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COMPARISON OF ACCURACY AND SCALABILITY OF
GAUSS--NEWTON AND ALTERNATING LEAST SQUARES FOR

CANDECOMC/PARAFAC DECOMPOSITION\ast 

NAVJOT SINGH\dagger , LINJIAN MA\ddagger , HONGRU YANG\ddagger , AND EDGAR SOLOMONIK\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . Alternating least squares is the most widely used algorithm for CANDECOMC/
PARAFAC (CP) tensor decomposition. However, alternating least squares may exhibit slow or no
convergence, especially when high accuracy is required. An alternative approach is to regard CP de-
composition as a nonlinear least squares problem and employ Newton-like methods. Direct solution
of linear systems involving an approximated Hessian is generally expensive. However, recent advance-
ments have shown that use of an implicit representation of the linear system makes these methods
competitive with alternating least squares (ALS). We provide the first parallel implementation of a
Gauss--Newton method for CP decomposition, which iteratively solves linear least squares problems
at each Gauss--Newton step. In particular, we leverage a formulation that employs tensor contrac-
tions for implicit matrix-vector products within the conjugate gradient method. The use of tensor
contractions enables us to employ the Cyclops library for distributed-memory tensor computations
to parallelize the Gauss--Newton approach with a high-level Python implementation. In addition, we
propose a regularization scheme for the Gauss--Newton method to improve convergence properties
without any additional cost. We study the convergence of variants of the Gauss--Newton method
relative to ALS for finding exact CP decompositions as well as approximate decompositions of real-
world tensors. We evaluate the performance of sequential and parallel versions of both approaches,
and study the parallel scalability on the Stampede2 supercomputer.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . tensor decomposition, CP decomposition, Gauss--Newton method, alternating least
squares, Cyclops tensor framework

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 15A69, 15A72, 65K10, 65Y20, 65Y04, 65Y05, 68W25

\bfD \bfO \bfI . 10.1137/20M1344561

1. Introduction. The CP (canonical polyadic or CANDECOMC/PARAFAC)
tensor decomposition is widely used for data analytics in different scientific fields [14,
18, 30, 34, 44], machine learning applications [2, 5, 26], and quantum chemistry [51].
CP decomposition of an input tensor can be computed via different optimization
techniques, such as variants of gradient descent [1, 37], deflations [2, 3], and alternating
least squares [26].

Nowadays, the alternating least squares (ALS) method, which solves quadratic
optimization subproblems for each factor matrix in an alternating manner, is most
commonly used and has become a target for parallelization [17, 21], performance
optimization [29, 43], and acceleration by randomization [9]. A major advantage
of ALS is its guaranteed monotonic decrease of the residual. However, there are
many cases where ALS shows slow or no convergence when a solution with high
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COMPARISON OF GAUSS--NEWTON AND ALS FOR CPD C291

resolution is required, which is also called the ``swamp"" phenomenon [31]. Swamps
deteriorate both the running time and the convergence behavior of the ALS method.
Consequently, researchers have been looking at different alternatives to ALS, including
various regularization techniques [28, 35], line search [32, 36, 42], and gradient-based
methods [1, 37, 41, 48, 53, 55].

Of the variants of gradient-based methods, one promising approach is to perform
the CP decomposition by solving a nonlinear least squares problem using the Newton
or Gauss--Newton methods [37, 54, 55]. These methods offer superlinear convergence
and are better at avoiding the swamps inhibiting performance of ALS. Naive solution
of linear equations arising in these methods is expensive to compute. For rank-R
decomposition of an order-N tensor with all the dimension sizes equal to s, stan-
dard algorithms either perform Cholesky on the normal equations [37] or QR on the
Jacobian matrix [55], yielding a complexity of O(N3s3R3). However, the matrices
involved in this linear system are sparse and have much implicit structure. A recent
advancement has shown that the cost of inverting the Hessian can be reduced to
O(N3R6) [41]. A successive study showed that the cost can be further reduced to
O(NR6), albeit the approach can suffer from numerical instability [53].

Another approach for performing Gauss--Newton with low cost is to leverage an
implicit conjugate gradient (CG) method [48]. The structure of the approximated Hes-
sian can be leveraged to perform fast matrix-vector multiplications for CG iterations
with a cost of O(N2sR2) per iteration. This approach that can also be augmented
with preconditioning to accelerate CG convergence rate [48]. In comparison to the
aforementioned direct methods, this iterative method is substantially more scalable
with respect to the CP rank R. This advantage is critical in many applications of CP
decomposition, as in many cases R \geq s is needed (in general CP rank can be as high
as sN - 1 for an order N tensor). Moreover, to solve the problem of CP decomposition
with rank R < s, Tucker decomposition (or simply HoSVD) [57] can be used to effec-
tively compress the input tensor from dimensions of size s to a Tucker rank r (r < s),
and CP decomposition of rank R can be efficiently performed on the ``smaller"" core
tensor. This technique in effect leverages the CANDELINC decomposition, which
imposes linear constraints on the factor matrices [13]. The authors in [13] prove that
this acceleration finds an exact solution if both the Tucker and CP decomposition
used above are exact.

In this paper, we investigate the behavior of Gauss--Newton optimization with
preconditioned CG on CP decomposition in high rank scenarios (with R \geq s or more
generally when the rank is at least the smallest dimension size of the input tensor).
We consider various approaches to regularization for Gauss--Newton with implicit
CG and ALS. To understand their efficacy, we quantify their ability to converge
to exact CP decompositions of synthetic tensors of various CP ranks, as well as to
approximate tensors arising in applications in quantum chemistry. With the best
regularization strategy, we find that Gauss--Newton is able to consistently find exact
CP decompositions for problems where ALS generally does not converge. Further, the
Gauss--Newton method obtains lower residuals in approximation. We present these
results in section 5.

Our main contribution is the parallel implementation of Gauss--Newton with im-
plicit CG, via a tensor-contraction-based formulation of the method. We develop
a distributed-memory implementation of the method using the Cyclops library for
parallel tensor algebra. Our implementation supports both NumPy and Cyclops as
backends, enabling both sequential and parallel experimental studies. We detail our
implementations in section 4. We evaluate the strong and weak scalability of the
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C292 N. SINGH, L. MA, H. YANG, AND E. SOLOMONIK

method on the Stampede2 supercomputer, and compare its performance to ALS for a
variety of test problems. Our results demonstrate that the Gauss--Newton method can
converge faster both in sequential and parallel settings. These results are presented
in section 5.

This paper makes the following contributions.
\bullet We cast the large matrix-vector multiplication into several tensor contractions so
that an existing library on parallel tensor contractions can be utilized. Our analysis
achieves the same computational cost as previous work [48].

\bullet We propose and evaluate a new regularization strategy, and demonstrate that it is
well suited for CP decomposition with Gauss--Newton.

\bullet We provide the first parallel implementation of Gauss--Newton for CP decomposi-
tion.

\bullet We demonstrate that an implementation of parallel Gauss--Newton with precondi-
tioned CG can both converge faster and achieve higher convergence probability for
CP decompositions of both synthetic and application-based tensors with high CP
rank.

2. Background. We introduce the notation and definitions used in the forth-
coming sections here along with a brief introduction to the ALS algorithm. We sug-
gest [7, 24, 26, 29, 58] for a detailed review of the algorithm and its high performance
formulation.

2.1. Notation and definitions. We use tensor algebra notation in both element-
wise form and specialized form for tensor operations [26]. For vectors, bold lowercase
Roman letters are used, e.g., \bfitx . For matrices, bold uppercase Roman letters are
used, e.g., \bfitX . For tensors, bold calligraphic fonts are used, e.g., \scrX \scrX \scrX . An order N
tensor corresponds to an N -dimensional array with dimensions s1 \times \cdot \cdot \cdot \times sN . Ele-
ments of vectors, matrices, and tensors are denoted in subscript, e.g., xi for a vector
\bfitx , xij for a matrix \bfitX , and xijkl for an order 4 tensor \scrX \scrX \scrX . The ith column of a ma-
trix \bfitX is denoted by \bfitx i. The mode-n matrix product of a tensor \scrX \scrX \scrX \in \BbbR s1\times \cdot \cdot \cdot \times sN

with a matrix \bfitA \in \BbbR J\times sn is denoted by \scrX \scrX \scrX \times n \bfitA , with the result having dimensions
s1 \times \cdot \cdot \cdot \times sn - 1 \times J \times sn+1 \times \cdot \cdot \cdot \times sN . Matricization is the process of reshaping a
tensor into a matrix. Given a tensor \scrX \scrX \scrX the mode-n matricized version is denoted
by \bfitX (n) \in \BbbR sn\times K , where K =

\prod N
m=1,m \not =n sm. We use parenthesized superscripts as

labels for different tensors and matrices, e.g., \bfitA (1) and \bfitA (2) are different matrices.
The Hadamard product of two matrices \bfitU ,\bfitV \in \BbbR I\times J resulting in matrix \bfitW \in 

\BbbR I\times J is denoted by \bfitW = \bfitU \ast \bfitV , where wij = uijvij . The inner product of ma-
trices \bfitU ,\bfitV is denoted by \langle \bfitU ,\bfitV \rangle =

\sum 
i,j uijvij . The outer product of K vectors

\bfitu (1), . . . ,\bfitu (K) of corresponding sizes s1, . . . , sK is denoted by \scrX \scrX \scrX = \bfitu (1) \circ \cdot \cdot \cdot \circ \bfitu (K),
where \scrX \scrX \scrX \in \BbbR s1\times \cdot \cdot \cdot \times sK is an order K tensor.

For matrices \bfitA \in \BbbR I\times K =
\bigl[ 
\bfita 1, . . . ,\bfita K

\bigr] 
and \bfitB \in \BbbR J\times K =

\bigl[ 
\bfitb 1, . . . , \bfitb K

\bigr] 
, their

Khatri--Rao product resulting in a matrix of size (IJ) \times K defined by \bfitA \odot \bfitB =
[\bfita 1\otimes \bfitb 1, . . . ,\bfita K\otimes \bfitb K ], where \bfita \otimes \bfitb denotes the Kronecker product of the two vectors.

2.2. CP decomposition with ALS. The CP tensor decomposition [16, 18] for
an input tensor \scrX \scrX \scrX \in \BbbR s1\times \cdot \cdot \cdot \times sN is denoted by

\scrX \scrX \scrX \approx [[\bfitA (1), . . . ,\bfitA (N)]], where \bfitA (i) = [\bfita 
(i)
1 , . . . ,\bfita (i)

r ],
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COMPARISON OF GAUSS--NEWTON AND ALS FOR CPD C293

and serves to approximate a tensor by a sum of R tensor products of vectors,

\scrX \scrX \scrX \approx 
R\sum 

r=1

\bfita (1)
r \circ \cdot \cdot \cdot \circ \bfita (N)

r .

The CP-ALS method alternates among quadratic optimization problems for each of
the factor matrices \bfitA (n), resulting in linear least squares problems for each row,

\bfitA (n)
new\bfitP 

(n)T \sim = \bfitX (n),

where the matrix \bfitP (n) \in \BbbR In\times R, where In =
\prod N

i=1,i\not =n si is formed by Khatri--Rao
products of the other factor matrices,

\bfitP (n) = \bfitA (N) \odot \cdot \cdot \cdot \odot \bfitA (n+1) \odot \bfitA (n - 1) \odot \cdot \cdot \cdot \odot \bfitA (1).(2.1)

These linear least squares problems are often solved via the normal equations [26],

\bfitA (n)
new\Gamma 

(n) \leftarrow \bfitX (n)\bfitP 
(n),

where \Gamma \in \BbbR R\times R can be computed via

(2.2) \Gamma (n) = \bfitS (1) \ast \cdot \cdot \cdot \ast \bfitS (n - 1) \ast \bfitS (n+1) \ast \cdot \cdot \cdot \ast \bfitS (N)

with each \bfitS (i) = \bfitA (i)T\bfitA (i). These equations also give the nth component of the
optimality conditions for the unconstrained minimization of the nonlinear objective
function,

(2.3) f(\bfitA (1), . . . ,\bfitA (N)) :=
1

2
| | \scrX \scrX \scrX  - [[\bfitA (1), . . . ,\bfitA (N)]]| | 2F .

The matricized tensor times Khatri--Rao product or MTTKRP computation \bfitM (n) =
\bfitX (n)\bfitP 

(n) is the main computational bottleneck of CP-ALS [8]. A work efficient way
to compute MTTKRP is to contract the factor matrices with the tensor successively.
The bottleneck for this implementation is the contraction between the tensor and the
first-contracted matrix. Algebraically, this contraction can be written as the tensor
times matrix product, \scrX \scrX \scrX \times i\bfitA 

(i)T . For a rank-R CP decomposition, this computation
has the cost 2sNR if sn = s for all n \in \{ 1, . . . , N\} .

The dimension-tree algorithm for ALS [7, 22, 23, 24, 40, 58] uses a fixed amor-
tization scheme to update MTTKRP in each ALS sweep. This scheme only needs
to perform two tensor times matrix contraction calculations for each ALS sweep,
decreasing the leading order cost of a sweep from O(NsNR) to O(sNR).

3. Gauss--Newton for CP decomposition. The Gauss--Newton (GN) method
is a modification of Newton's method to solve nonlinear least squares problem for a
quadratic objective function defined as

\phi (\bfitx ) =
1

2
\| \bfity  - \bfitf (\bfitx )\| 2,

where \bfity is the given vector of points with respect to which we solve the least squares
problem, \bfitx is the solution vector required, and \bfitf is the nonlinear function of \bfitx given
in the problem. The gradient and the Hessian matrix of \phi (\bfitx ) can be expressed as

\nabla \phi (\bfitx ) = \bfitJ T
r (\bfitx )\bfitr (\bfitx ),

\bfitH \phi (\bfitx ) = \bfitJ T
r (\bfitx )\bfitJ r(\bfitx ) +

\sum 
i

ri(\bfitx )\bfitH ri(\bfitx ),
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C294 N. SINGH, L. MA, H. YANG, AND E. SOLOMONIK

where \bfitr (\bfitx ) is the residual function defined as \bfitr (\bfitx ) = \bfity  - \bfitf (\bfitx ), \bfitJ r(\bfitx ) is the Jacobian
matrix of the residual function with respect to \bfitx , and \bfitH ri(\bfitx ) is the Hessian matrix
of a component of the residual function ri with respect to \bfitx .

The GN method leverages the fact that \bfitH ri(\bfitx ) is small in norm when the residual
is small, to approximate the Hessian as \bfitH \phi (\bfitx ) \approx \bfitJ T

r (\bfitx )\bfitJ r(\bfitx ). Consequently, the GN
iteration aims to perform the update,

\bfitx (k+1) = \bfitx (k)  - (\bfitJ T
r (\bfitx (k))\bfitJ r(\bfitx 

(k))) - 1\bfitJ T
r (\bfitx (k))\bfitr (\bfitx (k)),

where \bfitx (k) represents \bfitx at the kth iteration. This linear system corresponds to the
normal equations for the linear least squares problem,

\bfitJ \bfitr (\bfitx 
(k))(\bfitx (k+1)  - \bfitx (k)) \sim =  - \bfitr (\bfitx (k)).

Approximation with CP decomposition (2.3) is a nonlinear least squares problem
where the points are tensor entries and the unknowns are factor matrix entries.

We define the Jacobian tensor as

\scrJ \scrJ \scrJ = [\scrJ \scrJ \scrJ (1), . . . ,\scrJ \scrJ \scrJ (N)]

for the N -dimensional CP decomposition, where \scrJ \scrJ \scrJ (n) \in \BbbR s1\times \cdot \cdot \cdot \times sN\times sn\times R is the Jaco-
bian tensor for the residual tensor with respect to \bfitA (n), and is expressed elementwise
as

(3.1) j
(n)
i1...iNkr =

\biggl( 
 - 

N\prod 
m=1,m \not =n

a
(m)
imr

\biggr) 
\delta ink.

Another way to derive the Jacobian matrices is by unfolding the factor matrices and
the residual function as suggested in [1]. Factorization of the Hessian to solve a linear
system in GN has a cost of O(N3s3R3). More advanced approaches to solving the
Hessian can achieve a cost of O(NR6) [53], but this reduction is not substantial when
the CP rank is high, i.e., R \geq s.

Alternatively, CG with implicit matrix products can be used to solve the linear
least squares problems in this GN method [48]. Instead of performing a factorization
or inversion of the approximate Hessian matrix, this approach only needs to perform
matrix vector products \bfitJ T\bfitJ \bfitv at each iteration (henceforth we drop the subscript r
from \bfitJ r and simply refer to \bfitJ for the matrix form of the Jacobian and \scrJ \scrJ \scrJ for its tensor
form). We derive the matrix vector product in terms of tensor contractions in the
following section.

3.1. GN with implicit CG. With the Jacobian tensors defined in (3.1), the
matrix-matrix product \bfitH = \bfitJ T\bfitJ can be expressed as an operator with the following
form,

h
(n,p)
krlz =

\sum 
i1...iN

j
(n)
i1...iNkrj

(p)
i1...iN lz,

which can be simplified to

h
(n,p)
krlz =

\Biggl\{ 
\delta kl\Gamma 

(n,n)
rz if n = p,

a
(n)
kz a

(p)
lr \Gamma (n,p)

rz otherwise,
(3.2)

where \Gamma (n,p)
rz =

N\prod 
m=1,m \not =n,p

\Biggl( \sum 
im

a
(m)
imra

(m)
imz

\Biggr) 
.(3.3)
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Note that \Gamma (n,n) = \Gamma (n) as defined in (2.2). The matrix-vector product \bfitH \bfitw can be
written as

\bfitH \bfitw =

N\sum 
n=1

N\sum 
p=1

sp\sum 
l=1

R\sum 
z=1

h
(n,p)
krlz w

(p)
lz .

The contractions in the innermost summation have the form

(3.4)
\sum 
l,z

h
(n,p)
krlz w

(p)
lz =

\left\{       
\sum 
z

\Gamma (n,n)
rz w

(n)
kz if n = p,\sum 

l,z

a
(n)
kz a

(p)
lr \Gamma (n,p)

rz w
(p)
lz otherwise.

Computation of
N\sum 

n=1

N\sum 
p=1

\sum 
l,z

h
(n,p)
krlz w

(p)
lz

requires N2 contractions of the form\sum 
l,z

h
(n,p)
krlz w

(p)
lz

for a total cost of O(N2sR2) when each mode of the input tensor has size s and is

O
\Bigl( 
N(

N\sum 
m=1

sm)R2
\Bigr) 

in the general case. The matrix representation as well as the detailed contraction
order of (3.4) is shown in Algorithm 3.3. Our GN algorithm for CP decomposition is
summarized in Algorithm 3.1. This algorithm uses preconditioned CG for matrices
(Algorithm 3.2). Note that we avoid reshaping matrices into vectors in this algorithm
as it would be a nonnegligible overhead in the distributed setting. Algorithm 3.2 uses
implicit matrix vector products, which are described in (3.4) and in Algorithm 3.3.

3.2. Regularization for GN. Since the approximated Hessian is inherently
rank deficient [55], we incorporate Tikhonov regularization when solving the linear
system, \bfitJ T\bfitJ +\lambda \bfitI , at each iteration, which corresponds to the Levenberg--Marquardt
algorithm [33]. The convergence behavior of the GN method for CP decomposition
as well as the CG method used within each GN iteration is sensitive to the choice of
regularization parameter.

A common approach to resolve the scaling indeterminacy for the linear least
squares problem is to use \bfitJ T\bfitJ +\lambda diag(\bfitJ T\bfitJ ), however, this may not be the best way
to regularize as mentioned in [33], which is also confirmed by our experimental results.
There are several other approaches for choosing the damping parameter and the di-
agonal matrix at each iteration to ensure local convergence of the algorithm [33], but
they require additional objective function or gradient calculations, which are costly in
the context of CP decomposition, due to the high computational and communication
costs associated with each iteration.

We provide a new heuristic for choosing the damping parameter by varying the
regularization at each step. Variable regularization has been used in the past for the
GN method, by increasing or decreasing the parameter depending on the value of
the objective function at the next iteration [33]. We find that for CP decomposition,
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Algorithm 3.1 CP-GN:GN with preconditioned implicit CG for CP decomposition.

1: Input: Tensor \scrX \scrX \scrX \in \BbbR s1\times \cdot \cdot \cdot \times sN , stopping criteria \varepsilon , CG stopping criteria \varepsilon cg, rank R
2: Initialize \{ \bfitA (1), . . . ,\bfitA (N)\} so each \bfitA (n) \in \BbbR sn\times R is random
3: while

\sum N
i=1 \| \bfitG 

(i)\| F > \varepsilon do

4: Calculate \bfitM (n) = \bfitX (n)\bfitP 
(n) for n \in \{ 1, . . . , N\} 

 \triangleleft Using dimension tree with \bfitP (n) is defined as in (2.1)
5: for n \in \{ 1, . . . , N\} do
6: Calculate \Gamma (n,p) for p \in \{ 1, . . . , N\} based on (3.3)
7: \bfitG (n) \leftarrow \bfitA (n)\Gamma (n,n)  - \bfitM (n)

8: end for
9: Define \lambda based on varying scheme described in section 3.2

10:

\{ \bfitV (1), . . . ,\bfitV (N)\} \leftarrow CP-CG(\{ \bfitG (1), . . . ,\bfitG (N)\} ,

\{ \bfitA (1), . . . ,\bfitA (N)\} ,

\{ \Gamma (n,p) : n, p \in \{ 1, . . . , N\} \} ,
\varepsilon cg, \lambda )

11: for n \in \{ 1, . . . , N\} do
12: \bfitA (n) \leftarrow \bfitA (n) + \bfitV (n)

13: end for
14: end while
15: return factor matrices \{ \bfitA (1), . . . ,\bfitA (N)\} with \bfitA (n) \in \BbbR sn\times R

Algorithm 3.2 CP-CG: Preconditioned implicit CG for CP decomposition.

1: Input: Gradient set \{ \bfitG (1), . . . ,\bfitG (N)\} , factor matrix set \{ \bfitA (1), . . . ,\bfitA (N)\} , set of R\times R
matrices \{ \Gamma (n,p) : n, p \in \{ 1, . . . , N\} \} , stopping criteria \varepsilon cg, regularization term \lambda 

2: for n \in \{ 1, . . . , N\} do
3: \bfitP 

(n)
inv \leftarrow (\Gamma (n,n) + \lambda \bfitI ) - 1

4: Initialize \bfitV (n) to zeros
5: \bfitR (n) \leftarrow  - \bfitG (n)

6: \bfitZ (n) \leftarrow \bfitR (n)\bfitP 
(n)
inv

7: \bfitW (n) \leftarrow \bfitZ (n)

8: end for
9: while

\sum N
i=1 \| \bfitR 

(i)\| F > \varepsilon cg
\sum N

i=1 \| \bfitG 
(i)\| F do

10: for n \in \{ 1, . . . , N\} do
 \triangleleft Using implicit matrix vector product as in (3.4)

11: \bfitQ (n)\leftarrow \lambda \bfitW (n) +
\sum N

p=1 MatVec(\bfitA (n),\bfitA (p),\Gamma (n,p),\bfitW (p), n, p)
12: end for
13: \alpha \leftarrow 

\sum N
n=1\langle \bfitR 

(n),\bfitZ (n)\rangle /
\sum N

n=1\langle \bfitW 
(n),\bfitQ (n)\rangle 

14: for n \in \{ 1, . . . , N\} do
15: \bfitV (n) \leftarrow \bfitV (n) + \alpha \bfitW (n)

16: \bfitR (n) \leftarrow \bfitR (n)  - \alpha \bfitQ (n)

17: \bfitZ (n) \leftarrow \bfitR (n)\bfitP 
(n)
inv

18: end for
19: \beta \leftarrow 

\sum N
n=1\langle \bfitR 

(n),\bfitZ (n)\rangle /
\sum N

n=1\langle \bfitW 
(n),\bfitQ (n)\rangle 

20: for n \in \{ 1, . . . , N\} do
21: \bfitW (n) \leftarrow \bfitZ (n) + \beta \bfitW (n)

22: end for
23: end while
24: return updates \{ \bfitV (1), . . . ,\bfitV (N)\} to factor matrices
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Algorithm 3.3 MatVec: Implicit matrix vector product in CP-CG.

1: Input: Factor matrices \bfitA (n) and \bfitA (p), R\times R matrix \Gamma (n,p), current guess \bfitW (p), n, p
2: Initialize \bfitM to zeros
3: if n \not = p then
4: \bfitM \leftarrow \bfitA (n)(\Gamma (n,p) \ast (\bfitW (p)T\bfitA (p)))
5: else
6: \bfitM \leftarrow \bfitW (p)\Gamma (n,p)

7: end if
8: return \bfitM 

variation of the regularization parameter is useful for getting out of swamps, and
adjusting it eagerly helps avoid the need for expensive recomputation of the objective
function.

In particular, we define an upper threshold and a lower threshold, and initialize
\lambda near the upper threshold. This large value ensures that we take steps towards the
negative gradient direction, and enables CG to converge quickly. Next, we choose a
constant hyperparameter \mu > 1 and update the \lambda at each iteration with \lambda = \lambda /\mu .
This update is continued until \lambda reaches the lower threshold, and then it is increased
by the update \lambda = \lambda \mu until it reaches the upper threshold value and then decreased
again. The lower threshold ensures that the conditioning of \bfitJ T\bfitJ does not affect the
CG updates.

We show in section 5.1 that this type of varying regularization can significantly
improve the convergence probability of the GN method relative to a fixed regulariza-
tion parameter when an exact CP decomposition exists. We find that this strategy
is robust in speed, accuracy, and probability of convergence to global minima across
many experiments.

3.3. Preconditioning for CG. Preconditioning is often used to reduce the
number of iterations in CG. For CP decomposition, the structure of the GN ap-
proximate Hessian \bfitH = \bfitJ T\bfitJ admits a natural block-diagonal Kronecker product
preconditioner [41]. Each of the N diagonal blocks \bfitH (n,n) has a Kronecker product
structure, \bfitH (n,n) = \Gamma (n,n) \otimes \bfitI . Consequently, its inverse is

\bfitH (n,n) - 1
= \Gamma (n,n) - 1

\otimes \bfitI ,

which can be computed using O(R3) work per GN iteration and applied with O(sR2)
cost per CG iteration.

We can also use the Cholesky factorization \Gamma (n,n) = \bfitL \bfitL T ,

\bfitH (n,n) = \Gamma (n,n) \otimes \bfitI = (\bfitL \bfitL T )\otimes \bfitI = (\bfitL \otimes \bfitI )(\bfitL T \otimes \bfitI ),

in which case application of \bfitH (n,n) - 1
can be applied in a stable way via triangular

solve. However, we found that performing triangular solves via ScaLAPACK [11]
is a bottleneck for parallel execution as backward and forward substitution have
polynomial depth. Consequently, we compute the inverse of \Gamma (n,n) and use tensor
contractions to apply it in our parallel implementation.

3.4. Complexity comparison between ALS and GN. We present the cost
of our GN implementation in Table 1. The right-hand side of the GN iteration is
the gradient of the residual function, which can be calculated using dimension trees
similar to the ALS algorithm, thus requiring O(sNR) amount of work, the same as
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Table 1
Cost comparison between dimension tree ALS and GN methods. Depth is quantified with \~O to

omit logarithmic depth factors associated with summations.

Method Work Depth

ALS dimension tree [24] O(sNR+NR3) \~O(N +R)

GN with Cholesky [37] O(sNR+N3s3R3) \~O(NsR)

GN with fast inverse [41] O(sNR+N3R6) \~O(NR2)

GN with faster inverse [53] O(sNR+NR6) \~O(R2)

Implicit GN CG step [48] O(N2sR2) \~O(1)

GN step with I CG iter O(sNR+ IN2sR2) \~O(N +R+ I)

GN step with exact CG O(sNR+N3s2R3) \~O(NsR)

an ALS sweep. With the use of implicit CG to solve the linear least squares problems
in GN, the cost is dominated by the number of CG iterations, each of which requires
O(N2sR2) work. In exact arithmetic, CG should converge in at most NsR iterations.

We compare this iterative approach to the best known methods for direct inver-
sion of the approximate Hessian for CP decomposition with GN. These approaches
exploit the block structure of the approximate Hessian matrix, achieving a cost of
O(N3R6) [41], which may be improved to O(NR6) at the sacrifice of some numerical
stability [53]. These methods accelerate inversion when R is small.

However, CP decomposition may be accelerated by an initial Tucker factorization
to reduce each dimension to O(R) by using CANDELINC decomposition where the
orthonormal factors of Tucker factorization are used as linear constraints (see [12,
25]). Tucker preserves exact CP rank and is easier to compute than CP (HoSVD is
exact provided existence of an exact Tucker decomposition and is near optimal for
approximation). When R \geq s, it is less clear whether the iterative or direct method
is preferred. One overhead of the direct approach is a memory footprint overhead of
O(NR4).

We quantify the work and depth (number of operations along critical path; lower
bound on parallel cost) of ALS and alternative methods for GN in Table 1. The
depth analysis for GN with CG assumes use of preconditioning with explicit inverse
computation. To quantify the depth of direct linear system solves (necessary in ALS
and direct GN), we assume standard approaches (e.g., Gaussian elimination), which
have a depth equal to matrix dimension, as opposed to polylogarithmic-depth matrix
inversion methods [15]. The communication costs associated with ALS and GN meth-
ods can be reduced to known analyses for MTTKRP [8], matrix multiplication [46],
and Cholesky factorization [6]. This analysis of cost and depth suggests that GN
with implicit CG achieves the best cost and parallelism among GN variants when
s = O(R). However, ALS generally offers more parallelism than GN with implicit CG
when the number of CG iterations is sufficiently large so as to dominate cost.

4. Implementation. We implement both the dimension-tree-based ALS algo-
rithm and GN algorithm in Python.1 We leverage a backend wrapper for both NumPy
and the Python version of Cyclops tensor framework [47], so that our code can be
tested and efficiently executed both sequentially and with distributed-memory paral-
lelism for tensor operations. Cyclops provides a high-level abstraction for distributed-
memory tensors, including arbitrary tensor contractions and matrix factorizations
such as Cholesky and SVD via ScaLAPACK [11]. The ALS implementation is based

1Our implementations are publicly available at https://github.com/cyclops-community/tensor
decomposition
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on previous work [29] and uses dimension trees to minimize cost. We write both the
ALS and GN optimization algorithms in an optimizer class, so that each ALS sweep
and GN iteration is encapsulated as a step member function in the optimizer class.
This framework can be easily extended to included other optimization algorithms for
tensor decompositions.

Our tensor contraction formulation of the GN allows for the method to be easy
to implement with NumPy and Cyclops. Both libraries provide an einsum routine for
tensor contractions specified in Einstein summation notation. Using this routine, the
GN method can be specified succinctly as in the following code snippet, where lists
of tensors are used to store the factor matrices \bfitA (n), components of the input and
output matrices (set of vectors) \bfitW (p) and \bfitQ (n), and matrices \Gamma (n,p).

Q = []

for n in range(N):

Q.append(lamda * W[n])

for p in range(N):

if n == p:

Q[n] += einsum(""rz,kz-?`kr"",Gamma[n,p],W[p])

else:

Q[n] += einsum(""kz,lr,rz ,lz-?`kr"", A[n],A[p],Gamma[n,p],W[p])

Listing 1
Implicit matrix-vector product (lines 10-12 in Algorithm 3.2) in the GN method.

Our current implementation parallelizes over the N2 matrix vector products for
the case of equidimensional tensors. We can embed the list of matrices in a tensor of
size N \times s\times R in which the nth slice of size s\times R contains the nth matrix from the
list, \bfitA (n). We further embed the list of \Gamma (n,n) matrices into a tensor of size N\times R\times R
and the list of \Gamma (n,p) into a tensor of size N \times N \times R \times R, where the entries along
the nth and pth modes, n \not = p, are \Gamma (n,p), and zero otherwise. By embedding these
matrices into tensors, we can cast the above contractions into two tensor contractions
to achieve parallelization over the N2 original contractions. The first contraction is
a batch of N contractions corresponding to the n = p case in (3.4) and the second
contraction is a batch of N2  - N contractions corresponding to the n \not = p case in
(3.4).

R = einsum(""niz ,nzr -?`nir"",V,D)

R += einsum(""niz ,pjr ,npzr ,pjz -?`nir"",A,A,G,V)

Listing 2
Implicit matrix-vector product with batched tensor contractions.

In the above code snippet, we have the above described batched contractions,
where \scrV \scrV \scrV embeds the list containing \bfitW (n) on line 7 in Algorithm 3.2, \scrR \scrR \scrR embeds
the list containing \bfitQ (n) on line 11 in Algorithm 3.2, while \scrA \scrA \scrA is the embedding of
the list of factor matrices (line 1 in Algorithm 3.2). \scrD \scrD \scrD and \scrG \scrG \scrG embed \Gamma (n,n) and
\Gamma (n,p), respectively, for n, p \in \{ 1, . . . , N\} with n \not = p (line 1 in Algorithm 3.2). With
this approach, an extra computation of O(NsR2) operations is incurred since the
contraction includes computation with the diagonal of the embedding tensor \scrG \scrG \scrG (which
contains N \times R\times R zeros).

5. Numerical experiments. We perform numerical experiments to compare
the performance of the dimension-tree-based ALS algorithm and the GN algorithm
on both synthetic and application tensors. Our experiments consider four types of
tensors.
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Tensors made by random matrices. We create these tensors based on known
uniformly distributed randomly generated factor matrices \bfitA (n) \in (a, b)s\times R, \scrX \scrX \scrX =
[[\bfitA (1), . . . ,\bfitA (N)]].

Tensors made by Gaussian matrices. We create tensors based on known standard
Gaussian distributed randomly generated factor matrices \bfitA (n) \in \scrN (0, 1)s\times R, \scrX \scrX \scrX =
[[\bfitA (1), . . . ,\bfitA (N)]].

Quantum chemistry tensors. We also consider the density fitting tensor (Cholesky
factor of the two-electron integral tensor) arising in quantum chemistry. Its CP decom-
position yields the tensor hypercontraction format of the two-electron integral tensor,
which enables reduced computational complexity for a number of post-Hartree--Fock
methods [19]. Acceleration of CP decomposition for this quantity has previously been
a subject of study in quantum chemistry [20]. We leverage the PySCF library [50]
to generate the three dimensional compressed density fitting tensor, representing the
compressed restricted Hartree--Fock wave function of water molecule chain systems
with a STO-3G basis set. We vary the number of molecules in the system from 3 to
40, comparing the efficacy of the ALS and GN methods under different settings.

Matrix multiplication tensor. A hard case for CP decomposition is the matrix
multiplication tensor, defined as an order three unfolding (combining pairs of consec-
utive modes) of

tijklmn = \delta lm\delta ik\delta nj .

This tensor simulates multiplication of matrices \bfitA and \bfitB via

cij =
\sum 
klmn

tijklmnaklbmn =
\sum 
l

ailblj .

Its exact CP decompositions give different bilinear algorithms for matrix multipli-
cation, including classical matrix multiplication with rank s3/2 and Strassen's algo-
rithm [49] with rank slog4(7). Determining the minimal CP rank for multiplication of
n-by-n matrices with n \geq 3 (so s \geq 9) is an open problem [38] that is of interest in
theory and practice.

To maintain consistency throughout the experiments, we run CG until a relative
tolerance of 10 - 3. We use the metrics relative residual and fitness to evaluate the
convergence. Letting \~\scrX \scrX \scrX denote the tensor reconstructed by the factor matrices, the
relative residual and fitness are

r =
\| \scrX \scrX \scrX  - \~\scrX \scrX \scrX \| F
\| \scrX \scrX \scrX \| F

, f = 1 - \| \scrX 
\scrX \scrX  - \~\scrX \scrX \scrX \| F
\| \scrX \scrX \scrX \| F

.

We collect our experimental results with NumPy backend on a laptop computer,
and with Cyclops backend on the Stampede2 supercomputer of the Texas Advanced
Computing Center located at the University of Texas at Austin using XSEDE [56].

The laptop is a Macbook Pro with 1.4 GHz Quad-Core Intel Core i5 processor
and 16 GB 2133 MHz LPDDR3 memory. On Stampede2, we leverage the Knight's
Landing nodes exclusively, each of which consists of 68 cores, 96 GB of DDR RAM,
and 16 GB of MCDRAM. These nodes are connected via a 100 Gb/sec fat-tree Omni-
Path interconnect. We use Intel compilers and the MKL library for BLAS and batched
BLAS routines within Cyclops. We use 64 processes per node on Stampede2 for all
experiments.

We study the effectiveness of ALS and GN on CP decomposition based on three
metrics.
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Fig. 1. Convergence of GN with varying identity regularization and ALS algorithms for recovery
of exact CP decomposition with random positive factor matrices. The diameter of the circle and the
side length of the square are proportional to the number of problems converged for the corresponding
number of initializations in Figure 1(a). Figure 1(b) is a box-plot of final residual values over
different ranks for GN and ALS. The gray points in the plot represent outliers for the corresponding
distributions.

Convergence likelihood. We compare the likelihood of the CP decomposition to
recover the original low rank structure of the input tensor with both algorithms.

Convergence behavior. We compare the convergence progress with respect to
the execution time of ALS and GN for all of the tensors listed above. Experiments
are performed with NumPy backend for small- and medium-sized tensors, while the
Cyclops backend is used for large tensors.

Parallel performance. We perform a parallel scaling analysis to compare the time
for one ALS sweep of the dimension-tree-based ALS algorithm and for a CG iteration
of the GN algorithm.

5.1. Convergence likelihood. We compare the convergence likelihood of CP
decomposition for random low-rank tensors, optimized with the ALS algorithm and
the GN algorithm with constant and varying regularization. We run the algorithms
for 100 random samples of each problem. We set the stopping criteria to be that the
residual norm is less than 5 \times 10 - 5, or the norm of the residual change is less than
10 - 7, or a maximum iteration count is reached (500 and 10, 000 iterations for GN
and ALS respectively). We say that the method converged successfully if the solution
residual norm is below 5\times 10 - 5.

We set the tensor order N = 3, size in each dimension s = 4, and compare the
convergence likelihood under different CP ranks in Figures 1, 2, and 3(a). These
results are representative of behavior observed across a variety of choices of s and R.

In Figures 1(a) and 1(b), we run GN and ALS with factor matrices sampled
from (0, 1) uniformly at random with 5 initializations each for CP ranks ranging
from 3 to 9. Note that one can incorporate nonnegativity constraints to improve the
speed and convergence of both ALS [7] and GN [39]. In this work, we compare the
algorithms without incorporating any constraints. The diameter of the circle and the
side length of the square are proportional to the number of problems converged for the
corresponding number of initializations in Figure 1(a). It is evident that GN exhibits
a higher probability of convergence than ALS as the circles are always bigger than the
squares for higher numbers of initializations converged. We observe in the box-plot
in Figure 1(b) that GN with varying regularization is more likely to reach a lower
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Fig. 2. Convergence results of various versions of regularization of GN and ALS for recovery
of exact CP decomposition with factor matrices with entries selected using uniform random, positive
uniform random, and Gaussian distributions.
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Fig. 3. Convergence results of various versions of regularization of GN and ALS for recovery
of exact CP decomposition for Gaussian random tensors and matrix mutliplication tensors.

residual when compared to ALS as the median values of GN are always lower than
that of ALS for the corresponding ranks.

In Figures 2(a), we run both algorithms with factor matrices sampled from ( - 1, 1)
uniformly at random with 5 and 15 initializations. A point in the graph represents the
probability of at least one initialization converging out of all the initializations. We
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observe similar behavior over the various ranks, 6 being the most difficult to converge.
The reason for this may be related to the uniqueness of CP decomposition, as the prob-
ability is lowest at R = 6, when we violate Kruskal's sufficient condition for unique-
ness [27]. However, afterwards this probability increases as we increase the rank.

In Figures 2(b), 2(c) and 2(d), we compare all the algorithms with different types
of tensors with 15 initializations. These plots indicate that varying regularization
achieves the best performance among variants of regularization. ALS is the least ro-
bust for these tensors. The convergence probability for varying diagonal regularization
for tensors constructed with Gaussian matrices is greater than random matrices. The
convergence probability for varying identity regularization remains high for various
tensors. This suggests that the convergence behavior with varying identity regular-
ization is more robust. Note that for all the variants, the probability of convergence
is lowest for tensors constructed with positive random matrices as the probability of
columns of a factor matrix becoming nearly colinear is larger when compared to other
tensors. Nearly colinear columns of the factor matrices lead to swamps and make the
decomposition problem harder [1].

In Figure 3(a), we compare GN with different regularization techniques for ten-
sors with factor matrices sampled from the standard Gaussian distribution for the
``harder"" cases (ranks 5 to 7) with 15 initializations. Plotting the number of con-
verged initializations per problem for these variants over the harder cases, we observe
that GN with varying identity regularization performs better than other variants of
regularization. We also observe that varying the regularization parameter increases
the number of converged problems, which corroborates our claim that varying regu-
larization improves the probability of convergence.

In Figure 3(b), we find the CP decomposition of matrix multiplication tensors
with the best known ranks [10]. We use 100 initializations, and set the convergence
criteria of the residual as 10 - 8. We denote by XY Z the matrix multiplication tensor
corresponding to the multiplication of matrices of size X \times Y and Y \times Z. One can
verify that the output CP factors are close to the exact solution if the entries of
these matrices are not too large. In our experiments, the maximum infinity norm of
the factor matrices for all the solutions is below 50 (49.33 for the 244 tensor with
R = 26). Therefore, any of these factorizations could be chosen and refined to get an
exact solution via techniques used in [10, 45, 52].

For the ALS algorithm, we start with a high regularization parameter, \lambda = 0.01
and decrease it gradually, by a factor of 2 after every 100 iterations, which is sug-
gested in [45] to increase the probability for finding the solution. We run ALS for
20,000 iterations. For the GN method, we initialize it with 200 iterations of ALS
with \lambda = 0.01 and then use GN with proposed regularization and with constant
\lambda = 10 - 3. Initialization via ALS with high regularization is done to ensure that we
come closer to the solution with a small magnitude of factor matrix entries. Note
that this may lead the algorithm to a spurious local minima, and a more robust
way is to avoid such an initialization and instead introduce constraints within the
GN method. A detailed description of how these constraints on factor matrices can
be added along with others, such as sparsity and rational entries, is given in [52].
Without incorporating constraints, the probability of finding the CP decomposition
of matrix multiplication tensors decreases with an increase in size. We are not able
to find a CP decomposition for the 444 tensor with rank 49 with any of the vari-
ants.

We find that, in this case, using Armijo--Wolfe's condition [4] for step-size control
increases the probability of convergence for the GN method, improving upon both
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(a) Weak scaling with fixed tensor size to num-
ber of processors ratio and tensor dimension to
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(b) Weak scaling with fixed tensor size to pro-
cessors ratio and compression ratio
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(c) Strong scaling with fixed tensor size

Fig. 4. Benchmark results for one ALS sweep versus one CG iteration. Each data point is the
mean time across 5 iterations.

the constant and variable regularization strategy. The Armijo--Wolfe condition for
step size is used for backtracking line search in unconstrained minimization problems.
Step size \alpha is initialized to be 1 and reduced by a factor of \tau until the condition
f(\bfitx ) - f(\bfitx +\alpha \Delta \bfitx ) \geq  - \alpha c\bfnabla f(\bfitx )T\Delta \bfitx is satisfied where c, \tau \in (0, 1) or the maximum
number of reductions are performed. We set c = \tau = 0.5 and perform a maximum of
10 iterations of the line search. We set the relative CG tolerance to be 0.5. This type
of step-size control is expensive for larger problems as it requires multiple evaluations
of the objective function.

5.2. Parallel performance. We perform a parallel scaling analysis to compare
the time for one dimension-tree-based ALS sweep and one CG iteration of the GN
algorithm. In Figure 4(a), we consider weak scaling with p processors of order N = 3
tensors, starting with dimension s = 800 and rank R = 800 then growing both by p1/3

with increasing number of nodes p. This scaling maintains a fixed memory footprint of
the tensor per processor. The work per processor for ALS is O(s3R/p), so it increases
by a factor of O(p1/3) with p processors. For a CG iteration, the work per processor is
O(N2sR2/p), which remains constant per processor. Figure 4(a) shows that with the
increase of the number of nodes, the time for one ALS sweep scales perfectly while the
efficiency for one CG iteration drops to 24\% at 64 nodes due to the limited number
of operations involved in the Hessian contraction. The Hessian contraction takes up
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about half of the time of a CG iteration as inner product and norm calculation take up
a significant amount of time. One CG iteration is consistently around 20 times faster
than one ALS sweep for different simulation sizes. We observe that explicit calculation
and use of the inverse eliminates a significant overhead compared to preconditioning
using Cholesky and triangular solves.

We also implement batch CG which uses batched Hessian contractions as de-
scribed in section 4. Due to the fact that we extract more parallelism over the N2

contractions by batching the contractions into a bigger tensor contraction, one CG
iteration speeds up by a factor of 3.58 on 1 node and 4.68 on 64 nodes with this
implementation, relative to the nonbatched approach.

In Figure 4(b), we consider weak scaling with p processors of order N = 3 tensors,
starting with dimension s = 600 and rank R = 300, then growing s as p1/3 and R
as p2/3 with increasing number of nodes p. We consider this type of scaling as the
maximum rank of a tensor is O(s2). This scaling maintains a fixed memory footprint
of the tensor and factor matrices per processor while the work per processor for ALS
and CG increases by a factor of O(p2/3) per processor. Figure 4(b) shows that with
the increase of the number of nodes, the time for one ALS sweep and one CG iteration
increases and the efficiency improves with growing size. Although Hessian contraction
takes up only half of the time of a CG iteration, it takes 0.15 seconds with 1 node and
scales up with an efficiency of more than 200\%, taking 1.12 seconds with 64 nodes.
The increase in efficiency is because the increase in arithmetic intensity is increasing
by O(p2/3) per process, which leads to a speedup of greater than O(p) for both the
algorithms. These observations demonstrate good weak scaling of CG iteration with
increasing rank.

For strong scaling, we consider order N = 3 tensors with dimension size s = 1200
and rank R = 1200. Figure 4(c) shows that the CG iteration time increases with
the number of nodes, while the ALS sweep time decreases at first, and increases with
more than 32 nodes due to communication costs dominating afterwards. The CG
iteration involves smaller matrix multiplications, and the contraction time does not
scale with increasing node counts on account of the communication costs. The Hessian
contraction takes 0.45 seconds with 2 nodes and scales to 0.35 seconds with 16 nodes.
Operations such as norm calculation scale worse as they are latency bound, causing
the CG iteration time to increase. The batch CG performs larger contractions, which
results in improving the time and scaling. The batched contraction takes 0.22 seconds
with 2 nodes and scales to 0.13 seconds with 16 nodes. The time taken at 16 nodes
is also dominated by the norm and inner product calculations. The ALS sweep is
dominated by the MTTKRP calculations, which are more easily parallelizable and
therefore allow ALS to achieve better parallel scaling. Overall, we observe that the
GN CG iterations contain less parallelism than MTTKRP, but are weakly scalable
when the rank is increasing.

5.3. Exact CP decomposition. We compare the convergence behavior of dif-
ferent variants of the GN algorithm with ALS for exact (synthetic) CP decomposition
in Figures 5 and 6. We generate low rank tensors of different sizes, the small- and
medium-sized tensors are tested with the NumPy backend and the large ones are
tested with Cyclops.

In Figure 5(a) we use CP decomposition on tensors made with standard Gaussian
matrices of order N = 3, with dimension s = 80, and CP rank R = 120, using
the NumPy backend. We plot different types of regularization for GN along with
ALS to study the convergence behavior of different variants of GN. We observe that

D
ow

nl
oa

de
d 

10
/1

1/
21

 to
 9

8.
21

2.
14

7.
11

7 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

C306 N. SINGH, L. MA, H. YANG, AND E. SOLOMONIK

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time in seconds

10 17

10 14

10 11

10 8

10 5

10 2

101

Re
la

tiv
e 

re
sid

ua
l n

or
m

Tensor made by Gaussian matrices w/ s=80 and R=120

ALS 
GN w/ diagonal & = 10 1 
GN w/ identity & = 10 3 
GN w/ diagonal & = 10 4 
GN w/ identity & varying 
GN w/ diagonal & varying '

(a) Tensor made by random factor matrices with
elements distributed with standard normal dis-
tribution

0 2 4 6 8 10
Time in seconds

10 6

10 4

10 2

100

102

Re
la

tiv
e 

re
sid

ua
l n

or
m

Tensor made by random matrices w/ s=150 and R=200

ALS 
GN w/ diagonal & = 10 1 
GN w/ identity & = 10 3 
GN w/ diagonal & varying 
GN w/ identity & varying 

(b) Tensor made by random factor matrices
with elements in ( - 1, 1)

Fig. 5. Relative residual norm versus time for the CP decomposition of synthetic tensors with
different sizes. Timings collected using the NumPy backend (sequential).
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Fig. 6. Relative residual norm versus time for the CP decomposition of synthetic tensors with
different sizes. Timings collected using the Cyclops backend.
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GN with varying diagonal regularization performs the best and the varying identity
regularization is also comparable. The sensitivity to regularization of the GN method
is revealed in the plot as constant regularization variants are different from each
other. As can be seen in the figure, there are time periods when ALS makes very
little progress, and appears to be stuck in a swamp, allowing the GN method to
achieve faster convergence for these tensors.

In Figure 5(b), we consider the computation of the CP decomposition for a ran-
dom low rank tensor of order N = 3, with dimension s = 150, and rank R = 200. We
can observe that constant diagonal regularization with \lambda = 0.1 is substantially less
effective for this tensor. However, the two variants with varying regularization con-
verge quickly, suggesting that varying regularization is a robust technique for random
tensors in terms of time to solution.

We test large random low-rank tensors in parallel with s = 500 and R = 500 on
4 nodes with 256 processes as well as s = 2000 and R = 2000 on 16 nodes with 1024
processes using the Cyclops backend. GN with identity varying regularization outper-
forms ALS in terms of speed and accuracy in both cases. As shown in Figure 6(a), for
s = 500 and R = 500, GN with identity varying regularization converges to an exact
solution about 1.25\times faster than ALS. For the tensor made with standard Gaussian
matrices in Figure 6(b), ALS gets stuck in a swamp (makes very little progress in
reducing the objective) and GN converges to the exact solution in about 300 seconds,
suggesting that even for larger problems GN performs better than ALS. For s = 2000
and R = 2000 (Figure 6(c)), we let the program run for a fixed time and observe
GN with identity varying regularization converge to a lower relative residual, which
is about 2.4\times more accurate than ALS while running for 0.6\times of the time of ALS.
Note that the irregularity in time taken of one GN iteration comes from the varying
number of CG iterations taken to solve each system of equations.

5.4. Approximate CP decomposition. We also compare the convergence be-
havior of the GN method with ALS for approximate CP decomposition. In this case,
the tensor reconstructed from factor matrices can only approximate the input tensor
rather than fully recover it. These experiments consider the density fitting tensors
introduced at the beginning of section 5

Our results are shown in Figure 7. We test the problem with different input
tensor sizes and different CP ranks. We consider the two smaller problems shown
in Figure 7(a) and 7(b), for which we use the NumPy backend. We observe that
for both problems, the GN method outperforms the ALS algorithm in speed and
final fitness, both with the constant regularization parameter and the regularization
variation scheme. In addition, GN with constant regularization may suffer from low
optimization stability (when \lambda = 10 - 5) or low accuracy (when \lambda = 10 - 3). The
regularization variation scheme collects the advantages of both cases, and can reach
high accuracy with a stable convergence.

We consider the larger problems with 40 water molecules in Figures 7(c) and
7(d). These are executed in parallel with Cyclops. Results are collected on 4 nodes
using 256 processors on Stampede2. We observe that for these large problems, GN
outperforms ALS in terms of speed and fitness. With CP rank 2000, GN can reach
a fitness of 0.952 in 5000 seconds, which is higher than the best fitness of ALS (0.94)
in about half the time (12, 000 seconds), i.e., a speedup of more than 2\times . We observe
a similar convergence behavior of both the algorithms when we increase the rank to
3000.
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(a) Input tensor size: 339\times 21\times 21, R = 200
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0 2000 4000 6000 8000 10000 12000
Time in seconds

0.70

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1.00

Fi
tn

es
s

40 H2O system with R=2000

GN with varying 
ALS

(c) Input tensor size: 4520\times 280\times 280, R = 2000
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(d) Input tensor size: 4520\times 280\times 280, R = 3000

Fig. 7. Fitness versus time for the CP decomposition of quantum chemistry tensors with
different sizes and ranks. The results (a) and (b) are collected with the NumPy backend, while (c)
and (d) are collected with the Cyclops backend using 256 cores of Stampede2.

6. Conclusion. In this paper, we provide the first efficient parallel implementa-
tion of a GN method for CP decomposition. We evaluate a formulation that employs
tensor contractions for implicit matrix-vector products within the CG method. The
use of tensor contractions enables us to employ the Cyclops library for distributed-
memory tensor computations to parallelize the GN approach with a high-level Python
implementation. Our results demonstrate good weak scalability for the current imple-
mentation of the GN method and show how this formulation could lead to even greater
speedups in the Hessian contraction. Additionally, we propose a regularization scheme
for the GN method to improve convergence properties without any additional cost.
We perform extensive experimentation on different kinds of input tensors and compare
the convergence and performance of the GN method relative to ALS. We observe that
the GN method typically achieves better convergence as well as performance results
for both synthetic as well as quantum chemistry tensors with high CP rank.
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