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ABSTRACT
High-order optimization methods, including Newton’s method and
its variants as well as alternating minimization methods, dominate
the optimization algorithms for tensor decompositions and tensor
networks. These tensor methods are used for data analysis and
simulation of quantum systems. In this work, we introduce Auto-
HOOT, the first automatic differentiation (AD) framework targeting
at high-order optimization for tensor computations. AutoHOOT
takes input tensor computation expressions and generates opti-
mized derivative expressions. In particular, AutoHOOT contains a
new explicit Jacobian / Hessian expression generation kernel whose
outputs maintain the input tensors’ granularity and are easy to op-
timize. The expressions are then optimized by both the traditional
compiler optimization techniques and specific tensor algebra trans-
formations. Experimental results show that AutoHOOT achieves
competitive CPU and GPU performance for both tensor decompo-
sition and tensor network applications compared to existing AD
software and other tensor computation libraries with manually
written kernels. The tensor methods generated by AutoHOOT are
also well-parallelizable, and we demonstrate good scalability on a
distributed memory supercomputer.
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1 INTRODUCTION
Tensors, represented as multidimensional arrays in the computer
program, are important in both scientific computing and machine
learning. Tensor decomposition [25] is a powerful tool in com-
pressing and approximating the high dimensional data, and is used
widely in numerical PDEs [38], quantum chemistry [16, 17] and
statistical modeling [4, 44]. Tensor networks are also widely used
in physics to approximate quantum states [33, 36] and in neural
networks to form tensorized neural architectures [35]. Convolution,
which is a basic tensor operation, is widely used in computer vi-
sion applications [27]. Tensors are also widely used in methods for
electronic structure calculations in computational chemistry [15].

Derivatives, mostly in the form of gradients, are ubiquitous in
the optimization algorithms for tensor related problems. For neu-
ral networks, they are used to calculate the gradients of the loss
function w.r.t. the model parameters. For tensor decomposition and
tensor networks, first-order and higher-order derivatives are neces-
sary to construct the operators used in the alternating optimization.
Gradients of computational chemistry methods are used for opti-
mization of the electronic geometry to identify stable states and
state transitions [21]. Automatic differentiation (AD) frameworks,
including popular Python tools such as PyTorch [37], JAX [7], and
TensorFlow [1], can generate derivatives in all of these contexts.
However, in tensor decomposition, tensor networks, and quantum
chemistry, gradient calculations are most often done via manually
written codes, as careful numerical and performance considerations
are required in these more complex settings.

AD transforms a software or mathematical expression of a func-
tion into code for computation of its derivatives with respect to the
desired parameters. Although mathematically correct, the output
programs for the derivatives may be sub-optimal in computational
cost, use of efficient kernels such as the BLAS, memory footprint,
and numerical stability. Components of different frameworks ad-
dress these problems jointly or independently. For example, trans-
formations of the computational graph and operator fusion are used
to improve computational efficiency and parallelizability [1, 20, 37].
Gradient checkpointing and garbage collection are used to address
memory bottlenecks [1, 37]. For large scale tensor computations,
computational and memory demands leave little leeway for error
in these aspects.

Common commercial AD frameworks such as PyTorch [37],
JAX [7], and TensorFlow [1] are focused on first-order numerical
optimization methods on deep learning models. In the context of
tensor decompositions, tensor network optimization, and differen-
tiation of tensor methods, three major additional challenges arise.
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(1) These domains predominantly employ alternating second-order
optimization methods, as they provide monotonic convergence
and rapid progress at almost the same per-iteration cost as first-
order methods. These methods employ implicit representations
of the Jacobian and Hessian to solve linear systems. Existing AD
frameworks have limited logical constructs for second-order
derivative information, and consequently generate code that
can be sub-optimal in cost by orders of magnitude.

(2) Most tensor operations involved in the deep learning appli-
cations are related to small tensors, while in tensor network
and tensor decomposition applications, there are many tensor
contractions over high order (multidimensional) tensors with a
large number of elements. Therefore, tensor network applica-
tions require better optimization algorithms to select optimized
contraction order and eliminate redundant calculations.

(3) Deep learning computational graphs usually have large depth
with many nonlinear operations, making the freedom to opti-
mize tensor operations limited. On the other hand, in tensor
decomposition and tensor network applications, the computa-
tional graphs are usually wide and have small depth, so there is
more freedom to optimize the computation.

Although many frameworks, such as Tensorly [26], TensorNet-
work [42] and Quimb [11], provide interfaces to optimize the tensor
decomposition / networks algorithms with AD frameworks such
as TensorFlow and PyTorch, the optimization algorithms are the
general first-order methods and its variants. These frameworks
explicitly implement popular second-order methods for these prob-
lems, such as Alternating Least Squares (ALS) for tensor decom-
positions and Density Matrix Renormalization Group (DMRG) for
1D tensor networks, rather than using AD. The ability to generate
efficient expressions of these methods automatically via AD, would
accelerate the development of new variants and their deployment
on shared-memory, GPU, and distributed-memory architectures.

In this paper, we propose a new AD framework for tensor com-
putations, Automatic High-Order Optimization for Tensors (Au-
toHOOT). AutoHOOT encapsulates the following novel ideas and
capabilities:
• a new AD module that generates more efficient representations
for higher-order derivative constructs such as Jacobians and
Hessians, which are needed for tensor computation applications,

• a new computational graph optimization module that extends be-
yond the traditional optimization techniques for compilers with
tensor-algebra specific transformations, such as distributivity of
matrix inversion over the Kronecker product,

• portability via high-level support for different tensor contraction
backends: NumPy for multi-core CPU, TensorFlow for GPUs, and
Cyclops [49] for distributed memory systems,

• substantial improvements in sequential and parallel performance
for tensor network and tensor decomposition optimizations over
other AD libraries and competitive or improved performance
w.r.t. manually-optimized implementations.

2 BACKGROUND
2.1 Notation and Definitions
For vectors, bold lowercase Roman letters are used, e.g., x. For
matrices, bold uppercase Roman letters are used, e.g.,X. For tensors,

bold calligraphic uppercase Roman letters are used, e.g.,XXX. An order
N tensor corresponds to an N -dimensional array with dimensions
s1× · · ·×sN . Elements of vectors, matrices, and tensors are denoted
in parentheses, e.g., x(i) denotes the ith entry of a vector x, X(i, j)
denotes the (i, j)th element of a matrix X, andXXX(i, j,k, l) denotes
the (i, j,k, l)th element of an order 4 tensorXXX. Subscripts are used
to label different vectors, matrices, tensors and functions (e.g.XXX1
andXXX2, f1 and f2).

Matricization is the process of unfolding a tensor into a matrix.
Given a tensor XXX the mode-n matricized version is denoted by
X(n) ∈ R

sn×K where K =
∏N

m=1,m,n sm . We generalize this matri-
cization definition, so that X(i :j) means that the dimensions from
the ith index to the jth index are unfolded to the column dimension
of the matrix, and all the other dimensions are unfolded to the row
dimension of the matrix.

For a scalar output function y = f (a1, . . . , aN ), We use the g[f ]
[ai ]

andH[f ]
[ai ]

to denote the gradient vector and Hessianmatrix of f w.r.t
the input vectors ai . When the inputs are tensors, the gradient and
the Hessian will also be a tensor and denote GGG[f ]

[AAAi ]
andHHH [f ]

[AAAi ]
. For

a function with non-scalar output y = f (a1, . . . , aN ), we use J[f ]
[ai ]

to denote the Jacobian matrix of the function f w.r.t one of the input
vectors ai . The shape of the Jacobian matrix will be R |y |× |ai | . IfYYY
is an output tensor with size Rs1×...×sM , andAAAi is an input tensor
with size Rr1×...×rK , then the Jacobian will be a tensor denoted as
JJJ

[f ]
[AAAi ]

with dimensions Rs1×...×sM×r1×...×rK .
We also define generalized Vector Jacobian Product (VJP), Jaco-

bian Vector Product (JVP) and Hessian Vector Product (HVP). When
both Jacobian and Hessian are matrices, these are matrix-vector
multiplication operations. When Jacobian and Hessian are both
tensors defined above, these are tensor contractions, whose results
are the same as unfolding the tensors into matrices and performing
the matrix-vector product.

2.2 Numerical Optimization Algorithms for
Tensor Computations

We consider two tensor numerical problems: the nonlinear least
squares fitting and the eigenvalue problem. For both problems, we
denote XXX as the input tensor which can be an explicit tensor or
implicit tensor network (e.g., Matrix Product Operator [57]), f as
a tensor network function and AAA1, . . . ,AAAN as the optimization
variables. Then the objective for the nonlinear least squares problem
is defined as

min
AAA1, ...,AAAN

1
2
∥XXX − f (AAA1, . . . ,AAAN )∥2, (1)

which finds a generalized low rank approximation of the input
tensorXXX. The objective for the eigenvalue problem is defined as

min
AAA1, ...,AAAN

vT
(1:N )

X(1:N )v(1:N )

∥VVV∥2F
, (2)

whereVVV = f (AAA1, . . . ,AAAN ) and the output of f serves as a gener-
alized low rank approximation of the eigenvector of a Hermitian
matrix that is a matricization ofXXX.

Three categories of algorithms are generally used to optimize the
problems: second-order methods, including Newton’s method and
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its variants, alternating minimization, which updates each input /
site at one time, and first-order methods such as gradient descent
and its variants.

Newton’s method and its variants. Newton’s method and its
variants, such as Gauss-Newton (GN) method, are popular methods
to solve non-linear least squares problems for a quadratic objective
function defined in Equation 1. Let a denote the concatenation of all
the vectorized sites vec(AAAi ) and f̂ (a) = vec(f (AAA1, . . . ,AAAN )), so
that r (a) := vec(XXX) − f̂ (a) denotes the vectorized residual. Further,
let ri (a) denote the ith element of the output of function r . The
gradient and the Hessian matrix of

ϕ(AAA1, . . . ,AAAN ) :=
1
2
∥XXX − f (AAA1, . . . ,AAAN )∥2,

can be expressed as

∇ϕ(a) =J[r ]T
[a] r (a), and H[ϕ]

[a] = J[r ]T
[a] J[r ]

[a] +
∑
i
ri (a)H

[ri ]
[a] .

The Newton iteration performs the update based on

a(k+1) = a(k ) − (H[ϕ]
[a(k )]

)−1J[r ]T
[a(k )]

r (a(k )),

while the Gauss-Newton method leverages the fact that H[ri ]
[a] is

negligible as its norm is small when the residual is small, therefore
the update can be performed as

a(k+1) = a(k ) − (J[r ]T
[a(k )]

J[r ]
[a(k )]

)−1J[r ]T
[a(k )]

r (a(k )),

where a(k ) represents the a at kth iteration. The Gauss-Newton
updates can be regarded as normal equations for the linear least
squares problem. Both Newton and Gauss-Newton methods can
be solved via the conjugate gradient method with matrix-vector
products performed with an implicit form of the Jacobian / Hessian
to avoid costly matrix inversion [45, 53].

Alternatingminimization. For tensor numerical optimization,
in many cases both the input and output dimensions are large, and
it’s computationally expensive to form the explicit Hessian / Jaco-
bian matrix w.r.t. all the variables and perform the second-order
method directly. On the other hand, when optimizing a subset of
variables, forming the Hessian or Jacobian with respect to those
variables is affordable and effective. Most often, alternating min-
imization procedures update one tensor operand at a time. For
Equation 1, such subproblem can be formulated as

min
AAAi

1
2
∥XXX − f (AAA1, . . . ,AAAN )∥2. (3)

Each AAAi for i ∈ {1, . . . ,N } is updated once via its subproblem
during an optimization sweep. For tensor decompositions and ten-
sor networks, each subproblem is often quadratic, allowing for the
minima to be found directly, often at a similar cost to updatingAAAi
with a first-order method. Alternating minimization also generally
provides monotonic convergence.

In each sweep, many terms necessary to form the subproblems
have many equivalent intermediates, and choosing the proper con-
traction paths to form and also amortize them can greatly save the
cost. This scheme, called the dimension tree algorithm, is critical
to the algorithm performance, and has been used in both tensor
decompositions [29, 40, 56] and DMRG to save the cost.

First-order methods. The efficacy of the first-order methods
on tensor computations is dependent on the applications. The first-
order methods are shown to be advantageous on achieving high
fitting accuracies on some tensor decomposition problems [2], while
they also performworse than alternating minimization in achieving
high accuracy for large scale tensor completion problems [60]. The
per-iteration cost of first-order methods is often comparable to that
of both second-order methods and the alternating minimization
method, due to the structure of tensor networks f in Equation 1,2.

Traditional AD frameworks can generate efficient kernels for
first-order methods, while their performance on the kernels in
higher-order methods is suboptimal. In this paper, we focus on the
performance optimization over both second-order method and al-
ternating minimization methods, to accelerate future development
of efficient high-order methods for various applications. However,
we believe our graph optimization techniques also have the poten-
tial to produce efficient formulations for first-order methods, where
the objective involves contractions of high-order tensors, which
arise in quantum chemistry methods [15].

2.3 Previous Work
Optimization for tensor computations requires three essential build-
ing blocks, automatic differentiation, optimization of the generated
set of tensor operations, and a computational backend for individ-
ual tensor operations. Existing software for tensor computations,
including Tensorly [26], TensorNetwork [42] and Quimb [11] per-
mit the use of multiple backends for individual tensor operations,
and provide some constructs to make use of AD. However, when
using AD, these libraries employ general AD backends such as JAX
or TensorFlow in a black-box fashion.

Automatic differentiation is generally provided via one of two
ways, operator overloading [7, 31, 37, 54, 59] or source code transfor-
mation (SCT) [1, 19, 55]. Operator overloading requires the user to
write functions in terms of the provided library constructs and con-
structs the derivatives at run-time, while SCT uses precompilation
to generate code for derivative computation. Operator overloading
provides a similar mental programming model as normal computer
programs [54], yielding code that is easier to interpret and debug
than SCT. On the flip side, SCT has more potential to optimize the
computational graph with global graph information. Consequently,
SCT is generally the method of choice for AD libraries that aim to
achieve high performance (e.g., [1]).

Our work on graph optimization builds on substantial efforts for
optimization of computational graphs of tensor operations. Tensor
contraction can be optimized via parallelization [22, 23, 41, 49],
efficient transposition [51], blocking [10, 18, 28, 43], exploiting
symmetry [15, 48, 49], and sparsity [22, 24, 32, 39, 39, 47]. For com-
plicated tensor graphs, specialized compilers like XLA [52] and
TVM [8] rewrite the computational graph to optimize program
execution and memory allocation on dedicated hardware. For ma-
chine independent optimization, Grappler in TensorFlow [1] and
TASO [20] use rule based symbolic substitution to simplify the
execution flow. Classical compiler optimization also includes rele-
vant techniques such as common subexpression elimination [3] are
widely used as well [1, 12]. Previous work, such as Opt_einsum [46]
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Einsum("ik,kj->ij")

Figure 1: An example of a computational graph. We use
green nodes to denote input variables, purple nodes to de-
note output nodes, and blue nodes to denote intermediate
or constant nodes.

Figure 2: System overview of AutoHOOT. The arrows show
the computation flow.

has yielded approaches for automatically determining efficient con-
traction orderings and selecting the best intermediates [5, 13–15].
The approaches generally rely on heuristic or exhaustive search to
select a contraction path, as finding the optimal contraction order
is NP-hard [9].

3 OVERALL ARCHITECTURE
The computations in AutoHOOT are described by computational
graphs, which are directed graphs revealing the data dependency
between different operations. Each node can be a source, interme-
diate or sink. Source / Sink nodes are inputs / outputs of the graph.
Sink and intermediate nodes can be any mathematical computation,
while input nodes are fed by the user or constants. An edge con-
necting two nodes represents the data dependency between them.
An example of a computational graph is shown in Figure 1, where
A,B,C are source nodes, the Einsum node is the sink, and the graph
computes (A + B)C. We typically refer a node with its type, e.g., an
Einsum node, which represents the tensor computations based on
the Einstein summation convention. An Einsum graph is defined as
a graph of nodes where all the nodes except the sources are Einsum
nodes. An Einsum tree is defined as a tree of nodes where all the
nodes except the sources are Einsum nodes.

AutoHOOT has two major components: an automatic differen-
tiation architecture for tensor computations and a tensor compu-
tational graph optimizer. Figure 2 shows the system overview. For

an input computation expression, the AD module will generate its
tensorized differentiation expressions. Both the input expressions
and the differentiation expressions will be optimized through the
graph optimization module. With the optimized expressions, users
have the choice to directly run the optimized expressions using
the framework backends, including NumPy, TensorFlow and Cy-
clops, or to generate the Python source code through the source
generation module.

Below we show an example to perform the CP decomposition
based on alternating least squares using the framework. Rather
than constructing each subproblem and building the dimension tree
based algorithm manually, we only need to construct the updates of
Newton’s method for each subproblem, and the optimize function
will reorganize the computational graph to minimize execution
time automatically.

# construct input expressions
A, B, C, input_tensor , loss = cpd_graph(size , rank)

def update_site(site):
hes = ad.hessian(loss , [site])
grad , = ad.gradients(loss , [site])
new_site = ad.tensordot(

ad.tensorinv(hes[0][0]), grad)
# return the optimized computational graph
return optimize(new_site)

new_A = update_site(A)
new_B = update_site(B)
new_C = update_site(C)

# This executor is shared among all updates.
executor = ad.Executor([loss , new_A , new_B , new_C])
# ALS iterations
for i in range(num_iter):

A_val = executor.run(feed_dict={
input_tensor: input_tensor_val ,
A: A_val , B: B_val , C: C_val

}, out=[new_A])
B_val = executor.run(feed_dict={

input_tensor: input_tensor_val ,
A: A_val , B: B_val , C: C_val

}, out=[new_B])
C_val = executor.run(feed_dict={

input_tensor: input_tensor_val ,
A: A_val , B: B_val , C: C_val

}, out=[new_C])
loss_val = executor.run(feed_dict={

input_tensor: input_tensor_val ,
A: A_val , B: B_val , C: C_val

}, out=[loss])

In the AD module, we implement the reverse mode AD for first-
order derivatives (Jacobian, VJP and JVP), as well as for higher-order
derivatives, including Hessian and HVP. Both Jacobian and Hessian
are formulated with a new algorithm, such that their calculations
are not dependent on the JVP and HVP routines, which is more
amenable to parallel execution as well as graph optimizations. We
describe this approach in detail in Section 4.

The graph optimizer provides optimizations for tensor computa-
tional graphs. We adopt many machine independent optimization
algorithms for common tensor computational graphs, such as selec-
tion of optimal contraction path and common sub-expression elim-
ination. For second-order methods, the graph optimizer rewrites
the structured inverse, such as the inverse of a Kronecker product,
so that the inverses are operated on smaller tensors. For alternating
methods, we developed a path selection algorithm with constraints
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to construct the dimension trees. We describe this algorithm in
detail in Section 5.

4 COMPUTATIONAL GRAPHS FOR
HIGH-ORDER DERIVATIVES

We implement the reverse-mode AD based on the source code
transformation (SCT) method, explicitly transforming the primal
computation expression prior to execution to the adjoint expression.
It allows us to flexibly perform the computational graph optimiza-
tion after the adjoint expression production.

Our AD module supports the operations which calculate the
Jacobian / Hessian expressions implicitly (VJP, JVP and HVP), and
also explicit Jacobian and Hessian calculations. The implicit calcu-
lations are widely used in many other frameworks, because it is
computationally cheaper. For example, for a Hessian matrix with
size n ×n, explicitly forming the matrix costsO(n2), while the HVP
calculation will only costO(n) leveraging the back-propagation gra-
dient functions. For the explicit Jacobian and Hessian calculations,
we introduce a new back-propagation algorithm that can produce
a computational graph is more amenable to parallelization and
downstream optimizations. The algorithm is detailed in Section 4.2.

4.1 VJP, JVP, and HVP
Our implementation of VJP is similar to many other frameworks [1,
7, 37], and is based on the reverse-mode AD. For functions involv-
ing matrix / vector operations whose inputs and outputs are both
vectors,

xi+1 = fi (xi ), i ∈ [1, . . . ,N ],

consider a computational graph consisting of a chain of these func-
tions,

y = f (x1) = fN · · · f1(x1),

the VJP adjoint of xi , vT J
[f ]
[xi ]

, is calculated based on the VJP adjoint
of xi+1,

VJP(v, f , xi )=vT J
[f ]
[xi ]
=(vT J[f ]

[xi+1]
)J[fi ]
[xi ]
=VJP(v, f , xi+1)J

[fi ]
[xi ]
.

Therefore, the VJP of all the inputs / intermediates xi , i ∈ [1, . . . ,N ]

will be calculated with one backward propagation. It is also compu-
tationally efficient, because only matrix-vector product is necessary
for each calculation.

Note that for the cases where sub function inputs and outputs
contain matrices or tensors, VJP with reverse-mode AD is still
valid and efficient, since we can think of each matrix or tensor as
a reshaped vector. For the case where the output is a scalar, the
gradient expression is implemented based on the VJP, if we fix the
vector as a unit length vector with element being one.

Our JVP implementation is based on the VJP function1. Although
it’s more computationally efficient to implement JVP based on
forward mode AD [6], we choose to implement it based on our
reverse mode AD module, and optimize the computational graph
afterwards to achieve computationally efficient expressions. The
JVP implementation is based on calling the VJP function twice. First,

1The JVP implementation is based on the technique introduced at https://j-towns.
github.io/2017/06/12/A-new-trick.html.

we construct a function д, whose expression is as follows,

д(u) = VJP(u, f , x)T = (uT J[f ]
[x] )

T .

Afterwards, we perform another VJP operation on the function д
with related to its input u, and can get the JVP expression,

VJP(v, д, u)T = (vT J[д]
[u] )

T = (vT J[f ]T
[x] )T = J[f ]

[x] v = JVP(v, f , x).

We also implement the HVP function based on the gradient
function. We only consider the case when the function output is
a scalar, because it is the general case where Hessian matrices are
used. The HVP is formulated based on two gradient calculations,
because HVP is equivalent to the gradient of the gradient-vector
inner product. The expression is shown as follows,

HVP(v, f , x) = H[f ]
[x]v =

∂g[f ]
[x]

∂x
v =
∂g[f ]

[x]

∂x
v + g[f ]T

[x]
∂v
∂x

=
∂(g[f ]T

[x] v)

∂x
= grad(grad(f , x)T v, x).

4.2 Explicit Jacobian and Hessian
To the best of our knowledge, all of the popular AD frameworks
calculate explicit Jacobian and Hessian based on the VJP and HVP
routines [1, 7, 37]. Taking the Jacobian calculation of

f (x) = A1A2x

as an example: when both x and f (x) are of size n, current methods
will compute the ith row of the Jacobian via VJP eTi J

[f ]
[x] for i ∈

{1, . . . ,n}, where ei is the ith elementary vector. There are two
major disadvantages to this approach:
• It changes the BLAS-3 level matrix-matrix multiplications to
multiple BLAS-2 level matrix-vector multiplications, and less flop
intensity can be achieved. Although many frameworks provide
the routine to compute all the matrix-vector multiplications in
parallel, the parallelism is still sub-optimal and less efficient than
the matrix multiplications, because the flop-to-byte ratio is O(1)
versus O(n).

• The computational graph produced is difficult to optimize. Al-
though having high dimensions, many Jacobians / Hessians in
tensor computation operations are highly structured and the com-
putational cost can be greatly reduced if being well optimized.
However, calculating them based on matrix-vector products adds
one more matrix-vector product operation, which usually break
the structure and increase the cost. For example, if A1 = B ⊗ C
and A2 = D ⊗ E and B,C,D,E have sizes n × n, performing
matrix-vector product for the Jacobian and each elementary vec-
tor costs O(n4) and the overall Jacobian calculation cost is O(n6).
However, if we calculate the Jacobian directly, we can use the
mixed-product property of the Kronecker product to optimize
the expression,

(B ⊗ C)(D ⊗ E) = (BD) ⊗ (CE),

reducing the overall cost to O(n4).
To alleviate these disadvantages, we produce both Jacobian and
Hessian expressions in a way that’s independent of VJP and HVP
routines.
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For the Jacobian expression, our implementations are also based
on the chain rule to perform back propagation, using

Jacobian(f , xi )=J
[f ]
[xi ]
=J[f ]

[xi+1]
J[fi ]
[xi ]
=Jacobian(f , xi+1)J

[fi ]
[xi ]
.

Therefore, the Jacobian of one target node is the matrix-matrix
product between the Jacobian of its output node and the Jacobian of
the local function. Note that when both xi and the Jacobian have the
tensor format, the above equation still holds, except that the matrix-
matrix product is expressed in the form of tensor contractions
(Einsums).

For linear operations, such as addition, subtraction, scalar-tensor
multiplication and Einsum, we formulate the Jacobian expressions
as an Einsum. To achieve that, we introduce the Identity node, which
is a node that applies an identity matrix, to express the constraints
in Jacobian tensors. For example, for the addition operations of two
order N tensors,

f (AAA,BBB) =AAA +BBB,

its Jacobian is a tensor of order 2N , where JJJ [f ]
[AAA]

(x1, . . . ,x2N ) = 1
if and only if xi = xi+N for i ∈ {1, . . . ,N }, and other elements are
0. This constraint can be easily specified with identity nodes. For
the order 3 addition, the Jacobian ofAAA can be expressed as

JJJ
[f ]
[AAA]

(i, j,k, l ,m,n) = I(i, l)I(j,m)I(k,n).

Similarly, we can use the method to express the Jacobians for all
the other linear operations. For example, for an Einsum expression
below, its Jacobians are written as

f (AAA,BBB)(i, j,k) =
∑
l

AAA(i,k, l)BBB(j,k, l),

JJJ
[f ]
[AAA]

(i, j,k,m,n,o) = I(i,m)I(k,n)BBB(j,n,o),

JJJ
[f ]
[BBB]

(i, j,k,m,n,o) = I(j,m)I(k,n)AAA(i,n,o).

Although we have introduced several identity nodes, they can be
easily pruned so that only necessary identity nodes are left, which
will be introduced in Section 5. The Hessian routines are based on
the Jacobian routines: we perform Jacobian calculations twice to get
the Hessian expressions. The advantage of this Jacobian / Hessian
generation method is three-fold: first, we can leverage BLAS-3
level operations to perform most of the tensor contractions and
can achieve higher performance. Second, the expressions are much
easier to optimize, as will be introduced below. Third, the source
code for Jacobian / Hessian expressions can be easily acquired,
which is beneficial for both debugging and research purposes.

5 GRAPH OPTIMIZATIONS
We built a compiler to optimize tensor computational graphs. The
compiler is specifically designed for tensor expressions with mul-
tilinear operations, including tensor contractions (Einsum) and
linear algebra operations (addition, multiplication, summation, in-
version and so on). Our goal is to reduce the computational cost
by transforming the graph to an equivalent form. Given the fact
that retrieving the optimal execution graph is NP-hard, we devise
several application-driven heuristic strategies:
• Generation of longer Einsum nodes: To achieve this, we implement
two kernels, Einsum distribution and Einsum fusion.

Algorithm 1: Graph optimization
input : Input Graph: G
output :Optimized Graph: OG
G = FuseAllEinsum (Distribution (G)) ▷ Provide longer
Einsums

G = SymbolicExecution (G) ▷ Decompose Inverse / Prune
identity / SymPy

G = OptContractPath (G) ▷ Find efficient contraction order
OG = CSE (G) ▷ Common Subexpression Elimination
return OG

• Symbolic rule execution: We implement the structured inverse
node decomposition and redundant node pruning kernels. In
addition, we use SymPy [34] to simplify elementary algebraic
operations.

• Contraction order selection: We select the contraction path on
fully simplified expressions.

• Constrained contraction path construction: To accelerate alternat-
ing minimization, we provide a kernel to reuse intermediates
between optimization subproblems.

Traditional compiler techniques, such as common sub-expressions
elimination, are applied after the strategies above. The overall algo-
rithm is described in Algorithm 1.

5.1 Longer Einsum Nodes Generation
We aim to transform the computational graph into Einsum nodes
with as many inputs as possible. This optimization will empower
the contraction path selection with a global view and ease the
discovery of optimizable patterns for downstream algorithms. To
achieve this, we introduce two transformation kernels.

Einsum distribution. Einsum distribution recursively lever-
ages distributivity of tensor contraction over tensor addition (or
another distributive operation) to generate larger Einsum graphs.
Larger Einsum graphs are the prerequisite for further graph depth
reduction. This optimization moves the nodes performing the dis-
tributive operation (dist_op) closer to the graph sinks based on
the programmatic rule below. Figure 3a illustrates the idea of an
application of the algorithm. while the pseudo-code can be found
in Appendix C of the accompanying technical report [30].

Einsum(dist_op(g1, g2), g3) =
dist_op(Einsum(g1, g3), Einsum(g2, g3))

Einsum fusion. Einsum fusion transforms an Einsum graph
into several distinct Einsum nodes with the same set of source
vertices (inputs) leveraging associativity of tensor contractions. It
is a prerequisite for downstream graph optimization steps, such as
contraction path selection and identity node pruning. An example
can be seen in Figure 3c.

Einsum fusion has three steps: linearization of the graph, fusion
of the generated Einsum Tree, and removal of the redundant clone
nodes. The linearization step changes the input Einsum graph into
an Einsum tree. When a source node is used in multiple Einsums,
we create a clone of it for each Einsum. If an Einsum node has more
than one output, we copy the subgraph defining its computation,
including itself, and repeat until all nodes have a single output,
yielding a forest (set of disconnected trees). The fusion step fuses
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Figure 3: Visualization of different graph optimization kernels.

each generated Einsum tree. It leverages a union-find data structure,
which puts two dimensions from two Einsum nodes into one set if
they have the same subscript in one Einsum expression. After that,
each disjoint set is assigned an unique character for the generation
of the subscript of the new Einsum node. Finally, the clone node
removal step removes the redundant clone nodes and returns an
Einsum node. We illustrate both the pseudo-code sketch of the

algorithm and the union-find data structure in Appendix C of the
accompanying technical report [30].

5.2 Symbolic Execution
We employ several linear algebra constructs that can simplify the
computational graph and reduce the computational cost.
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21
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Figure 4: Tensor diagram of two Einsum expressions with
the same tensor computations. The numbers around the
input tensor denote the dimension numbers that are con-
tracted by specific edges. The underlined numbers denote
the dimension number of the output tensor. Two Einsum
expressions with the same tensor diagram express the same
tensor computations.

Structured Tensor inverse decomposition. An inverse of an
Einsum graph may be the bottleneck of the computational graph
because of the cubic order complexity. Fortunately, structured infor-
mation may guide the optimization, e.g, the inverse of a Kronecker
Product can be decomposed into the Kronecker product of inverses
through (A⊗B)−1 = A−1 ⊗B−1. We develop an algorithm to detect
and break large tensor inverses into products of smaller tensor
inverses so that the computation is cheaper. To keep it simple, the
algorithm limits its applicability to specific forms of the tensors, and
further details are described in Appendix B of the accompanying
technical report [30]. An illustrative example is shown is Figure 3d.

Redundant node pruning. We prune the redundant nodes,
including the Identity nodes and the inverse nodes, to simplify
the expressions. Identity nodes are essential building blocks for
the explicit Jacobian and the Hessian expressions, as is shown in
Section 4.2. During the AD, redundant Identity nodes are introduced
to aid the construction of the graph. Hence, we implement an
algorithm to eliminate the unnecessary identity nodes afterwards
for better efficiency. Identity nodes are removed unless they express
necessary constraints in the output tensor structure, such as the
tensor symmetry shown in the right graph of Figure 3b. In addition,
we prune the unnecessary inverse nodes, as is shown in Figure 3e.
When there exists an matrix multiplication between an Einsum
Node and its corresponding inverse node, we directly return an
identity node.

Elementary algebraic simplification. For elementary opera-
tions, such as addition, subtraction and multiplication, we use the
SymPy library [34] to optimize them. SymPy can help us easily
simplify the expressions. For the example shown below, it helps
reducing the expression to one term.

sympy_simplify(
(A-(((A*0.5)-(T*0.5))+((A*0.5)-(T*0.5))))

) = T

5.3 Optimized Contraction Path Selection
We identify the optimal contraction path for the Einsum expression
after all the above transformations. For one Einsum node with mul-
tiple inputs, we provide an function to decompose it into an Einsum
graph with the optimized contraction path, as is shown in Figure 3g.
Our strategy is designed for the common tensor contractions with
the following two assumptions:
• For simplicity, we only discuss the case where tensors are dense,
and for a long Einsum expression with multiple inputs, it will first
be split into multiple small Einsum expressions, each has only
two inputs, and then dense tensor contractions will be executed.

• The chosen contraction path is hardware oblivious. We assume
the contraction time for each operation is proportional to the flop
counts. Other factors, such as the communication cost among
different processes under the parallel execution settings, are not
considered.

These assumptions allow us to implement the algorithm based on
an interface provided by Opt_Einsum [46]. Note that whether we
can find the optimal contraction path is based on the optimization
algorithm, but we generally found that a greedy search algorithm is
able to provide an optimal path for most of the Einsum expressions
in tensor computation applications.

In addition, the assumptions above are not limitations of our
overall approach. AutoHOOT is also capable of extracting the con-
traction path based on other libraries, such as Cyclops [60], where
hardware and tensor sparsity are considered in the algorithm.

5.4 Constrained Contraction Path
Construction

We provide a constrained contraction path selection routine, such
that the contraction path is optimized under the constraint that
partial inputs’ contraction order is fixed. This routine is critical
for the dimension tree construction used in the alternating min-
imization algorithms. Consider Equation 3, with the update se-
quence in each sweep starting from AAA1 and ending at AAAN , for
the Einsum node used to update AAAi , where i ∈ {1, . . . ,N }, we
generate the contraction path such that it is optimized under the
constraint that the contraction order for all the target sites is
AAAN ≺ · · · ≺ AAAi+1 ≺ AAA1 ≺ · · · ≺ AAAi−1. This order ensures that
the tensor that is updated just previously,AAAi−1, affects only the last
part of the contraction path, enabling the reuse of the calculations
prior to it in the path as much as possible.

The constrained path selection algorithm is illustrated in Algo-
rithm 2, and is implemented on top of the unconstrained one and
uses the greedy search heuristic. We find that this heuristic works
well for all the dimension tree selection in the tensor computation
applications tested in Section 6. An example is shown in Figure 3h,
which illustrate the dimension construction for the Matricized Ten-
sor Times Khatri-Rao Product (MTTKRP) calculations of an order
3 CP decomposition. The pseudo-code is illustrated in Appendix C
of the accompanying technical report [30].

5.5 Common Subexpression Elimination (CSE)
CSE is used to remove the duplicated Einsum expressions generated
from the path selection above. We show one example in Figure 3f,
where CSE helps saving one Einsum calculation. However, CSE is
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CPD Kernel Size (s ) Backend Backend AD AD AD + OPT1 AD + OPT1,2 AD + OPT1,2,3 Overall speed-up

GN Jacobian 25 JAX 0.1449s 0.0632s 0.0126s 0.0126s 0.0126s 11X
TensorFlow 1.5201s 0.1037s 0.0029s 0.0029s 0.0029s 524X

GN HVP
40 JAX 0.0107s 0.0011s 0.0012s 0.0011s 0.0011s 9X

TensorFlow 0.0040s 0.0027s 0.0048s 0.0048s 0.0048s 0.8X

640 JAX 0.3742s 0.776s 0.0056s 0.0054s 0.0051s 73X
TensorFlow 0.9669s 0.9746s 0.4470s 0.3422s 0.2795s 3X

ALS Hessian
40 JAX 0.0713s OOM 0.0017s 0.0017s 0.0017s 41X

TensorFlow 0.3643s OOM 0.0021s 0.0021s 0.0014s 260X

160 JAX OOM OOM 1.0682s 1.0682s 0.8141s /
TensorFlow OOM OOM 3.0164s 3.0164s 1.5405s /

ALS Hessian inv
40 JAX 0.1623s OOM 0.0908s 0.0090s 0.0090s 18X

TensorFlow 0.4237s OOM 0.0278s 0.0028s 0.0028s 151X

160 JAX OOM OOM 13.13s 1.5160s 1.5110s /
TensorFlow OOM OOM OOM 0.5786s 0.5585s /

Table 1: Detailed performance gain from each graph optimization technique on different CPD kernels. The rank is set the
same as the input tensor dimension/size along each mode (s). Results are collected on an NVIDIA Titan X GPU. We denote
each technique as: Einsum fusion + distribution: OPT1, Symbolic optimization: OPT2, CSE: OPT3.

Algorithm 2: Opt_contraction_path_w_constraint
input :Einsum Node: N, Contraction order list: L
output :Einsum Tree: T
n = length(L)
T = N ▷ Initialize tree with single Einsum node
for i ∈ {1, . . . ,n} do

split_T = SplitEinsum (T, L[i+1:n]) ▷ Split T into an
Einsum node that contracts all input nodes apart from
L[i+1:n] and the subgraph induced by the remaining
nodes, returning the former

opt_contract_subtree = OptContractPath (split_T) ▷

Unconstrained optimized contraction path
opt_contract_subtree = Get_nearest_ancestor
(opt_contract_subtree, L[i]) ▷ Get the tree whose sink
is the nearest ancestor of L[i]

T = Substitute_graph (T, opt_contract_subtree) ▷

Return the equivalent graph of T whose inputs contain
opt_contract_subtree

return T

nontrivial for Einsum nodes because different Einsum subscripts
may represent the same computation. We show an example in
Figure 4 where two Einsum nodes represent the same calculation
despite different input ordering and subscripts. Hence, we transfer
an Einsum expression into a tensor diagram graph, and compare
the graph structures between two expressions.

Moreover, two nodes in an Einsum graph may be transpositions
of each other. After detecting such conditions, we replace one of the
nodes with its transpose node and update its outputs’ expressions
therein. This optimization greatly reduces the computation cost
when transposes of large tensors appear in the graph.

6 BENCHMARKS
We evaluate the performance of AutoHOOT on both the Gauss-
Newtonmethod and the alternatingminimizationmethod discussed
in Section 2.2. The performance of the critical Gauss-Newton kernel,
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Figure 5: Performance comparison among AutoHOOT, JAX
and the existing implementation for the HVP kernel in the
Gauss-Newton algorithm for the CP decomposition. The im-
plementation of CPD_GN_paper comes from reference [45].
The tensor order is set as N = 3, and the CP rank is set equal
to the dimension size. Each bar is the average result of 10
iterations.
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Figure 7: AutoHOOT performance for kernels in the alternatingminimization. TensorFlow results are collected on an NVIDIA
TESLA K80 GPU. (a)-(c): Results for the CP decomposition. The tensor order is set as N = 3 for all the experiments. (d)-(f):
Results for the Tucker decomposition. The tensor order is set as N = 3 for all the experiments. (g)-(i): Results for the DMRG
experiment. The number of sites is set as N = 10 for the experiments with NumPy and TensorFlow, and set as N = 6 for the
experiments with Cyclops. For the Cyclops benchmark, the dotted line denotes the perfect scaling curve. Each bar/dot is the
average result of 10 iterations.

the Hessian-Vector Product, is evaluated on the CP decomposition
application, where Gauss-Newtonwith conjugate gradient update is
commonly used to achieve high accuracy [45, 50]. The performance
of alternating minimization kernels generated by AutoHOOT is
evaluated on both CP and Tucker decompositions, as well as the
DMRG algorithm in tensor network applications used to calculate
the smallest eigenvalue and eigenvector for a matrix product state.

The experiments are run on both CPUs and GPUs. On CPUs, we
test the performance on both one process with the NumPy backend,
and on the distributed parallel system with the Cyclops backend.
The results are collected on the Stampede2 supercomputer located
at the University of Texas at Austin. We leverage the Knight’s
Landing (KNL) nodes, each of which consists of 68 cores, 96 GB of

DDR RAM, and 16 GB of MCDRAM. These nodes are connected
via a 100 Gb/sec fat-tree Omni-Path interconnect. We use Intel
compilers and the MKL library for threaded BLAS routines for both
sequential and parallel experiments. We use 16 processes per node
and 16 threads per process for the Cyclops benchmark experiments.
We also collected results with both TensorFlow and JAX backends
on both single NVIDIA TESLA K80 GPU and single NVIDIA Titan
X GPU.

We first compare the detailed performance gain from each graph
optimization technique proposed in Section 5. The experiments are
performed on the Jacobians and HVPs kernels in the Gauss-Newton
(GN) methods, as well as Hessians and Hessian inverses used in the
ALS algorithm for CP decompositions and are shown in Table 1. As
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can be seen in the table, Einsum fusion and distribution are critical
for almost all the calculations, and Symbolic optimization is critical
for tensor/matrix inverse. In addition, CSE provides incremental
performance gain.

The performance of the HVP kernels in the Gauss-Newton al-
gorithm for the CP decomposition is shown in Figure 5. As can
be seen, AutoHOOT has at least 2X speed-up on the GPU and at
least 7X speed-up on the CPU compared to JAX when the dimen-
sion size s ≥ 320. Note that JAX performs better for small HVP
kernels, because the experiments with AutoHOOT are performed
on TensorFlow, where JAX has faster small contractions. It can be
seen that the speed-up increases with the increase of the dimen-
sion size, indicating the advantage of AutoHOOT for large scale
tensor computations. In addition, the AutoHOOT performance is
comparable compared to the manually designed algorithms in the
reference [45], indicating that the kernels generated by AutoHOOT
reaches the state-of-art performance boundary.

The performance of the alternating minimization kernels for
both tensor decompositions and the DMRG algorithm are shown
in Figure 7. For the tensor decompositions, we compare the perfor-
mance of AutoHOOT output expressions, both with and without
dimension tree optimizations, to the popular tensor decomposition
libraries Tensorly [26], both with NumPy and TensorFlow backend,
and scikit-tensor2 with NumPy backend. For the DMRG algorithm,
we compare the performance to Quimb [11], which is an efficient
library for tensor networks.

The benchmark results for the CP decomposition with both
NumPy and TensorFlow can be seen in Figure 7a, 7b. We compare
the performance with different CP ranks (R) and dimension size
(s). As can be seen, the expressions generated with the dimension
tree algorithm outperform all the other implementations. Note that
Tensorly’s performance is not as expected for the CP decomposition,
because it slices the factor matrices over the rank mode and sums
over all the MTTKRP results of the input tensor and the sliced factor
matrices, which is not favorable. The weak scaling benchmark is
also performed on the distributed parallel system with Cyclops,
shown in Figure 7c, where we consider weak scaling with fixed
input size and work per processor. The expressions generated from
AutoHOOT scale well, obtaining 73% parallel scaling efficiency on
128 nodes (2048 cores).

The benchmark results for the Tucker decomposition with both
NumPy and TensorFlow can be seen in Figure 7d, 7e. We compare
the performance with different Tucker ranks (R) and dimension size
(s). Note that we are only comparing the performance of the kernel
generated through AutoHOOT to the Tensor Times Matrix-chain
(TTMc) implementation in other libraries, which doesn’t contain
the low rank factorization step of splitting the factor matrix from
the core tensor. The expressions generated with the dimension
tree algorithm is comparable to all the other implementations. The
weak scaling benchmark is shown in Figure 7f. Similar to the CP
decomposition, the expressions generated from AutoHOOT scale
with high efficiency.

The performance results for DMRG can be seen in Figure 7g, 7h,
7i. We benchmark over sweep of the HVP kernels with different
MPO and MPS rank size (R) and physical dimension size (s), where

2https://github.com/mnick/scikit-tensor

the Hessian denotes the local Hessian of the DMRG loss function
w.r.t. each local site. In DMRG, the HVP calculations are important
kernels for the sparse eigensolver. Multiple HVP calculations are
necessary for each site to get the local smallest eigenvalue, making
it the computation bottleneck. The expressions generated with the
dimension tree algorithm achieve comparable performance to the
implementations in Quimb. In addition, the expressions generated
from AutoHOOT scale nearly perfectly with Cyclops up to at least
128 nodes3.

We also compare the performance between AutoHOOT and
Quimb on the full DMRG experiments. Like Quimb, we use the
sparse eigensolver in SciPy [58], and set the solver parameters the
same as Quimb. The results are shown in Figure 6. We test the four
cases where the maximum MPS rank ranges from 10 to 40, and the
results show that both libraries have the similar performance, while
AutoHOOT has a small fixed overhead.

Note that we did not report the ALS results of other AD libraries,
because their performance is far worse than both AutoHOOT and
other tensor computation libraries. For both CP and Tucker decom-
positions, existing AD libraries cannot efficiently decompose the
structured inverse operations, leading to a big overhead from in-
verting large tensors. For the DMRG experiment, existing libraries
fail to choose an optimized contraction path, and produce large
intermediates which require too much memory.

7 CONCLUSION
AutoHOOT is the first automatic differentiation framework target-
ing high-order optimization for tensor computations. AutoHOOT
contains a new explicit Jacobian / Hessian expression generation
kernel whose outputs keep the input tensors’ granularity and are
easy to optimize. It also contains a new computational graph opti-
mization module that combines both the traditional optimization
techniques for compilers and techniques based on specific tensor
algebra. The optimization module generates expressions as good
as manually written codes in other frameworks for the numerical
algorithms of tensor computations. AutoHOOT is compatible with
other numerical computation libraries, and users can execute the
generated expressions on CPU with NumPy, GPU with TensorFlow,
and distributed parallel systems with Cyclops Tensor Framework.
Experimental results show that AutoHOOT has competitive per-
formance on both tensor decomposition and tensor network appli-
cations compared to both existing AD software and other tensor
computation libraries with manually written kernels, both on CPU
and GPU architectures.
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