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This article presents a concatenated Bahl-Cocke-Jelinek—Raviv (BCJR) detector, low-density parity-check (LDPC) decoder, and
deep neural network (DNN) architecture for a turbo-detection system for 1-D and 2-D magnetic recording (IDMR and TDMR).
The input readings first are fed to a partial response (PR) equalizer. Two types of the equalizer are investigated: a linear filter
equalizer with a 1-D/2-D PR target and a convolutional neural network (CNN) PR equalizer that is proposed in this work. The
equalized inputs are passed to the BCJR to generate the log-likelihood-ratio (LLR) outputs. We input the BCJR LLRs to a CNN
noise predictor to predict the signal-dependent media noise. Two different CNN interfaces with the channel decoder are evaluated
for TDMR. Then, the second pass of the BCJR is provided with the estimated media noise, and it feeds its output to the LDPC
decoder. The system exchanges LLRs between BCJR, LDPC, and CNN iteratively to achieve higher areal density. The simulation
results are performed on a grain flipping probabilistic (GFP) model with 11.4 Teragrains per square inch (Tg/in?). For the GFP
data with 18 nm track pitch (TP) and 11 nm bit length (BL), the proposed method for TDMR achieves 27.78% areal density gain
over the 1-D pattern-dependent noise prediction (PDNP). The presented BCJR-LDPC-CNN turbo-detection system obtains 3.877
Terabits per square inch (Tb/in?) areal density for 11.4 Tg/in®> GFP model data, which is among the highest areal densities reported
to date.

Index Terms— 2-D magnetic recording (TDMR), Bahl-Cocke-Jelinek—Raviv (BCJR) detectors, convolutional neural network (CNN),

CNN equalizer, deep neural network (DNN), low-density parity-check (LDPC) decoder, turbo-detectors.

I. INTRODUCTION

HE hard disk drive (HDD) industry is facing a physical

limit on the areal density of 1-D magnetic recording
(IDMR) on traditional magnetic media. To increase capacity
without media redesign, the 2-D magnetic recording has
been introduced (TDMR) [1]. The trellis-based detection with
the pattern-dependent noise prediction (PDNP) is standard
practice for HDD magnetic recording [2], [3]. In typical
single-track signal processing, the received samples from the
read head are filtered by a linear equalizer with a 1-D partial
response (PR) target h. The effective channel model has a
media noise term that models signal-dependent noise due
to, e.g., magnetic grains intersected by bit boundaries. The
equalizer output y flows into a trellis-based (Viterbi [4] or
Bahl-Cocke-Jelinek—Raviv (BCJR) [5]) detector that employs
a super-trellis based on the effective intersymbol interfer-
ence (ISI) channel and a 1-D PDNP algorithm. The trellis
detector sends soft coded bit estimates to a channel decoder,
which outputs user information bit estimates. PDNP is based
on an Lth-order trained autoregressive (AR) media noise
model 7i,,
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where a; are the AR coefficients, and the model error ¢; is
assumed to be uncorrelated Gaussian noise that depends on the
coded bit pattern vector Wy = [Upyn, ..., Uk, .., Up—(1+L)]
[2], [3], [6]. In proposed generalizations to 2-D PDNP for
two-reader TDMR, the trellis state cardinality becomes
4(A+1+L) “\where A is the predictor look-ahead, and I and L
are the ISI channel length and predictor order. The complexity
grows exponentially with 7 4 L, and becomes impractical for
more than two readers (e.g., [7]-[10])

The PDNP model is somewhat restrictive and may not
accurately represent the media noise, especially at high storage
densities; this is the modeling problem. To address this prob-
lem, in [11], we separate the ISI detection and media noise
estimation, and also we design and train deep neural network
(DNN)-based media noise predictors. Recent breakthroughs in
DNNs [12], [13] have led to great success in applications such
as speech recognition, image understanding, and language
translation. The convolutional neural networks (CNNs) [14]
have a nice performance on spatially correlated data, image
recognition, and computer vision applications. DNNs [12],
[13] are capable of modeling non-linear relationships between
the media noise and data bits; on the other hand, the AR
model employs a linear model. In this case, DNN models are
much more general than AR models, and they more accurately
model media noise compared with PDNP. In [11], we proposed
a BCJR-DNN turbo-detector for IDMR, without low-density
parity-check (LDPC) decoding.

In the Appendix, we give a mathematical argument using a
simplified model, showing that a magnetic recording system
is non-linear, and the media noise is a non-linear function
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of the data bits. We also provide some further arguments as
to why the DNN should do a better job of estimating the
media noise than PDNP. An insight into the state explosion
problem, which is the impractical number of trellis states that
result when more than one track is processed simultaneously,
e.g., TDMR, is also presented in the Appendix.

Several recent works have investigated neural network (NN)
and DNN for equalization and detection on magnetic recording
channels. Luo et al. [15] investigate an NN equalizer (NNE) to
eliminate the effect of ISI and the intertrack interference (ITT)
on TDMR combined with the shingled magnetic recording
(SMR). The NNE is performed with LDPC coding based on a
random Voronoi grain media model. The article compares this
method with the conventional 2-D linear equalizer that was
followed by the a posteriori probability (APP) detector and a
sum-product (SP) decoder.

Nishikawa et al. [16] propose an NN log-likelihood-ratio
(LLR) modulator using an LDPC code in iterative decoding
to mitigate the pattern dependent medium noise influence.
The article shows that iterative decoding performance can
be improved by considering LLRs of adjacent track bits as
the input of the NN. A hybrid genetic algorithm (HGA) is
used to select the adjacent track LLRs that affect a given
decoded bit.

Qin and Zhu [17] investigate a fully connected
DNN (FCDNN) detector to recover the data on high user bit
density HDDs. The prominent magnetic transition jitter noise
is explored in the article. The un-equalized readback signals
are input to the DNN to learn the correlations between the
input signals and the impact from the noise. The article finds
that DNN can adapt to the ISI and is resilient against the
colored magnetic noise.

In [18], an NN-based nonlinear equalizer for TDMR
is investigated. The authors also present adaptation crite-
ria to equalize the TDMR waveforms based on the cross
entropy (CE) between the bits’ true probabilities and detector
estimations. The CE criteria obtain a lower bit error rate (BER)
than the typical mean-square-error (MSE) adaptation criteria
for the channel detector. The results in [18] show that the
NN equalizer achieves better performance compared with the
minimum MSE (MMSE) linear equalizer for both CE and
MSE criteria.

Shen et al. [19] design DNN-based detection systems for
high-density TDMR systems. The design in [19] eliminates
trellis processing by replacing both the BCJR and PDNP with
a single DNN that directly estimates the coded bits for TDMR.
In comparison with a conventional system consisting of a
2-D BCIJR and a 2-D PDNP, a 2-D linear MMSE equalizer
followed by a CNN detector achieves a higher information
areal density gain with lower computational costs.

In this article, we present a BCJR-LDPC-CNN
turbo-detection system for 1DMR and TDMR. In [11],
we designed the architecture only for IDMR; we did not use
any LDPC decoding and did not explore multiple iterations
for the turbo-detection system. This article employs channel
decoding with both IDMR and TDMR cases. In addition,
we also investigate using CNN equalizers and the standard
linear PR equalizer, and we demonstrate the benefits of a
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second turbo-iteration between the detector and the channel
decoder.

The main novel contributions of this work are presented as
follows.

1) We employ channel decoding in the 1DMR
turbo-detection system and show that the method
proposed in Fig. 3 achieves a 1.60% density gain over
1-D PDNP.

2) We generalize the 1DMR architecture to TDMR. This
approach achieves a density gain of 27.78% over the
1-D PDNP baseline system.

3) For TDMR, we investigate using one CNN media noise
estimator for all three data tracks, versus using one CNN
per data track, and show that the latter scheme gives
higher areal density.

4) We explore the second iteration of turbo-detector for
both 1IDMR and TDMR cases. For IDMR, the second
iteration has a density gain of 2.02% over 1-D PDNP
on one data set.

5) We design a CNN PR equalizer and show that it achieves
3.877 Terabits per square inch (Tb/in?) areal density for
11.4 Teragrains per square inch (Tg/in?) grain flipping
probabilistic (GFP) data, which is among the highest
reported areal densities to date.

II. SYSTEM MODEL

The BCIR-LDPC-CNN turbo-detector assumes a channel
model for the kth linear equalizer filter output y(k) similar to
that of the 1-D PDNP scheme described in Section I

y(k) = (hxu)(k) + nm (k) + ne(k) 2

where h is the PR target, u are the coded bits on the track,
* indicates 1-D/2-D convolution, n,,(k) is media noise, and
ne(k) is reader electronics additive white Gaussian noise
(AWGN). Unlike PDNP, the media noise term n,, (k) is not
modeled as an AR process; instead, a more general model for
ny, (k) is learned by the CNN through off-line training.

We use the GFP model data to train and evaluate our system.
The GFP waveforms are generated based on micro-magnetic
simulations [20]. The simulated media have a grain density
of 11.4 Tg/in?. The GFP waveforms correspond to five tracks
of coded bits (1), denoted as tracks O through 4. They are
written using shingled writing technology. Fig. 1 represents
a capture of the GFP model readback signal. Bit regions are
not rectangular, but rather curved stripes due to the relative
orientation of the corner write head. The blue and red stripes
represent —1 and 41 coded bits. Track O at the bottom is
written first. Then, track 1 is written, overlapping part of track
0. The writing process repeats until track 4 is written. Track
4 is called the fat track since it is not followed by any more
tracks and, thus, preserves the original magnetic write width
(MWW), which is 75 nm. In the GFP simulations, the three
central tracks have available readback signals, and the coded
bits for tracks O and 4 are known boundary bits. The bit
length (BL) of GFP data sets is equal to 11 nm.

We have four GFP data sets for the system evaluation: two
data sets for the 1IDMR system and the two others for the
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Fig. 1. Capture of the GFP model readback signal with TP of 18 nm and
BL of 11 nm.
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Fig. 2.

Cartoon representation for the GFP model.

TDMR system. For the first data set, the track pitch (TP)
(i.e., the distance between adjacent tracks) is 48 nm, and for
the second, the TP is 27 nm. These two data sets are used for
evaluating the IDMR system. For the TDMR system, we use
two data sets with 18 and 15 nm TPs. The number of grains
per coded bit (GPB) for the 48 nm TP data set is

GPB = Grain density x BL x TP
= 11.4 Tg/in> x 11nm x 48 nm
x (3.937 x 107% in/nm)? = 9.33. (3)

Similarly, for the 27, 18, and 15 nm TP data sets, we compute
GPB as 5.25, 3.50, and 2.92, respectively.

As shown in Fig. 2, there are 25 read offsets spaced at TP/8
ranging over tracks 1, 2, and 3. To sample the data on these
three central tracks, we use reader positions at 4, 12, and 20,
approximately the center of each track. Each track in GFP data
sets consists of 41206 coded bits. The track sizes in GFP data
sets are close to the sector size of 32768 bits (4k bytes) in
a typical HDD. The GFP data sets have 100 blocks (sectors)
for each TP. For the IDMR system, the readings from the
center of Track #2 are used as input to the BCJR-LDPC-CNN
turbo-detector and, for comparison, the baseline 1-D PDNP
detector. The readings from Track #1 through #3 are inputs to
the TDMR system.

The shingled writing process introduces ITI. As the MWW
is fixed, a smaller TP results in greater ITI. Compared with
typical commercial HDDs with TP = 48 nm, the GFP model
data with lower TP used in this article suffer from rather severe
ITI. We employ a PR equalizer on the GFP waveforms to
reduce the effect of the ITI and the down-track ISI.

III. BCJR-LDPC-CNN TURBO-DETECTION SYSTEM

In this system, we separate the ISI detection and
media-noise prediction functions into two detectors in a
turbo-equalization structure. The LLR estimates of coded bits
and noise samples are exchanged iteratively between a BCJR
detector, an LDPC channel decoder, and the CNN media
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noise predictor until BER converges to a low value. In [11],
we proposed a BCJR-DNN turbo-detector for IDMR, without
LDPC decoding. In this work, we employ an LDPC channel
decoder to generate the final LLRs at the end of each turbo-
iteration. The areal density is determined by increasing the
LDPC code rate until the decoded BER is <1077,

A. IDMR Turbo-Detector

In Fig. 3, the GFP simulated HDD read-head output vector
r contains two samples per coded bit, denoted r'" and r®.
These samples are on the same track and are collected by
the same read head but are located at different down-track
locations within a given bit; the odd samples r'" (the “first
samples” per bit) are located near the center of each bit; and
the even samples r® are located at the boundary between
bits. The odd samples r'! are first filtered by a length 15 1-D
linear equalizer designed to minimize the mean squared error
between the filter output y'" and the convolution of the coded
bits u with the 1-D PR target mask h. This PR equalization
is done because the down-track ISI can have a span of up
to about 15 bits. The filter output y" is input to a trellis
detector (a BCJR detector in this work), which handles only
ISI equalization based on the PR target h and outputs a block
of 41206 coded bit LLRs. In this work, we design the PR
target h with three taps so that the ISI channel length 7 = 2,
and the BCJR detector has M = 2! = 4 states and eight total
branches.

In the first iteration, the BCJR LLRs LLR;, and y'", and
the unfiltered even samples r® are passed to the CNN to
estimate the media noise n,,. The noise 1, is fed back to
the BCJR to obtain a lower BER. Next, the BCJR passes
LLRs, LLR,, which are magnitude-limited and scaled by T;
and W, respectively, to make the channel decoder converge
faster. After this pre-processing, the LLRs are input to the
channel decoder through the de-interleaver. The de-interleaver
shuffles the coded bits in order to decorrelate them before they
are input to the channel decoder. This shuffling is important
because the channel decoder’s SP algorithm assumes that the
incoming LLRs are statistically independent.

The channel decoder can provide estimates LLR; of the
coded bits as a priori inputs to the BCJR detector to improve
that detector’s estimates LLR;, and to the CNN to improve the
CNN’s noise estimates fi,,. In cases where LLR; is provided to
both the BCJR and the CNN, LLR; would be subtracted from
the BCJR’s initial (intrinsic) set of LLR estimates in order to
make LLR,, extrinsic information relative to LLR; so that the
CNN could make optimal use of both LLR; and LLR;.

We use an irregular repeat accumulate IRA) LDPC decoder
as the channel decoder [21]. Henceforth, we refer to the
“IRA decoder” or simply “IRA” to indicate the specific LDPC
decoder employed in this article. The IRA decoder employs
coset decoding since the GFP data bits are randomly distrib-
uted. The IRA encoding and decoding are done separately for
each track; hence, different code rates can be used on each of
the three tracks.

The channel decoder produces the extrinsic LLRs, then
scales and magnitude limits them by W, and T, respec-
tively. After limiting and scaling, they are passed through an
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Fig. 3. Block diagram for the 1IDMR turbo-detector.

interleaver to reorder the LLRs to be consistent with the order
of LLR,. The final LLRs LLR; are generated by passing the
extrinsic LLRs through an interleaver at the end of each turbo-
iteration.

For the second iteration, the decoder LLRs LLR; are passed
as inputs to the CNN instead of LLR;,. Alternatively, the
CNN can be provided with both LLR;, and LLR;, which we
have found to slightly improve the performance of the CNN.
However, the simulation results in this work consider replacing
LLR, with LLR,.

The dotted lines, multiplier, and interleaver in Fig. 3 indicate
optional inner iterations between the BCJR and the channel
decoder in order to reduce the BER and improve the quality
of LLRs before passing them to the CNN. For each such
inner iteration, the weight W3 and limit threshold 73 are
applied on the channel decoder LLRs output to accelerate the
BCJR convergence. More iterations between the BCJR and
the channel decoder can result in a better quality of LLRs and
potentially allow the use of a lower complexity CNN.

B. TDMR Turbo-Detector

We generalize the IDMR system to the three-track TDMR
system. Fig. 4 shows the BCJR-LDPC-CNN turbo-detector
for TDMR with separate trellis-based ISI/ITI detection and
CNN-based media-noise prediction.

The 2-D PR equalizer employs a 3 x 3 PR target h and
accepts five adjacent tracks. In our data sets, the three inner
tracks have unequalized readings r("), and the two outer tracks
have only known data bits, but no readings. In practice, data
bits on the outer tracks can be estimated by a relatively simple
1-D detection scheme, resulting in a non-zero BER. Previous
articles by our group (e.g., [22]) have shown that outer track
BERSs reduce the achieved information densities on the three
inner tracks by a relatively small percentage (around 7%) when
outer track detection without channel decoding is performed.

The ITI affects the system design when generalizing a
IDMR system to a 2-D detector system. 2-D BCIR is a
joint ISI/ITT equalizer; the state-input block has three rows
because the ITI typically extends over one adjacent track on
either side. In 2-D BCIR, the processing of three tracks is
done simultaneously to handle the ITI from a 3 x 3 PR
target mask since the central track is affected by the ITI from
its two neighboring tracks. Fig. 5 represents the state-input
block for 2-D BCIR over three tracks. The 2-D BCIR trellis
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Fig. 4. Block diagram for the TDMR turbo-detector.
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Fig. 5. State-input block for 2-D BCJR with two state bits per track.

detector performs ISI/ITI equalization on filtered input y() and
generates LLR outputs. The PR target h is 3 x 3; hence, the
system has two state bits per track, and the 2-D BCJR state
bits are 3 x 2, so the trellis has 2°3*% = 64 states.

IV. CNN NOISE PREDICTOR ARCHITECTURE
AND INTERFACE

We investigate the CNN architectures for the noise predictor
for IDMR and TDMR Systems. The CNN extracts correlations
among the data and exploits them to obtain the information
and features. For IDMR, we stack the data as the 2-D input
images; hence, we design 2-D CNNs to predict media noise.
In the TDMR detector, we stack the 2-D input images for three
tracks to make a 3-D input image. Therefore, for processing
the 3-D input image, we design a 3-D CNN architecture to
estimate the media noise for the TDMR system.

The CNNs process their input data in a sliding block
manner. For IDMR, in the first iteration, to estimate the kth
media noise sample 7i,,,, the lowest input layer of the CNN
accepts a block LLRbOk of N; BCJR output LLRs, N; filtered
readings y,(cl), and N; raw second readings r,(cz), where N; is
an odd number, and the kth noise estimate corresponds to
the middle element of the N; elements in each block; in
this article, N; = 9. To estimate the (k + 1)th media noise
sample, each of the input data blocks is shifted by exactly one
sample into the future. For the second iteration, the CNN is
provided with a block LLR;, of N; channel decoder output
LLRs instead of the LLR;,Ok LLRs from the BCJR, and the
block width N; increases to 11.

The TDMR system processes three tracks at a time. Hence,
for TDMR, each of the above-described 1-D input blocks of
size [1 x N;] becomes a [3 x N;] input block.
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Fig. 6. 2-D CNN architecture of media noise predictor for IDMR.

A. CNN Architecture

The proposed CNNs for both IDMR and TDMR con-
tain 18 layers. These layers consist of one input image
layer, five convolutional units, and one output layer. After
normalizing the raw data received from the other blocks to
have zero mean and unit variance, the system passes them to
the input image layer.

Every convolutional unit includes three layers: convolu-
tional layer, batch normalization layer, and rectified linear
unit (ReLU) layer. The convolutional layer slides the filter over
the input data, and the batch normalization layer normalizes
the data to speed up network training and reduce sensitivity to
the initial conditions (of the filter coefficients and interconnec-
tion weights) in the layers. The ReLU activation function layer
assists the model to converge with greater acceleration. The
output layer is a regression layer. Every convolutional layer
has three properties: the filter length, the filter width, and the
number of filters, which is called the number of channels. For
the first turbo-iteration, the length of the input image is nine.
For the second iteration, we increase the length of the input
image to 11 in order to extract more information from the
data. Also, we add another convolutional unit to the end of
the network whose number of channels is larger than that of
any of the previous convolutional units.

Every node in each fully connected (FC) layer is connected
to all the nodes in the previous layer. The output of the last
convolutional unit is multiplied by a weight matrix, and then,
a bias vector is added to it to form the output of the FC
layer. The last layer is the regression layer, which predicts the
responses of the model. The regression loss function is 0.5x
the mean squared error between the training label media noise
and the CNN prediction of the media noise.

1) CNN Noise Predictor for IDMR: The 2-D CNN archi-
tecture for the first iteration of the 1IDMR system is shown
in Fig. 6. In the first iteration, the 2-D input image layer
is of size 27 and includes three rows consisting of nine
samples from each of the three input blocks LLR}, y(l), and
r®. Organizing the 1-D input blocks into a 2-D array in
this manner induces a 2-D spatial correlation between the
blocks. Fig. 7 shows the 2-D input image of CNN for IDMR.
We exploit this spatial correlation by employing trained 2-D
convolutional filters on all CNN layers. In CNNs designed
for IDMR, all convolutional layers employ the filters of size
[3 x 3]. The number of channels in units 1 through 5 is equal
to 8, 16, 32, 64, and 128, respectively, for the first iteration.
In the second iteration, the length of the input increases
to 11; thus, the input image layer size would be 33. Also,
an additional convolutional unit with 256 channels is added at
the end of the network before the FC layer.

2) CNN Noise Predictor for TDMR: For the TDMR detec-
tor, we design the 3-D CNN to predict the media noise. Fig. 8
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Fig. 8. 3-D CNN architecture of media noise predictor for TDMR.
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Fig. 9. 3-D input image.

represents the 3-D CNN architecture for the first iteration of
the system. For the first iteration, each of the three input layer
2-D images contains 3 x 9 = 27 samples; thus, the size of
the CNN’s 3-D input layer is 3 x 27 = 81 samples. The 3-D
input image contains the 2-D input images for the three tracks.
By putting the three 2-D input images together, we can extract
the information from the 3-D spatial correlation between the
input images and the correlation between the three tracks of
each block simultaneously. In Fig. 9, stacking of the 2-D input
images (with three tracks each) into a 3-D input image is
shown. In the designed CNNs for TDMR, the convolutional
layers have the filters with the size of [3 x 3 x 3]. Similar to
the 2-D CNN architecture, the number of channels through
convolutional units 1 to 5 is 8, 16, 32, 64, and 128. For the
second iteration, we increase the length of the input image
to 11 to have 99 nodes in the 3-D input image. Also, we have
another convolutional unit with 256 channels at the end of the
network.

B. CNN Noise Predictor Interface With the Channel Decoder

For the TDMR system, we investigate two approaches to
interface the BCJR and channel decoder with CNN. In the first
approach (labeled as “1 CNN” in Table II), we use one CNN
to estimate the media noise A,,, 1 < j < 3, for the three
tracks. The output of the regression layer contains three bit
sequences representing the predicted media noise of the three
tracks. Fig. 8 shows the architecture for “1 CNN” interface
with the decoder. The second approach (labeled as “3 CNNs”
in Table II) predicts #,,;, 1 < j < 3, using a separate CNN
for each track. In this interface, the output of the regression
layer of each CNN includes one bit sequence for each track.
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Fig. 10. Block diagram for CNN equalizer. The solid arrows indicate the

data flow for IDMR system. The dotted arrows represent the additional data
flows considered for TDMR.

By employing three CNNs, we expand the search space to
improve the estimation of the media noise.

V. CNN PR EQUALIZER DESIGN

We investigate the design of CNN-based PR equalizers to
be used as the 1-D and 2-D PR equalizers in Figs. 3 and 4,
instead of the standard linear PR equalizers. The CNN equal-
izer architecture is represented in Fig. 10.

A. Nonlinear CNN Equalization System

The 1-D/2-D linear PR equalizer minimizes the MSE
between ideal PR signals and the actual output of the equalizer.
The ideal PR signals yf‘ll) are based on the ideal convolutional
model and are given by

v (k) = (hxw)(k) (4)

where * indicates the 1-D/2-D convolution, h is target mask
of the appropriate length that is adapted during training, and
u are the bit sequences for the track(s).

By considering the equalization of a signal

r') =hxu 5)
applying a linear equalizer f to r'") gives
yl(iln)ear =f=x r(l)' (6)

If we apply a non-linear equalizer F to r'"), we obtain that
the equalized signal is given by
() near = FlrM). )

Yhon-linear

For the CNN equalizer, the mapping F is the overall effect
of the learned target and ReLLU functions at each layer of the
CNN.

Fig. 10 shows the non-linear CNN equalizer followed by
a trellis detector. During training, the CNN equalizer iterates
with a constrained MSE solver to adjust the PR target masks.
Using stochastic gradient descent (SGD) on mini-batches
of length N, the equalizer CNN minimizes the average
MSE Juse between its output and the ideal PR waveforms
(yiy» for IDMR and |, yi}. and y';); for TDMR).

The input to the CNN equalizer consists of the readings r(")
obtained over a sliding window. The outputs are the equalized
signals to be fed to the BCJR detector. Training the CNN
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Fig. 12. CNN PR equalizer architecture for TDMR.

equalizer is performed as follows [23]. Given a fixed target,
the CNN equalizer is trained to minimize Jysg. After the
CNN equalizer converges, a constrained MSE solver accepts
the fixed CNN equalizer output. Given such an output, the
solver minimizes the constrained MSE given by

mhin JMsE (8a)
s. t. Cmin < Ih[I3 < Cmax (8b)
a’h=1 (8¢)

where cpmin and cpax are lower and upper bounds on the
energy of the target h. A monic constraint is imposed, which
sets the central element of the target to one, ie., a =
[0,...,0,0,1,0,0,...,0]. The constrained MSE solver finds
a new MSE-optimal target by adjusting the target coefficients.
The new target is used to generate ideal PR signals according
to (4). Then, the CNN equalizer is retrained on the new
ideal PR signal. Iterating between the CNN equalizer and the
constrained MSE solver continues until no more significant
reductions in Jysg are achieved.

B. CNN PR Equalizer Architecture

The length of the input image is 21. The size of the input
image is [1 x 21] for IDMR since only ) is provided for
the CNN. For TDMR, the input data are r(() ), e, rf‘l); hence,
the input image has the size of [5 x 21] for TDMR.

The proposed equalizer employs a CNN with four convolu-
tional units. Fig. 11 shows the architecture for the IDMR CNN
PR equalizer. For the IDMR system, the convolutional layers
1 through 4 have sizes [1 x 15], [1 x 7], [1 x 3], and [1 x 3].
The number of channels for these four convolutional layers is
10, 8, 6, and 4, respectively. For the first two convolutional
units, there is another layer before ReLU called the “dropout”
layer that randomly sets input elements to zero with a given
probability. The probability of dropping for these two layers
is equal to O.1.

The TDMR CNN PR architecture is presented in Fig. 12.
In the CNN equalizer for TDMR, the four convolutional
layers have size of [5 x 15], [5 x 7], [5 x 3], and [5 x 3].
The convolutional units contain 10, 8, 6, and 4 channels,
respectively. The first two convolutional units contain dropout
layers with probability 0.1, which is the same as the IDMR
case.

Authorized licensed use limited to: Washington State University. Downloaded on April 12,2021 at 12:29:59 UTC from IEEE Xplore. Restrictions apply.



SAYYAFAN et al.: DNN MEDIA NOISE PREDICTOR TURBO-DETECTION SYSTEM

TABLE I
AREAL DENSITY COMPARISON FOR IDMR

3101113

Track Raw Areal User Bits Code Decoded
Detectors Pitch Channel Density per Grain Rate BER
(nm) BER (Th/in?)
1D PDNP, Lin-Eq 48 0.0661 1.186 0.1041 0.9710 0 (9.38¢-7)
CNN 1 pass, Lin-Eq 48 0.0661 1.205 0.1057 0.9865 7.64e-6 (1.07e-5)
CNN 2 passes, Lin-Eq 48 0.0661 1.210 0.1062 0.9905 9.59%-7 (2.48¢e-6)
CNN 1 pass, Lin-Eq 27 0.1032 2.018 0.1770 0.9294 0 (8.99¢-7)
CNN [ pass, CNN-Eq 27 0.1032 2.028 0.1779 0.9341 0 (9.04e-7)
TABLE 11
AREAL DENSITY COMPARISON FOR TDMR
Track Raw Areal User Bits Code Decoded
Detectors Pitch Channel Density per Grain Rate BER
(nm) BER (Tb/in?)

1D PDNP 1 pass, Lin-Eq 18 0.1641 2482 0.2177 0.7600 0 (1.21e-6)
1D PDNP 2 passes, Lin-Eq 18 0.1641 2.531 0.2220 0.7750 0 (1.21e-6)
2D PDNP 1 pass, Lin-Eq 18 0.1641 2.230 0.1957 0.6830 0 (6.84¢-6)
1 CNN 1 pass, Lin-Eq 18 0.1637 3.228 0.2833 0.9883 0 (4.02¢-6)
1 CNN 1 pass, CNN-Eq 18 0.1637 3.231 0.2836 0.9892 0 (4.02e-6)
1 CNN 1 pass, Lin-Eq, SNR 20 dB 18 0.1637 3.225 0.2830 0.9874 0 (4.01e-6)
1 CNN 2 passes, Lin-Eq, SNR 20 dB 18 0.1637 3.228 0.2833 0.9883 0 (4.02e-6)
3 CNNs | pass, Lin-Eq 18 0.1637 3.234 0.2838 0.9901 0 (4.02e-6)
3 CNNs 2 passes, Lin-Eq 18 0.1637 3.234 0.2838 0.9901 0 (4.02e-6)
1 CNN 1 pass, Lin-Eq 15 0.2058 3.873 0.3385 0.9883 0 (4.02¢-6)
1 CNN 2 passes, Lin-Eq 15 0.2058 3.877 0.3388 0.9892 0 (4.02e-6)
1 CNN 1 pass, CNN-Eq 15 0.2058 3.877 0.3388 0.9892 0 (4.02e-6)
1 CNN 1 pass, Lin-Eq, SNR 20 dB 15 0.2058 3.869 0.3382 0.9874 0 (4.01e-6)
1 CNN 2 passes, Lin-Eq, SNR 20 dB 15 0.2058 3.873 0.3385 0.9883 0 (4.02¢-6)
3 CNNs 1 pass, Lin-Eq 15 0.2058 3.877 0.3388 0.9892 0 (4.02e-6)
3 CNNs 2 passes, Lin-Eq 15 0.2058 3.877 0.3388 0.9892 0 (4.02e-6)

VI. SIMULATION RESULTS

This section presents the simulation results for the
BCJR-LDPC-CNN turbo-detector on IDMR and TDMR chan-
nels. The simulations are performed on GFP data sets with
TPs 48 and 27 nm for IDMR and with TPs 18 and 15 nm
for TDMR. We provide the results for both linear and
CNN-based PR equalization before the turbo-detector. Also,
the simulation results of the two different CNN interfaces
with the channel decoder are presented for the TDMR system.
In Tables I and II, the simulations in which one iteration
between the BCJR, IRA, and CNN is performed are labeled
as “1 pass” and the other simulations that have two iterations
executed are labeled as “2 passes.”

The CNN media noise predictor is provided with the LLR
probabilities. The estimated bit and the estimation’s reliability
can be determined by the LLR probabilities. In [11], it is
experimentally shown that CNN provided with LLR probabil-
ities performs better compared with when it uses the signed
LLR values. This might be due to the non-linear scale inherent
in the LLRs.

In the first turbo-iteration, the BCJR initially assumes that
the media noise is zero and computes an initial set of output
LLRs LLR;,. In the second turbo-iteration, the LLRs LLR;
for a code rate greater than the highest code rate in the first
iteration are passed to the CNN. In an alternative scheme for
the second iteration, the CNN can be trained with both LLR;
and LLR,. In this case, the LLRs LLR; are considered as
an additional input of the CNN, and the training process is
performed. Simulations show that the CNN performance is
slightly better with the additional input; however, we report
the simulation results for the second iteration by replacing the
LLRs LLR;, with LLR;.

A. Data Sets

We use two GFP waveform data sets, both with 11 nm BL.
Each block in each data set has 5 x N, input bits, where
N, = 41206. The central three tracks for each data set have
two readings per bit, i.e., 3 x 2N, readings per block. The
simulation results assume that the two boundary tracks in GFP
data sets have perfect knowledge of the coded bits. In the
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realistic case, the bits on the top and bottom boundary tracks
are unknown. In [22], it is shown that, by considering the
unknown boundary bits, the areal density decreases <7%.
For the IDMR system, the first set has TP = 48 nm and
GPB = 9.33; the second has TP = 27 nm and GPB =
5.25. The 1-D detectors considered in this article use only the
central track in the GFP waveforms for training and testing.
To be consistent with [11], for the 1-D detector with linear PR
equalizer, we use 16 GFP blocks as the training data set to
train the CNNs. Another (distinct set of) 84 blocks are used
as the test data set to generate (by simulation) the BER. For
the 1-D turbo-detector with CNN PR equalizer, we used 50,
10, and 30 GFP blocks as the training, validation, and test
data sets, respectively. To train the 1-D PDNP parameters on
the TP 48 nm data set as the comparison baseline, 20 training
blocks are used, and the testing is performed on 80 blocks.
The two other GFP data sets with 11 nm BL are used for
the TDMR system. The TP and GFP for the first data set
are 18 nm and 3.50, and for the second data set, they are 15 nm
and 2.92, respectively. For the 2-D BCJR-LDPC-CNN detector
with linear PR equalizer, we use 80 blocks for the training
and 20 blocks for the testing phase. The training, valida-
tion, and test data sets for the TDMR turbo-detector using
the CNN PR equalizer have 50, 5, and 20 GFP blocks,
respectively. We also compare the performance of our TDMR
turbo-detection system with the 2-D PDNP design of [10],
using the same parameters described in [19]. The 2-D PDNP
employs 40 and 60 blocks for training and testing, respectively.

B. Simulation Parameters

The iterations between the BCIR, IRA, and CNN are
implemented. In this article, the weight W; and magnitude
limit threshold 7 for the BCJR output LLRs are set to 0.1
and 100 for IDMR, and for TDMR, they are set to 0.5
and 10, respectively. After scaling and limiting LLRs LLR,
they are passed to the de-interleaver to shuffle the code bits.
The minimum internal IRA code iteration is set to 200, and
the maximum iteration is considered as 400. W, and T, are
considered to scale and limit the decoder output LLRs LLR; to
pass through the interleaver to CNN. In the proposed system,
the parameters W, and 75 equal to 0.5 and 60 for IDMR and
1 and 10 for TDMR. We report the results in terms of user
bits per grain (U/G) and areal density. (U/G) can be computed
as U/G = achieved-code-rate/GPB, where the achieved-code-
rate is the highest code rate after puncturing that achieves a
final decoded BER equal to or less than 107>, The GPB values
for each data set are listed in Section II. The areal density is
obtained by

Areal density = U/G x Grain-density. )

In order to design IRA codes with a higher code rate, the
puncturing scheme in [22] is used to simulate puncturing bits
written to an HDD.

Tables I and II summarize the results for the IDMR and
TDMR detectors, respectively. The raw channel BER for
IDMR is reported for the detected bits on the input readings
of the central single-track, i.e., track 2. For TDMR, the raw
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channel BER is the average detected errors on the three central
tracks for tracks 1, 2, and 3. A 95% confidence upper bound
on the BER is provided in parentheses in the last columns of
Tables I and II. In the case of non-zero errors, the BER upper
bound is computed as

Ip(x + 1, Niw —x) =y (10)

where I, indicates the beta distribution with parameters x + 1
and Nip — x for y-quantile, x is the number of errors, N
is the total number of transmitted coded bits, and y is the
confidence threshold that we set to 0.95. In the case of zero
error count, the BER upper bound is obtained as 3/ N, [24].

C. Discussion of Simulation Results

Simulation results for three-tap monic PR target mask for
IDMR and three-input-three-output monic mask for TDMR
designed using the method described in [25] are included.

Table I summarizes the results for the TP 48 nm and
TP 27 nm data sets for IDMR. The table compares the
U/G and areal density performance of the proposed 1-D
BCJR-LDPC-CNN detector with 1-D PDNP BCJR. The 1-D
PDNP uses the same PR target h as the BCJR-LDPC-CNN
method with the linear PR equalizer uses but has 128 trellis
states, correspondingto I = 2, L =4, and A = 1. The pattern
vector length of I + 1+ L + A = 8 bits of 1-D PDNP is
comparable to the channel input y(") length of 9 sample bits
for the CNN. LLRs are exchanged between the 1-D PDNP
and the IRA decoder iteratively in a turbo-architecture. For
the 1IDMR waveforms, the 1-D PDNP is performed only on
TP 48 nm data set as the comparison baseline. The simulation
results on TP 48 nm data set are shown in the first three rows of
Table 1. For 1-D PDNP, the second iteration does not improve
the areal density; hence, we only report its first iteration. The
first turbo-iteration of BCJR-LDPC-CNN detector with linear
PR equalizer labeled as “CNN 1 pass, Lin-Eq” achieves 1.60%
density gain over 1-D PDNP. The second iteration of this
detector labeled as “CNN 2 passes, Lin-Eq” has density gain
of 2.02% over 1-D PDNP. The last two rows of Table I present
the results of the TP 27 nm data set for IDMR waveforms.

Table II presents the simulation results for 1-D PDNP,
2-D PDNP, and BCJR-LDPC-CNN detectors with the TDMR
system on the TP 18 and 15 nm data sets. The 1-D PDNP,
2-D PDNP, and BCJR-LDPC-CNN detectors process one, two,
and three tracks, respectively, so that the BCJR-LDPC-CNN
system gives a throughput increase of 3x and 1.5x over 1-D
and 2-D PDNP, respectively. Table II shows the PDNP results
only for the TP 18 nm data set, which are reported from
[19]. The two-track 2-D PDNP looks at 2 x 3 bit patterns
and has 64 states. The best PDNP performance belongs to
1-D PDNP with two turbo-iterations labeled as “1-D PDNP 2
passes, Lin-Eq,” which we consider as the baseline. The 1-D
PDNP looks at a pattern with seven down-track bits. On the
other hand, the 2-D PDNP is applied on the three bits on each
of the two tracks [10] to keep a reasonable number of trellis
states; hence, the 1-D PDNP could outperform the 2-D PDNP.

Two different PR equalizers are investigated for the TDMR
system. Tables I and II show the simulation results for the
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linear filter equalizer with a 1-D/2-D PR target labeled as “Lin-
Eq” and the proposed CNN equalizer labeled as “CNN-Eq.”
In Table II, for the 18 nm data set, the one-CNN architecture
using linear PR equalizer with one iteration (labeled “1 CNN
1 pass, Lin-Eq”) achieves a density gain of 27.54% over
the “1-D PDNP 2 passes,” which is the baseline. For the
three-CNN architecture with linear PR equalizer where only
one iteration is performed (labeled “3 CNNs 1 pass, Lin-Eq”),
the BCJR-LDPC-DNN detector has a density gain of 27.78%
compared with the baseline. By using the CNN PR equalizer,
the one-CNN architecture with one iteration (labeled as “1
CNN 1 pass, CNN-Eq”) could outperform the baseline with a
27.66% density gain.

Comparing the CNN PR equalizer with the similar case
with the linear PR equalizer for TDMR system, by 1 pass of
the one-CNN architecture, the CNN PR equalizer improves
from 3.228 to 3.231 Tb/in> (0.09% improvement) for the
TP 18 nm data set and from 3.873 to 3.877 Tb/in?> (0.10%
density gain) for the TP 15 data set. To the best of our
knowledge, 3.877 Tb/in? is the highest density reported on
the GFP model data with 11.4 Tg/in>. For a IDMR detector
with one iteration, using the CNN PR equalizer gets 0.50%
density gain for the TP 27 nm data set.

Since designing IRA codes with different rates is difficult,
we first design a few IRA codes with some specific code rates.
To determine the maximum code rate of a new system, based
on the BER, we choose one of the designed IRA codes as
the base code (the rate of this code is called base rate); by a
puncturing process [22] over the base code, we can achieve a
code with a higher rate. For Table I, the base rate of the IRA
code is 0.8956 for all the simulations. In Table II, the base
rate of the IRA code for the two first rows that show the 1-D
PDNP on the TP 18 nm data set is 0.7507, and for the third
row that shows the 2-D PDNP on the TP 18 nm data set, it is
0.6506. The base rate code for the three-CNN architecture on
the TP 18 nm data set is 0.9287, and for the rest of the TDMR
detectors, it is 0.8956.

The second iteration between the BCJR, IRA, and
noise-prediction CNN is investigated. In this iteration, the
CNN is provided with IRA’s LLRs LLR; (as well as y,El)
and r,((z)) to estimate the media noise more accurately in
comparison to the first iteration. CNN’s noise prediction is
fed back to the BCJR and IRA to derive the new LLRs.
In some cases, the second iteration could enhance the areal
density compared with the first one. By using the linear PR
equalizer, for the TP 48 nm data set with IDMR waveforms
and the TP 15 nm data set with TDMR waveforms, the second
iteration of one-CNN architecture achieves 0.41% and 0.10%
density gains, respectively, over the first iteration. However,
the three-CNN architecture could not improve the areal density
by using the second iteration, perhaps because the improved
performance of three CNNs in the first iteration has left less
room for improvement in the second iteration.

In designing the CNN noise predictor, we face some chal-
lenges, such as overfitting and underfitting problems. The
overfitting occurs when CNN is too closely fitted to the
training data set, which makes it difficult to generalize and do
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predictions for the new data. It might happen due to the com-
plicated topology or a high number of hyperparameters of the
CNN. The underfitting makes the CNN inflexible in learning
from the training data set due to an over-simplified model with
too few features or it is regularized too much. To avoid such
problems, we need to tune the CNN hyperparameters. The
hyperparameters are generally the properties of NNs that are
determined by the designer. The CNN hyperparameters include
the topology of CNN, the number of layers, the number of
channels, the sizes of the input image and the filters in each
layer, the activation function, and the optimization algorithm.
We use the SGD as the optimization algorithm to tune the
hyperparameters of the CNN noise predictor and train it. SGD
computes the gradients and updates the weights by using some
subsets of the training blocks called “mini-batches.” To tune
the hyperparameters of the CNN noise predictor using the
CNN PR equalizer, the validation data set results are used.
The validation data set results can be used to tune the model
regularization parameter and adjust the learning rate schedule
as well [13, Ch. 7]. No hyperparameters are tuned based on
test data set results in order to have a realistic performance
during implementation.

The overfitting (underfitting) can be recognized by the
lower (higher) root MSE (RMSE) of the training data set
than RMSE of the validation data set, respectively, during
the training process. Fig. 13 shows the CNN learning curves
(i.e., RMSE versus the number of training iterations) from the
validation and training data sets for the CNN noise predictor
architectures with CNN PR equalizer. The training process
for these architectures contains 803 900 iterations; one-fifth of
them are represented in Fig. 13. After tuning the hyperparame-
ters, the learning curves for the validation and training data sets
merge together after some point, which means that the model
prevents the overfitting and underfitting problems. Also, the
RMSE values for the three-CNN architecture are lower than
one-CNN architecture in this figure, which confirms the idea
of expanding the search space by using one CNN per track.

The GFP data contain no read-head electronic AWGN, i.e.,
ne(k) = 0 in (2). The rows without label “SNR 20 dB” report
the results for this case. The rows that include the label “SNR
20 dB” report the results when non-zero AWGN n,(k) at an
SNR of 20 dB is added to both sample sequences r,(cl) and r,EZ).
The SNR is computed as

SNR = 1010g10($ 1[«:[(45“)2 + (r,fz))z]) (11)
where o2 indicates the AWGN variance. This SNR is com-
puted based on all the code bits of each track. For the 20 dB
SNR AWGN results, the second iteration could improve the
detector’s performance compared with the first iteration for
the TDMR system.

We explore the areal density of the proposed system for
lower SNRs. The system settings for lower SNR simulations
are optimized for 20 dB SNR. The purpose of these simula-
tions is to find out how robust the system optimized for 20 dB
SNR is to lower SNRs. In Fig. 14, the curve of areal density
of the one-CNN with linear PR equalizer for different values
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Fig. 13.  Learning curves for CNN noise predictor in the architectures

using the CNN PR equalizer on the TP 18 nm data set. For the three-CNN
architecture, the learning curves are plotted for the CNN corresponding to the
central track. An iteration refers to an instance of SGD based on a gradient
estimate derived from a mini-batch.
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Fig. 14.  Areal density versus SNR curve for one-CNN architecture with
linear PR equalizer for the TP 18 nm data set. At 0 dB SNR, the average
BER over three central tracks is 0.23, and the areal density is not competitive
since very low code rates would be required.

of SNR is represented. By decreasing the SNR, the areal
density of the system goes down, such that the areal density
with AWGN 5 dB SNR is 2.318 Tg/in?. For 0 dB SNR, the
average BER for the second pass of 2-D BCJR over the three
central tracks is equal to 0.23; this BER would require an
impractically low code rate to achieve a BER < 107> after
channel decoding, resulting in a very low achieved density.
Thus, the performance of the system breaks at some point
between 5 and 0 dB SNR, which is the lower limit of SNR
for the system.

D. Computational Complexity Comparison

The computational complexity (per bit) figures of TDMR
detectors are shown in Table III. The complexities for the
equalizer and the detector are considered; however, the channel
coding complexity is not included. The numbers for the second

DETECTOR COMPLEXITY FOR THE TDMR

TABLE III
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Detectors mul/div add/sub exp/log
1D PDNP 32,532 31,251 514
2D PDNP 4,481 4,216 257
1 CNN, Lin-Eq 782,007 740,468 343
1 CNN, CNN-Eq 831,610 784,966 343
3 CNNs, Lin-Eq 2,110,816 | 1,991,662 343
3 CNNs, CNN-Eq | 2,159,649 | 2,035,387 343

row of this table, that is, for 2-D PDNP, are reported from
[26]. The reported numbers for the complexity of the pro-
posed BCJR-LDPC-CNN turbo-detectors are based on the first
iteration. The required computations of all BCJR-LDPC-CNN
detectors are much higher than the 1-D PDNP with 2 passes.
It is due to the higher number of branches per state for 2-D
BCIJR performed in the BCJR-LDPC-CNN detector and the
3-D CNN trained on the three tracks. The three-CNN archi-
tecture requires roughly 3x computations of the one-CNN
architecture.

The complexity for 1-D PDNP is reported for the two
passes implementation, which is considered as the baseline.
However, the numbers for 2-D PDNP are reported for one
iteration. Comparing the complexity of 1-D and 2-D PDNP,
1-D PDNP has more complexity compared with 2-D PDNP
since the number of the states of 1-D PDNP is twice the
number of states for 2-D PDNP, and also the BCJR algorithm’s
complexity grows as the square of the number of states.

We point out that the computations in Table III of [11]
should be multiplied by factors of roughly 27 and 28 for
the second and third rows, respectively, which are associ-
ated with the complexity of BCJR-DNN architectures. Also,
by considering a more efficient 1-D PDNP implementation,
the reported numbers in the first row of this table need to be
multiplied by a factor of 0.12 and 0.38 for the first and second
columns, respectively. The reported short run-time in [11]
is due to the efficient implementation of MATLAB’s matrix
multiplication, which accelerates the required processing for
the DNN. The reported computations in this table do not
include the complexity of the equalizer.

Since the complexity of the proposed method in this article
is higher than the complexity of the baseline, we have imple-
mented some other reduced-complexity CNN architectures to
investigate the tradeoff between the performance and complex-
ity of our method. In Table IV, some of the CNN architectures
that have lower complexity (compared with the architecture of
the proposed method) are presented. The factor of increase in
complexity and the density gain of these architectures over
the baseline are shown in Table IV. The CNN architectures
are designed based on a one-CNN architecture with the linear
PR target. The simulations are run on the TP 18 nm data
set. In the future work, we will consider the further study
of complexity/performance tradeoffs, and we will investigate
lower complexity implementation architectures.
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TABLE IV
TRADEOFF BETWEEN THE PERFORMANCE AND COMPLEXITY OF
ONE-CNN DETECTOR WITH LINEAR PR EQUALIZER IN COMPARISON TO

1D PDNP WITH TWO PASSES FOR TDMR. THE CNN ARCHITECTURE
SHOWS THE NUMBER OF CHANNELS FOR THE FIVE CONVOLUTIONAL
LAYERS. THE FACTOR OF COMPLEXITY AND DENSITY GAIN OVER THE

BASELINE Is REPORTED. THE COLUMN WITH TITLE “WITH r®”
DETERMINES THE PRESENCE AND ABSENCE OF r® (LABELED AS “Y”

AND “N,” RESPECTIVELY) IN THE CNN INPUTS

CNN With | mul/div | add/sub | Density
Architecture r® | Factor | Factor Gain
88.16.16.16 LN | 496x | 482x | 102x
6.66x | 6.66x | 1.14x

8-16-8-16-128 528x | 5.17x | 121x

7.00x 7.02x 1.26x
5.97x 5.74x 1.22x
8.61x 8.59x 1.26x
7.23 % 6.88x 1.25%
11.07x 11.02x 1.28%
13.20x 12.01x 1.27x
24.04 x 23.69 % 1.28 %

8-16-16-16-128

8-16-16-32-128

8-16-32-64-128

<lZ|<|Zz|<|Z|<|Z|~<

To have an insight into the effect of the inputs on the
CNN design, we also train the different CNN architectures
by removing r'® from the inputs. In Table IV, the complexity
and density gain of the CNN architectures without providing
r® are shown. In this case, the size of the image input
layer and the filters in Fig. 8 would change to [3 x 9 x 2]
and [3 x 3 x 2], respectively. Deleting r® for the inputs
reduces the CNN architecture complexity, and as a result,
its density gain decreases as well. Due to the increased
complexity of the 2-D BCJR over the 1-D BCJR used in the
1-D PDNP baseline, the complexity of the proposed method
without considering the CNN is around 3.61x (based on the
number of multiplications and divisions) the complexity of the
baseline. Due to this fact, we are not able to achieve the same
complexity as the baseline by changing the CNN architecture.

VII. CONCLUSION

This article presents the combined BCJR-LDPC-CNN archi-
tecture of the turbo-detection system on the single-track and
parallel multi-track HDDs. The ISI/ITI detection and the media
noise estimation are separated, and iterative decoding with
the LDPC channel decoder is implemented. Employing the
CNNs as the media noise estimator in the turbo-detector
makes a probabilistic prediction model that can outperform
PDNP-based detectors. In this work, two CNN interfaces
with the LDPC decoder are investigated for the multi-track
TDMR system. A CNN PR equalizer is presented, which
performs better in comparison with a comparable linear PR
equalizer. All the proposed architectures have significant areal
density gains over the standard 1-D and 2-D PDNP used as
comparison baselines. Also, it is shown that additional areal
density gains can be obtained by performing more iterations
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Small Big
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Fig. 15. Grain Model for three bits and two grains. The left and right grains
are the small and big grains, respectively. The arrows on the top of the grains
represent the locations of the read head when the bits are read.

in the turbo-detection system. The achieved areal density of
3.877 Tb/in? for the TP 15 nm data is among the highest
published figures for magnetic media with grain densities of
11.4 Tg/in?.

APPENDIX
MATHEMATICAL INSIGHTS ON THE WRITE-READ MODEL

To mathematically show the superiority of the DNN media
noise model over the PDNP media noise model, first, we claim
that the media noise n,, is a non-linear function of the
data bits in a typical magnetic recording write—read model.
To argue this, we consider a 1-D version of the four-grain
rectangular model in [27]. In particular, the 1-D track in the
magnetic medium is made up of two types of rectangular
grains, designated as grain “A” and grain “DE” in [27, Fig. 2].
Fig. 15 shows three bits corresponding to two grains. The left
and right grains are the small (type “A”) and big (type “DE”)
grains, respectively. In the grain model, generally, the bits are
small grain-sized, and the large grains have a size of around
2x small grains. The big grains occur with probability p, and
the small ones with probability 1 — p;,. The polarity of the
grains is £1. The last part of the big grain written determines
the polarity of the entire grain since the last part magnetizes
the previous part that is written first. This model is called the
“erasure model,” and the overwritten bits are “erasure bits.”
For instance, the polarity of big grain in Fig. 15 is determined
by u3 that is the last part of this grain. For the small grains,
the polarity is determined based on the corresponding bit.

In the erasure model, a code word, such as ¢, is written
into the magnetic grains. After writing, the true polarity
corresponding to code word ¢ would be u,. However, due to
the grain-bit interactions in big grains, the erasure bits would
equal to u,, which are not necessarily equal to w,. For the
erasure model, we use u, instead of u in (2). Also, we consider
n.(k) as a part of media noise in (2) since the term n,, (k) is
the dominant term of the noise. For the erasure model, the
equalizer output can be written as follows:

y = hxu,. (12)

Therefore, to obtain the media noise for the kth trellis stage
in erasure model, we derive the following equations:

nm(k) = y(k) — (h*u,)(k) (13a)
= (h*xu,)(k) — (hxu)(k) (13b)
= (h* (u, —w))(k). (13¢)
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Now, with a counterexample, we show that the media noise
is a non-linear function of the input data bits. We assume
a general PR target h for the system. The PR target is some
impulse response function that can be completely arbitrary for
the current discussion. Let us suppose that the two code words
¢; =[1,0,1] and ¢, = [0, 1, 1] are written to the magnetic
grains in Fig. 15. The true corresponding polarities for the
first and second code words are w,; = [1,—1, 1] and u,;», =
[—1, 1, 1], respectively. Based on the erasure model in Fig. 15,
the erasure bits associated with the first and second code words
are u,; = [1,1,1] and w,», = [—1,1,1]. From (13c), the
media noises for the code words are n,,; = h * [0, 2, 0] and
n, » = hx[0, 0, 0]. Therefore, the superposition of the media
noise for ¢; and ¢, is equal to m, ; +n,, =h=*[0,2,0].
To show the non-linearity of the system, we consider the
superposition of the code words, ¢; and ¢;, under the GF(2)
field, that is, the code word ¢, = [1, 1, 0]. The true polarities
and the erasure bits of ¢, would be u,; = [1,1,—1] and
u.; = [1,—1, —1]. Thus, the corresponding media noise of
¢, is equal to n,, s = h % [0, —2, 0]. To have a linear system,
the equation mn, s = N, + 0,2 should be true. The only
impulse response that satisfies this equation is h = 0; however,
this impulse response is not true generally. Hence, we have a
contradiction here, and we can conclude that the system in
1DMR case is non-linear.

Even if we assume that the write process is completely
linear over the real line R, and we take the GF(2) binary
addition out of the picture, we claim that our grain channel is
still non-linear. Now, we make the assumption that we start at
the write fields where we have already done the level shifting,
and we assume that the writer is linear. We assume that the
grains can store magnetization equal to any finite real number.
Here, we provide a counterexample to prove our claim. As in
the previous counterexample, we suppose a general target h for
the system. After level shifting, let us consider two code word
polarities: w,; = [1, 1, 1] and uw;» = [1, 1, —1]. Thus, the first
and second corresponding erasure bits will be u,; = [1, 1, 1]
and u,» = [1, —1, —1] according to the erasure model. The
media noises for the first and second code words are equal
to n,; = h*[0,0,0] and n,,» = h *[0,—2,0] based on
(13c). In this case, the superposition of these two media noise
values equals n,, 1 +n,, > = h=x[0, =2, 0]. Now, to argue that
the system is non-linear, we find that the superposition of u; ;
and w,» is equal to u, ; = [2, 2, 0]. Therefore, the associated
erasure bits will be u, ; = [2, 2, 2] since writing a 0 on the last
half of the big grain will not affect its magnetization. Hence,
the corresponding media noise is n,, s = h* [0, 0, 2], which
is not equal to n,, ; +n,, > = h*[0, —2, 0]. By this argument,
we showed that, even under a linear writer assumption, the
channel still is non-linear due to the grain—bit interactions.

The AR media noise model of PDNP is based on (1). For
the kth trellis stage, the optimal (in the MMSE sense) AR
coefficients a; are unknown, and we can find them for the
coded bit pattern vector W = [UgiA, ..., Uk, .., Uk—(1+L)]
from the statistics of ng(w). We multiply both sides of (1)
by n(u) £ [n;_; (), ng_(n), ..., n_z (u)] and then take the
expectation. Since ex(u) is statistically independent of ny (u),
we can say that E[ex(u)ng(u)] = 0; therefore, by simplifying,
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Square bit cells

Fig. 16. Generated Voronoi grains (outlined in solid red) for 3 x 3 channel
coded bits (indicated by black dotted lines), with approximately one coded
bit per grain. The “+” and “*” indicate the grain nuclei and centroids,
respectively. The grain-bit interactions are represented as the portions of
central coded bit U affected by vertically and horizontally adjacent bits: B
(orange), C (green), and D (blue).

@ Current State
O Current Inputs

Fig. 17. State-input block for the 2-D trellis-based detector with seven state
bits per track on three tracks.

we have

a)” = Elng(wn()]R™" (w) (14)

where a(u) = [a;(u),ax(u),...,a;(u)] and R"'(u) =
E[n@)n(u)’]~" [3]. In (14), the cross correlation between
the media noise and the past media noise, E[ni(u)n(u)],
is quadratic in terms of the data bits u. The auto-correlation
matrix R is also quadratic in the data bits; therefore, by mul-
tiplying these terms in (14), the AR coefficients, a(u), are
quartic functions of the data bits at best.

As we argued, the magnetic media noise itself is a non-linear
function of the data bits u. A DNN can model media noise of
any order of the input data bits, not restricted to quartic order.
Also, because of the hidden layers in the DNN, it is a universal
function estimator of the media noise [28]. In [29], it is shown
that the networks with enough convolutional layers using
ReLU activation functions are universal function estimators
as well. Due to these superiorities, the DNN model is more
general and accurate than the AR model.

The non-linearity of the system is due to the grain—bit inter-
actions that we have discussed for IDMR in Fig. 15. Grain-bit
interactions also occur in TDMR. Fig. 16 shows a simplified
model for TDMR grain-bit interactions, where a more realistic
Voronoi grain model is assumed [22]. By generalizing the 1-D
system to a 2-D system, we can argue (as we have in the
previous paragraph for IDMR) that the 2-D system is non-
linear, and the media noise is a non-linear function of the data
bits for TDMR as well.

The trellis-based detection algorithms suffer from the state
explosion problem. The 1-D PDNP with two passes uses
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seven state bits per track in the baseline; thus, it has 27 =
128 states. Generalizing the trellis-based detection system to
2-D with the same number of state bits per track results in
an impractically large number of states. Fig. 17 shows the
state-input block for seven state bits per track on three tracks.
In this case, the number of states would be 23*7 > 2 million
states. To avoid this problem, the proposed BCJR-LDPC-CNN
method employs a 2-D BCJR with two state bits per track,
which has 2°*? = 64 states. By utilizing 2-D BCJR with
a lower number of state bits per track, the complexity of
the method reduces dramatically. However, the complexity of
2-D BCJR with 64 states is still higher than the 1-D PDNP
baseline. Due to this fact, the complexity of the proposed
system without considering the CNN complexity is around
3.61x the baseline system’s complexity. This is the reason
why the detector architectures in Section VI-D could not
achieve the same complexity as the baseline.
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