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a b s t r a c t

This work is concerned with optimal designs for multivariate regression of responses
of mixed variable types (continuous and binary) on quantitative and qualitative factors.
New complete class results with respect to the Loewner ordering, and relevant Cheby-
shev systems are derived to identify a small class of designs, within which locally optimal
designs can be found for a group of models and optimality criteria. The complete class
results facilitate the search of optimal designs via some general-purpose optimization
techniques. Extensions of some previous results for characterizing optimal designs are
also provided.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Experiments involving two or more response variables are ubiquitous. For cases with only continuous responses,
ptimal designs for multivariate regression models are developed in several previous works; see, e.g., [19,24,35], and
hapter 5 of [11]. These designs allow experimenters to collect informative data for making precise and valid statistical
nferences; they also can serve as benchmarks for evaluating the quality of the designs selected by the experimenter.
owever, there exist many cases where some of the multivariate responses are continuous, whereas the others are, say,
ategorical. Examples of this sort, and some multivariate data analysis methods to jointly analyze responses of mixed
ariable types can be found in, e.g., [32] and [6]. For such a situation, the optimal designs developed in the previously
entioned studies can be inappropriate, and the identification of new optimal designs is needed.
This work is concerned with optimal designs for multivariate regression analysis of responses of mixed variable types.

or convenience, we refer to such multivariate responses as mixed responses, and a corresponding model is termed as
mixed responses model. Two common likelihood-based approaches for building mixed responses models include the

atent variable methods and factorization methods [5,32]. The former approach assumes that the categorical responses
re induced from some continuous, unobserved latent variables. With this approach, Fedorov et al. [12] obtained optimal
esigns for models where the binary response (z) is assumed to be a dichotomization of a continuous latent variable
hose joint distribution with the continuous response (y) is a bivariate normal distribution. For the factorization method,
he joint distribution of y and z is expressed as f (y, z) = fz(z)fy|z(y|z) for specific marginal distribution fz(z) and conditional
istribution fy|z(y|z) [5,7,14]. Recently, Kim and Kao [23] proposed some optimal designs for a mixed responses regression
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odel that is built based on the factorization method. The obtained optimal designs determine the optimal set of distinct
alues of a continuous covariate (x) (e.g., dose levels in a dose–response study), and the frequency of occurrences of each

x-value in the experiment.
Following this research direction, we develop some optimal design results for mixed responses regression models

under the factorization approach. For clarity, we put our focus on cases with one continuous response and one binary
response. But in contrast to the previous study, we allow our models to include both quantitative and qualitative factors;
the qualitative factors divide experimental subjects into homogeneous subject groups. In addition, our results can be
applied to a larger collection of models than that of [23]. These models, which include some popularly used ones, may
or may not assume common parameters across submodels (to be defined in Section 2), and/or across subject groups. The
main tool that we adapt to facilitate the identification of optimal designs is the complete class approach by Yang and
Stufken [34]. Roughly speaking, this approach gives a small class of designs within which an optimal design can be found.
It often greatly reduces the number of decision variables in the optimization problem to allow or facilitate the use of
some well-developed optimization techniques such as those considered in [16] and [25].

The previously mentioned complete class approach of [34] is with respect to the Loewner ordering, and can thus be
considered for most commonly used optimality criteria. In addition to obtaining a core of the information matrix (see Def-
inition 1), a key ingredient of this approach is to identify vectors of functions that form a Chebyshev system (Definition 2).
Numerous previous works provide Chebyshev systems useful for deriving optimal designs; e.g., [10,11,17,18,29,33,34,36].
Here, we add to this literature by presenting some additional Chebyshev systems that can be used to derive complete
classes for mixed responses models. The result can also be applied in other settings where the elements of the information
matrix or its core lie within the space spanned by the Chebyshev systems (Theorem 3). We also provide useful extensions
of previous results to give insights into some properties of optimal designs. Optimal designs are then identified by using
a well-developed computational approach. We note that optimal designs in the current setting depend on some model
parameters, possibly including error variances. To address this issue, we work on locally optimal designs [4] that are
optimal for given parameter values; see, e.g., [15] for the usefulness of locally optimal designs. We also follow previous
design works to consider the approximate design approach in the sense of Kiefer [22]; i.e., the relative frequency of
appearances of a design point can be any real value between 0 and 1. A rounding of the obtained approximate design
may then be considered to obtain an exact design for a given sample size; e.g., [28].

In Section 2, we introduce our mixed responses models. Our developed Chebyshev systems, complete classes, and
related results can be found in Section 3. Some optimal designs are provided in Section 4, and a conclusion is in Section 5.
Proofs for some results are deferred to the Appendix.

2. Model, information matrix, and optimality criterion

Let Y (ℓ, x) and Z(ℓ, x) be respectively the continuous and binary response variables of an experimental subject in the
ℓ-th subject group with a continuous covariate X = x ∈ [Aℓ, Bℓ] ⊂ R; ℓ ∈ {1, . . . , L}. Here, the subject groups are formed
by two or more qualitative factors (and/or categorizations of some continuous variables). We consider mixed responses
models of the following form:

Y (ℓ, x) | Z(ℓ, x) = z ∼ N (µz,ℓ(x), σ 2
z ), Pr{Z(ℓ, x) = z} = P{cℓ(x)}z[1 − P{cℓ(x)}]1−z, z ∈ {0, 1}, (1)

µ0,ℓ(x) = f⊤
∗
(x)β∗ + f⊤0 (x)β0 + h⊤

∗,ℓ(x)γ∗,ℓ + h⊤

0,ℓ(x)γ0,ℓ, µ1,ℓ(x) = f⊤
∗
(x)β∗ + f⊤1 (x)β1 + h⊤

∗,ℓ(x)γ∗,ℓ + h⊤

1,ℓ(x)γ1,ℓ,

cℓ(x) = f⊤2 (x)β2 + h⊤

2,ℓ(x)γ2,ℓ.

Model (1) has three submodels, including the two conditional models for Y (ℓ, x) | Z(ℓ, x) = 0 and Y (ℓ, x) | Z(ℓ, x) = 1,
respectively, and the marginal model for Z(ℓ, x). The vectors f∗(x), h∗,ℓ(x), fs(x), and hs,ℓ(x) for s ∈ {0, 1, 2} consist of given
functions of x; βs ∈ Rms is the vector of unknown coefficients of fs(x) for the common terms across the L subject groups;
γ s,ℓ ∈ Rms,ℓ is the unknown parameter vector for the effect of the subject group and/or its interaction with x; β∗ ∈ Rm∗

plays a similar role as βs, and γ∗,ℓ ∈ Rm∗,ℓ has a similar definition as γ s,ℓ, but they allow common terms across the first
two submodels (i.e., the two conditional models). For these two submodels, σ 2

0 and σ 2
1 represent the error variances.

P(·) in the third submodel of (1) represents some differentiable cumulative distribution function. For convenience, we
write f∗ as the set of all elements in the vector f∗(x). Similarly, fs, h∗,ℓ, and hs,ℓ represent the sets of elements of the
orresponding vectors in (1). For model (1), we also assume that f∗, fs, h∗,ℓ, and hs,ℓ are mutually disjoint sets for each
iven (s, ℓ); s ∈ {0, 1, 2}, ℓ ∈ {1, . . . , L}. It is not uncommon that h∗,ℓ and hs,ℓ do not vary with ℓ and/or s, but our model
ormulation also allow situations when they do.

xample 1. For a breast cancer study, the following mixed responses model is considered in [1]:

Y | Z = z ∼

{
N (β0,0 + β∗,1x + β∗,2x2, σ 2), z = 0,
N (β1,0 + β∗,1x + β∗,2x2, σ 2), z = 1,

Pr(Z = 1) =
1

1 + exp(β2,0 + β2,1x)
.

2
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H
ere, x is the dose of a treatment, Y is the continuous efficacy response, and Z is the presence of an important adverse
effect. For this model, we set L = 1, f∗ = {x, x2}, β∗ = (β∗,1, β∗,2)⊤, f0 = f1 = {1}, c1(x) = f2(x)⊤β2 = β2,0 + β2,1x,
σ 2
0 = σ 2

1 = σ 2, and the remaining terms for E(Z) and E(Y |Z) in (1) are zero, i.e., h∗,ℓ = hs,ℓ = {∅}. Model (1) thus includes
this example as a special case, and it also accommodates cases having qualitative factors such as gender, race, treatment
groups, etc.

With (1), the joint probability function f (y, z) for the mixed responses can be obtained by the factorization f (y, z) =

fz(z)fy|z(y|z). For a single subject, we then have the following elemental Fisher information matrix of the parameter
vector θ = (β⊤, γ⊤

1 , . . . , γ
⊤

L )
⊤; see also [14,23]. Here, β = (β⊤

∗
,β⊤

0 ,β
⊤

1 ,β
⊤

2 )
⊤, γ⊤

ℓ = (γ⊤

∗,ℓ, γ
⊤

0,ℓ, γ
⊤

1,ℓ, γ
⊤

2,ℓ)
⊤

∈ Rm·,ℓ ,
m·,ℓ = m∗,ℓ +

∑2
s=0 ms,ℓ, and to save space, we write m(a : b) = m·,a + · · · + m·,b.

M(θ; ℓ, x) =

2∑
s=0

Γs{cℓ(x)}gs,ℓ(x)g⊤

s,ℓ(x), Γ0(c) =
1 − P(c)
σ 2
0

, Γ1(c) =
P(c)
σ 2
1
, Γ2(c) =

{P ′(c)}2

P(c) − P2(c)
, (2)

g0,ℓ(x) = (f⊤
∗
(x), f⊤0 (x), 0

⊤

m1+m2+m(1:ℓ−1),h
⊤

∗,ℓ(x),h
⊤

0,ℓ(x), 0
⊤

m2,ℓ+m(ℓ+1:L))
⊤,

g1,ℓ(x) = (f⊤
∗
(x), 0⊤

m0
, f⊤1 (x), 0

⊤

m2+m(1:ℓ−1),h
⊤

∗,ℓ(x), 0
⊤

m0,ℓ
,h⊤

1,ℓ(x), 0
⊤

m2,ℓ+m(ℓ+1:L))
⊤,

g2,ℓ(x) = (0⊤

m∗+m0+m1
, f⊤2 (x), 0

⊤

m(1:ℓ−1)+m∗,ℓ+m0,ℓ+m1,ℓ
,h⊤

2,ℓ(x), 0
⊤

m(ℓ+1:L))
⊤.

P ′(c) is the first derivative of P(c) with respect to c , 0a is the vector of a zeros; and all the remaining terms are as in (1).
We note that this information matrix depends on the unknown parameters in the third submodel of (1) through cℓ(x). It
also involves the error variances σ 2

0 , and σ
2
1 , but is free of the parameters in µ0,ℓ(x) and µ1,ℓ(x). Our aim is at an optimal

design allowing the most precise inference of θ. We consider approximate designs of the following form:

ξ =

{
(1, x1,1) · · · (1, x1,n1 ) (2, x2,1) · · · (L, xL,nL )
w1,1 · · · w1,n1 w2,1 · · · wL,nL

}
. (3)

For each ℓ, the (ℓ, xℓ,j)’s in (3) are the nℓ distinct x-values to appear in the ℓ-th subject group;wℓ,j represents the proportion
of appearances of (ℓ, xℓ,j); i.e., the proportion of ℓth-group subjects having X = xℓ,j, j ∈ {1, . . . , nℓ}, ℓ ∈ {1, . . . , L}. Note
that the Carathéodory theorem allows us to assume that nℓ is finite; see also Section 3. Following Kiefer [22], a design
ξ is viewed as a probability measure, (ℓ, xℓ,j) is a support point, and ξ (ℓ, xℓ,j) = wℓ,j is the corresponding weight; wℓ,j
can be any real number between 0 and 1, but

∑
ℓ,jwℓ,j = 1. It is useful to factorize a design as ξ (ℓ, xℓ,j) = η(ℓ)τℓ(xℓ,j),

and write wℓ,j = wℓwj|ℓ. We refer to η as the marginal design determining the marginal weight, η(ℓ) = wℓ =
∑nℓ

j=1wℓ,j,
for each subject group. For given ℓ, τℓ is referred to as the conditional design for X within the ℓ-th group; and τℓ(xℓ,j) =

wj|ℓ = wℓ,j/wℓ. For convenience, we also write the (joint) design as ξ = η × {τℓ}, and note that, in contrast to [35], the
conditional design τℓ is allowed to vary across subject groups.

With a design ξ of (3), the information matrix for θ is:

M(θ; ξ ) =

L∑
ℓ=1

η(ℓ)
∫ Bℓ

Aℓ
M(θ; ℓ, x) dτℓ(x). (4)

We say that a design ξ1 is at least as informative (about θ) as another design ξ2 if M(θ; ξ1) − M(θ; ξ2) is nonnegative
definite, which is also written as M(θ; ξ1) ≥L M(θ; ξ2), or simply ξ1 ≥L ξ2, with ≥L denoting the Loewner ordering.
This implies that ξ1 is no worse than ξ2 under commonly used real-valued, Loewner-isotonic optimality criteria φ;
i.e., M(θ; ξ1) ≥L M(θ; ξ2) ⇒ φ{M(θ; ξ1)} ≥ φ{M(θ; ξ2)} [2]. Such optimality criteria include the popularly considered
family of φp-criteria with p ∈ [−∞, 1] [22,26]:

φp(Mζ ) =

{
1
m

trace(Mp
ζ )

}1/p

, (5)

where ζ denotes the design being evaluated and Mζ is the corresponding m-by-m information matrix of interest. The
φ−1-criterion is also known as the A-optimality criterion that aims at minimizing the average (asymptotic) variance of
parameter estimates. With p = 0 (or more precisely, p → 0; see [22]), we have the D-criterion, φ0 = det(Mζ )1/m; the
D-criterion is directly linked to the volume of the (asymptotic) confidence ellipsoid of the parameters of interest. The
other limiting case is p = −∞; φ−∞ corresponds to the minimum eigenvalue of Mζ , and is also known as the E-criterion.
The φ1-criterion is sometimes called a T - or a trace criterion. As an exception of the φp family, a feasible φ1-optimal design
that allows estimable parameters might not exist; see a discussion in Sec. 6.5 of [27]. In this work, we assume situations
where feasible optimal designs exist; the existence of such designs is established in Theorem 7.13 of [27] for φp with
p ∈ [−∞, 1). In addition, we focus only on designs allowing nonsingular information matrices, and refer to such designs
as nonsingular designs.

Kim and Kao [23] provided some A- and D-optimal designs for a mixed responses model having no group effects. Their
model and optimal design results can be viewed as a special case of ours (e.g., by setting L = 1). With the more general
3
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odel formulation in (1), we discuss two situations where (i) there is no common parameter across subject groups; and (ii)
here are some common parameters across groups. For both situations, there might or might not be common parameters
β∗ and/or γ∗,ℓ) between µ0,ℓ(x) and µ1,ℓ(x).

. Optimal design and complete class results

.1. Models with no common parameter across groups

With model (1), a rather flexible setting is by allowing each group to have its own mean parameters without assuming a
ommon term across groups. This corresponds to the case where f∗ = fs = {∅} for s ∈ {0, 1, 2}. The parameters of interest
re reduced to γ = (γ⊤

1 , . . . , γ
⊤

L )
⊤ whose information matrix under the design ξ = η × {τℓ} becomes:

M(γ; ξ ) = ⊕
L
ℓ=1η(ℓ)M(γℓ; τℓ), M(γℓ; τℓ) =

∫ Bℓ

Aℓ

2∑
s=0

Γs{cℓ(x)}h̄s,ℓ(x)h̄⊤

s,ℓ(x) dτℓ(x), (6)

h̄0,ℓ(x) = (h⊤

∗,ℓ(x),h
⊤

0,ℓ(x), 0
⊤

m1,ℓ+m2,ℓ
)⊤, h̄1,ℓ(x) = (h⊤

∗,ℓ(x), 0
⊤

m0,ℓ
,h⊤

1,ℓ(x), 0
⊤

m2,ℓ
)⊤, h̄2,ℓ(x) = (0⊤

m∗,ℓ+m0,ℓ+m1,ℓ
,h⊤

2,ℓ(x))
⊤.

ere, ⊕ is the matrix direct sum, and we refer to M(γℓ; τℓ) as the information matrix for γℓ of group ℓ under the
onditional design τℓ; the remaining terms in (6) are as in (2). It then follows that M(γ; ξ ) is nonsingular if and only
f η(ℓ)M(γℓ; τℓ) is nonsingular for all ℓ. In addition, the φp-optimal design for γ can be obtained from the φp-optimal
onditional design for each γℓ as stated below; see also [8,30].

heorem 1. For given marginal design η with η(ℓ) > 0 ∀ℓ, a design ξη = η× {τ ∗

ℓ } is φp-optimal if the conditional design τ ∗

ℓ

aximizes φp{M(γℓ; τℓ)} for all ℓ ∈ {1, . . . , L}.

Theorem 1 follows from the block-diagonal structure of the information matrix, and its proof is provided in the
Appendix. To identify optimal τℓ, it often is useful to find an upper bound for the number of support points nℓ; see [16,25].
he well-known Carathéodory theorem implies that any given τℓ can be represented by a discrete measure having
ℓ ≤ m·,ℓ(m·,ℓ+1)/2+1 support points [25]. With the special structure of M(γℓ; τℓ), the same theory gives the following
harper bound for nℓ by eliminating from the information matrix the replicated elements, and those that do not vary with
esigns. The proof of this result is omitted.

heorem 2. For any information matrix M of γℓ, there exists a design τℓ having nℓ support points such that M = M(γℓ; τℓ),
here

nℓ ≤ m∗,ℓ

(
m∗,ℓ + 1

2
+ m0,ℓ + m1,ℓ

)
+

2∑
s=0

ms,ℓ(ms,ℓ + 1)
2

+ 1.

An even sharper bound for nℓ may sometimes be achieved. To give such a sharper bound, we adapt here the complete
lass approach of Yang and Stufken [34] to identify a class of designs, called a complete class, Tℓ, so that for any given
ℓ, we can find at least one corresponding τ̃ℓ ∈ Tℓ with τ̃ℓ ≥L τℓ (see also [21]). An optimal design can thus be found
ithin Tℓ. To introduce this approach, we first define a ‘core’ of the information matrix, and the Chebyshev system [20].
ere, we use a slightly more general notation to let Mζ be the m-by-m information matrix of interest, and the competing
esigns ζ have

∫ D
C dζ (c) = 1.

efinition 1. Let Mζ be the information matrix under design ζ . We call C(c) a core of Mζ if ∃ a nonsingular P that does
ot depend on designs such that

Mζ = P
{∫ D

C
C(c) dζ (c)

}
P⊤.

efinition 2. A vector of continuous real functions ψ(c) = (ψ1(c), . . . , ψK (c))⊤ on [C,D] is a Chebyshev system if
et{((ψk(cj)))k,j∈{1,...,K }} > 0 for all C ≤ c1 < · · · < cK ≤ D. Here, ((ψk(cj)))k,j∈{1,...,K } represents the K -by-K matrix whose
k, j)th element is ψk(cj).

The complete class approach of [34] was developed by considering models with univariate response. Following the
ame idea, we describe in the next theorem an approach that can also be applied to other situations including the present
esign problem. A proof that is built upon the results of [34] can be found in the Appendix.

heorem 3. Suppose ψ(c) = (ψ0(c) ≡ 1, ψ1(c), . . . , ψK−1(c))⊤ is a Chebyshev system on [C,D] such that, for a positive
nteger ν < m, every element in the first ν rows of a core C(c) for Mζ is a linear combination of ψk(c)’s. Suppose in addition
hat, for all a ̸= 0, (A) (ψ⊤(c), ψa

K (c) ≡ a⊤C22(c)a)⊤ is a Chebyshev system, or (B) (ψ⊤(c),−ψa
K (c))

⊤ is a Chebyshev system,
here C (c) is the (m − ν)-by-(m − ν), lower-right submatrix of C(c). We have the following:
22

4
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(i) If K is odd and (A) holds, designs having at most (K + 1)/2 support points, including D, form a complete class;
(ii) If K is odd and (B) holds, then designs having at most (K + 1)/2 support points, including C, form a complete class;
(iii) If K is even and (A) holds, then designs having at most K/2+ 1 support points, including C and D, form a complete class;
(iv) If K is even and (B) holds, then designs having at most K/2 support points form a complete class.

It is noteworthy that the condition in Theorem 3 is slightly weaker than Theorem 1 of [34]. In particular, the elements of
ψ do not need to be in C; and even when they do, ψ\{ψ0} might not be a maximal set of linearly independent nonconstant
functions in the first ν rows of C (see, e.g., [23,29]). It also is easily seen that the theorem still holds by replacing C22(c)
in ψa

K (c) with a matrix that (after some simultaneous row and column permutations) has C22(c) as a leading principal
submatrix. Moreover, since M1 ≥L M2 ⇒ P̃M1P̃⊤

≥L P̃M2P̃⊤, we have the following corollary, which also helps in
identifying some complete classes of our current setting.

Corollary 1. Let the information matrix of interest be M̃ζ = P̃Mζ P̃⊤, where P̃ is some (not necessary square) matrix that does
ot depend on the design. Suppose that the Chebyshev systems described in Theorem 3 exist for Mζ . Then, Theorem 3 (i)–(iv)
till hold for M̃ζ .

A key ingredient of this complete class approach is to find relevant Chebyshev systems. Here, we provide some
hebyshev systems useful for finding τ ∗

ℓ = argmaxτℓ φ{M(γℓ; τℓ)}.

heorem 4. Let α(c) = ec/(ec + 1) for c ∈ [C,D]. The following vectors of functions form Chebyshev systems:

(i) (1, α(c)2, α(c)2c, α(c), α(c)c, c)⊤;
(ii) (1, α(c)2, α(c)2c, α(c), α(c)c, c, a⊤Λ(c)a)⊤ with Λ(c) = diag{α(c)c2, c2 − α(c)c2, α(c)c2 − α(c)2c2} for any a =

(a1, a2, a3)⊤ ̸= 0;
(iii) (1, α(c)2, α(c)2c, α(c)2c2, α(c)2c3, α(c), α(c)c, α(c)c2, α(c)c3, c, c2, c3)⊤;
(iv) (1, α(c)2, α(c)2c, α(c)2c2, α(c)2c3, α(c), α(c)c, α(c)c2, α(c)c3, c, c2, c3, a⊤Λ(c)a)⊤ with Λ(c) = diag{α(c)c4, c4 −

α(c)c4} for any a = (a1, a2)⊤ ̸= 0;
(v) (1, α(c)2, α(c)2c, α(c)2c2,−α(c),−α(c)c,−α(c)c2, c, c2, c3)⊤;
(vi) (1, α(c)2, α(c)2c, α(c)2c2,−α(c),−α(c)c,−α(c)c2, c, c2, c3, c4)⊤.

A proof of Theorem 4 can be found in the Appendix. We note that other Chebyshev systems can also be formed by
he next result.

heorem 5. Suppose ψA(c) = Aψ(c) with det(A) > 0. Then, ψA(c) is a Chebyshev system if and only if ψ(c) is a Chebyshev
ystem.

roof. Let ψA
k and ψk denote the elements of ψA and ψ, respectively; k ∈ {1, . . . , K }. We have ψA

k (c) =
∑

j ak,jψj(c) with
k,j’s being the elements of A, and for C ≤ c1 < · · · < cK ≤ D,

det{((ψA
k (cj)))k,j∈{1,...,K }} = det(A)det{((ψk(cj)))k,j∈{1,...,K }}.

ith Definition 2, we have that if ψ(c) is a Chebyshev system then so is ψA(c). The converse follows by observing that
(c) = A−1ψA(c). □

We are ready to give complete class results for finding optimal τℓ under some mixed responses models. Here, we
ollow previous works, e.g., [1], to assume a commonly used logistic regression for the binary response Z . We note that
ur complete class results not only contain that of [23] as a special case, but also cover other cases, including the widely
sed quadratic regression for E(Y |Z = z) (e.g., [1,29]). Recall that f∗ = fs = {∅} for s ∈ {0, 1, 2} in this subsection.

heorem 6. For given ℓ, consider the information matrix for γℓ in (6), where P(·) is either α(·) defined in Theorem 5 or
− α(·), and cℓ(x) = γ0,2,ℓ + γ1,2,ℓx; x ∈ [Aℓ, Bℓ]. We have the following results:

(i) Suppose h∗,ℓ ∪ hz,ℓ = {1, x} for z ∈ {0, 1}. Then, designs with at most 4 support points, including Aℓ and Bℓ form a
complete class;

(ii) Suppose h∗,ℓ ∪ hz,ℓ = {1, x, x2} for z ∈ {0, 1}. Then, designs with at most 7 support points, including Aℓ and Bℓ form a
complete class.

roof. Let c = γ0,2,ℓ + γ1,2,ℓx ∈ [Cℓ,Dℓ]. For appropriate matrices P̃, and P = (⊕2
s=0Ps/σs)Q⊤ with σ2 = 1 and Q being

ome permutation matrix, the information matrix for γℓ can be written as (with a slight abuse of notation)

M(γℓ; τℓ) = P̃P
{∫ Dℓ

C(c) dτℓ(c)
}
P⊤P̃⊤,
Cℓ

5
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here C(c) = Q[⊕
2
s=0Γ̃s(c)h̃s,ℓ(c)h̃⊤

s,ℓ(c)]Q
⊤, Γ̃0(c) = 1− P(c), Γ̃1(c) = P(c), and Γ̃2(c) = P(c){1− P(c)}, h̃0,ℓ(c) and h̃1,ℓ(c)

are (1, c)⊤ for (i), and are (1, c, c2)⊤ for (ii), and h̃2,ℓ(c) = (1, c)⊤. For (ii), we can set

P0 = P1 =

⎛⎜⎜⎝
1 0 0

−
γ0,2,ℓ
γ1,2,ℓ

1
γ1,2,ℓ

0

γ 2
0,2,ℓ
γ 2
1,2,ℓ

−
2γ0,2,ℓ
γ 2
1,2,ℓ

1
γ 2
1,2,ℓ

⎞⎟⎟⎠ , P2 =

(
1 0

−
γ0,2,ℓ
γ1,2,ℓ

1
γ1,2,ℓ

)
. (7)

s for (i), the three Ps’s can be set to P2 in (7). We then have P̃ = 1 when h∗,ℓ = {∅}; the corresponding P̃ for other cases
an also be easily determined. For example, when h∗,ℓ = {x2}, and with Ia being the identity matrix of size a × a,

P̃ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 1 0⊤

2

1 0 0 0 0 0 0⊤

2

0 1 0 0 0 0 0⊤

2

0 0 0 1 0 0 0⊤

2

0 0 0 0 1 0 0⊤

2

02 02 02 02 02 02 I2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We then have (i) from Theorems 3, 4(i) and 4(ii) with ν = 3, and (ii) from Theorems 3, 4(iii) and 4(iv) with ν = 6.
In particular, the permutation matrix Q is selected so that the C22 in Theorem 3 is the corresponding Λ matrix in
Theorem 4. □

Theorem 6 includes complete class results for a univariate approach where separate models are fitted to Y (ℓ, x) and
Z(ℓ, x) by ignoring their possible correlation; note that under our mixed responses model, corr{Y (ℓ, x), Z(ℓ, x)} is:

d(x)√
σ 2
0 /P{cℓ(x)} + σ 2

1 /[1 − P{cℓ(x)}] + d(x)2
, d(x) = µ1,ℓ(x) − µ0,ℓ(x).

In particular, the univariate approach corresponds to the case with h0,ℓ = h1,ℓ = {∅}, and σ 2
0 = σ 2

1 . We refer readers
to [32] for situations where the univariate approach gives the same inference results as multivariate approaches that
allow correlated Y and Z . Complete class results for some other mixed responses models having µ0,ℓ(x) ̸= µ1,ℓ(x) are also
provided in Theorem 6. In the next theorem, we further find a smaller complete class than Theorem 6(ii) by focusing on
(i) the univariate approach, and (ii) a model having the same form as in Example 1 with σ 2

0 = σ 2
1 . It is noteworthy that

the information matrix for these two cases does not involve P{cℓ(x)}x3.

Theorem 7. As in Theorem 6(ii), but suppose also that σ 2
0 = σ 2

1 = σ 2, and

(i) h∗,ℓ = {1, x, x2} (i.e., h0,ℓ = h1,ℓ = {∅});
(ii) h∗,ℓ = {x, x2} (i.e., h0,ℓ = h1,ℓ = {1}).

Then, designs with at most 6 support points, including Aℓ and Bℓ form a complete class.

Proof. We provide a proof with (ii) here, and note that the proof with (i) is similar. With some algebra, we can rewrite
the information matrix as:

M(γℓ; τℓ) = P
{∫ Dℓ

Cℓ
C(c) dτℓ(c)

}
P⊤, P =

(
040⊤

2 P∗

P2 020⊤

4

)
,

P∗ =
1
σ

⎛⎜⎜⎜⎜⎝
−
γ0,2,ℓ
γ1,2,ℓ

−
γ0,2,ℓ
γ1,2,ℓ

1
γ1,2,ℓ

0

γ 2
0,2,ℓ
γ 2
1,2,ℓ

γ 2
0,2,ℓ
γ 2
1,2,ℓ

−
2γ0,2,ℓ
γ 2
1,2,ℓ

1
γ 2
1,2,ℓ

1 0 0 0
0 1 0 0

⎞⎟⎟⎟⎟⎠ .

P2 is as in (7), C(c) = [P(c){1 − P(c)}(1, c)⊤(1, c)] ⊕ C0(c), and

C0(c) =

⎛⎜⎝ 1 − P(c) 0 {1 − P(c)}c {1 − P(c)}c2

0 P(c) P(c)c P(c)c2

{1 − P(c)}c P(c)c c2 c3

{1 − P(c)}c2 P(c)c2 c3 c4

⎞⎟⎠ .

ur claim then follows from Theorems 3, 4(v), and 4(vi) with ν = 5. □
6
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For given optimality criterion φ, we can then search for a φ-optimal design within the derived complete classes. In their
Theorem 2.5, Hu et al. [17] provided some sufficient conditions for the uniqueness of the optimal design. They require
the size of the support of designs to be at least the size of the information matrix of interest. This result thus cannot
be directly applied to our study. Note that the optimal designs in our setting can have a support size smaller than the
number of parameters of interest. Nevertheless, with a slight modification of their proof, the result essentially gives the
next theorem with wider applications, including some of our cases. We defer our modified proof to the Appendix.

Theorem 8. Suppose the condition in Theorem 3 holds, and the set {1, ψ1,1, . . . , ψν,m} has exactly K linearly independent
lements, where ψi,j is the (i, j)th element of the core C. Then for p ∈ (−∞, 1), the nonsingular φp-optimal design is unique.

Clearly, our complete class results for the inference of γℓ, ℓ ∈ {1, . . . , L}, can directly be applied to cases with no
qualitative factor (or with L = 1 subject group). When L > 1 and the experimenter has control on the marginal weights
wℓ’s of the subject groups, the optimal marginal design η∗ under the φp-optimality criteria can be found using the next
theorem. The result can be proved following the same arguments as for Theorem 7.1 of [30]; see also Theorem 1 of [8].
The proof is omitted. We note that, to maximize the φ1-criterion, one may set η∗(ℓ) = 1 for the ℓth group that has
ax trace{M(γℓ; τℓ)}. But this design gives a singular information matrix; see also Section 2 for a discussion on this
riterion. It also is noteworthy that when both η and τℓ are controllable, ξ ∗

= η∗
× {τ ∗

ℓ } is φp-optimal for p ∈ [−∞, 1) if
nd only if η∗ satisfies (8) and τ ∗

ℓ is φp-optimal [30].

heorem 9. For given τℓ allowing nonsingular M(γℓ; τℓ), ℓ ∈ {1, . . . , L}, the design ξ = η∗
× {τℓ} is φp-optimal for

∈ [−∞, 1) if and only if the marginal design η∗ satisfies the following:

η∗(ℓ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[trace{Mp(γℓ;τℓ)}]
1/(1−p)∑L

j=1[trace{Mp(γ j;τj)}]1/(1−p) , p ̸= −∞, 0,

m.,ℓ∑L
j=1 m.,j

, p = 0,

λ−1
1 {M(γℓ;τℓ)}∑L

j=1 λ
−1
1 {M(γ j;τj)}

, p = −∞,

(8)

where λ1(M) is the smallest eigenvalue of M.

3.2. Models with common parameters across groups

We now include situations where some common parameters can be assumed across groups; i.e., ∪2
s=0fs(x) ∪ f∗ ̸= {∅}

in (1); but, we exclude cases with ∪s,ℓhs,ℓ(x) ∪ h∗ = {∅} since they reduce to models with L = 1, and the results in the
previous subsection can be applied. In line with [13,31], we extend Theorem 6 to obtain complete class for the joint
design ξ .

Theorem 10. Consider model (1) with P(·) being either α(·) or 1 − α(·) defined in Theorem 5, and f2 ∪ h2,ℓ = {1, x} for
ℓ ∈ {1, . . . , L}. With the information matrix of θ in (4), we have the following results:

(i) Suppose f∗ ∪ fz ∪ h∗,ℓ ∪ hz,ℓ = {1, x} for z ∈ {0, 1}. Then, designs with at most 4L support points, including A1, . . . , AL,
and B1, . . . , BL form a complete class;

(ii) Suppose f∗ ∪ fz ∪h∗,ℓ∪hz,ℓ = {1, x, x2} for z ∈ {0, 1}. Then, designs with at most 7L support points, including A1, . . . , AL,
and B1, . . . , BL form a complete class.

Proof. With appropriate matrices P̃ℓ and Pℓ that do not depend on the joint design ξ , the information matrix of θ can
be written as

M(θ; ξ ) =

L∑
ℓ=1

η(ℓ)M(τℓ); M(τℓ) = P̃ℓPℓ
{∫ Dℓ

Cℓ
C(c) dτℓ(c)

}
P⊤

ℓ P̃
⊤

ℓ ,

where [Cℓ,Dℓ] is the range of cℓ(x), and C(c) is as in the proof of Theorem 6. With the same C(c), let Tℓ be the complete
class identified in Theorem 6 (for group ℓ). Corollary 1 then implies that for any given design ξ = η × {τℓ}, we can find
τ̃ℓ ∈ Tℓ such that M(τ̃ℓ) ≥L M(τℓ) for ℓ ∈ {1, . . . , L}, and thus with ξ̃ = η × {τ̃ℓ},

M(θ; ξ̃ ) =

L∑
ℓ=1

η(ℓ)M(τ̃ℓ) ≥L

L∑
ℓ=1

η(ℓ)M(τℓ) = M(θ; ξ ).

Our claim then follows. □

We note that Theorem 10 still holds even when ∪
2
s=0fs(x) ∪ f∗ = {∅}. But for this situation, results in the previous

subsection allow us to separately obtain the optimal conditional design τℓ within the identified complete class Tℓ for each
subject group. The obtained τ ’s can then be combined with the given marginal design η or the optimal one in Theorem 9
ℓ

7
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Table 1
Optimal conditional designs of treatment doses and weights for the two subject groups of different
tumor sizes.
Criterion Group1 Group2

D τ1 =

{
0 29.39 39.08 50
.17 .40 .14 .29

}
τ2 =

{
0 32.21 50
.17 .44 .39

}
A τ1 =

{
0 23.43 48.05
.09 .59 .32

}
τ2 =

{
0 25.93 50
.09 .62 .29

}

to form the optimal joint design ξ = η × {τℓ}. However, when there exist common parameters across groups, we will
eed to simultaneously identify the best support points and their weights for all the L groups.

. Example

We consider a similar setting as in Example 1. But as in [1], we assume two subject groups, e.g., formed by the tumor
ize (small/large). We work on a rather flexible model without assuming common parameters across groups. But for
omparison purposes, we still follow [1] to set h∗,ℓ = {x, x2}. Consequently, µ0,ℓ(x) and µ1,ℓ(x) have the same quadratic
curve with possibly different intercepts. Our model is:

Y (ℓ, x) | Z(ℓ, x) = z ∼

{
N (γ0,0,ℓ + γ∗,1,ℓx + γ∗,2,ℓx2, σ 2), z = 0,
N (γ1,0,ℓ + γ∗,1,ℓx + γ∗,2,ℓx2, σ 2), z = 1,

Pr{Z(ℓ, x) = 1} =
1

1 + exp(γ2,0,ℓ + γ2,1,ℓx)
, ℓ ∈ {1, 2}.

he range of x is [0, 50] mg, (γ2,0,1, γ2,1,1) = (7,−0.2) for ℓ = 1, (γ2,0,2, γ2,1,2) = (7,−0.18) for ℓ = 2, and
2

= 0.05. We apply Theorem 7(ii) to obtain both D- and A-optimal conditional designs. With our complete class results,
any optimization techniques, such as those in [16,25], can be considered. We choose to use the sequential quadratic
rogramming implemented with the fmincon() function of MATLAB (2016b) by using random initial designs.
Table 1 presents the A- and D-optimal conditional designs for the two groups; [1] also obtained the same D-optimal

esign for group 1. For both groups, m·,ℓ = 6 parameters, and with (8), the D-optimal marginal design has η(ℓ) = 0.5 for
∈ {1, 2}. As for A-criterion, the optimal marginal design for group 1 is

η(1) =

√
trace{M−1(γ1; τ1)}/

2∑
ℓ=1

√
trace{M−1(γℓ; τℓ)} = 0.4962.

5. Conclusion

In this work, we derive some Chebyshev systems for identifying complete classes to facilitate the search of locally
optimal designs under mixed responses models with quantitative and qualitative factors. We discuss cases where there
are common parameters across subject groups and/or across submodels, and cases without assuming common parameters.
Our complete class results give small upper bounds for the number of support points that needs to be considered when
obtaining optimal designs. Some existing optimization techniques can then be directly applied to search over the identified
complete class for optimal designs.
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Appendix

Proof of Theorem 1. We first consider a large class of criteria of the form φf (Mζ ) =
∑m

i=1 f {λi(Mζ )}, where ζ is the
nonsingular design being evaluated, Mζ is the m-by-m information matrix, λi(Mζ ) is the ith smallest eigenvalue of Mζ ,
and f (·) is finite, concave, and nondecreasing on (0,∞). We further assume that, for any positive a and λ, the function
8
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f
 (·) has either (A) f (aλ) = g(a)f (λ) for some g(·) > 0, or (B) f (aλ) = g(a) + f (λ); and Mζ = ⊕
L
ℓ=1aℓMℓ,ζ for some aℓ > 0

and mℓ-by-mℓ matrix Mℓ,ζ with
∑

ℓmℓ = m. Clearly, the eigenvalues of Mζ are aℓλi(Mℓ,ζ )′s. In addition, Mζ is positive
definite if and only if Mℓ,ζ ’s are positive definite for all ℓ ∈ {1, . . . , L}. We also have

φf (Mζ ) =

L∑
ℓ=1

mℓ∑
i=1

f {aℓλi(Mℓ,ζ )} =

{ ∑L
ℓ=1

∑mℓ
i=1 g(aℓ)f {λi(Mℓ,ζ )} =

∑L
ℓ=1 g(aℓ)φf (Mℓ,ζ ), if (A),∑L

ℓ=1
∑mℓ

i=1 g(aℓ) + f {λi(Mℓ,ζ )} =
∑L

ℓ=1{mℓg(aℓ) + φf (Mℓ,ζ )}, if (B).

By setting aℓ to the given η(ℓ), Mℓ,ζ = M(γℓ; τℓ), and Mζ = M(γ ; ξ ), we have that φf {M(γ ; ξ )} is maximized if and only
if φf {M(γℓ; τℓ)} is maximized for all ℓ ∈ {1, . . . , L}. It can also be seen that for p ∈ (−∞, 1], the φp-optimal design can be
obtained by maximizing a corresponding φf with (see also [3]):

f (aλ) =

⎧⎨⎩
(aλ)p = apλp, p ∈ (0, 1],
ln aλ = ln a + ln λ, p = 0,
−(aλ)p = ap(−λp), p ∈ (−∞, 0).

Moreover, maximizing φ−∞(Mζ ) = λ1(Mζ ) is to maximize the minimum aℓλ1(Mℓ,ζ ). For given a′

ℓs, a sufficient condition
for this is that the design maximizes all λ1(Mℓ,ζ )’s. This completes the proof. □

The next Lemma A.1 is essentially Lemmas 1 and 2 of [34], which is useful for proving Theorem 3. In the lemma, the
constant function ψ0(c) is included in ψ(c) for its applications to design measures; see also [9]. In addition, for given
functions ψ, and ψa

K such as those in Theorem 3, we follow [34] to say that a set S1 = {(ci, wi) : wi > 0, ci ∈ [C,D], i ∈

{1, . . . , n1}} of size n1 dominates another set S2 = {(c̃i, w̃i) : w̃i > 0, c̃i ∈ [C,D], i ∈ {1, . . . , n2}} of size n2, or simply
S1 >ψ S2, if

n1∑
i=1

wiψk(ci) =

n2∑
j=1

w̃jψk(c̃j), k ∈ {0, . . . , K − 1}, (9)

n1∑
i=1

wiψ
a
K (ci) >

n2∑
j=1

w̃jψ
a
K (c̃j), ∀a ̸= 0.

Lemma A.1. With the same notation as in Theorem 3, suppose for each a ̸= 0 (i) ψ(c) and (ψ⊤(c), ψa
K (c))

⊤ are Chebyshev
systems on [C,D] or (ii) ψ(c) and (ψ⊤(c),−ψa

K (c))
⊤ are Chebyshev systems on [C,D]. In addition, let S1, S2, and >ψ be defined

as above. We have the following:

(i) If K is odd and (i) holds, then for any set S2 that either has n2 = (K + 1)/2 but does not contain the endpoint D, or has
n2 > (K + 1)/2, ∃ a set S1 of size n1 = (K + 1)/2 and (D, wD) ∈ S1 for some wD > 0 such that S1 >ψ S2;

(ii) If K is odd and (ii) holds, then for any set S2 that either has n2 = (K + 1)/2 but does not contain the endpoint C, or has
n2 > (K + 1)/2, ∃ a set S1 of size n1 = (K + 1)/2 and (C, wC ) ∈ S1 for some wC > 0 such that S1 >ψ S2;

(iii) If K is even and (i) holds, then for any set S2 that has n2 = K/2 but does not contain both endpoints C and D, or has
n2 = K/2 + 1 but does not contain at least one of the endpoints, or has n2 > K/2 + 1, ∃ a set S1 of size n1 = K/2 + 1
and {(C, wC ), (D, wD)} ⊂ S1 for some wC , wD > 0 such that S1 >ψ S2;

(iv) If K is even and (ii) holds, then for any set S2 of size n2 ≥ K/2 + 1, ∃ a set S1 of size n1 = K/2 such that S1 >ψ S2.

With the previous lemma, we now provide a proof for Theorem 3.

Proof of Theorem 3. We first partition the core as C = ((Cij))i,j∈{1,2}, where C22 gives ψa
K , and C21 = C⊤

12. Suppose ζ1 and
ζ2 are two design measures having a finite support, and ζ1 >ψ ζ2. Then (9) implies that:∫ D

C
Cij(c) dζ1(c) =

∫ D

C
Cij(c) dζ2(c), ∀(i, j) ̸= (2, 2),∫ D

C
a⊤C22(c)a dζ1(c) >

∫ D

C
a⊤C22(c)a dζ2(c), ∀a ̸= 0.

The equality holds because each element in Cij(c) for (i, j) ̸= (2, 2) can be expressed as
∑K−1

k=0 bkψk(c) for some constant
bk. Since Mζ = P

∫
C(c) dζ (c)P⊤ with a nonsingular P, we then have Mζ1 ≥L Mζ2 but Mζ1 ̸= Mζ2 ; for convenience, we

denote this as ζ1 >L ζ2. Thus, we have ζ1 >ψ ζ2 ⇒ ζ1 >L ζ2. To complete the proof, we replace the set Si in Lemma A.1
by design ζi; i ∈ {1, 2}. It can then be seen that, for any ζ2 not in the corresponding complete class, we can find a design
ζ1 inside the complete class such that ζ1 >ψ ζ2 ⇒ ζ1 >L ζ2. Our claim then follows by observing that the identified
complete class also contains all the remaining designs ζ for which a dominating design is not guaranteed by Lemma A.1,
but clearly, ζ ≥L ζ . □

Lemma A.2 is due to [20], and is applied to verify that a vector of smooth functions is a Chebyshev system; see also [9].
9
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emma A.2. Let ψ0(c), . . . , ψK (c) be K times differentiable functions defined on [C,D], κ0(c) = ψ0(c), and κj+1(c) =

(DjDj−1 . . .D0ψj+1)(c) for j ∈ {0, . . . , K − 1} with

(Djψ)(c) =
d
dc

{
ψ(c)
κj(c)

}
.

f κj(c) > 0 on [C,D] for all j ∈ {0, . . . , K }, then (ψ0(c), . . . , ψK (c))⊤ is a Chebyshev system.

We present below our proof for Theorem 4, which is built upon Lemma A.2.

roof of Theorem 4. With the same notation as in Lemma A.2, we have κ0 = ψ0 = 1 for (i)–(vi); and for (ii) and (iv),
K = DK−1 . . .D0a⊤Λa. It can be seen that such a κK > 0 for all a ̸= 0 if and only if the corresponding (element-wise)
erivatives of Λ give a positive definite matrix; see also [31]. We now verify that all the κj’s in (i)–(vi) are positive. For
i) and (ii), we have κ1(c) = 2e2c/(ec + 1)3, κ2(c) = κ4(c) = 1 + ec/2, κ3(c) = 2(1 + e−c)/(ec + 2)2, κ5(c) = 4e−c ,
6(c) = a⊤diag(2e2c + ec/2, 2 + ec/2, ec/2)a, where diag(d1, . . . , dr ) is the diagonal matrix whose diagonal elements
re d1, . . . , dr . Clearly, κk(c) > 0 for k ∈ {1, . . . , 5}, and κ6(c) > 0 for all a ̸= 0. For (iii) and (iv), κ1(c) = 2e2c/(ec + 1)3,
2(c) = 1 + ec/2, κ3(c) = 2 + 2ec/(ec + 2)2, κ4(c) = 3(e2c + 10ec + 16)/(ec + 4)2, κ5(c) = 4(4e−c

+ 1)/{3(ec + 8)2},
6(c) = 1+ ec/8, κ7(c) = κ10(c) = 2, κ8(c) = κ11(c) = 3, κ9(c) = 8e−c/3, and κ12(c) = a⊤diag{ec(16e2c + 1)/4, 4+ ec/4}a.
ll these κk(c)’s are positive. For (v) and (vi), κ1(c) = 2e2c/(ec + 1)3, κ2(c) = 1 + ec/2, κ3(c) = 2 + 2ec/(ec + 2)2,
4(c) = (4e−c

+ 2)/(ec + 4)2, κ5(c) = 1 + ec/4, κ6(c) = κ8(c) = 2, κ7(c) = 4e−c , κ9(c) = 21ec/4 + 3(ec − 1)2, and
10(c) = 4{16(ec − 1)4 + 38e3c + 225e2c + 38ec}/(4e2c − ec + 4)2 are all positive. □

A detailed proof of Theorem 8 is provided below.

roof of Theorem 8. We first consider an optimality criterion φ that is (I) strictly isotonic, and (II) strictly concave
n positive definite matrices; i.e., (I) φ(Mζ1 ) > φ(Mζ2 ) for nonsingular designs ζ1 and ζ2 with ζ1 >L ζ2, and (II)
{(1 − α)M1 + αM2} > (1 − α)φ(M1) + αφ(M2) for any α ∈ (0, 1), positive definite matrix M1, and nonnegative definite,
onzero matrix M2 with M2 ̸∝ M1. See also Section 5.2 of [27]. Here, the notation >L is defined as in the proof of
heorem 3. Let ζ ∗ be a nonsingular design maximizing φ(Mζ ). With (I) and from the proof of Theorem 3, we see that ζ ∗

s in the complete class; otherwise, we have another ζ1 with ζ1 >ψ ζ ∗
⇒ ζ1 >L ζ

∗
⇒ φ(Mζ1 ) > φ(M∗

ζ ). Suppose now
hat there exists another φ-optimal design ζ2. Condition (II) then implies that Mζ2 ∝ Mζ∗ ; otherwise, (1− α)Mζ∗ + αMζ2
s φ-better for any α ∈ (0, 1). But, Mζ2 = aMζ∗ for some a > 0 further implies the positive definiteness of Mζ2 . With
(Mζ2 ) = φ(Mζ∗ ) and (I), we then have a = 1, and consequently, Cζ∗ = Cζ2 , where Cζ =

∫ D
C C(c) dζ (c) for the core C.

long with
∫ D
C dζ ∗(c) =

∫ D
C dζ2(c)(= 1), and the condition of Theorem 3, this implies the existence of a Q -by-K constant

atrix B of rank Q such that
∫ D
C Bψ(c) dζ ∗(c) =

∫ D
C Bψ(c) dζ2(c); and Bψ(c) includes ψ0 = 1. Note in addition that

D
C ψ

a
K (c) dζ

∗(c) =
∫ D
C ψ

a
K (c) dζ2(c) for any a ̸= 0. But the condition in the current theorem further implies that Q = K ,

nd B can be selected (e.g., by row permutations) to have det(B) > 0; thus, Bψ(c) is a Chebyshev system by Theorem 5.
he same as ψ(c), Bψ(c) and eψa

K (c) also form a Chebyshev system for an e = 1 or −1 (e.g., by applying Theorem 5 again).
or given a ̸= 0, we let ψB(c) = ((Bψ(c))⊤, ψB

K (c) ≡ eψa
K (c))

⊤, and define the following moment space for finite measures
:

MB
K+1 =

{
d(ρ) = (d0(ρ), . . . , dK (ρ))⊤ : dk(ρ) =

∫ D

C
ψB

k (c) dρ(c), k ∈ {0, . . . , K }

}
.

ach d(ρ) ∈ MB
K+1 has a representation d(ρ) =

∑K+2
j=1 tjψB(cj); tj ≥ 0, and cj ∈ [C,D]; see Chapter II of [20]. For the design

∗, Cζ∗ corresponds to a d(ζ ∗) ∈ MB
K+1. As ζ

∗ has a finite support size n, we have d(ζ ∗) =
∑n

j=1w
∗

j ψ
B(c∗

j ), where c∗

j is a
upport point of ζ ∗ with weight w∗

j > 0. This gives a representation of d(ζ ∗). In addition, with ζ ∗ being in the complete
lass specified in Theorem 3, the index I{d(ζ ∗)} ≤ K/2. Here, the index is the minimal number of ψB(cj)’s needed to
epresent d(ζ ∗), but ψB(C) and ψB(D) are counted as half points. Following Theorem II.2.1 of [20], d(ζ ∗) is a boundary
oint of MB

K+1, and it admits a unique representation having positive coefficients tj. Consequently, ζ ∗
= ζ2. Our claim

hen follows from the fact that φp-criteria satisfy (I) and (II) for p ∈ (−∞, 1) by Theorem 6.13 of [27]. □
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