress
the photoconducting effects at the back-channel surface of the f-Ga,O; phototransistor via a defect-assisted charge transfer
mechanism. The measured photoresponsivity is almost 2 orders of magnitude higher than the highest previously reported value in a
P-Ga,0;-based photodetector, to the best of our knowledge. We believe that the demonstrated -Ga,0;/MgO heterostructure
configuration, combined with its facile fabrication method, will pave the way for the development of ultrasensitive DUV
photodetectors utilizing oxide-based wide-band-gap materials.
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he optoelectronic properties of ultra-wide-band-gap the production of single-crystal $-Ga,O; wafers with superior

materials such as AlGaN," Mg, Zn,_,O,” Zn,Ga,_,0,”" material quality.”>™"® In addition, B-Ga,O; active layers
BN,” and diamond®’ have enabled the implementation of obtained by mechanical exfoliation'”™*' or homoepitaxy™
solar-blind deep ultraviolet (DUV) photodetectors for unique from single-crystal bulk substrates have demonstrated high
applications such as flame detection,"”®’ missile tracking,’ crystal quality, making them promising contenders for solar-
pollution monitoring, and intersatellite communication sys- blind high-performance DUV photodetectors.
tems. The high thermal stability, high chemical stability, and The figure of merit for DUV photodetectors in particular is
superior radiation hardness of these materials also enable them responsivity (in A/W), which is inversely proportional to the
to be deployed in harsh conditions, such as high-temperature energy of a detected photon and proportional to the quantum

efficiency.”® The responsivity can be improved by maximizing
the absorption of incident light and/or by extracting more
carriers per photon. The former strategy was pursued by
employing UV-transparent electrodes such as semitransparent
Ni/Au,** 120, and graphene;lg’%’27 nevertheless, this

environments and space. Despite substantial progress in crystal
growth technologies over the past few decades, obtaining high-
quality ultra-wide-band-gap alloys is still challenging because of
their demanding growth conditions and poor crystalline
quality.'”~"* For instance, a lattice-mismatched heteroepitaxial
growth of AlGaN, and a phase mixing in a high-Mg-content
MgZnO, resulted in a large defect density, degrading detecting Received: October 11, 2020 (Phétoncs
performance.''™'* As alternatives to these materials for DUV Published: January 12, 2021
photodetection, monoclinic $-Ga,0;, the most stable phase in
the polymorphism of Ga,O3, holds promise. Its well-developed
melt growth methods, such as the Czochralski method, edge-
defined film-fed growth, and the floating zone technique, allow
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Figure 1. (a) Schematic illustration of the f-Ga,0;/MgO heterostructure-based phototransistor. (b) Scanning electron microscope (SEM) image
of the fabricated -Ga,05/MgO phototransistor. Scale bar: 20 ym. (c) High-resolution TEM image of the #-Ga,0,/SiO, interface. Scale bar: S nm.
Inset: corresponding FFT patterns of the -Ga,O; region. (d) EDX elemental mapping of four chemical species (Al, Mg, Ga, and O). Scale bar: 25

nm.

approach by itself cannot overcome the maximum imposed by
the intrinsic material responsivity. The latter strategy achieves
higher responsivity by means of avalanche carrier multi-
plication or unbalanced channel-charge-induced photocurrent
gain.”® In this context, various types of /-Ga,0; photodetector
configurations with a photocurrent gain mechanism have been
investigated, including metal—semiconductor—metal devices,
heterojunctions, and phototransistors. Still, the highest
responsivity achieved for the pA-Ga,O; photodetector has
been ~10° A/W.>!

In this work, we demonstrate a f-Ga,0;/MgO hetero-
structure DUV phototransistor with ultrahigh sensitivity by
using the photogating effect to significantly amplify the
photocurrent. MgO and Al,O; layers are sputtered by a
radio frequency (RF) magnetron on top of a f-Ga,0,
phototransistor on a Si/SiO, substrate, where the heavily
doped Si substrate is used to control a gate. The material
properties of the f-Ga,0;/MgO/Al,O; layers were charac-
terized by high-resolution transmission electron microscopy
(HR-TEM) and energy-dispersive X-ray spectroscopy (EDX).
Furthermore, the optoelectronic properties of the $-Ga,0; and
P-Ga,0;/MgO phototransistors were characterized under
illumination with DUV light and dark conditions. A
comparison between the p-Ga,0; and f-Ga,0;/MgO
heterostructure phototransistors shows that the MgO layer
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efficiently limits the photoconductive effect, such that the
photogating effect predominantly governs the f-Ga,0;/MgO
heterostructure-based phototransistor operation. We ascribe
this phenomenon to defect-assisted charge transfer at the f-
Ga,03/MgO interface, where the charge transfer process could
be described by electronic band diagrams. As the photogating
effect is solely responsible for the significant photocurrents due
to the restricted photoconduction, the $-Ga,0;/MgO photo-
transistor showed an ultrahigh responsivity of 2.4 X 107 A/W
and a specific detectivity of 1.7 X 10" Jones at the wavelength
of 260 nm. These unprecedentedly high DUV responsivity and
specific detectivity values confirm that the B-Ga,0;/MgO
heterostructure-based phototransistor outperforms previously
reported f-Ga,0;-based DUV photodetectors.

B RESULTS AND DISCUSSION

Figure la shows the configuration of the B-Ga,O; photo-
transistor, which included a charge transfer layer (MgO) and
an encapsulation layer (AL,O;). Here, the -Ga,0, films (270
nm, see the Supporting Information) were mechanically
exfoliated from a single-crystal (—201) bulk $-Ga,O; substrate
(Tamura Corp., Japan) and transferred onto a Si/SiO,
substrate. The highly doped Si substrate was used to apply
the gate voltage to the f-Ga,O; channel through the SiO,

https://dx.doi.org/10.1021/acsphotonics.0c01579
ACS Photonics 2021, 8, 557—566
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Figure 2. Ing—Vpg characteristics of the -Ga,O; phototransistor without a MgO layer at Vg values ran§ing from —70 to —30 V, in steps of SV,
under (a) dark conditions and 260 nm DUV light illumination of (b) 5.40 yW/cm? and (c) 17.2 uW/cm.” Ing—Vpg characteristics of the f-Ga,0,/
MgO phototransistor with an Al,O; encapsulation layer at Vg values ranging from —40 to 0V, in steps of S V, under (d) dark conditions and 260
nm DUV light illumination of (e) 3.48 yW/cm* and (f) 19.3 yW/cm?®. Transfer characteristics of the (g) f-Ga,O; and (h) B-Ga,05/MgO

phototransistor. Vg was fixed at 1 V.

dielectric layer. The source (S) and drain (D) electrodes (Cr/
Au 20/80 nm) were deposited and patterned by thermal
evaporation following a photolithography process. Then, MgO
(30 nm) and AL,O; (20 nm) were deposited by RF magnetron
sputtering at room temperature. The Al,O; encapsulation layer
prevents a degradation of the MgO layer by water molecules
due to a hygroscopic nature of the MgO layer.””*’ Figure 1b
shows a scanning electron microscope (SEM) image of the
fabricated -Ga,0;/MgO phototransistor. We also fabricated a
reference f-Ga,0; phototransistor with nearly identical
dimensions and channel thickness to investigate the effects
of the MgO layer.

Material properties of the exfoliated f-Ga,O; and MgO/
Al,O; layers in the fabricated device were studied by using HR-
TEM and an EDX mapping. Cross-sectional HR-TEM images
were obtained over the S$iO,/f-Ga,0;/MgO/ALO; cross-
sectional interface (Figure lc; see the Supporting Information
for MgO). A fast Fourier transform (FFT) micrograph of the
B-Ga,0; HR-TEM image indicates the high crystal quality of
the exfoliated $-Ga,O; film (inset of Figure 1c). Moreover,
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Figure 1d shows a cross-sectional TEM image and the
corresponding TEM-EDX maps of the device, where four
elemental species (Al, Mg, Ga, and O) are displayed as four
different colors (green, cyan, magenta, and red). The TEM-
EDX maps clearly reveal that the MgO and Al,O; layers were
uniformly deposited on top of the $-Ga,O; layer.

Figure 2a—c shows the output characteristics (Ipg—Vps) of
the reference f-Ga,0; device for gate biases (V) ranging
from —70 to —30 V at steps of 5 V, under dark conditions and
260 nm DUV light illumination of 5.4 or 17.2 fW/cm®. We set
the wavelength of DUV light at 260 nm, in which the photon
energy is slightly larger than the band gap of f-Ga,0;, in this
work for simplicity of the experiment (see the Supporting
Information for the analysis of spectral responsivity). The Ipg—
Vps curves of the f-Ga,0O; device under dark conditions
exhibit the typical linear and saturation characteristics of thin-
film transistors (TFTs) (Figure 2a). However, the output
curves of the reference device under DUV light deviate from
this behavior, exhibiting a hump in the low Vpg region (Vg < 1
V) (black dotted circles in Figure 2b,c).>" The hump implies

https://dx.doi.org/10.1021/acsphotonics.0c01579
ACS Photonics 2021, 8, 557—566
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Figure 3. (a, b) Schematic illustration of the charge transport mechanisms in the f-Ga,O; phototransistor without the MgO layer: (a) When the
device is illuminated by DUV light under a negative gate bias, holes and ionized oxygen vacancies are trapped at the SiO,/f-Ga,O; interface while
photogenerated electrons remain on the back-channel surface. (b) When a positive bias is applied to the -Ga,O; phototransistor, electrons are
injected at the SiO,/f-Ga,0; interface, releasing the trapped holes and oxygen vacancies. (¢, d) Schematic illustration of the charge transport
mechanisms in the -Ga,0;/MgO heterostructure-based phototransistor: (c) When DUV light illuminates the $-Ga,0;/MgO phototransistor
under a negative gate bias, holes and ionized oxygen vacancies are trapped at the SiO,/f-Ga,0Oj; interface, but the photogenerated electrons are
transferred to the MgO layer by a defect-assisted charge transfer process. (d) When a positive bias is applied to the -Ga,0;/MgO phototransistor,
the trapped positive charges are released in the same fashion as in the -Ga,0; device. (e) Comprehensive transient response of the f-Ga,0;/MgO
phototransistor under the application of various gate voltage pulses. The measurement is conducted under a fixed Vg = 1 V, DUV irradiance = 5.4
UW/cm?, Vygr = 33 V, Vo = =36 V, and V; = —69 V.

that two distinct charge transport mechanisms in the $-Ga,O;
channel concurrently contribute to the conduction of carriers.
It has been known that the back-channel surface of metal-oxide
semiconductor-based TFTs provides an additional conduction
channel that is not controlled by a gate bias, thereby increasing
dark current and reducing photoresponsivity.** > This back-
channel conduction possibly originates from photoadsorption/
desorption of oxygen species from the atmosphere,®® as the
back-channel effect is only observed in the reference $-Ga,0,
device in which the surface is exposed to the ambient air.

560

To suppress the back-channel surface effects, we introduce
the -Ga,0;/MgO heterostructure-based phototransistor with
an Al,O; encapsulation layer. Figure 2d—f presents the linear
and saturation output characteristics of the p-Ga,0;/MgO
phototransistor under dark conditions, as well as under 3.48
and 19.3 pW/cm® light illumination. We attribute the
suppression of the back-channel conduction in the }-Ga,0,/
MgO device to defect-assisted charge transfer, which will be
discussed in more detail in a later section. Figure 2gh shows
transfer characteristics of the f-Ga,O; and p-Ga,0;/MgO

https://dx.doi.org/10.1021/acsphotonics.0c01579
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current of several state-of-the-art #-Ga,O;-based phototransistors.

19-22,24—28,49—57

phototransistors, respectively, at Vpg = 1 V under DUV light
illumination. The threshold voltage (Viy) difference of ~30 V
between the $-Ga,0; and -Ga,0;/MgO devices is attributed
to a slight thickness difference of B-Ga,O; layers in those
devices since a Vyy of -Ga,05 transistors sensitively depends
on a thickness of the 3-Ga,O; layer.” In the $-Ga,O,
phototransistor, a light-induced hump appears when the gate
bias is lower than Viy. This hump is observed because the
photoconductive and photogating effects concurrently occur in
the A-Ga,O; phototransistors under light illumination.
Although a weak photoconductive effect is measured at highly
negative gate biases (Vg < —80 V) under weak light
illumination (P = 3.48 uW/cm?®) due to oxygen vacancy
defect trapping, the coexistence of the photoconductive and
photogating effects is evidenced by the two different rising
slopes that exist in the transfer curves. The observed relatively
high photoconductive gain may be attributed to a hole self-
trapping, lowering a potential barrier between the -Ga,0; and
the S/D metal at Vgg < Vip.”® On the other hand, only the
photogating effect contributes to photocurrent generation in
the }-Ga,0;/MgO phototransistor, which means that no
photocurrent arises from photoconduction when Vg < Viy.
By eliminating the photoconductive effect, the recombination
of photogenerated electron—hole pairs is effectively sup-
pressed, enabling ultrahigh photoresponsivity solely by means
of the photogating effect.””>”*

To explain the suppression of the photoconductive effect in
the A-Ga,0;/MgO heterostructure device, we propose a
defect-assisted charge transfer model. Figure 3a,b displays a
schematic illustration of processes involving photogenerated
charge carriers for the p-Ga,O; and the f-Ga,0;/MgO
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devices, respectively, when the applied gate bias voltage is
either much lower or much higher than the threshold voltage
(Vs < Vg or Vg > Vo). The drawn band diagram is based
on literature values."'~** When photons with above-band-gap
energies illuminate the phototransistor, an absorbed photon
causes the creation of a free electron—hole pair as well as the
ionization of an oxygen vacancy (Vy), generating two free
electrons in the conduction band (V, + hv — Vi** + 2¢7).* In
the B-Ga,O; phototransistor, when Vg is less than Vi,
photogenerated holes and ionized oxygen vacancies are
attracted to the SiO,/f-Ga,0; interface, while photogenerated
electrons are attracted to the back-channel surface (Figure 3a).
The drifting photogenerated holes and oxygen vacancies
become localized by deep interfacial trap states, inducing a
negative Vry shift (i.e., the photogating effect).”””*" At the
same time, the remaining photogenerated electrons in the
conduction band flow to the drain electrode, resulting in
photocurrent at the below-threshold gate voltage (ie., the
photoconducting effect),””*”* while some of the electrons
recombine with holes, reducing the photoresponsivity. When
Vgs > Vry, electrons are injected at the SiO,/}-Ga,0;
interface, and the injected electrons deionize the ionized
oxygen vacancies and combine with the trapped holes (Figure
3b). Subsequently, the shift in threshold voltage is recovered.
This conceptual mechanism also explains the evolution of the
P-Ga,0; phototransistor operation under light illumination
and varying gate bias voltage, which will be discussed in Figure
3e.

While the overall mechanism for the A-Ga,0;/MgO
heterostructure phototransistor is similar to that of the S-
Ga,0; phototransistor, we assume that the defect-assisted

https://dx.doi.org/10.1021/acsphotonics.0c01579
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Table 1. Reported Values for Dark Current, Responsivity, and Specific Detectivity in f-Ga,0;-Based

19-22,24—28,49—57

Photodetectors

dark current responsivity detectivity

materials (A) A/W) (Jones)

B-Ga,0; flakes 6.7 x 1072 2.3 X 107 1.7 x 10"
B-Ga,0; flakes 2.77 X 107° 29.8 145 x 102
B-Ga,0; flakes 2% 1078 1.68 3.73 x 10"
B-Ga,0; flakes 9.91 X 1072 4.79 X 10° 6.69 x 10™*
MBE-grown f-Ga,0; 3x 107" 4x1073
-Ga,0; substrate 1x107® 8.7
MOCVD-grown f-Ga,05 1x 1071 32 x 107 2.8 x 10"
graphene/f3-Ga, 05 flakes 12 x 107" 2.6 x 10° 9.7 x 10
graphene/f-Ga,0; wafer 1.1 x 1076 39.3 224 x 10"
Zn0-Ga,0; core—shell 1x 10710 1.3 x 10° 9.91 x 10"
Ga,0; nanobelt 2x 1078 ~10?
MBE grown $-Ga,0, 1x107® 1.5
B-Ga,0,/SiC 1% 10710 7 % 1072
2D f-Ga,0; nano sheet 2 x 1071 33 4.0 x 10"
B-Ga,0,/Zn0O 5x 107! 9.7 X 1073 6.29 X 10"
$-Ga,0;/MgO 3.5 x 10712 0.03
PEDOTSs/$-Ga,0, 1x1078 2.6 2.2 % 108
$-Ga,0;/MgO 47 x 1071 0.1 43 x 10"
B-Ga,0,/MgO 1.4 x 10712 96.13

operating bias (V)  rise time (s) fall time (s) ref
Vps = 5, Vgs = =20 6.38 >1000 w/PBP: 0.07  this work
10 19

30 1.76 0.53 20

Vg =20, V, = =20 0.025 0.025 21

5 0.1 0.1 22

10 24

10 25

8 1.0/8.3 0.6/9.7 26

20 94.83 219.19 27

6 2% 107° 42 % 107° 28

30 11.9 0.3 49

4 3.33 0.4 50

2 12x 1073 1.5x107° 51

10 0.03 0.06 52
-2 1x107* 9x 107* 53

10 0.07/0.53 0.06/0.16 54
-0.5 34x10% 3x107° 55

5 0.231 0.032 56

5 0.032 0.078 57

charge transfer takes place at the f-Ga,0;/MgO interface
under light illumination (Figure 3c), which increases the
photoresponsivity by suppressing electron—hole recombina-
tion and back-channel conduction at the off state of the
phototransistor. When Vg is less than Vi, the photo-
generated holes and ionized oxygen vacancies migrate to the
Si0,/f-Ga,0; interface (process 1 in Figure 3c), and the
photogenerated electrons drift toward the A-Ga,O; back-
channel surface (process 2 in Figure 3c), where they are
trapped by interfacial oxygen defect states at the SiO,/$-Ga,0;
and f-Ga,0;/MgO junctions, respectively. Meanwhile, the
trapped electrons are recombined with holes in the MgO layer
by a defect-assisted nonradiative recombination process
(process 3 in Figure 3c), resulting in the transfer of the
photogenerated electrons in f-Ga,O; to the MgO layer
(defect-assisted charge transfer).”> Consequently, the p-
Ga,0;/MgO device functionally mitigates photogenerated
electron—hole pair recombination and back-channel conduc-
tion in the f-Ga,0O; channel layer at the transistor off state,
enabling the observed ultrahigh responsivity and high specific
detectivity (to be discussed in Figure 4). When Vg is greater
than Viy (Figure 3d), the operation mechanism is nearly
identical with the $-Ga,0; device without the MgO layer.
Figure 3e shows the time-resolved photoresponse of the -
Ga,03;/MgO phototransistor under a drain bias of 1 V, in
which DUV light of an irradiance of 5.4 yW/ cm? is used for
the light-on state during the measurement. When the light is
on for 10 s under a gate bias of Vi, = =36 V (= Vg — 17 V),
Ips increases as the holes and ionized oxygen vacancies are
trapped at the SiO,/f-Ga,0j; interface, leading to the observed
negative Vry shift (I). After the light is turned off, the
photocurrent is stable during the extremely slow recovery time,
which is the so-called persistent photocurrent (PPC) (I1).***¢
PPC is commonly observed in oxide TFTs under UV light
illumination due to the slow decay time of the oxygen vacancy
defect states, and it prohibits a photodetector from exhibiting a
fast photocurrent response. Hence, PPC is usually very
desirable to implement optoelectronic memory.””** To
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circumvent the restriction of the slow photoresponse, a
positive gate bias voltage pulse (PBP, Vygr = 33 V = Vpy +
50 V) is applied to quickly suppress the PPC (III). When the
PBP is applied, electrons in the channel are injected at the
SiO,/p-Ga,0; interface, recombining the trapped holes and
ionized oxygen vacancies with the electrons and returning the
shifted V4 to the initial value (IV). On the other hand, when a
negative gate bias of —69 V (= V = Vg — S0 V) is applied to
the phototransistor (VI), photogenerated holes and ionized
oxygen vacancies from another 10 s DUV light illumination
(Vgs = Vi) (V) remained trapped. Although the photo-
transistor appears to recover to the initial state while the
negative gate bias is being applied, the removal of the negative
gate bias restores the device to the on state (VII) since the
trapped positive charges have not been released (Figure 3a,c).
In fact, the drain current slightly increases after the negative
gate bias is applied because extra positive charges are injected
at the SiO,/f-Ga,0; interface. After these phenomena, the
application of another PBP completely recovers the shift in
Vg (VIIL). The comprehensive transient responses detailed
here support the model, which is depicted in Figure 3a,c.
Based on the above discussion, the $-Ga,0;/MgO photo-
transistor is expected to exhibit an outstanding performance
with high photosensitivity. The responsivity (R) and the
specific detectivity (D*) of phototransistors are key parameters
for evaluating the photosensitivity and detection capability,
respectively, toward low-level light in a photodetector. For
further characterization of the phototransistor, the responsivity
and the specific detectivity are characterized under various Vg,
Vgs and irradiance conditions. The responsivity is given by R
=Ln/ (PA), where P and A are the incident light power and the
effective illuminated area of the device, respectively, and the
specific detectivity can be expressed as D* = (A-BW)/?/NEP,
where BW is the bandwidth, and NEP is the noise-equivalent
power. When we assume that the major factor of the noise of
the phototransistor is dominated by the shot noise, the specific
detectivity can be expressed ad D¥ = R-A?/(2ely,)"/? where
e is the electron charge. Therefore, the responsivity and the
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specific detectivity can be calculated using the measured I,
and I,. Figure 4a shows the responsivity and specific
detectivity as a function of Vpg (at Vgg = —20 V) under
0.51 §W/cm?® light illumination. The Ipg curves under dark
conditions and light illumination are also plotted to aid
understanding. Both R and D* obviously increase with
increasing Vpg due to the increase of I, and they saturate at
high Vpg, where R and D* are 2.1 X 10" A/W and 1.8 X 10"
Jones, respectively, at Vg = S V (Figure 4a). The shot noise
limited D* is prone to overestimate the performance because
other noise components are not considered. Thus, a noise
analysis of dark current is beneficial to precisely predict a
specific detectivity. Figure 4b shows the noise spectral density
of dark current at V5o = —20 V and Vg = 1 V. It turns out that
the flicker noise proportional to 1/f'7> prevails in the noise
spectrum. The rms (root mean squared) value of the noise
current up to BW = 1 Hz was 1.11 pA, corresponding to D* of
4.9 X 10" Jones. The measured D* determined by the noise
analysis was 3 orders of magnitude lower than the shot noise
limited D* as shown in Figure 4a. Nevertheless, the measured
D* of ~10" is still an unprecedentedly high value. Figure 4c
shows the responsivity as a function of the irradiance under
different applied gate voltages. Since the photogating effect is
predominantly attributed to the generation of photocurrent by
the shift in Vry, the responsivity increases with increasing
irradiance until the effective threshold voltage (Ve = Vg +
AVry) is equal to the applied gate voltage. When Vi ¢ is
higher than the applied gate voltage, the responsivity decreases
with increasing light intensity. This decrease could be caused
by absorption saturation, as well as by enhanced scattering
and/or recombination rates associated with high irradiance.

On the basis of the analyzed characteristics of the -Ga,0;/
MgO phototransistor, we obtain ultrahigh values of R = 2.4 X
10’ A/W and D* = 1.7 X 10" Jones at Vpg = 5V, Vgg = —20
V, and P = 0.51 4W/cm? in the $-Ga,0;/MgO device. Figure
4d shows the responsivities and dark current values for several
previously reported f-Ga,O; photodetectors based on
exfoliated f-Ga,0;, MBE- or MOCVD-grown f-Ga,0;, and
p-Ga,0; heterostructures.'”~*>**7****75" 1t should be noted
that, to the best of our knowledge, the achieved responsivity in
this work is almost 2 orders of magnitude higher than the best
previously reported responsivity for f-Ga,0;-based photo-
detectors.”’ However, the $-Ga,0,/ MgO phototransistor has a
slow response speed compared to other reported photo-
conductive-type photodetectors (Table 1) since a trade-off
between responsivity and bandwidth exists in photogating-type
photodetectors.”®> An effective method to overcome the
extremely slow recovery time (>1000 s) is an application of
a PBP to release trapped positive charges at the SiO,/f-Ga,0;
interface as shown in Figure 3e. With a use of the PBP, the
recovery time reduces to 70 ms (Figure S3), which is
comparable to that of other $-Ga,O;-based photodetectors.
A real-time detection of an extreme weak DUV light could also
be achievable by using periodic PBP."’

B CONCLUSIONS

In summary, we have demonstrated a p-Ga,0;/MgO
heterostructure-based DUV phototransistor with an Al,O,
encapsulation layer, exhibiting ultrahigh light sensitivity. The
material properties were characterized by HR-TEM and TEM-
EDX mapping, confirming the highly crystalline quality of the
p-Ga,0;. We studied the p-Ga,O; and f-Ga,0;/MgO

phototransistors under 260 nm light illumination and
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compared the f-Ga,0;/MgO device to the p-Ga,0; device
to clarify the role of the MgO layer. The MgO layer effectively
suppressed the photoconductive current in the subthreshold
region and enhanced a photogating effect by defect-assisted
charge transfer at the f-Ga,0;/MgO interface. Due to this
charge transfer, the recombination of photogenerated electrons
and holes is inhibited, contributing to the enhancement of the
photogating effect and the photocurrent. As a result, we are
able to achieve the highest responsivity (2.3 X 10" A/W) and
specific detectivity (1.7 X 10'° Jones) of any reported f-Ga,05
photodetection device. The f-Ga,0;/MgO phototransistor
can be applied to applications, which require a detection of
ultraweak DUV light (<1 uW/cm?), such as flame and
radiation detection and astronomical studies. Moreover, this /-
Ga,03/MgO heterostructure configuration will provide a
promising way for the development of ultrasensitive DUV
photodetectors utilizing oxide-based wide-band-gap materials.

B EXPERIMENTAL SECTION

Device Fabrication. Single-crystal f-Ga,O; flakes were
mechanically exfoliated from a 15 mm X 10 mm (—201)
surface f}-Ga,O; bulk substrate with an unintentional n-type
doping concentration of 4.8 X 1017 cm™ (Tamura Corp.,
Japan) using a conventional Scotch tape exfoliation method
and then transferred onto a heavily doped p-type Si substrate
with a thermally grown 300 nm SiO, layer. The surface was
cleaned in acetone and IPA for 20 min prior to the transfer,
and then, source and drain electrodes of Cr/Au (20/80 nm)
were deposited by thermal evaporation and patterned using
conventional photolithography and lift-off processes. After
that, a dielectric MgO layer (30 nm), followed by Al,O; (20
nm), was deposited by radio frequency (RF) magnetron
sputtering at room temperature. The MgO layer was sputtered
from a MgO target under Ar gas injection at 3 mTorr working
pressure and 100 W RF power, in which a deposition rate was
2 A/min. Finally, the source/drain contacts were opened via
buffered oxide etchant (BOE).

Optoelectrical Device Characterization. Electrical
properties and photoresponses of the devices were charac-
terized using a source meter (2614B, Keithley) and a deep-UV
light-emitting diode (LED260J, Thorlabs). The UV LED
exhibited a peak wavelength centered at 260 nm and a full
width at half-maximum of 12 nm. For photoresponse
measurements, the illumination power densities were varied
from 0.51 to 180 yW/cm’ by adjusting the current applied to
the UV LED. To avoid any artifacts induced by slow
detrapping of photocarriers, the consistency of the electrical
characteristics under dark conditions was confirmed between
each photocurrent measurement. Comprehensive transient
characteristics were measured with a drain-source voltage of 1
V and an irradiance of 5.4 yW/cm?. After deep UV exposure at
a gate bias of =36 V (V},), pulses of either 33 V (Vggr) or
—69 V (V) were applied to the gate.
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