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Abstract

In this paper, we establish a local limit theorem for linear fields of random variables constructed from
independent and identically distributed innovations each with finite second moment. When the coefficients
are absolutely summable we do not restrict the region of summation. However, when the coefficients are only
square-summable we add the variables on unions of rectangle and we impose regularity conditions on the
coefficients depending on the number of rectangles considered. Our results are new also for the dimension
1, i.e. for linear sequences of random variables. The examples include the fractionally integrated processes
for which the results of a simulation study is also included.

1 Introduction

Consider independent and identically distributed (i.i.d.) standard normal random variables {Z;}}_; and
their sum S,, = Y., Z;. In this context, we can define a sequence of measures given by

b
fin(a,b) = V27n P(S, € (a,b)) = / e~ da, (1)
a
and with this specific form, one can easily see that the integrand converges to one as n — oo. This sequence
of measures therefore converges to Lebesgue measure. The result is also true for the situation when {Z; }7_,
is merely a sequence of i.i.d. random variables satisfying the central limit theorem (CLT). A result such as
this is called a local limit theorem. A local limit theorem is much more delicate than the associated CLT.

Local limit theorems have been studied intensively for the case of lattice random variables and the case
of non-lattice random variables. The lattice case means that there exists v > 0 and a € R such that the
values of Zj are concentrated on the lattice {a + kv : k € Z}, whereas the non-lattice case means that no
such a and v exists. In this paper, we consider the non-lattice case.

For sequences of i.i.d. random variables, the local limit theorem in the non-lattice case is due to Shepp
(1964) and the case of i.i.d. random vectors is considered by Stone (1965). We also refer the reader to



the books by Ibragimov and Linnik (1971), Petrov (1975), and Gnedenko (1962). Some papers containing
classes of independent non identically distributed random variables include Mineka and Silverman (1970),
Shore (1978) and Maller (1978). For more recent results we mention the paper by Dolgopyat (2016) and
the references therein.

Linear random fields (also known in the statistical literature as spatial linear processes) have been
extensively studied in probability and statistics. For example, Mallik and Woodroofe (2011) studied the
CLT for linear random fields, and Sang and Xiao (2018) established exact moderate and large deviation
asymptotics for linear random fields under moment or regularly varying tail conditions by extending the
methods for linear processes in Peligrad et al. (2014). With a conjugate method, Beknazaryan, Sang, and
Xiao (2019) studied the Cramér type moderate deviation for partial sums of linear random fields. We refer
to Sang and Xiao (2018) for a brief review of the study of asymptotic properties of linear random fields and
to Koul, Mimoto, and Surgailis (2016), Lahiri and Robinson (2016) and the references therein for recent
developments in statistics. However, to the best of our knowledge, the local limit results for linear random
fields, or even for one dimensional indexed linear processes, have not yet been established in the literature.

In this paper, we consider linear random fields of the form
X]‘ = Z 0,1'6]'_7; (2)
1€Z4

defined on Z?, where the innovations ¢; are i.i.d. random variables with mean zero (Ee; = 0), finite variance
(Ee? = 02), and non-lattice distribution and where the collection {a; : i € Z%} of real coefficients satisfies

g
Ziezd a? < oo. (3)

As a matter of fact, the field X; given in (2) exists in L?(R) and almost surely if and only if (3) is satisfied.

We say that the process has long memory (long range dependence) if > |a;| = co.
i€Zd

Let T'¢ be a sequence of finite subsets of Z¢, and define the sum

Sp=Y_ X, (4)

JETE
with variance
B2% = Var(S,). (5)
We may express (2) as
X; = Z aj—i€i,
iezd

from which it is easily apparent that

var(X;) = o2 g az.
i€Zd
The sum S,, = > X, expressed as an infinite linear combination of the innovations, is given by
JETE

Sn = Z bn,i Eiy (6)

ieZd

b, = E aj_;,

jerd

where

and similar to our earlier observation,

B2 = Var(S,) = o2 Z b2

n,i*
i€Z%

Without loss of generality, throughout the paper we assume that o2 = 1. Note that, by the representation
(6), Sp can be expressed as a sum of independent variables. However, the local limit theorems available



for sums of independent random variables that are not identically distributed involve rather strong degrees
of stationarity which are not satisfied by (6). Building on the previous work of Shore (1978), we are able
to show that the local limit theorem holds for all the situations including the long memory linear random
fields, assuming reasonable requirements of the innovations and of the sets I'¢.

As a matter of fact, we shall establish the following uniform local limit theorem: For all continuous
complex-valued functions h(z) with |h| € L'(R) and with Fourier transform h real and with compact
support,

lim sup
n— oo uER

=0, (7)

VR B, Eh(S,, — 1) — [exp(—u2/2B2)] / h(z)\(dz)

where )\ is the Lebesgue measure. Here we require that B, — oo as n — oo. By arguments in Section 4
of Hafouta and Kifer (2016) this result implies that (7) also holds for the class of real continuous functions
with compact support and by the Theorem 10.7 in Breiman (1992) it follows that

lim sup |V27B,P(a+u < S, <b+u)— [exp(—u?/2B)](b — a)

n—oo u€R

:O,

for any a < b. In particular, since B,, — 0o as n — oo, then for fixed A > 0,

lim sup |V27rB,Pla+u<S,<b+wu)—(b—a)| =0.

If we further take u = 0, then,

lim v27B,P(S, € [a,b]) =b— a.

n—oo
In other words, the sequence of measures \/%BnP(Sn € [a, b)) of the interval [a,b] converges to Lebesgue
measure.

It should be noted that the local limit theorem, as formulated in (7), is useful to the study of recurrence
conditions for Sy, as explained in Orey (1966) and Mineka and Silverman (1970).

The paper is organized as follows. In Section 2 we state and comment on the results, which include the
long memory case. Section 3 is dedicated to examples of long memory time series to which we can apply
the local limit theorem stated in the previous section. In Section 4 we summarize the result of a simulation
study, designed to analyze the performance of our asymptotic local theorem for a finite sample. Finally,
Section 5 contains the proof of the main result.

A few remarks about notation and terms used in the paper follow. In constructing the sum S,, that we
analyze in this paper, we make use of a sequence I'? of subsets of Z¢. For use with the long memory case, for
each n, we will construct the sequence I'? of sets using a union of rectangles, whose dimensions could depend
on n. For n(w) = n(w,n) = (n;(w),ny(w),--- ,ny(w)) € Z¢ and A(w) = (A (w),Az2(w), -, Ag(w)) € Z¢
with n(w) < A(w), where 1 < w < J,, put T'¢(w) = H;lzl[ﬂe(w),m(w)] N Z4. Any set of this form will be
called a discrete rectangle. In general, we require the index sets to be of the form

Tn
i = J Ii(w), ®)

where {T'¢ (w) 7{]":1 is a pairwise disjoint family of discrete rectangles. Throughout the paper, we demand
that [T¢| — oo as n — oo. Here, for I' C Z%, we denote the cardinality of T by |['|. For n = (ny,...ng) the
Euclidian norm will be denoted by [|n|| = (n? +n3 + ... + n2)Y/2. Let {a,}%; and {b,}5%, be real-valued
sequences. To indicate relative growth rates at infinity, we use a,, o b, to indicate that a, /b, — C € Rt
and the particular case when C' = 1 is denoted a,, ~ b,. By a, = o(b,) we understand that a,,/b, — 0
and a,, = O(b,) means that limsup |a,/b,| < C for some positive numbrer C. Throughout the paper, an
indicator function will be denoted as Z. A function [ : [0,00) — R is referred to as slowly varying (at oo)

if it is positive and measurable on [A, o) for some A € RT such that le I(Ax)/l(x) = 1 holds for each

A € RT. The integer part of a real number x will be denoted by |z].



2 Main Results

In this work, we investigate the conditions under which the local limit theorem holds for the partial sums of
the linear random fields given by (2). Before we can treat the local limit theorem of this paper, we mention
the following CLT for linear random fields which is a variant of Corollary 2 and Corollary 4 of Mallik and
Woodroofe (2011). For d =1 and J,, = 1 with '} = {1,2,--- ,n} the result is Theorem 18.6.5 in Ibragimov
and Linnik (1971).

Theorem 2.1 (Mallik and Woodroofe, 2011) Let S,, and B,, be defined as in (4) and (5). Assume that
B,, — 0o. When the field has long range dependence we additionally require that the sets T'% are constructed
as a disjoint union of J,, discrete rectangles, where J, = o(B2), while otherwise no such restriction is
required. Under these conditions, S, /B, converges in distribution to the standard normal distribution.

Remark 2.1 In case ), ,q |a;| < oo, this theorem was proved in Corollary 2 of Mallik and Woodroofe
(2011). When the field has long range dependence the result of this theorem is a version of their Corollary 4.
Indeed, from relation (11) in the proof of Proposition 2 of the same paper, the condition sup;cga by i|/Brn — 0
is satisfied if J,, = o(B2).

Remark 2.2 If J, = 1, then T'¢ consists of only one rectangle T'¢(w) = HZZI[Q[(M),ﬁg(w)] N Z. The
condition B,, — oo, implies that maxi<y<q| Te(w) — n,(w)| — 0o as n — co. Note that if more than one
difference among (Tie(w) — ny(w))1<s<a tend to infinity, they can grow at independent rates.

Remark 2.3 Given that Ry is an open connected subset of (—1/2,1/2]% satisfying some regularity conditions
and {pn} is a sequence of positive numbers such that p, — 0o asn — oo, Lahiri and Robinson (2016) studied
the central limit theorems for the sums of linear random fields over dilated regions T'¢ = R, N7, where
R, = pnRo. In particular, when the coefficients are of the form a; = I(]]¢]])/|]i]|* with d/2 < o < d, 1
a slowly varying function at infinity, then, as shown in Lahiri and Robinson (2016), B2 o« p33=2212(u,).
However, since the volume of R, = O(ul), the sample size L] = O(ud). We can separate T into J,
disjoint rectangles with J, = O(ud). Since B2 o p2¢=2%1%(u,) and 3d — 2a > d, it is easy to see that
Jn = o(B2). Hence their central limit theorem (Theorem 3.2 there) in the long memory case is a direct
consequence of Theorem 2.1 here.

Denote the characteristic function of €9 by @.(t) := E(exp{iteo}). It is well known that £y not having
a lattice distribution is equivalent to |p.(t)] < 1 for all ¢ # 0. On the other hand, the Cramér condition
means that imsupy,_, . [¢(t)| < 1. Thanks to the Riemann-Lebesgue lemma, the Cramér condition is
automatically satisfied if the distribution function of ¢ is absolutely continuous with respect to the Lebesgue
measure. It should be mentioned that £y has a non-lattice distribution whenever ¢.(t) satisfies the Cramér
condition. See Lemma 5.1.

[The “Cramér condition” defined in the preceding paragraph is different from, and has no particular
connection with, another condition (involving the existence of moment generating functions on certain
domains) that has absolutely no role in this paper but has elsewhere in the probability theory literature
sometimes been referred to as the “Cramér condition”.]

Theorem 2.2 Let S,, and B, be defined as in (4) and (5) and assume that B, — oo. In the case
Y iczalai| < 0o, we assume that eq is non-lattice. If the field has long range dependence, we assume
that the innovations satisfy the Cramér condition and that the sets T% are constructed as a disjoint union
of Jy, discrete rectangles and we require that

7/ log(By)

— =0 asn — . 9
Sup;ezd |bn,i|2/d ©)

Under these conditions, (7) holds.



Remark 2.4 Because (X}) is stationary we always have
var(S,) = B2 < |T¢PE(X?). (10)

So, if J¥*log IT%|/ sup;eza |bn.i|® — 0, then (9) is satisfied.

Remark 2.5 One may ponder whether condition (9) always holds for the long memory case. To settle such
concerns, we offer the following counterexample. Take a linear random field of the form (2) with d = 1-i.e.,
a linear process. In particular, consider the one-sided linear process with alternating harmonic coefficients.
That is, put a; = (—1)"*1/i fori € N, and a; = 0 fori € Z\N. In this ezample, we take J,, = 1 and the index
set T} to be the set {1,2,--- ,n}. Note that sup,;cy by ;| does not go to infinity as n — oo, and therefore,
the aforementioned condition is not satisfied. Even though the local limit theorem is not guaranteed by our
Theorem 2.2 for this case, we note that the central limit theorem holds, since B, — 0o as n — co.

Remark 2.6 In Theorem 2.2 we provide a local limit theorem for linear random fields when the coefficients
are absolutely summable with no restriction on the sequence of regions other than B, — co. We also provide
a local limit theorem for the sum of a long memory linear random field over a sequence of regions T'¢ which are
a disjoint union of discrete rectangles and with no other specification on the individual coefficients a;,i € Z%
besides the global conditions (3) and (9). In practical application it allows us to have disjoint discrete
rectangles as spatial sampling regions, and the number of these disjoint spatial rectangular sampling regions
may increase as the sample size increases. The discrete spatial rectangular sampling regions also include
(Hizl[ﬂk,ﬁk]) N Z4 where ny, = My for some k’s. We may have a single point region if the equality holds
for all k’s. We would also like to mention that our local limit results are new also for d = 1. Furthermore,
we have the freedom to take the sum over J,, blocks of random variables as long as J, = o(B2) for central
limit theorem and J, = o(sup;cza |bn.i|/(log(By))¥?) for local limit theorem.

Remark 2.7 El Machkouri et al. (2013) worked with nonlinear random fields, and in their work on central
limit theorem, they required the condition that |OT'|/|T3| — 0 as n — oo, where OT'Y is the boundary of the
region T'%. We would just like to mention that our results demonstrate that this condition is not necessary
in the linear random field setting. For example, in the case d = 2 with T2 = ([1,n] x [1,3]) N Z?, we have
|OTZ/IT5] = (2n +2)/3n.

3 Examples

There are many situations of interest when (9) holds. In particular it is satisfied by the fractionally integrated
processes which play an important role for analyzing various models in econometrics. They are a particular
case of linear processes with regularly varying coefficients for which we provide a few examples. Of course,
examples of this type, where the coefficients are absolutely summable, will certainly satisfy the local theorem
as given in the first part of Theorem 2.2. In what follows, we shall discuss only the long memory case.

Example 1. Suppose we work on one rectangle I'¢ = H?Zl[l, ne] N Z%, where ny = ny(n) is a sequence
of natural numbers for each ¢. Let X,, and B, be defined as in (2) and (5). For j = (j1, 42, -+ ,ja), let
(aj)jeza with 3, cza a? < oo and assume that for some constant C,

d
a; > C [[(1/15:)% with B > 1/2, 1 << d. (11)
=1

Here we take 1/[j¢| = 1 if j, = 0. Assume that at least one 3y is strictly smaller than 1. Then (a;), ez is
not absolutely summable and the linear random field has long memory. Let us assume now that gy < 1, for
all positive integers k, 1 < k < m, for some m with 1 < m < dand By > 1, m+1 < ¢ < d. Assume that
ng — oo, for all k, 1 < k < m and, for some M < oo, ny < M, m+ 1 < k < d. Then, starting from (11),



by simple analytical manipulations, we have that

d d
bo= 3 a; =0 Y T/l =cI[ 3 (/i

jel—‘% jel—‘;iL (=1 1=11<j,<ng
m d m
1—-5 - 1—pe
X H Ty H § (1/%)5z > Cy H n, .
=1 l=m+11<j,<ng =1

On the other hand, using (10), B2 < [T¢|?E(X3) = ngl n?E(XZ). Based on these computations, we obtain
that

d
log B, > oy logny
2/d <Gy 2/d
supgeza |bn ¢ b, o
> logng )
< OS—Hzn_l ni(l_m)/d — 0 as 1£1§nm(nj) — 00.

This latter limit, shows that condition (9) is satisfied. Hence, the local limit theorem in Theorem 2.2 holds,
provided Cramer condition is satisfied.

In the context of this example, note that we can also consider sets of the form T'¢ = Ui":l ' (w), where
{T'd(w) : 1 <w < J,} are disjoint rectangles I'? (w) = H?Zl[cw, cw +ng]NZ4 of equal size. For simplicity let
us take m = d. For this case we have B2 < [T¢2E(X3) = J2 [[/_, n2E(X2) and sup,cza |bn o] > [To_, np .
Hence,

3/"’ log B, <C %/d(log I + Z‘Ll lognye)
supgeza [bn,e[*/4 17 ”?(1_[35)/(1

which converges to 0 when min;<;<4(n;) — 00, as soon as g2 o(]_[jf:1 n?(l_m)/d/ Z‘Z:l logng). If we
impose this condition on .J,, then we can also obtain the conclusion of Theorem 2.2 for this situation.

Example 2. This example is a variant of Example 1, with the same index sets I'¢. Take now

d

a; = [T/ 3el he(ljel), (12)

{=1

with ay > 1/2 and hy(-) are positive slowly varying functions, 1 < ¢ < d. Again, we let 1/|jo| = 1 if
je = 0. Then Y, yua; < co. If ap < 1 for some 1 < k < d, then Y, ;a4 |as| = 0o and we are in the
long memory case. For some m with 1 < m < d, assume now that 1/2 < o < 1, for all k, 1 < k < m,
and ay > 1, m+ 1 < ¢ < d. Recall now that, for a positive slowly varying function h(z), we have that for
every € > 0, limy_, oo 2°h(x) = 00 and lim,_,oo 2~ h(z) = 0 (see Seneta, 1976). Then we can find constants
1/2 < B <1, forall k,1 <k <m,and By > 1, m < ¢ < d such that (11) holds. If we assume that n; — oo,
for all k, 1 < k < m and, for some M < oo, n, < M, m+1 < k < d, then the conditions in Example 1 hold.
Therefore, for this case, the conclusion of Theorem 2.2 holds with

m

Bj, = [ [ elae)ny ™ hi (ne),
{=1

with constants ¢(«y) specified in Wang, Lin and Gulati (2001).

Example 3. We work this time on one rectangle I'Y = HZ:1[17 kin] N Z%, where k; € RY,1 < i < d.
For j = (j1,j2,- - »Jja), let (a;)jeza With Y ,c4 a7 < co and assume that for some constant C' > 0,

a; > C||j]|7# with 8 € (d/2,d) and j # 04 = (0,0, ..., 0). (13)



It is easy the see that ) ,.,.a, = oo and we also have a; > C(ji +j2 + -+ + ja)~P. Straightforward
computations show that we can find a positive constant C7 and ng € N such that for all n > ng we have

bn70 = Z aj Z Clndiﬁ .
JETE
Therefore, using (10), we can find a positive constant Cy such that

log(B,,) _ Calog(n?)
2/d = 27d
L n,0

n,t

sup b
YA
Caydlogn

7W—>035n—>00.

This shows that condition (9) of Theorem 2.2 is satisfied and the local limit theorem holds if Cramer
condition is satisfied.

Furthermore, we can also mention that for this case the local limit theorem also holds if we actually

consider an union of J, rectangles of equal size (kin, ..., kgn) such that J2/* = o(n2(d=A)/4/log n).

As a particular example of this kind we shall give an example treated by Surgailis (1982) and also by
Beknazaryan et al. (2019).

Example 4. Assume that I'¢ are cubic, ie., T% = [-n,n]¢ N Z4, and put a; = 1(|)i]|)G(/|i]])|i]| =
with a € (d/2,d), where I(z) is slowly varying at oo and G : S4_1 — R is continuous on its domain (the
unit sphere in d-dimensional space). For this example we know that B,, « n% - I(n) (see Surgailis, 1982,
Theorem 2) and from Beknazaryan et al. (2019) we can easily deduce that sup;cza [bn,i| o< (nd=% I(n)).
We could also see directly that condition (9) of Theorem 2.2 is satisfied by using the proof of Example 3.
Indeed, by the properties of slowly varying functions, we can find 8 € (d/2, d) such that a; > C||j|| 7. Since
we are in the long memory case, if the innovations satisfy the Cramér condition, then (7) holds. m

4 Simulation Study

In this section, we perform a simulation study for the local limit theorem in Example 4, applied to the one-
dimensional case. The linear processes we used here are the fractionally integrated processes FARIMA(0,1—
«,0) which play an important role in financial time series modeling, and they are widely studied. Such
processes are defined for 1/2 < o < 1 by

Ii+1-a)
(1—a)(i+1) "’

X, = 17Ba71 ;= i€i—i ith P =
= ) e Zasj with a; = &

i>0

where B is the backward shift operator, Be; = ¢;_1. By the well-known fact that lim,,_, I'(n+z)/n*T'(n) =
1 for any real x, we have lim,_,o a,/n~% = 1/T'(1 — a). The variance of the partial sum S,, = Z?=1 X is

B2 ~ con® 2 *Ee?/[(1 — a)(3 — 2a)T?(1 — a)] (14)
where

Ca :/ "Y1+ z)" “dx.
0

The variance formula for the partial sum of FARIMA(0,1 — «,0) is well known. See, for example, Wang,
Lin and Gulati (2001).

Using the FARIMA(0,1 — «, 0) model, linear processes with innovations following the Student’s ¢ dis-
tribution with 5 degrees of freedom were generated. Employing the MATLAB code of Fay et al. (2009),



N replicates of linear processes were generated, each of length n. Specifically, we generated cases with
N = 5,000 and N = 10,000 cross-referenced with n = 2!, n = 2!2, and n = 2'4, and this was done for
each of the values a = 0.95, a = 0.70, and o = 0.55. Once the data were obtained, the local limit measures
of various intervals were estimated by using relative frequency to estimate P(S, € (a,b)) and using the
approximation of B, given in (14).

The simulation study supports the validity of Example 4 for the one-dimensional case. See Tables 1 and
2 below. Of particular interest is the general tendency of results to be better for larger N, which is likely
explained by the fact that we estimate P(S, € (a,b)) using relative frequency. Also, we notice that the
results generally get better with larger values of the sample size n.

Table 1: Local limit measures of the intervals (—100,0), (—50,50), and (0,100) - one per row - using
N one-dimensional linear processes, each of length n, employing various long memory cases using the
FARIMA(0, 1 — «a,0) model with 5 innovations.

n =210 n — 212 n—ol4

N a = 0.95 a = 0.70 o = 0.55 a =0.95 a = 0.70 a = 0.55 o =0.95 a=0.70 a = 0.55
66 105 117 92 99 98 95 91 122
5 x 10% 90 99 115 101 95 108 100 88 110
67 99 97 90 96 108 98 106 110
67 97 105 91 98 101 96 97 104
1 x 10* 89 98 95 99 103 105 101 97 98
65 103 101 87 104 108 98 98 92

Table 2: Local limit measures of the intervals (—50,0),(—25,25), and (0,50) - one per row - using
N one-dimensional linear processes, each of length n, employing various long memory cases using the
FARIMA(O, 1 — «,0) model with t5 innovations.

n =210 n = 212 n =214
N a = 0.95 a = 0.70 a = 0.55 a =0.95 a = 0.70 a = 0.55 a =0.95 a=0.70 a = 0.55
46 51 67 51 52 62 49 45 61
5 x 103 50 47 54 49 49 43 48 40 61
46 48 48 49 43 46 51 43 49
46 48 50 49 52 43 50 51 55
1 x 104 48 50 51 50 52 44 50 45 49
43 51 54 50 51 62 51 47 43

5 Proofs

For the proof of Theorem 2.2, we need several lemmas.

Lemma 5.1 Let p(t) be the characteristic function of some random variable, and let b and ¢ < 1 be positive
real numbers. If |o(t)] < ¢ for b < |t| < 2b, then

1= 2,
lp(t)] <1 92 t= for all |t] < b.

Proof. This is a version of Theorem 1 on page 10 in Petrov (1975), which is obtained by using the same
proof. m

Lemma 5.2 If p(t) is the characteristic function of some random variable satisfying the Cramér condition,
then for any 6 > 0 there is B = (d) € (0,1) such that

lp(t)] < B for all |t| > 6.



Proof. Since limsupy,_,o ¢(t)| < 1, there exists 0 < v < 1 and T > 0 such that for all [t| > T" we have
that |p(t)] < . For any § > 0 such that § > T, the result holds with 5 = 7. By Lemma 5.1, on the other
hand, limsupy,_, [¢(t)] < 1 implies that [p(¢)] < 1 for all ¢t # 0. If 6 < T, we appeal to the continuity of
¢(t) to guarantee that 7 = maxs<; <7 [¢(t)| € (0,1), whence |p(t)| < n for any ¢ with |¢| € [, T]. Therefore,
the result holds with =~vyVn. m

Lemma 5.3 If S,, and B,, are as defined in (4) and (5) respectively, if the innovations have a non-lattice
distribution, and if {w,} is a sequence of positive real numbers for which there exists some M > 0 so that
|wnbn.i| < M for allm € N and for all i € Z2, then the function

(p%(t) I(|t| < Wan)

is dominated by some integrable function g(t).

Proof. Since we assume that | (t)] < 1 for all t # 0, because ¢ (t) is continuous, there exists ¢ = ¢(M) €
(0,1) such that |pc(u)| < ¢ for M < |u] < 2M. By Lemma 5.1 and because of the inequality 1 —z < ™7

for all z € R, we deduce that |u| < M implies that
1—¢?
lp=(u)] < 1— SWUF’

and therefore

lpe(u)| < e — 1_702112
SDE — Xp 8M2 M

Now, by independence, we have

t bnit
@%Z(t) =P Y bue (Bn> = H Pe (Bn>

iczd iczd
For |t| < w, By, we observe that

bp,i t

% < |bn,i wn| < M.

Overall, we have

bt
o0 01 2l < ) = TT [ie (%50 )| 201 < )

i€Zd
1-— 62 b%z 2
<1l eXp( Mz B2 >
i€Z%

1-c21 ,
P\ Tz 2t )
g

which we take to be our desired dominating integrable function g(t). m

For use in the following lemma, we shall introduce the following notation. For a countable collection of
real numbers {b; : j € Z4}, where j = (j1, ..., j4), we denote an increment in the direction &k by

Akbji . jkia = Vjtseesiireda = Ojtesin—1oiia

and their composition is denoted by A :

Abj :AloAQO...OAdbj. (15)
For instance, if d = 1 we have Ab; =b; — b;_1. For d =2,

Denote >, ya a? = D? < oco. Define as before b; = b, ; = b;(n) = Zjerd a;j—;. For k € N, and for j € VA
we denote by Vi(j) the vertices of the cube [],,4lde — &, je].

For the proof of the long memory case in Theorem 2.2, we need the following lemma about the size of
the coefficients b; = by, ;.



Lemma 5.4 For any ¢ € Z¢ and any k > 1 we have

> bu| > |be| — 29DJk? .
wu€Vy (£),u#l

Proof. In order to avoid complicated notation, we shall (without loss of generality) prove in detail the
case d = 2, and the general case will follow by a similar argument. For this case, the increment A is defined
by (16), bij = > (5.1)er2 Gs—it—j, where I'2 is as defined in (8). Since

%

J
Z Z Abyy =bi 5 —bi i —bi—pj +bi—pj—k,

u=i—k+1 v=j—k+1
we employ the triangle inequality to obtain
J

S I L ERIES SIS DA - a7

[bi.5

By the linearity of A and the definition of I'2, we notice that

UA[ 3 awm]_ [Z > as_u,t_v}—iA{ 3 as_u,t_v}.

(s,t)eT2 w=1 (s,t)€r2 (w) w=1 (s,t)€TZ (w)

For fixed w € {1,2,...,J,}, let us investigate the expression A{ > as_u,t_v}. Indeed, after some
cancellations, we get

A L > asu’tv}

s,t)€l2 (w)

= Z [asfu,tfv = Qs—yt—(v—1) — Gs—(u—1),t—v T as—(u—l),t—(v—l)]
(s,t)€r? (w)

ni(w)  m2(w)

= Z Z [asfu,tfv — Os—y,(t+1)—v — Q(s+1)—ut—v T a(s—&-l)—u,(t—&-l)—v}

o=ty () =g (@)
1 (w)

= D G umyw) v — Tamu o)1) -0 — U4 1) -y () F Us 1), (7 () +1) )

s=n,(w)
= Oy (w)—u,n, (w)—v ~ Gy (w)+1) —uny (w)—v T G (w)+1) —u, (Fa(w)+1)—v ~ Gny (w)—u, (7 (w)+1)—v-

This identity together with the Cauchy-Schwarz inequality, demonstrate that

‘ j
<
Zu:mﬂ ZUZH L [Abu| < (4DF) Ty

Therefore, combining this latter inequality with (17), we obtain
1bi i~k + [bikj| + |bik,j—k| = [bi;] — 4D Jnk,

thereby establishing the result for d = 2. For general d, the difference is that we use the formula (15) instead
of (16) and we take into account that, in this case, the number of vertices of the cube [[, ., 4[je — k, ] s
2d

Lemma 5.5 Assume that conditions of Theorem 2.2 are satisfied for the long memory case. Then there
exists 0 < p < 1 independent of n, such that for all n sufficiently large
s, (DIZ(|t] = 7,1 < ptOn/ 7071,

where Y, = sup;cza |bn il

10



Proof. To simplify the notation, we will drop the index n and simply write b; in place of by, ;. Assume
|bjo| = sup;eza |bi|. Such a jo exists, because >, 54 a7 = D?* < co. Fix a € (0,1), and denote by ko the
integer part of [(1 — a)|bj,|/(2?D.J,,)]?/, namely

ST

Since B,, — oo, condition (9) in Theorem 2.2 implies that |bj,| — oo and J,, = o(sup;cza |bn,i|) as n — oo.
Therefore the ko in (18) satisfies kg — oo as n — oo. So, for n sufficiently large, ko > 1.

By Lemma 5.4, for 1 < k < kg,
E d
wEVi (Jo),ujo |bu| > |bj0| — 2dDJnk2 > a‘bj0|’

which immediately gives

max b,| > alb; 2d_1 )
uevk(jo),u;éjo| u| = | Jo|/( )

So, on the set [t| > v, = |bj,| !

max thy| > a/ (2% —1). 19
uevk(jomﬁol | > a/( ) (19)

With these preliminaries in place, let us define

= bu u
"l Zuer (Jo),u#jo c

and for u € Vi (jo),u # jo
cpu(t) = Pe (tbu)-
By independence
|E (exp(itnk))| = Iulpu(t)| < ming [pu(t)],

where the product and the minimum are over u € Vi (jo),u # jo. Since the characteristic function of &g
satisfies the Cramér condition, by Lemma 5.2, for a/(2¢ — 1) > 0 we can find 0 < 8 = B(a) < 1 such that
lpe(s)| < B for all |s| > a/(2¢ — 1). As a consequence, for k < ko, by (19), at least one of |¢,(t)| is smaller
than 3, i.e.,

min, ¢, (t)] < B for all |t| > |bj,| ™' and k < k.

It implies that
|E (exp(itny,))| < B < 1 for all [t| > |bj,| ™" and k < k. (20)

And since

s, (I= T le=@i)] < J[ [E (exp(itne))l,

jezd 1<k<ko

by inequality (20) and the definition of k¢ in (18), it follows that
s, (IZ(lH] 2 vt < B0 < plOn/ 7™
for some p € (0,1). m
Proof of Theorem 2.2 The proof is based, as usual, on the study of the characteristic function of the

sum Sy, As in Hafouta and Kifer (2016), we prove (7) for all continuous complex-valued functions h defined
on R, |h| € L' (R) such that

h(t) = / =1 h(2)da
R
is real-valued and has compact support contained in some finite interval [—L, L]. By the inversion formula

1 it ]
= g/Re h(z) dz.

11

h(t)



Employing a change of variables, we see that

E[A(S, — u)] = 27:3” /Rh<3tn> 03, (1) exp ( _ jBtZ) dt. (21)

By the Fourier inversion formula we also have

u? 1 itu 12
—— | = — - — — — | dt. 22
o (~357) = v Lo (- 5.) o (- 3) z2)

By (21) and (22) and some simple algebraic manipulations, we obtain

sup
u€R

V271 B, E[h(S,, — u)] — exp (— 2%;) /Rh(ac)dm

ﬁ<l;n> P (1) — xp ( t;) /Rh(:c)d:r

As in Lemma 5.5 denote 7, = sup;cza |bn ;| At this point, note that because we have v,, < B, condition
(9) implies that J,, = o(B2) in the long memory case. By the CLT in Theorem 2.1, for all T' > 0, it follows

that
/t|<T

t2
/ exp(—)dt%OasT—)oo.
t|>T 2

Since h is integrable, h is continuous, and B,, — oo, for all ¢

[t
nl;n;oh<BTL> —/Rh(a:) dx.

Combining these facts with (23), we note that, in order to obtain the conclusion of Theorem 2.2, it suffices
to show that

dt.

<7

B'n,

2
gosn(t)exp<2>'dt%0asn%oo.

On the other hand

lim limsup / ¢ sa ()] dt = 0. (24)
T—o0 n JT<|t|<LB, Bn

First, we deal with the situation when coefficients are absolutely summable. Since Lb,, ; is uniformly
bounded by L}, ;ala;|, Lemma 5.3, applied with w, = L and M = L}, ;. a;|, guarantees that the
integrand of (24) is dominated by some integrable function. In order to verify (24) we have just to apply
the Lebesgue dominated convergence theorem.

Henceforth, we confine our attention to the long memory case. We decompose the region of integration
n (24), yielding

L (B)] dt < ntdt+/ o (1) dt
/TéltSLBn ‘(p%”( ) /T§|t§wn13n ’@%( ) v ' Bp<|t|I<LB, ’9057( )

=1+ Iz,

so that we may deal with I;, and I, separately. In what follows, our objective is to show that both
I, = 0and Iy, = 0asn— oo.

Since 7,,'by, ; is uniformly bounded by one, Lemma 5.3 applied with w,, = 7,;' and M = 1 guarantees
that the integrand of Iy , is dominated by some integrable function g(¢). Ergo, by the Lebesgue dominated
convergence theorem, we have

limsup [; 5, < / g(t) dt - 0as T — oo,
n T<[t|

12



which is exactly what we wished to show about I ,,.

Now we proceed to show that I3 , — 0. By a change of variable, we deduce that

I, = B, / |g05n (t)| dt.
ot <|t<L
By Lemma 5.5
lps, (B)Z(1t] = 7, ") < plOn/ 7)™,

and so
IZ.n < Bn(2L)pL(7ﬂ/Jn)2/dJ .

It is easy to see that |I5,| — 0 if we impose (9). m
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