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Abstract—
The prohibitive expense of automatic performance tuning

at scale has largely limited the use of autotuning to libraries
for shared-memory and GPU architectures. We introduce a
framework for approximate autotuning that achieves a desired
confidence in each algorithm configuration’s performance by
constructing confidence intervals to describe the performance
of individual kernels (subroutines of benchmarked programs).
Once a kernel’s performance is deemed sufficiently predictable
for a set of inputs, subsequent invocations are avoided and
replaced with a predictive model of the execution time. We
then leverage online execution path analysis to coordinate
selective kernel execution and propagate each kernel’s statistical
profile. This strategy is effective in the presence of frequently-
recurring computation and communication kernels, which is
characteristic to algorithms in numerical linear algebra. We
encapsulate this framework as part of a new profiling tool,
Critter, that automates kernel execution decisions and propa-
gates statistical profiles along critical paths of execution. We
evaluate performance prediction accuracy obtained by our
selective execution methods using state-of-the-art distributed-
memory implementations of Cholesky and QR factorization on
Stampede2, and demonstrate speed-ups of up to 7.1x with 98%
prediction accuracy.

I. INTRODUCTION

Distributed-memory schedules of algorithms with limited

parallelism exhibit complex trade-offs in synchronization,

communication, and computational costs. Online measure-

ments of these costs, the most precise of which model

execution time along the critical path, play a significant role

in performance prediction, modeling, and analysis. However,

analytic costs, and performance modeling in general, can-

not alone capture the efficiency of a schedule’s underlying

computational kernels and communication routines in the

presence of an increasingly diverse and complex set of

architectures.

A key consequence of recent architectural trends is the

emergence of new algorithms in dense linear algebra and

other domains that seek to minimize communication and

synchronization costs, while balancing work among proces-

sors. Typically, these algorithms feature a trade-off between

various costs (computation, communication, synchronization,

memory footprint), which is achieved by a mix of opti-

mizations such as multi-level blocking, alternate schedul-

ing protocols, and processor grid selection [1]. The high-

dimensional configuration spaces characteristic to these al-

gorithms exacerbate the difficulty of finding an algorithm’s

optimal configuration. Further, increasing architectural com-

plexity precludes configuration search strategies from easily

narrowing the search space to a small set of configurations.

Autotuning serves as the most precise technique in deter-

mining the optimal algorithmic configuration. This technique

generates a search space of feasible configurations, which

is subsequently pruned as configurations are executed and

analyzed. As these configurations often feature competing

analytic costs, autotuning is necessary to identify those that

best leverage a particular architecture. However, the use

of autotuning has been largely limited to shared-memory

libraries, as distributed-memory autotuning necessitates con-

sideration of more scales of parallelism, input size, and

algorithmic parameters.

Despite the large dimension of an algorithm’s configura-

tion space, the number of distinct computation and commu-

nication kernels (routines with a particular input size) along

individual execution paths is often limited. Performance-

limiting algorithms pervasive in scientific computing ap-

plications, especially those within graph computations and

dense linear algebra, often exhibit frequently-recurring kernel

substructure. While optimal sampling of configuration spaces

has been studied extensively, it is unknown whether autotun-

ing execution time can be further reduced by executing a

distributed-memory schedule’s kernels selectively. Of equal

importance is whether such an approach can attain a desired

accuracy in estimating configuration performance.

This work provides a framework for acceleration of auto-

tuning, which is driven by a statistical model of kernel per-

formance. This approximate autotuning framework estimates

configuration execution time to desired confidence tolerance ε
by estimating the execution time of individual kernels along

the critical path instead of executing them. A kernel is no

longer executed once its sample mean’s confidence interval

size falls below a threshold. We leverage online execution

path analysis both to coordinate selective kernel execution

and propagate the performance statistics of distinct kernels

along critical paths of execution. Knowing that the number of

times a kernel is executed along the critical path is α allows

us to assign a sample variance σ2/α to a kernel’s execution

time. The smaller variance reduces the confidence interval

necessary to attain desired confidence in the configuration

execution time by a factor
√
α.

We encapsulate the proposed framework in an accessi-
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Figure 1: An example of a 3-processor schedule, with an

execution path that maximizes communication cost “comm

critical path”, highlighted.

ble profiling library, Critter. Critter accelerates autotuning

by selectively executing kernels and predicting application

execution costs. It uses a critical path performance profile

of each kernel that is constructed online. In order to limit

variability in execution environment, Critter makes consistent

selective execution decisions by propagating kernel perfor-

mance statistics along cartesian processor grids.

We address practical challenges for autotuning at scale by

presenting the first empirical evidence that selective execution

of computation and communication kernels can accelerate

automatic performance tuning of distributed-memory dense

linear algebra libraries. In addition, we show that guarantees

on performance prediction accuracy can be achieved via a

priori confidence tolerance specification. Four case studies in

autotuning state-of-the-art distributed-memory algorithms for

dense Cholesky and QR factorization demonstrate that Critter

can accelerate tuning of dense linear algebra programs.
Our specific contributions are as follows,

• an approximate autotuning methodology that selectively

executes kernels using confidence measures to achieve

tunable accuracy in algorithm performance prediction,

• Critter, an MPI profiling tool for online execution-path

analysis that automates selective kernel execution,

• empirical evidence that our methodology can accelerate

autotuning of state-of-the-art algorithms for dense ma-

trix factorizations; we observe speedups up to 7.1x with

98% accuracy in execution-time prediction accuracy.

II. ONLINE CRITICAL PATH ANALYSIS

Execution-path analysis models execution time, detects

load imbalance, and identifies scaling inefficiencies. A key

advantage of online execution-path analysis is the ability

to identify performance bottlenecks at scale. To do so,

Critter profiles computation or communication kernels to

construct a profile of the critical path on the fly. We analyze

schedules online to accelerate learning of kernel performance

by constructing statistical profiles and facilitating selective

execution for each kernel to achieve an accurate overall

execution time estimate.

A. Schedules and cost metrics

The execution of an MPI program describes a parallel

schedule and its associated execution paths. Directed acyclic

graphs (DAGs) G = (V,E) formalize parallel schedules.

Edge set E defines the sequences of computation and com-

munication kernels v ∈ V along which each processor

participates (i.e., execution paths). A sequence of kernels

ṽ = (v1, ..., vn) characterizes an execution path ṽ. Ṽ defines

the set of distinct execution paths (all possible paths in G).

Each processor pi participates in a sequence of kernels which

itself defines an execution path.

While |Ṽ | exhibits an exponential growth rate in the num-

ber of communication kernels, a single critical path defines a

schedule’s execution time. The critical-path cost of schedule

G = (V,E) is defined as cϕ(G) = maxπ∈Ṽ

∑
v∈π ϕ(v),

where ϕ : V → R
+ assigns each kernel an execution

cost metric. Figure 1 illustrates a three-processor schedule

with various execution paths designated by black lines. The

execution path that incurs the maximum communication cost

may be distinct from the execution path that incurs the

maximum execution time.

For a particular MPI program, the set of computational

kernels in V can be specified at different granularities. Finer

granularity is often desired for offline analysis, and efforts to

reduce the overhead in acquiring events along execution paths

with program-statement attribution have been studied [2].

As online path analysis can require substantial computing

resources, coarse granularity can reduce complexity in deter-

mining allocation of optimization effort across kernels.

B. Path propagation mechanisms

We consider path propagation mechanisms as the addi-

tional communication and computation (i.e., additional to

that already being done by the application code) necessary

to propagate measurement data along execution paths. We

use the pathset terminology as introduced in [2]. A pathset

P describes a container of paths (chain of dependent or

consecutively executed events) or path profiles (statistics/-

metrics along a particular path). Path profiles store aggregate

statistics based on a set of events at varying granularity

along a specific path. Pathsets may concatenate those events,

although events would be distributed among processors to

avoid communication and replication of information.

Path propagation mechanisms for online analysis inter-

cept application communication and propagate measurements

along execution paths to participating processors during

program execution [2], [3]. For example, the slack method [4]

filters out paths incurring idle time, while the longest-path al-
gorithm isolates paths incurring maximum execution time [3].

Offline profiling mechanisms have overhead relative to online

profiling due to increased memory footprint. For example,

some mechanisms for offline analysis save performance pro-

filing data (pathset P) to disk intermittently during execution,

while others require a backward pass over the communication

patterns to identify the root causes of wait states [4]–[9].
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0 MPI Init ( a rgc , a rg v ){
1 PMPI In i t ( a rgc , a rgv ) ;
2 / / I n i t i a l i z e wor ld communica tor a s c h a n n e l
3 c h a n n e l = {} ; c h a n n e l . o f f s e t =0 ; c h a n n e l . s t r i d e [ 0 ] = 1 ;
4 c h a n n e l . s i z e [ 0 ] = |MPI COMM WORLD | ; c h a n n e l . i s max ima l =1;
5 / / Hash i d g e n e r a t e d p u r e l y from ( s t r i d e , s i z e )
6 a g g r e g a t e c h a n n e l s [ c h a n n e l . hash ] = c h a n n e l ;
7 }
8 MPI Comm split ( comm , c o l o r , key , newcomm){
9 PMPI Comm split ( comm , c o l o r , key , newcomm ) ;

10 / / C a l c u l a t e ( s t r i d e , s i z e ) o f each c a r t e s i a n d imens ion
11 w o r l d r a n k = PMPI Comm rank (MPI COMM WORLD) ;
12 / / I n i t i a l i z e a r r a y ’ r a n k s ’ wi th s i z e |newcomm |
13 PMPI Al lga the r ( wor ld rank , r anks , newcomm ) ; s o r t ( r a n k s ) ;
14 c h a n n e l = i n i t i a l i z e c h a n n e l ( r a n k s ) ;
15 a g g r e g a t e c h a n n e l s [ c h a n n e l . hash ] = c h a n n e l ;
16 / / R e c u r s i v e l y b u i l d a g g r e g a t e c h a n n e l s
17 f o r ( agg i n a g g r e g a t e c h a n n e l s ){
18 i f ( agg /∈ c h a n n e l && c h a n n e l /∈ agg ){
19 i f ( | agg ∪ c h a n n e l |==1 ){
20 agg . i s max ima l = f a l s e ;
21 / / C o n s t r u c t new a g g r e g a t e c h a n n e l
22 PMPI Al lga the r ( agg . o f f s e t , r anks , newcomm ) ;
23 s o r t ( r a n k s ) ; new hash = agg . hash ˆ c h a n n e l . hash ;
24 u p d a t e d c h a n n e l = i n i t i a l i z e c h a n n e l ( r a n k s ) ;
25 a g g r e g a t e c h a n n e l s [ new hash ] = u p d a t e d c h a n n e l ;}}}
26 }
27 initialize msg ( e n v e l o p e ){
28 key , c h a n n e l = g e n e r a t o r ( e n v e l o p e ) ; i n t msg . c l e a r ( ) ;

29 i f ( key /∈ K ) K [ key ]={} ,K̃ [ key ]={} ;

30 i n t msg . e x e c u t e = K̃ [ key ] . i s p r e d ;
31 in t msg . e x e c t i m e = P . e x e c t i m e ;

32 f o r ( i =0 ; i<|K̃| ; i ++){
33 in t msg . keys . append ( K̃ [ i ] . key ) ;

34 in t msg . f r e q s . append ( K̃ [ i ] . f r e q ) ;}
35 re turn key , channe l , i n t msg ;
36 }
37 / / A l l b l o c k i n g p2p communica t ions h a n d l e d s i m i l a r l y
38 MPI Recv ( user msg , e n v e l o p e ){
39 key , channe l , i n t r m s g = i n i t i a l i z e m s g ( e n v e l o p e ) ;
40 PMPI Sendrecv ( in t smsg , i n t rmsg , e n v e l o p e ) ;
41 i n t r m s g . e x e c u t e = max ( i n t s m s g . e x e c u t e , i n t r m s g . e x e c u t e ) ;
42 i f ( i n t s m s g . e x e c t i m e > i n t r m s g . e x e c t i m e ){
43 K̃ [ : ] . key = i n t s m s g . keys ; K̃ [ : ] . f r e q = i n t s m s g . f r e q s ;}
44 P . e x e c t i m e = max ( i n t s m s g . exec t ime , i n t r m s g . e x e c t i m e ) ;
45 i f ( i n t r m s g . e x e c u t e ){
46 comm time = PMPI Recv ( user msg , e n v e l o p e ) ;

47 u p d a t e s t a t i s t i c s (K [ key ] , K̃ [ key ] , comm time ) ;}
48 e l s e comm time = K [ key ] . mean ;
49 P . e x e c t i m e += comm time ;
50 }
51

52 / / A l l b l o c k i n g c o l l e c t i v e communica t ions h a n d l e d s i m i l a r l y
53 MPI Bcast ( user msg , e n v e l o p e ){
54 key , channe l , i n t msg = i n i t i a l i z e m s g ( e n v e l o p e ) ;

55 f o r ( i =0 ; i<|K̃| ; i ++){
56 i f (K [ i ] . i s p r e d && ! K̃ [ i ] . i s p r e d &&

57 c h a n n e l /∈ K̃ [ i ] . a g g c h a n n e l s &&

58 K̃ [ i ] . hash ˆ c h a n n e l . hash /∈ a g g r e g a t e c h a n n e l s ){
59 s a v e k e r n e l . append (K [ i ] , K̃ [ i ] ) ;
60 i n t msg . k e r n e l a g g c o u n t ++;}}
61 PMPI Al l reduce ( in t msg , in t gmsg , custom op , c h a n n e l ) ;
62 P . e x e c t i m e = in t gmsg . e x e c t i m e ;
63 in t msg . e x e c u t e = in t gmsg . e x e c u t e >0;
64 i f ( i n t msg . e x e c t i m e < i n t gmsg . e x e c t i m e ){
65 K̃ [ : ] . key = in t gmsg . keys ; K̃ [ : ] . f r e q = in t gmsg . f r e q s ;}
66 i f ( i n t msg . e x e c u t e ){
67 comm time = PMPI Bcast ( user msg , e n v e l o p e ) ;

68 u p d a t e s t a t i s t i c s (K [ key ] , K̃ [ key ] , comm time ) ;}
69 e l s e comm time = K [ key ] . mean ;
70 P . e x e c t i m e += comm time ;

71 a g g r e g a t e s t a t i s t i c s (K [ key ] , K̃ [ key ] ) ;
72 }
73 / / A l l n o n b l o c k i n g p2p communica t ions h a n d l e d s i m i l a r l y
74 MPI Isend ( user msg , enve lope , r e q u e s t ){
75 key , channe l , i n t s m s g = i n i t i a l i z e m s g ( e n v e l o p e ) ;
76 PMPI Bsend ( in t smsg , e n v e l o p e ) ;
77 i f ( i n t s m s g . e x e c u t e ){
78 PMPI Isend ( user msg , enve lope , r e q u e s t ) ;}
79 e l s e r e q u e s t = r e q u e s t g e n e r a t o r ( ) ;
80 i n t r e q u e s t = r e q u e s t g e n e r a t o r ( ) ;
81 n o n b l o c k i n g d i c t [ r e q u e s t ] = ( key , channe l , in t smsg , i n t r e q u e s t ) ;
82 }
83 / / A l l n o n b l o c k i n g c o l l e c t i v e communica t ions han d l e d s i m i l a r l y
84 MPI Iscatter ( user msg , enve lope , r e q u e s t ){
85 key , channe l , i n t msg = i n i t i a l i z e m s g ( e n v e l o p e ) ;
86 P M P I I a l l r e d u c e ( in t msg , in t gmsg , enve lope , r e q u e s t ) ;
87 i f ( i n t msg . e x e c u t e ){
88 P M P I I s c a t t e r ( user msg , enve lope , r e q u e s t ) ;}
89 e l s e r e q u e s t = r e q u e s t g e n e r a t o r ( ) ;
90 i n t r e q u e s t = r e q u e s t g e n e r a t o r ( ) ;
91 n o n b l o c k i n g d i c t [ r e q u e s t ] = ( key , channe l , i n t msg ) ;
92 }
93 / / A l l o u t s t a n d i n g r e q u e s t c o m p l e t i o n ops h a n d l e d s i m i l a r l y
94 MPI Wait ( r e q u e s t , s t a t u s ){
95 key , channe l , in t msg , i n t r e q u e s t = n o n b l o c k i n g d i c t [ r e q u e s t ] ;
96 i f ( i n t msg . e x e c u t e ){
97 comm time = PMPI Wait ( r e q u e s t , s t a t u s ) ;

98 U p d a t e s t a t i s t i c s (K [ key ] , K̃ [ key ] , comm time ) ;}
99 e l s e comm time = K [ key ] . mean ;

100 PMPI Wait ( i n t r e q u e s t , s t a t u s ) ;
101 i f ( i n t msg . e x e c t i m e > P . e x e c t i m e ){
102 K̃ [ : ] . key = in t msg . keys ; K̃ [ : ] . f r e q = in t msg . f r e q s ;}
103 P . e x e c t i m e = max (P . exec t ime , in t msg . e x e c t i m e ) ;
104 }

Figure 2: Description of our framework’s mechanism, which propagates statistical profiles upon interception of various

communication primitives. Blue text signifies path propagation logic generic to online critical-path analysis that can be

modified to reflect various protocols. Red text signifies path propagation logic specific to calculating kernel performance

statistics.

III. APPROXIMATE AUTOTUNING FRAMEWORK

Autotuning consists of benchmarking an algorithm over a

space of tuning parameters (e.g., block sizes) and test prob-

lems to determine an optimal configuration. The technique

is widely used in the design of modern high-performance

computing software [10], but can be prohibitively expensive

when tuning algorithms from dense linear algebra or other

application domains at scale. We now specify our framework

for acceleration of autotuning, which is driven by a statistical

model of kernel (routine with a particular input size) perfor-

mance.

A. Statistical characterization of execution paths

We introduce an approach to autotuning that estimates a

configuration’s execution time cϕ to a fixed confidence level

ε. We formalize this approach under the unifying assumption

that a metric measurement of each kernel’s execution time

follows a distribution with finite mean μ and variance σ2.

Specifically, we assume that an executed kernel’s measured

performance ϕ(V ) is a random variable X drawn from a

distribution that is the same for all kernels with a given

signature (i.e., program function for a given input size).

To estimate cϕ to a fixed confidence level, we construct

a confidence interval for the performance of each set of

executed kernels with the same signature scheduled along
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any sub-critical path in G. A sub-critical path is the critical

path of some subgraph of G constructed from the start

of execution to some intermediate kernel. In particular, for

each set of k kernels W = {w1, . . . , wk} with the same

signature (hence modeled by the same random variable

X) appearing along the same sub-critical path, standard

single-pass algorithms are used construct kernel performance

models. We use the execution time sample mean E[X] ≈
w̄ = 1

k

∑
wi∈W ϕ(wi) and estimate the variance for the

random variable T representing the combined time for these

kernels Var[T ] = 1√
k
Var[X] ≈ 1

k3/2

∑
i∈W (w̄ − wi)

2

during program execution. Knowledge of this sample count

k decreases the confidence interval size for w̄ by a factor√
k, and thus can significantly reduce the number of kernel

executions necessary to estimate cϕ in our framework.

Our autotuning framework predicts a configuration’s exe-

cution time by collecting samples to construct models of the

execution time of individual kernels until each is predictable

to confidence tolerance ε (i.e., the confidence interval size

divided by sample mean, denoted by ε̃, satisfies ε̃ ≤ ε). Its

statistical characterization of kernel performance along sub-

critical paths offers a trade-off between prediction accuracy

of a configuration’s performance and the speed at which that

accuracy is attained. In particular, prediction accuracy can

be systematically improved by incrementally decreasing the

confidence tolerance ε of each kernel’s sample mean w̄ until

kernel execution is never avoided and accuracy is maximal.

B. Propagation mechanism for selective execution policies

We present a path propagation mechanism that enables

our approximate autotuning framework by coordinating the

selective execution of kernels (routines with a particular input

size). This mechanism constructs a critical-path cost model

of each configuration during program execution using kernel

measurements sampled along sub-critical execution paths.

It leverages the longest-path algorithm [3] to propagate a

configuration’s execution costs and the performance statistics

(i.e., the sample mean, sample variance, and execution count)

of its kernels. Each processor owns two distinct sets, K and

K̃, that store performance statistics for each locally-executed

kernel and each kernel executed along its current sub-critical

path, respectively. The information in these sets is used to

determine whether a kernel’s execution time is sufficiently

predictable.

Kernel execution decisions in our framework take into

account not only the performance statistics of a local pro-

cessor’s kernels, but those of remote processors as well. We

describe multiple kernel execution policies that use online

path propagation to enforce constraints on kernel execution

decisions. Each policy propagates K̃ among subsets of pro-

cessors along sub-critical execution paths. The additional

profiling costs attributed to each policy depend on the degree

to which kernel performance statistics on remote processors

affect a processor’s kernel execution decisions. By default,

processors determine whether to execute computational ker-

nels independently, while communication kernel execution

is skipped only if a sufficiently-large number of processors

within the sub-communicator associated with the kernel deem

its execution time to be sufficiently predictable.

Kernel performance can be sensitive to changes in avail-

able hardware resources, e.g., due to contention among

processes on the same node for memory bandwidth and

network resources. As such, inconsistent execution policies

can cause variability in kernel timings. To circumvent this, we

also consider synchronization of kernel execution decisions

among all processors. To accomplish this without interfering

with application execution, we propagate kernel performance

statistics among dimensions of a cartesian processor grid.

We achieve this by recursively building aggregates: sub-

sets of channels that serve as a basis for a cartesian pro-

cessor grid. An aggregate channel defining the complete

processor grid is constructed when MPI_Init is inter-

cepted in Figure 2. Subsequent aggregates are constructed

when MPI_Comm_split is intercepted by using inter-

nal communication to attain processor offsets, spans, and

sub-communicator sizes. Propagation of kernel performance

statistics along subsequent channels is permitted if the stride

and size of the new communicator, when combined with

those along which the sample has been previously prop-

agated, yields a cartesian processor grid. Once a kernel’s

performance statistics have been propagated so as to establish

policy agreement among all processors, its execution can be

switched off. We remark that this infrastructure for selective

propagation of performance statistics across distinct cartesian

communication channels can also be used to prevent sam-

pling bias that would arise when aggregating measurement

samples along overlapping partitions of a processor grid. We

do not evaluate its use for that purpose in this work.

IV. APPROXIMATE AUTOTUNING INSTRUMENTATION

The profiling overhead necessary to quantify confidence

along critical execution paths to a desired confidence toler-

ance ε can be amortized by leveraging overlapping kernel

substructure. To demonstrate practicality of the methods

introduced in Section III, we have developed Critter1, a

lightweight profiling tool that accelerates tuning of MPI

distributed-memory (dense) linear algebra software using

online execution-path analysis.

A. Instrumentation

Critter implements the path propagation mechanism de-

scribed in Section III for collective and point-to-point com-

munications via both blocking and nonblocking protocols.

C++ programs use Critter by including a header file and

inserting start/stop calls to the Critter profiler at the begin-

ning and end of execution. Critter intercepts and selectively

executes MPI, BLAS, and LAPACK routines automatically,

and allows library developers to selectively execute loop nests

and other structures by inserting preprocessor directives. Its

instrumentation is described in Figure 2 for the following

MPI routines: Recv, Isend, Bcast, Iscatter, and

Wait.

1https://github.com/huttered40/critter
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Upon interception of each communication kernel, a gen-
erator method determines the signature from the message

envelope, an internal message is constructed with kernel

performance statistics from K̃, and an execution decision

propagated. A reduction is also performed among participat-

ing processors, which serves to differentiate communication

time from idle time and incrementally construct a critical

path performance model. After the reduction of kernel set

K̃, the user communication kernel is selectively executed, its

statistics are modified by invoking update statistics, and the

pathset P accumulates the kernel’s execution time. Blocking

collectives can additionally invoke aggregate statistics to

propagate a kernel’s performance statistics across the sub-

communicator if its performance is sufficiently predictable.

Although not provided explicitly in Figure 2, Critter can

also profile MPI routines with other synchronization mech-

anisms. Our default (non-synchronized) selective execution

protocol is used to handle nonblocking communication rou-

tines.

B. Methods for selective kernel execution

Critter provides multiple methods to calculate kernel per-

formance statistics described in Section III. Each method

constructs the mean and variance of a kernel’s performance

distribution independently among processors (i.e., using mea-

surements of locally-executed kernels), rather than using only

those kernel executions invoked along the current sub-critical

execution path as described in Section III. However, each

kernel’s confidence interval size is determined only when its

execution count (i.e., the number of times it’s executed on

some execution path) has been updated to reflect the current

sub-critical execution path.

We first consider eager propagation, a method that skips

kernel execution once a single processor deems that kernel

sufficiently predictable and its corresponding performance

statistics has been propagated across all processors. This

method leverages the aggregate channel infrastructure in-

troduced in the previous section and is intended for bulk-

synchronous algorithms. All subsequent methods adopt an

execution policy that allows processors to determine compu-

tation kernel decisions independently, and avoids execution of

communication kernels only if all processors within the cor-

responding kernel’s sub-communicator deem its performance

sufficiently predictable. These methods differ in how they

propagate kernel execution counts to determine the desired

prediction confidence level.

The online propagation method performs online propa-

gation of kernel execution counts between processors. Each

processor updates confidence interval sizes on-the-fly to re-

flect a kernel’s execution count along the current sub-critical

path. The local propagation method does not propagate

information among processors, collecting only local kernel

statistics. A priori propagation forgoes online propagation

by using an initial offline iteration to allow immediate appli-

cation of critical-path kernel execution counts in determining

confidence interval sizes, but performs online propagation of

kernel statistics to construct a model. The most conservative

method, conditional execution, also forgoes online propaga-

tion and does not use kernel execution counts to reduce the

confidence tolerance.

V. APPLICATION TO DENSE LINEAR ALGEBRA

Significant effort goes into tuning dense linear algebra

kernels to achieve maximal performance on a single node

and across full supercomputers (e.g., to tune LINPACK [11],

[12]). We apply Critter to autotune two dense matrix fac-

torization algorithms: Cholesky and QR factorization. These

algorithms enable the solution of linear systems of equations

and linear least squares problems.

We evaluate Critter and its underlying methodology using

four distinct state-of-the-art library implementations of QR

and Cholesky. The chosen libraries implement both bulk-

synchronous algorithms (i.e., algorithms decomposed into

alternating synchronous steps of asynchronous communica-

tion and computation) and task-based algorithms in which

computation and communication overlap.

For Cholesky, we first consider Capital’s recursive bulk-

synchronous algorithm on a partially-replicated cyclic matrix

distribution over a 3D processor grid [13], which serves as a

key subroutine in a recent communication-avoiding QR fac-

torization algorithm [14]. We next consider Slate’s Cholesky

routine, which uses an iterative algorithm on a block-cyclic

matrix distribution that performs task-based scheduling over

a 2D processor grid [15].

For QR, we study two iterative algorithms on block-cyclic

matrix distributions across 2D processor grids. Slate’s QR

routine utilizes task-based scheduling [16] while CANDMC

uses a pipelined bulk synchronous algorithm [17]. We provide

costs in the bulk-synchronous-parallel (BSP) model for some

of the Cholesky and QR algorithms.

A. Cholesky factorization

Given a symmetric positive definite matrix A, the Cholesky

factorization computes a lower-triangular matrix L such that

A = LLT . Capital’s communication-efficient algorithm can

be obtained via recursive application of Cholesky [18] from[
A11 AT

21

A21 A22

]
=

[
L11

L21 L22

] [
LT
11 LT

21

LT
22

]
,

[
I

I

]
=

[
L11

L21 L22

] [
L−1
11

S21 L−1
22

]
.

The base case is solved with sequential BLAS routines

once the sub-problem is sufficiently small (i.e., dimension

is below some block size). Aside from recursive calls, the

algorithm uses products of triangular and square matrices

(L21 ← A21L
−T
11 and S21 ← −L−1

22 L21L
−1
11 ) as well as the

symmetric rank-k update (A22 − L21L
T
21).

Both types of matrix–matrix products are executed with

minimal communication using a 3D processor grid [19]–

[22], with broadcasts along two dimensions of the processor

grid, and a reduction along the third. While communication-

efficient, using a 3D grid also entails additional memory

footprint; each of p1/3 copies of A, L, and L−1 is distributed

cyclically among p2/3 processors. For a matrix of dimension
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n, given base-case block size b, with any base case strategy,

the BSP cost of Capital’s Cholesky algorithm is [13]

Θ
(
α · n/b+ β · (n2/p2/3 + nb) + γ · (n3/p+ nb2)

)
.

The first term (latency cost, i.e., number of super-steps) is

minimized by a large block size, while the latter two terms

(communication and computation cost) are minimized by a

small block size. Consequently, there is a non-trivial trade-

off among costs that makes it difficult to pick the most

performant block size a priori.

Aside from choosing the block size that determines the

size of the base-case problem, there is also a choice of how

to compute base-case problems in a distributed setting. We

consider three strategies:

1) gather the base-case matrix onto one process within a

single processor grid layer, compute its factorization,

scatter it across the processor grid layer, and broadcast

it along the depth of the processor grid,

2) all-gather the base-case matrix within each processor

grid layer and compute its factorization redundantly,

3) all-gather the base-case matrix within a single processor

grid layer, compute its factorization redundantly across

that layer, and broadcast it along the depth of the

processor grid.

Slate’s synchronization-efficient algorithm instead imme-

diately partitions the matrix into tiles of some tunable size

across a 2D processor grid. Each tile maintains a predecessor

list of tasks (i.e., triangular solve L21L
T
11 = A21 and

the symmetric rank-k update A22 − L21L
T
21) that must be

completed prior to its own execution. Slate employs look-

ahead pipelining with tunable depth, an optimization that

seeks to maximize the computation concurrency and thus

reduce computation along the critical-path. Its task-based

scheduling protocols are implemented using nonblocking

point-to-point communication, which aims to further reduce

synchronization overheads in practice.

B. QR factorization

The CANDMC algorithm for QR factorization [1],

[23] successively factorizes panels of the matrix, A =[
A1 · · · Ar

]
. To factorize A = QR where Q is orthogonal

and R is rectangular, the compact Householder representation

Q = I − Y TY T is utilized, where T is upper triangular

and Y is unit-diagonal and lower-trapezoidal. Factorizing a

panel of A, e.g., A1 = Q1R1, can be done by a variety

of algorithms including TSQR [23] and Cholesky-QR2 [24].

Reconstruction of the Householder representation, then yields

the first panel Y1 of Y by LU factorization of a matrix derived

from Q1 [1], [25]. Given Y1, the algorithm updates other

panels of A (these are referred to as the trailing matrix) to

be (I − Y1T11Y
T
1 )TAi for i = 2, . . . , r and continues on to

the factorization of A2.

CANDMC implements these steps in parallel via a 2D

block-cyclic distribution of the matrix data. CANDMC’s

look-ahead pipelining mechanism [26], [27] enables pro-

cessors to work on trailing matrix updates if they are not

in the processor grid column that participates in factorizing

the panel of the matrix. This optimization aims to reduce

the computational cost along the critical path rather than the

per-processor workload.

For an m×n matrix A with m ≥ n distributed on a pr×pc
processor grid with block size b ≤ min(m/pr, n/pc), the

CANDMC implementation has the following BSP cost [1],

Θ
(
α · n/b+ β · (mn/pr + n2/pc + nb)

+γ · (mn2/p+ nb2 +mnb/pr + n2b/pc)
)
.

As reflected by the trade-offs in its BSP cost terms, the

performance of the QR algorithm is highly sensitive to the

choice of block size (b) and processor grid (pr, pc). The

cost analysis allows us to understand the scaling of the

best choice of processor grid relative to the dimensions,

namely m/pr = Θ(n/pc). However, in practice, constant

factors associated with these costs and overhead in realistic

execution of implementations makes a range of block sizes

and processor grids viable candidates for each choice of

m,n, p. Autotuning is often the most effective way of finding

the fastest implementation in a region of viable parameters.

Slate implements a different variant of Householder QR,

also leveraging a block-cyclic distribution on a 2D processor

grid. Like for Cholesky, Slate’s algorithm for QR makes use

of task-based scheduling and and pipelining mechanisms.

Additionally, its panel factorization is internally blocked

(parameter w) to increase thread concurrency.

C. Schedule configurations

We tune Capital’s Cholesky algorithm across 15 distinct

configurations. Each configuration v ∈ [0, 14] factors a

16384 × 16384 matrix using 512 KNL cores, with block

size b = 128 · 2v%5 and base case strategy 	(v + 1)/5
. We

tune Slate’s potrf routine across 20 distinct configurations.

Each configuration v ∈ [0, 19] factors a 65536×65536 matrix

using 1024 KNL cores, with pipeline depth v%2 and tile size

256+64·�v/2�. Excessive computational overhead precluded

evaluation of smaller tile sizes.

We tune CANDMC’s pipelined 2D QR schedule across

15 distinct configurations. Each configuration v ∈ [0, 14]
factors a 131072 × 8192 matrix using 4096 KNL cores,

with block size b = 8 · 2v%5 and processor grid dimensions

pr × pc : 64 · 2�v/5� × �64/2�v/5��. We tune Slate’s geqrf
routine across 63 distinct configurations. Each configuration

v ∈ [0, 62] factors a 65536 × 4096 matrix using 256
KNL cores, with smaller panel width (w) 8 · 2v%3, panel

width 256 + 64 · �v/3�%7, and processor grid dimensions

pr × pc : 64/2
�v/21� × 4 · 2�v/21�.

These configurations are chosen to exemplify the challenge

of choosing parameters to minimize execution time for a

particular matrix factorization and problem size. Load imbal-

ance and variations in computational concurrency captured by

volumetric and critical-path measurements further exacerbate

this challenge. Figures 3a, 3b, 3c, and 3d illustrate cost

trade-offs between communication and synchronization in the

BSP model. Figures 3e, 3f, 3g, and 3h illustrate trade-offs

between computation and synchronization in the BSP model.
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Figure 3: Figures 3a, 3b, 3c, and 3d illustrate trade-offs in BSP communication and synchronization, while Figures 3e, 3f,

3g, and 3h illustrate trade-offs in BSP computation and synchronization. The corresponding critical-path execution times

for each configuration are given in Figures 3i, 3j, 3k, and 3l.

The corresponding execution times for each configuration are

given in Figures 3i, 3j, 3k, and 3l.

D. Kernel configurations

Like all standard dense matrix factorization algorithms, the

Cholesky and QR algorithms we evaluate invoke basic linear

algebra subroutines (BLAS) [28], LAPACK [29] functions,

and MPI [30] collective and point-to-point communication

routines. We leverage Critter’s ability to define kernels from

arbitrary segments of code in intercepting block-to-cyclic

data distribution kernels in Capital’s Cholesky algorithm.

Otherwise, we limit kernel interception to BLAS, LAPACK,

and MPI routines in this work.

Critter parameterizes computational kernels on matrix di-

mensions and other BLAS parameters such as transposition

of individual matrices. Critter parameterizes communication

kernels on message size as well as the MPI subcommunicator

size and stride relative to the world communicator. Point-to-

point communication configurations are treated as equivalent

to size-2 sub-communicators. This description suffices for

any communicator along a fiber or across a slice of a

processor grid, as needed for dense linear algebra algorithms.

Both distributed-memory Cholesky factorization algo-

rithms utilize the LAPACK Cholesky factorization routine

(potrf) as well as BLAS routines for general matrix-

matrix products (gemm), symmetric rank-k updates (syrk),

and triangular-system solves (trsm). Capital additionally

uses the BLAS routine for triangular matrix-matrix prod-

ucts (trmm) and the LAPACK routine for triangular ma-

trix inversion (trtri). Slate’s Cholesky algorithm utilizes

MPI routines for isend and recv kernels, while Capital

utilizes MPI routines for bcast, allreduce, reduce,

allgather, scatter, and gather.

Both QR algorithms utilize gemm and LAPACK rou-

tines for blocked QR factorization of triangular-pentagonal

matrices (tpqrt) and subsequent orthogonal transforma-

tions (tpmqrt). Slate’s QR implementation additionally uses

trmm, while CANDMC additionally uses trsm, trtri,

and LAPACK routines for QR factorization of general ma-

trices (geqrf) and subsequent orthogonal transformations

(ormqr). CANDMC utilizes MPI routines for bcast,

allreduce, send and recv. Slate uses isend, send,

and recv. We do not consider selective execution of BLAS-

2 kernels invoked by Slate’s QR implementation.

VI. APPROXIMATE AUTOTUNING EVALUATION

We use the Stampede2 supercomputer at Texas Advanced

Computing Center (TACC) [31]. Stampede2 consists of 4200
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Figure 4: Autotuning execution time and prediction error of approximate autotuning methods for Cholesky factorization.

Execution time and prediction error achieved with full kernel execution correspond to red plot lines. Ideal prediction error

scaling is represented by diagonal red plot lines. Figures 4g and 4h evaluate online freq propagation.

Intel Knights Landing (KNL) compute nodes (each capable

of a performance rate over 3 Teraflops/s) connected by an

Intel Omni-Path (OPA) network with a fat-tree topology

(achieving an injection bandwidth of 12.5 GB/sec). Each

KNL compute node provides 68 cores with 4 hardware

threads per core. We use 64 MPI processes per node, with

1 thread per process, for all experiments. All implementa-

tions of Cholesky and QR factorization use the Intel/18.0.2

environment with MPI version impi/18.0.2. Each uses opti-

mization flag -03 and 512-bit vectorization via flag -xMIC-

AVX512. We utilize parallel MKL BLAS/LAPACK routines

via flag -mkl=parallel. All input matrices are generated

randomly using double precision.

A. Measurement environment

We evaluate the practicality of Critter using the following

metrics: relative prediction error for each configuration, mean

relative prediction error across all configurations, and auto-

tuning speedup across the configuration space. We addition-

ally evaluate Critter’s choice of the optimal configuration. As

our framework can be applied to accelerate any configuration-

space search strategy, we use exhaustive search to evaluate

the efficiency of Critter and the prediction accuracy attained

by each method described in Section IV.

As Stampede2 does not allocate a contiguous set of nodes,

variability in execution time is observed to be high. We mea-

sure error of the execution time estimated for a configuration

whose kernels are executed selectively by comparing it to

a full execution of the configuration. This full execution is

performed directly prior to the approximated one to minimize

variability in the environment. To quantify noise level, we

measure the variance of five full execution samples. We run

each experiment on two distinct node allocations and execute

each configuration five times. For all methods except eager

propagation, we execute each kernel at least once per tuning

iteration. We reset the performance statistics of all kernels

before tuning a new configuration of Slate’s and CANDMC’s

algorithms. Each dense input matrix is reset prior to executing

a LAPACK routine to account for error caused by selective

kernel execution. All experiments use a 95% confidence level

to construct kernel execution time confidence intervals based

on the (scaled) sample variance.

B. Autotuning speedup

Figure 4a shows that selective execution for Capital’s

Cholesky can lower autotuning time by up to 7.1x, given a

sufficiently large prediction error threshold. The frequency

with which Capital’s kernels are executed depends expo-

nentially on the recursion depth at which they are invoked.

Consequently, there are a few BLAS kernels on large matri-

ces and many small BLAS and LAPACK kernels on small

matrices. For looser confidence tolerances, speedup from

selective execution is limited by the expensive BLAS kernels,

as well as communication collectives sending significant

amounts of data.

For Capital’s Cholesky, in Figure 4a, speed-ups of up to

about 1.2x are attained due to propagation of kernel execution

counts (local propagation and online propagation relative

to conditional execution). A priori propagation’s autotuning

time incurs an extra full execution of each configuration

to determine the confidence interval size necessary to stop

kernel execution. This overhead prevents any speedup relative

to conditional execution.

The eager propagation method achieves speedups of 2.4

- 7.1x relative to conditional execution in Figure 4a without

propagating kernel execution counts. These speedups at the

looser confidence tolerances are explained by the fact that,

unlike other strategies, eager propagation does not require
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Figure 5: Autotuning execution time and prediction error of approximate autotuning methods for QR factorization.

Execution time and prediction error achieved with full kernel execution correspond to red plot lines. Ideal prediction error

scaling is represented by diagonal red plot lines. Figures 5g and 5h evaluate online freq propagation.

executing each kernel at least once per tuning iteration. This

method’s aggressive selective execution policy observes a

relatively small rate of growth of speed-up as confidence

tolerances decrease, which consequently yields speedups at

the smaller confidence tolerances. These results indicate that

for bulk-synchronous algorithms without communication-

computation overlap, reusing kernel performance models

across multiple configurations can yield significant speedups

relative to both conditional execution and full kernel execu-

tion.

Slate’s implementation of Cholesky employs fixed tile

sizes, executing BLAS kernels for the same input size many

times for a particular configuration, but for other sizes in

configurations with different parameters. Figure 4c shows

that the longest time any processor spends in executing

kernels (excluding profiling overheads) speedup for Slate

Cholesky is reduced by up to 75x via selective execution.

Speedups in total execution time for each kernel execution

count propagation method relative to conditional execution in

Figure 4b are less significant (up to 1.8x) than those observed

in Figure 4c due to computational overhead present when

the granularity at which tasks execute is fine (i.e., small tile

dimensions).

Both the Slate and CANDMC QR algorithms execute

similar kernels with many distinct input sizes (i.e., matrix

dimensions and message sizes) compared to the Cholesky

factorization algorithms. Slate’s QR factorization implemen-

tation exhibits autotuning speedups similar to those of Slate’s

implementation of Cholesky. This is because computational

overhead (e.g., BLAS 2 routines that are not executed

selectively), prevalent in Slate’s small-tile configurations

benchmarked in Figure 5b, diminishes overall speed-up ob-

tained from selective execution. We remark that Critter’s

profiling overhead is minimal, despite the many messages

communicated along the critical path by these QR algorithms

(see Figures 3b and 3d), which reflects its efficiency when

profiling nonblocking communications.

Figure 5a demonstrates that overall speed-up from selec-

tive execution for CANDMC QR is limited to 1.2x. CAN-

DMC QR executes kernels for a gradually shrinking trailing

matrix size, resulting in a large number of kernels that are

modeled independently. However, when restricting attention

to kernel execution times on the most loaded processor

(Figure 5c), conditional execution attains up to 6.6x speedup

in kernel execution time relative to full kernel execution.

Further, in Figure 5c, we observe that propagation of kernel

execution counts reduces the maximum kernel execution

time on any processor by 3.3x relative to conditional exe-
cution. The differences in full execution timings for overall

CANDMC QR execution time in Figure 5a and that of the

selectively executed kernels in Figure 5c suggest that speed-

up is limited by bottlenecks in CANDMC QR that are not

encapsulated in selectively executed kernels.

C. Prediction error

We consider the effect of decreasing the confidence tol-

erance ε on the observed overall execution time prediction

error in Figure 5g (CANDMC QR) and Figure 5h (Slate QR).

We observe that the conditional execution method, which

does not leverage execution counts to adjust the confidence

interval size, achieves superior prediction accuracy relative

to the propagation methods for a fixed confidence tolerance

ε. Strategies that propagate critical-path execution counts

to perform fewer kernel executions incur more error, but

this error still decreases systematically. For CANDMC QR

(Figure 5e), we observe that the error achieves the desired

tolerance, while for Slate QR (Figure 5f), the error in the

predicted performance exceeds the desired tolerance.
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We highlight two specific results. The mean prediction

error in Slate geqrf’s critical-path kernel execution time

in Figure 5d is about 1% between ε = 1 and ε = 2−3. As

the number of kernel invocations increases between ε = 2−4

and ε = 2−8, the mean prediction error reduces to less than

.3% for all methods.

Figure 5h shows the reduction in execution time predic-

tion error achieved by lowering tolerance, across different

configurations of Slate QR tuning parameters. The mean

prediction error in CANDMC’s execution time in Figure

5e is about 6% between ε = 1 and ε = 2−2. As the

number of kernel executions increase between ε = 2−3 and

ε = 2−6, the prediction accuracy increases gradually for

all propagation methods. The improvement in performance

prediction accuracy is evident for each of the configurations

when comparing large confidence tolerances to tolerance

ε = 2−4 in Figure 5g.

Evaluation of Figures 4e and 4d evaluate the mean pre-

diction error in execution time and critical-path computation

time of both Cholesky factorization algorithms in Capital and

Slate, respectively. Figure 4d shows that computational kernel

time can be predicted with high accuracy and systematically

improved by collecting more kernel execution time samples.

In particular, Slate’s mean prediction error in critical-path

computation kernel time decreases from 4% at ε = 1
to 0.3% at the smallest confidence tolerance. Figure 4h

shows the achieved accuracy for each configuration of tuning

parameters, demonstrating that accuracy improvements are

achieved for all configurations.

The nonblocking communication kernels invoked by

Slate’s algorithms are unpredictable due to variation in the

communication-computation overlap present during the ex-

ecution of each kernel. Systematic reduction in prediction

error of execution time is therefore not observed for either

algorithm in Figures 4f and 5f until ε is sufficiently small.

However, systematic reduction in prediction error of kernel

execution time is observed for Slate Cholesky (Figures 4d

and 4h) and QR (Figures 5d and 5h).

Critter correctly selects the optimal QR factorization algo-

rithm configuration for all confidence tolerances ε, and selects

a configuration for each Cholesky algorithm that achieves

at least 99% of the optimal configuration’s performance for

all ε. We remark that these results ameliorate prediction

error observed with smaller confidence tolerances, and are

not adversely affected by the presence of communication-

computation overlap in SLATE’s algorithms.

These results demonstrate that Critter, and the approx-

imate autotuning framework it implements, can accelerate

distributed-memory autotuning in a noisy environment while

accurately predicting performance of bulk-synchronous algo-

rithms. They also demonstrate that for task-based algorithms,

collection of execution time samples can generally systemati-

cally reduce prediction error. We also observe that Critter can

predict certain other metrics, such as the largest time spent

in computational kernels along any execution path, with an

even better accuracy.

VII. RELATED WORKS

A number of studies have used autotuning and critical-

path analysis to optimize dense linear algebra algorithms. We

believe this study is the first to leverage critical-path analysis

to predict performance and accelerate autotuning.

A. Critical-path analysis

Critical-path analysis has been used extensively to ana-

lyze algorithms in theory, and libraries exist that measure

along the critical path [2], [3], [5]. Alternative path met-

rics, including communication and synchronization costs,

can characterize execution paths and find use in predicting

scaling bottlenecks [2], [32]. Tracking a distribution of k
paths further enhances the utility of path analysis by quan-

tifying load imbalance, a technique shown to be efficient

for moderately large k [2]. Quantification of critical-path

communication costs by profiling MPI communication has

been done manually in previous studies on communication-

avoiding algorithms [33], [34]. Critter automates the process

used in these papers.

B. Autotuning mechanisms

Autotuning is a widely used technique for the optimization

of performance-sensitive kernels of many applications [10],

[35]. Early dense linear algebra efforts to employ autotuning

include the PHiPAC [36] and the ATLAS library [37], [38].

Acceleration of autotuning for dense linear algebra by prun-

ing the subspace of slow or invalid configuration has been the

subject of previous study [39], [40]. Such techniques can be

combined with and likely augmented using the profiling and

modeling statistics collected online by Critter. We note that in

many of the above studies, as well as in more complex dense

linear algebra algorithms with multiple levels of blocking [1],

[41], a much larger tuning space is often used than in the

studies performed in this paper. In such settings Critter’s

mechanisms for selective execution have further potential to

improve performance.

Beyond dense linear algebra, autotuning has also been

applied extensively in various other applications, such as

sparse matrix computations [42]–[44], FFT kernels [45],

[46], and digital signal processing [47]. These include highly

successful efforts such as Oski, FFTW, and Spiral, in the

three respective domains. Online autotuning focused on

modeling symmetries and redundancies among configuration

parameters has been studied to improve search convergence

speed [48]. Previous autotuning work has also developed

techniques for automatic learning of performance models for

kernels to do offline runtime prediction [49]. We additionally

highlight parallel work on improving the cost and accuracy of

empirical performance modeling that utilizes compiler-based

analysis to selectively execute loop iterations. [50]. Our work

is set apart from this previous autotuning research by the use

of online profiling, selective execution of subroutines, and

distributed-memory critical-path analysis.
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VIII. CONCLUSION

This work presents the first empirical evidence that se-

lective execution of computation and communication kernels

can accelerate automatic performance tuning of distributed-

memory dense linear algebra libraries. It also demonstrates

the efficacy of our statistical framework in achieving tunable

performance prediction for bulk-synchronous algorithms,

and separately in achieving tunable prediction accuracy

of critical-path computation time for task-based schedules.

However, our methods are unable to account for overlap in

computation and communication, and cannot quantify the ef-

fects of shared resource consumption on kernel performance

in the presence of asynchronous kernel execution decisions.
Our techniques should be extensible to other applications

and autotuning methods. Automatic performance tuning of

dense tensor computations and matrix computations with a

fixed sparsity structure in particular can benefit. However,

significant practical challenges remain for their application

to computations that are different from dense linear alge-

bra. In particular, Critter’s selective execution methods are

incompatible with matrix computations with varying sparsity

structure or other data-dependent computations.
Extensions to our techniques are necessary to further

accelerate automatic performance tuning within the proposed

framework. Extrapolation of individual kernel performance

models to characterize kernel performance across varying

input sizes can benefit a wide class of algorithms, including

CANDMC’s pipelined QR factorization algorithm. Such line-

fitting approaches can permit kernel execution to be more

selective. Further improvements to our model may also

pursue taking into account perturbations to each kernel’s

execution environment that originate from variability in cache

effects or shared resource consumption induced by selective

kernel execution.
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