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ABSTRACT

This paper describes challenges, solutions, and prospects for data recovery in multilayer magnetic recording (MLMR)—the vertical stacking
of magnetic media layers to increase information storage density. To this end, the channel model for MLMR is discussed. Data recovery is
described in terms of the readback stage followed by equalization and then detection. We illustrate how deep neural networks (DNNs) can
be used to design systems for equalization and detection for MLMR. We show that such DNN-based systems outperform the conventional
baseline and provide a good trade-off between complexity and performance. To achieve additional density gains, several prospective methods
are discussed. On a physical level, the selective reading of tracks on different layers can be achieved by resonant reading. Resonant reading
promises reduced interference from different layers, enabling higher storage densities. Regarding the signal processing, DNNs can be used to
estimate the media noise and iteratively exchange soft-bit information with the decoder. Also, to ameliorate partial erasures, an

auto-encoder-based system is proposed as a modulation coding scheme.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0051085

I. INTRODUCTION

Since the introduction of commercial hard disk drives (HDDs) in
1957, the areal density has increased from 2000 bit/in.” to more than 1
Terabit/in.% in 2020. However, the bits in an HDD are currently stored
on the two-dimensional (2D) surface of the magnetic medium. If data
could be stored in multiple, discrete magnetic layers, the storage capac-
ity could be increased significantly.

Modern HDDs store bits as either positive or negative mag-
netizations of magnetic grains oriented perpendicular to the disk
surface and support a density of more than 1 Terabit/in., with
about 10 magnetic grains per bit and about 10 Teragrains/in.>. In
recent years, increasing the information density by shrinking the
average grain size has run up against the superparamagnetic limit
in which random thermal variations flip grain magnetizations,
resulting in the “media trilemma”: reducing the bit cell size without
reducing the average grain size leads to fewer grains per bit,
thereby degrading the media signal-to-noise ratio (SNR); reducing
the average grain size leads to thermal grain magnetization flipping
which degrades the stored information’s longevity; alleviating ther-
mal flipping by increasing the grains’ anisotropy K,, makes them

harder to write to the point that there will be insufficient field from
the write head to flip the grains.

The superparamagnetic limit has spurred research on new tech-
nologies for increasing HDD information densities. Most HDDs write
data-bits on each track independently. The track-pitch (TP), i.e., the
track center-to-center distance, must be large enough to reduce inter-
track interference (ITI), which occurs when the read head picks up
magnetic signals from adjacent tracks, to an acceptably low level.
Down-track intersymbol interference (ISI) is reduced by using the
Viterbi algorithm (VA) on the state trellis that is defined by the down-
track interference between the bits.'

Two dimensional magnetic recording (TDMR), proposed in
Ref. 2, increases density by decreasing the TP and writing and reading
bits in several tracks simultaneously. In this case, the readback system
must deal with interference in two dimensions (down-track ISI and
cross-track ITI). The higher data density reduces the number of grains
per bit. This not only reduces the available SNR, but can also cause fur-
ther degradation from interactions between data on the closely-spaced
tracks. These interactions include both nonlinear signal distortion and
complex magnetostatic interactions that increase signal-dependent
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FIG. 1. A simulated TDMR magnetization signal written on the disk surface. The
blue and red stripes represent negatively and positively magnetized bits. Bit regions
are curved stripes due to the relative orientation of the corner write head. To
increase density, bits overlay one another both cross-track and down-track in a
technique called “shingled writing.” Reproduced with permission from J. Shen, A.
Aboutaleb, K. Sivakumar, B. J. Belzer, K. S. Chan, and A. James, IEEE Trans.
Magn. 56, 3100212 (2020). Copyright 2020 IEEE."*

media noise.” Trellis-based detection methods have been proposed for
TDMR, e.g,, Refs. 4-9, but most suffer from an explosion in the num-
ber of trellis states when more than two tracks are read
simultaneously.

Figure 1 shows a capture of five tracks of a written TDMR mag-
netization signal produced by a micromagnetic-based simulation. The
blue and red stripes represent negatively and positively magnetized
bits, corresponding, e.g., to binary 0 and 1 values. Bit regions are
curved stripes due to the relative orientation of the corner write head.
The lower portion of the image shows four shingled (heavily over-
lapped) tracks typical of the TDMR data that must be recovered. The
upper portion of the picture shows the last track written and reveals
the full width of the write head.

Figure 1 motivates considering TDMR bit detection as an image
classification problem, leading to recent work on deep neural network
(DNN) detectors for TDMR. DNNG, developed in 2006, have achieved
remarkable results in image classification and image understanding.'’
Recently, a number of papers (e.g., Refs. 11-18) have applied DNN-
based signal processing to TDMR detection, with significant success:
Ref. 17 achieves an areal information density of 3.88 Tb/in.> by proc-
essing three tracks of micromagnetic-simulated TDMR waveforms
with about 2.9 grains per bit and 11 Teragrains/in.>. The work in Ref.
19 and that in references therein are among the first to propose non-
linear equalization using neural networks for IDMR channels. In Refs.
11-14, the neural network equalizer is extended to TDMR. Recent

PERSPECTIVE scitation.org/journal/apl

studies have proposed using a convolutional neural network (CNN)
detector to estimate the written bits without the equalization stage for
TDMR'™'" and MLMR.” In Ref. 17, the DNN is used as a media
noise predictor that can be integrated with conventional and CNN-
based equalization and detection sub-systems.

Recent encouraging studies™ *® propose multilayer magnetic
recording (MLMR): vertical stacking of an additional magnetic media
layer to a TDMR system to achieve further density gains. Figure 2
illustrates a two-layer recording structure. The lower layer is farther
apart from the read head compared with the upper layer, resulting in a
weaker signal from the lower layer. To compensate for this, the bit
area on the lower layer is four times larger than that on the upper
layer. In general, the ratio of the number of bits on the upper layer to
that on the lower layer is a system parameter. It is expected that this
ratio can be tuned to maximize the total density gain, while maintain-
ing acceptable error rates. The respective layers use different bit sizes
and can be written at different frequencies using microwave assisted
magnetic recording (MAMR). Using a realistic grain switching proba-
bility (GSP) model to generate waveforms in a two-layer MLMR sys-
tem as in Refs. 22-24, the coauthors of the present paper investigated
DNN based methods for equalization and detection for two-layer
MLMR in Ref. 20 and reported significant density gains due to the
additional lower layer. MLMR requires joint signal separation and
equalization: the readers lie just above the disk surface and hence
receive a superposition of signals from the upper and lower layers, and
the received signal now suffers from 3D-ISI due to per layer ITI and
downtrack ISI, plus inter-layer inference (ILI). These problems are
somewhat ameliorated by the interleaved MLMR proposed in Refs. 27
and 28, wherein upper layer tracks only partially overlay lower layer
tracks, but at the cost of less potential density gain than the MLMR in
Ref. 20, wherein two upper layer tracks completely overlay one lower
layer track.

Il. MULTILEVEL MAGNETIC RECORDING: PHYSICS
AND SIMULATION METHODS

A. Multilevel magnetic recording

Over the years, there have been several proposals to realize multi-
layer magnetic recording. An early example is that of Yuan et al.,”
who suggested a double layer system combining media with longitudi-

nal and perpendicular anisotropy.

1, 2 or 3 readers positioned symmetrically above the tracks.

Reader sensitivity function, Upper layer

12

Crosstrack

2, down-track

ﬁ)y, cross-track
., depth

(I mm_

double bit length
on the bottom layer

double track pitch on bottom layer

FIG. 2. A two-layer magnetic recording structure. The 2D reader sensitivity function gives the 2D response of the read head. Bits on the lower layer are written at quarter den-
sity compared with the upper layer, as indicated by the double bit length and track pitch. Although omitted here, the two layer recording structure includes a non-magnetic mate-
rial in-between layers and a soft magnetic underlayer underneath the lower layer, which are shown in Fig. 3. Reproduced with permission from K. S. Chan, A. Aboutaleb, K.
Sivakumar, B. Belzer, R. Wood, and S. Rahardja, IEEE Trans. Magn. 55, 6700605 (2019). Copyright 2019 IEEE.""
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Following the introduction of perpendicular media, it was sug-
gested that media with two,”” three,”’ or more*” layers, each with a dif-
ferent coercivity, could be used. Data could be written on one or more
layers by modulating the strength of the field produced by the write
head.

However, the field generated by a write head varies non-linearly
with write current and is difficult to control precisely. Given this,
energy-assisted recording appears more suited to multilayer magnetic
recording. Consider, for example, heat-assisted magnetic recording
(HAMR).”*" If the recording layers in a HAMR system have different
Curie temperatures, then the maximum temperature during recording
can be used to determine which layers are written.””*

One problem with these methods is that, in order to write on the
layer with higher coercivity or higher Curie temperature, data on the
layer with lower coercivity or lower Curie temperature are erased.
Thus, data must be written on the layers in a particular order.

Microwave-assisted magnetic recording (MAMR)"” is an alterna-
tive type of energy-assisted recording. In a MAMR system, a high fre-
quency (HF) magnetic field oscillating at, or near to, the ferromagnetic
resonance frequency of a recording layer can lower the switching field
of that layer. It follows that if two recording layers have different ferro-
magnetic resonance frequencies, selective recording on either of the two
layers becomes possible by varying the frequency of the HF field.”* *’

Figure 3 shows a schematic of a multilevel MAMR system. The
HEF field is generated by a spin torque oscillator (STO) located between
the main pole and the trailing shield of the write head. The inset shows
the results of a simulation in which the switching probability of the
upper and lower recording layers was calculated as a function of the
HF field frequency. Depending on the HF field frequency, data could
be written on either the upper or the lower recording layer.

B. Grain switching probability simulation of MLMR

This subsection explains the micromagnetic based grain switch-
ing probability simulation of MLMR employed in Ref. 20 and in the
present article. A cross-track view of the two-layer system considered
is shown in Fig. 4. The bit sequences written on the upper left and right
tracks are denoted by a, ; and a, g, respectively, and the bit sequence
on the lower track is denoted by a,. The reading sequences ry, rc, and

@ @ Lower layer
-0 Upper layer

; E 1 '
F oo I | 1
® !
L08F e T A
= A |
£ [ i 8
ERL I A
2 + : : : 1
S, o i
Spacer layer Do4l ® ! [
= o !
st
02 ol
-
Soft magnetic underlayer (STO) I .

FIG. 3. Schematic of a two layer MAMR system with two recording layers. Inset:
Switching probability of the upper and lower recording layers vs HF field frequency.
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Read head Positions

Cross-track View r, re Tx
aZ,L aZ,R Upper Layer
a, :|> Lower Layer

\ J \ J\ J
T Y Y

Interfering tracks

Tracks of interest Interfering tracks

FIG. 4. Cross-track view of a two-layer MLMR system. The bit sequences on the
upper left, upper right, and lower tracks are denoted by ay, a; g, and a4, respec-
tively. Reading sequences taken at read head positions left, center, and right are
denoted by ry, rc, and rg, respectively. The non-magnetic spacing between layers
and the soft-magnetic underlayer (shown in Fig. 3) are omitted here for simplicity.
Reproduced with permission from A. Aboutaleb, A. Sayyafan, K. Sivakumar, B.
Belzer, S. Greaves, K. S. Chan, and R. Wood, IEEE Trans. Magn. 57, 3101012
(2021). Copyright 2021 IEEE.”

rr are observed above the left, center, and right tracks, respectively.
The three reading sequences can be simultaneously obtained by a novel
three read head configuration. The GSP model in Refs. 22 and 23 is
used to simulate the write process for a two-layer system.

The write process involves magnetizing grains within a bit cell
according to the desired bit polarity. To simulate the stochastic write
process, the GSP model provides the probability that a grain will switch
in the direction of the head field. This switching probability is a func-
tion of the applied field strength, the distance between the grain and
the write head, and the magnetization polarities of nearby grains.”

Importantly, the magnetostatic interactions with nearby grains in
the same recording layer play a key role in determining the polarity of
a target grain. For instance, if nearby grains are magnetized with the
same polarity as the target grain’s initial polarity, the magnetostatic
field from the nearby grains will assist switching of the target grain,
and in some cases unwanted switching may occur.

Conversely, if the net magnetization of nearby grains is in the
opposite direction to the target grain, the switching probability of the
target grain will be decreased. In such a case, the target grain may not
switch at all. Thus, magnetostatic interactions can result in an increase
in media noise and partial erasures.

Magnetostatic interactions between recording layers should also
be considered. Magnetostatic interactions between vertically adjacent
grains magnetized in the same direction will impede switching of the
magnetization and vice versa.

Let aj, denote the actual granular magnetization pattern for layer
k after the write process for the intended pattern a;. Then the likeli-
hood P{a}|a;} of obtaining a} given a; is implicitly modeled by the
GSP model. The GSP model is trained to reproduce the data based on
micromagnetic simulations of the system, which are computationally
expensive. Hence, the GSP model provides an accurate yet computa-
tionally efficient method for generating data.””*

The read process is the first stage for recovering the written bits.
The read heads are positioned above the upper layer. They measure
the magnetic fields arising from the granular magnetization pattern
corresponding to the written bits. The signal associated with bit n
depends on the polarity of # and the polarities of neighboring bits.

Appl. Phys. Lett. 119, 010502 (2021); doi: 10.1063/5.0051085
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Such neighboring bits reside in the down-track and the cross-track
directions, resulting in 2D ISI/ITI. For MLMR, ILI from having
multiple layers also affects the read signal. This read signal is also
called the readback signal. Let hy[i,j] represent the 2D-ISI/ITI
response for layer k, and r,,[n] represent the discrete-time readback
signal, measured at the down-track bit position # and the cross-
track bit position m. For the two-layer recording system, r,,[n] is
given by

ruln] =YY ki jlagim — in — j] + nan], @)

k=1 ij

where n,,[n] is additive white Gaussian noise (AWGN) with zero-
mean and variance ag to model the reader electronics noise.

I1Il. DEEP NEURAL NETWORK BASED DETECTION
AND EQUALIZATION FOR MLMR

Traditional equalization is performed using a 2D linear mini-
mum mean squared error (2D-LMMSE) equalizer. Typically, the
equalizer is realized as a finite impulse response (FIR) filter.
Equalization is then followed by maximum likelihood (ML) detection
using the VA." The equalizer’s output is approximated as a convolu-
tion of the input binary bit sequence with a target filter. The 2D partial
response (PR) target is designed to have fewer taps than the natural
ISI/ITT span of the channel response. In Ref. 26, a 1024-state VA is
developed for two-layer recording, where the channel model does not
include partial erasures and transition noise. The baseline system con-
sisting of the 2D-LMMSE followed by the 1024-state VA is detailed in
Ref. 20.

Two approaches for using CNNs for equalization and detection
are now discussed.

A. CNN equalizer-separator-SOVA system

Appropriately designed CNNs can be used to separate and par-
tially equalize the data sequences from the reading sequences. The out-
put of the CNN approximates a noise-free PR signal. To obtain soft-
bit estimates of the written binary sequence, the output of the CNN is
then fed to a regular soft-output VA (SOVA).*" The soft-bit estimate
refers to a reliability measure associated with the bit estimate, as
opposed to hard-bit estimation where the bit is detected as 0 or 1 with-
out any reliability information. Such soft-bit estimates are then used
by an irregular repeat accumulate (IRA) decoder to recover the infor-
mation bits.

6 X 17
N /2 samples

3x17
L N samples
Tc
rg

scitation.org/journal/apl

The proposed CNN equalizer-separator-SOVA system uses
CNNss for equalization and separation, which are followed by three
1D-25-state Viterbi detectors as shown in Fig. 5, where S is the order
of the PR target. The CNNs accept raw readings ry, rc, and rg as input
and output separated 1D equalized sequences 8, §; 1, and §, . The
equalization follows target g, for layer k, where k=1, 2. The target g,
is tuned to minimize the mean-squared error (MSE) given fixed CNN
weights, per the following procedure. The noise-free PR signals per
track of interest are given by

s =g, xay, (2)
S2L =8 *ay, (3)
S)R = & * AR, (4)

where g, and g, are (S + 1)-tap targets. In general, g, and g, need not
have the same number of taps. Two CNNs, one CNN per layer, are
trained to equalize and separate the signals corresponding to each
layer. For given targets, the CNNs are trained to minimize the sample
MSE between their outputs and the noiseless PR signals. The cost
functions to minimize are given by

5 N2
JMsE, 1 = N nz:; (81[n] — =1 ["])27 (5)
1 N1 ,
JMsE2 = ﬁme%;R} ; (Som([n] = s2m(n]) (6)

for the lower and upper layers, respectively. The optimization is per-
formed numerically using a variant of stochastic gradient descent
called the Adam optimizer.”” The convergence of the CNN training is
indicated by negligible reductions in the cost functions as the training
iterations continue. After the convergence of the CNN training, the
CNN weights are fixed. The CNN outputs are used to adapt the targets
to further minimize the MSE. The target optimization problem is
given by (for k=1, 2)
minimize
8k

JMSE k (72)

. 2
subject to u,{gk =1, ckmin <185 < ckmax, (7b)

where u; imposes a monic constraint on gy, e.g., dictating that the cen-
ter tap is one, and the square Euclidean norm of g, is bounded in the
interval [Ckmin, Ckmax] With 0 < Cimin < Ckmax < 00. Following the
targets’ optimization, the CNN training is continued with the new

25State A
SOVA

FIG. 5. The CNNs accept readings from
the channel and output equalized and
separated streams per track of interest. A
regular 1D SOVA follows for soft-bit detec-
tion. Reproduced with permission from A.
Aboutaleb, A. Sayyafan, K. Sivakumar, B.
Belzer, S. Greaves, K. S. Chan, and R.
Wood, IEEE Trans. Magn. 57, 3101012
(2021). Copyright 2021 IEEE° CNN
equalizer— separator—-SOVA system.

YASIEICY 5,
SOVA
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targets. This iterative process repeats until no substantial reductions in
MSE are observed.

Figure 6 shows an example CNN architecture for the CNN
equalizer-separator system. The inputs to the CNN equalizer are read-
ings ry, rc, and ry over sliding windows of size 3 x 17 and 6 x 17 for
the upper and lower layers, respectively. The size of the sliding window
is selected based on the approximate span of the ISI/ITIL. To maintain
a 17-bit down-track footprint, the additional readings are multiplexed
across track for the lower layer’s CNN. The type of convolution opera-
tion performed is “same,” which means that the input is padded with
zeros at the beginning of the input sequence such that the size of the out-
put is the same as the size of the input. Hence, for the upper layer’s
CNN, the output of each convolutional layer is size 3 x 17 x D, where
D is the number of groups of convolutional filters; D is 10, 8, 6, and 4 for
the first, second, third, and fourth convolutional layers, respectively. The
number of filters per group at the current layer is equal to the number of
groups of convolutional filters in its preceding layer. For example, the
first layer consists of 10 groups of convolutional filters. Each convolu-
tional filter is a 2D FIR filter of size 3 x 11. This allows the filter to cap-
ture correlations in the input samples spanning a 3 x 11 window of
readback samples. To reduce the chance of over-fitting, a dropout layer
is applied at the output of the first convolutional layer.

The rectified linear unit (ReLU) is used as the non-linear activa-
tion function applied on the outputs of intermediate layers. The ReLU

3 X 17 (Upper) or 6 X 17 (Lower)
Sliding Window

A 4

3 x 11 conv,, 10

Drop 10%
L reLU(+)

3 X 7 conv., 8

reLU(")

A

3 X 3 conv., 6

reLU(")

3 X 3 conv., 4

reLU(")

FC204 x2/408 x 1

v
S2,L [n]rSZ,R [n] or $; [n]

FIG. 6. CNN architecture for the equalizer-separator—VVA system. Reproduced with
permission from A. Aboutaleb, A. Sayyafan, K. Sivakumar, B. Belzer, S. Greaves,
K. S.Z%)han, and R. Wood, IEEE Trans. Magn. 57, 3101012 (2021). Copyright 2021
I[EEE™".
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activation function is defined by the element-wise relation
f(x) = max(0, x). For the upper layer’s CNN, the output of the last
convolutional layer is flattened to a column vector of size 204 x 1
before being fed to the last layer, which is a fully connected (FC) layer
comprised of a matrix of size 204 x 2 and two bias variables. The out-
puts of the FC layer are the estimates of the equalized and separated
signals §, 1 [n] and $,r[n] for the upper layer. For the lower layer’s
CNN, the output of the last convolutional layer is of size 408 x 1. The
output of the FC layer is computed as an affine combination of the
408 variables to give the estimate $; [n].

B. CNN detector system

The CNN detector system shown in Fig. 7 uses CNNs to detect
bits directly from raw readings, rather than as an intermediary system
before the SOVA. Hence, this system subsumes the equalization and
detection sub-systems within one system. The motivation is that the
CNNes in this system can now be trained to directly minimize an objec-
tive function that more closely reflects the bit error rate (BER) metric
than the MSE objective. Indeed, the cross-entropy (CE) loss, computed
between the soft estimate of the bits and the true bits, can result in
lower BERs than the MSE loss."*

Furthermore, the bit detection problem can be viewed as an
image classification problem. The readback raw readings contained
within a sliding window can be used to detect bits on the upper or
lower layers. In this view, the samples contained within each interval
of the sliding window constitute an image whose correct classification
label is the true bit at the center of the window in the down-track direc-
tion. CNN’s have been successful at accurately classifying images when
appropriately trained.”* Thus, the CNN provides a promising method
for bit detection over realistic digital storage channels when training
data are available, but the channel model is difficult to characterize.

Consider estimating the nth bit a; [n], and let a,[n] represent its
estimate. Let the indicator function laL[,,]:,- =1lifayn=1ii=0,1,
and zero otherwise. Then the CE loss is defined as

Hiav[n],ar[n]} = —lom=o log (Pr{ac[n] = 0})
— Loyjn=1log (1 — Pr{a;[n] = 0}). (8)
The objective function to minimize is the average CE loss Jcg

= (1/N) SN0 H{ar[n], ar[n]} computed over a length-N mini-
batch. During training, the backpropagation algorithm with stochastic

Conv. x 2

3x17
T N samples
rc CNN
Tr Detector 2

FIG. 7. CNN detector system. The CNNs detect bits directly from raw readings
without an intermediary equalization sub-system. Reproduced with permission from
A. Aboutaleb, A. Sayyafan, K. Sivakumar, B. Belzer, S. Greaves, K. S. Chan, and
R. Wood, IEEE Trans. Magn. 57, 3101012 (2021). Copyright 2021 IEEE*,
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gradient descent (cf. Ref. 44, Sec. 8.1.3) is used to adapt the learnable
parameters of the system to minimize the objective function.

Figure 8 shows the architectures of two CNNs for detection, named
D1 and D2. D1 entails a higher implementation complexity than D2 but
achieves improvement in the detection BER. It has been shown in
Ref. 20 that CNNs readily allow for a performance-complexity trade-off.

C. Main results

The CNN-based systems were tested on realistic data generated
by the GSP model, which is trained on micromagnetic simulations.

3 X 17 Sliding Window

3 X 5 conv,, 32
Drop 20%
Leaky reLU(0.1,-)

(3x17 x32)

| 3 X 5 conv., 32 |

Drop 20%
+, Leaky reLU(0.1,")

2T
(3x17 x32)

| 3x5conv., 16 |
Drop 10%
+ \Leaky reLU(0.1,") reLU(")
Z/:+
(3x17 x 16)
| 3x5conv,8 |

| 3 x3conv., 16 |

| 3x3conv,8 |

3 x 17 Sliding Window
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The generated data consist of 100 blocks that were divided into 60
training blocks, 20 validation blocks, and 20 testing blocks. Each block
contains 82, 412 bits per track for the upper layer and 41, 206 bits per
track for the lower layer. For training the CNN equalizer-separator, a
mini-batch of size 100 samples is used in the first iteration with the
target solver. The mini-batch size is increased to 500 samples in subse-
quent iterations. Training the CNN detector D1 used a mini-batch
size of 100 samples; this was increased to 1000 samples in subsequent
iterations as recommended in Ref. 45. Training CNN detector D2
used a fixed mini-batch size of 1000 samples. For all CNNs, the adap-
tive learning rate starts at 107> and is decreased to 10~ in the final

FIG. 8. Architectures of the CNN detector
system. In (a), CNN detector D1 achieves

+4 Leaky reL.U(0.1,")

reLU(") [ 3x5conv,1 |

a detection BER of 6.610%. In (b), the

205
(3x17 x8) [

(3% 17 x 1)

lower complexity CNN detector D2

Leaky reLU(0.1,) X achieves a detection BER of 7.304%.

Reproduced with permission from A.
Aboutaleb, A. Sayyafan, K. Sivakumar,

| 3 X 3 conv.,, 8 I

| 3 X 5conv., 8 |

[ 3x5conv,1 |

B. Belzer, S. Greaves, K. S. Chan, and

R. Wood, IEEE Trans. Magn. 57, 3101012

Leaky reLU(0.1,") (2021). Copyright 2021 IEEE.”

44 Leaky reLU(0.1,) + X
2T CZ/ +
Bx17x8)[ (1x51)
| 3x5conv, 4 | [ 3x3conv., 4 |
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Z + Softmax:
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FC204 X 2
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Softmax:
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FIG. 9. MSE vs iteration between the CNN equalizer-separator and MSE-minimizer
target solver for the left and right tracks on upper layer. The MSE converges to a
minimum that satisfies the energy and monic constraints on the PR target.

few training iterations. The Adam optimizer is used during
backpropagation.*”

As a baseline comparison, we simulate the performance of the
conventional system consisting of a 2D-LMMSE equalizer followed by
a VA detector (2D-LMMSE-VA). For the baseline, the VA used is the
1024-state VA developed in Ref. 26 for a two-layer magnetic recording
channel without jitter noise and partial erasures.

Figure 9 illustrates the reduction and convergence of the MSE in
the iteration between the CNN equalizer-separator and the MSE target
solver. The CNN equalizer-separator system output is fed to the
SOVA detectors for estimating the written bits from the equalized and
separated waveforms. The BER is computed by comparing the esti-
mates with the true written bits.

Figure 10 shows the learning curve for training the CNN detector
architectures D1 and D2. The training accuracy is computed using a
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FIG. 10. Accuracy of bit detection vs the number of training iterations for CNN
detectors D1 and D2.
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random mini-batch, whereas the validation accuracy is computed
using all the validation data.

Table T summarizes the detector BERs achieved by the CNN and
baseline systems. The CNN-based systems outperform the conven-
tional 2D-LMMSE-VA system in terms of BER. The lowest BER is
achieved by a CNN detector system.

The CNN detector system outperforms the CNN equalizer-sepa-
rator-SOVA system because of the training criteria and the presence
of media noise. The CNN detector system is trained to minimize the
CE loss, which corresponds to lower BERs and improved soft informa-
tion."* In contrast, the CNN equalizer-separator-SOVA system is
trained to minimize the MSE loss under the monic constraint. Also,
the SOVA is optimal for linear ISI channels with AWGN. Due to the
presence of data-dependent media noise, the ISI is generally non-
linear in the written bits, and the noise is correlated and data-
dependent. Hence, the SOVA is suboptimal.

Several CNN architectures were explored with varying imple-
mentation complexity requirements. Overall, the CNN can provide a
good trade-off between performance and complexity. This was shown
by a CNN detector that requires lower complexity than the 2D-
LMMSE-VA system while achieving lower BERs. More precisely, this
CNN detector architecture requires about 18% less multipliers per bit
estimate while achieving a 45.6% lower detector BER than the 2D-
LMMSE-VA system. Note that the architectures of S1, S2, D1, and D2
are given in Ref. 20, where they are referred to as S3, S6, D1, and D4,
respectively.

To estimate an areal density gain from the detector BER, the log-
likelihood ratios (LLRs) computed by the detectors are fed to an IRA
decoder, which assumes that the transmitted bits are coded using an
IRA code. The IRA code is a form of low-density parity check (LDPC)
code that allows encoding in linear time while achieving the channel
capacity for the binary erasure channel.”” The code rate is adjusted
such that the decoder’s BER is less than 10°. Higher code rates corre-
spond to higher information density achieved. We used IRA decoders
that leverage coset decoding to process the LLRs output by the CNN
equalizer-separator and CNN detector systems. The data bits written
on the recording medium are randomly generated. In the coset decod-
ing method, the decoder generates a valid codeword which agrees with
the random written data bit pattern in the information bit positions.
An XOR operation between the random written bit pattern and the
generated codeword is done to identify parity bit positions where the

TABLE I. Detector BERs for the MLMR system. The complexity is represented as a
factor of the number of multiplications per bit estimate needed by baseline 2D-
LMMSE-1024-VA, which is 4935 multiplications. CNNs enable a trade-off between
complexity and performance.

Method Upper BER  Lower BER  Complexity
Channel BER 0.2247 0.2135 N/A
2D-LMMSE-1024-VA 0.1335 0.1812 1x
CNN Eq.-Sep. S1 2-VA 0.068 54 0.107 6 14x
CNN Eq.-Sep. S2 4-VA 0.07071 0.1146 1.36x
CNN detector D1 0.066 10 0.1020 440x
CNN detector D2 0.073 04 0.1399 0.82x
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TABLE II. Achieved information rates by the CNN eq.-sep.-SOVA and CNN detector
for the two-layer and one-layer systems. Two-layer recording offers about 16% gain
in areal-density over conventional one-layer recording.

Method (CNN) Two-layer rate One-layer rate Gain (%)
Eq.-Sep.-SOVA 0.8339 0.7157 16.51
Detector 0.868 8 0.7116 16.20

two differ. This XOR result is used during the decoding process to cor-
rectly decode the random written data bits.

The proposed systems were tested on one-layer magnetic record-
ing and two-layer magnetic recording structures. For the CNN
equalizer-separator system, the information rates are 0.8339 and
0.7157 for the two-layer and one-layer systems, respectively. In com-
parison, the CNN detector systems achieves information rates of
0.8688 and 0.7116 for the two-layer and one-layer systems, respec-
tively. The achieved density gains of MLMR over TDMR processing of
the upper layer only (without interference from the lower layer) are
summarized in Table II.

The CNN equalizer-separator architecture achieves a density
gain of 16.51% for the two-layer structure over the one-layer structure.
For the CNN detector, the overall information areal density achieved
on the two-layer structure is about 16.20% higher than the density
achieved on the one-layer structure. However, for the two-layer struc-
ture, the total density achieved by the CNN detector is 4.19% higher
than the density achieved by the CNN equalizer-separator-SOVA sys-
tem. The reason is that the CNN detector is trained on the CE loss,
whereas the MSE loss is used for the CNN equalizer-separator.
Minimizing the CE corresponds more directly to reducing the detector
BERs and improving the soft-bit information, compared with mini-
mizing the MSE. Initial experiments with AWGN added at 20 dB SNR
in the two-layer system show a reduction of the density gain achieved
by a CNN detector to 14.32%.

IV. FUTURE PROSPECTS FOR DNN DETECTION
OF MLMR CHANNELS

A. Advances in multilevel recording technology

Advances in magnetic recording, especially the MAMR technol-
ogy, which is most consistent with MLMR, will lead to higher record-
ing densities. Notably, in Ref. 21 the readback process is designed to
ameliorate ILI by resonant reading. Different layers are assigned differ-
ent ferromagnetic resonance frequencies. This allows selective reading
of bits from different layers with significant reductions in ILI. Since ILI
is a limiting factor in the data recovery, such resonant reading enables
higher information densities.

As ILI is appropriately mitigated, it is possible that MLMR archi-
tectures with a more equal area ratio between upper- and lower-layer
bits will emerge as MAMR technologies advance. For example, as illus-
trated in Fig. 11, three upper-layer tracks could overlay two lower-
layer tracks, with lower-layer bits being twice as long as upper-layer
bits, such that each lower-layer bit would have the area of three upper-
layer bits. Further advances in MAMR technology may allow includ-
ing additional layers to the MLMR stack, with the proviso that each
additional lower layer would require larger bit areas than layers above
it to ensure enough SNR for reliable reading, and probably larger grain

scitation.org/journal/apl

iddle Layer: 1.5TP x 2BL

(Lower Layer: 3TP x 4BL]

FIG. 11. A three-layer recording structure. The areas of bits on lower layers are
larger compared with upper layers. Since the reader is placed above the upper
layer, this allows high enough SNRs for the lower layers’ signals to be captured by
the reader.

sizes as well, to enable writing of separate layers by exploiting the dif-
ferent grain resonant frequencies. For example, as shown in Fig. 11, a
third layer could be added below the two above-described layers, with
the third layer having only one track, and each third-layer bit having
an area equal to that of two or four middle-layer bits. The trends of
decreasing track pitch and decreasing bit lengths, such that there are
fewer magnetic grains per bit, are also expected to continue. These
advances in MLMR media and read/write technologies will create a
need for higher throughput signal processing systems that are increas-
ingly robust to magnetic media noise and to increasing levels of ISI,
ITT, and ILL

Advances in MLMR will be enabled by increasingly sophisticated
GSP simulations that model, for example, resonant reading, adding more
layers, and the effects of inter-layer materials that might be added to
reduce ILI or to facilitate better focusing of the write fields on each layer.

B. CNN media noise predictor for MLMR

CNN s have been used as noise predictors for 1D and 2D mag-
netic recording channels to achieve high information densities.''” In
such systems, the typical maximum a posteriori probability (MAP)
detector assumes that the noise is AWGN for optimality in the MAP

sense. In practice, the equalized signal can be given by
Sk = G * Ak + Ny + N, )

where n,, . is the media noise for layer k, g, is the 2D PR target for
layer k, and n, is the reader electronics noise modeled as a zero-mean
Gaussian vector with independent components. To reduce the impact
of the media noise, which is data-dependent and correlated, the CNN
noise predictor estimates the media noise. The media noise estimate is
then subtracted from the input to the MAP detector. The soft-bit deci-
sions from the MAP detector can then be fed back to the CNN noise
predictor to improve its estimation and the proceeding noise cancel-
ation. Typically, the MAP detector is implemented using the Bahl,
Cocke, Jelinek and Raviv (BCJR) algorithrn,47 which estimates soft
information in the form of log-likelihood ratios (LLRs). This CNN-
BCJR sub-system can iteratively exchange soft-bit information with a
conventional LDPC decoder, which decodes the information bits.
CNN noise predictors have not been explored for MLMR. Figure
12 shows a block diagram of a proposed MLMR CNN noise predictor
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FIG. 12. MLMR turbo-detection system with multilevel CNN media noise predictor.
The equalized and separated outputs from the CNN equalizer-separator are used
as input for CNN media noise predictor and BCJR detectors. The LLRs from the
BCJR are also fed to the CNN. An LDPC decoder exchanges LLRs with the BCJR.
The LLRs from the decoder can also be fed to the CNN in a second iteration of the
noise estimation followed by BCJR LLR estimation. Note that s, can be a multi-
dimensional array depending on the number of readers and the number of tracks
that are simultaneously processed for layer k.

turbo-detection system. The inputs to the CNN noise predictor system
are the equalized and separated sequences from the CNN
equalizer-separator system discussed in Sec. III A. For the lower
layer, §; is fed to a 1D BCJR. For the upper layer, §, is passed to a
2D BCJR since 2D ITT is expected to be more substantial on the
upper layer than on the lower layer. The 1D and 2D BCJRs gener-
ate the LLR outputs LLR;,, and LLR; , for the lower and upper
layers, respectively.

For the first iteration of the turbo-detection system, a joint multi-
level CNN noise predictor is provided with the equalized inputs and
the LLRs from both layers to estimate media noise; using one CNN
with inputs from both layers enables the CNN to account for inter-
layer interactions in its media noise estimate. Then, the estimated
media noise sequences fi,, and n,, are used for the second pass of
the BCJRs for the lower and upper layers, respectively. This allows
each BCJR to improve the reliability of its LLRs. These new improved
LLRs are denoted by LLR;, and LLRy,. The improved LLRs are then
fed to LDPC decoders. The decoders generate LLRs LLR; and LLR,,
for the lower and upper layers, respectively. To further improve the
noise estimation, in the second iteration, the LLRs from the LDPC
decoders are fed to the multilevel CNN instead of or in addition to the
LLRs from the BCJRs. Moreover, the dotted lines between the upper-
and lower-layer BCJRs indicate the possibility of exchanging LLRs
between these two detectors to account for residual ILI remaining after
the equalizer-separator CNN. These LLRs would be used as soft-
decision feedback, which would modify the branch labels used in the
BCJR trellis processing without requiring additional trellis states. The
turbo-detection system exchanges LLRs between BCJRs, LDPC
decoders, and multilevel CNN iteratively to reduce the BER and
achieve higher areal density.

PERSPECTIVE scitation.org/journal/apl

C. CNN autoencoder for modulation coding

To ameliorate partial erasures and media noise before the write
process, modulation coding is used to avoid writing problematic bit
patterns.”® An example 1D problematic pattern is a short sequence of
bits where every two adjacent bits have opposite polarities, e.g., the
sequence 01010101. For such sequences, the magnetization of grains
within a bit cell is affected by the magnetization of neighboring grains.
As the neighboring grains are magnetized in the opposite direction,
partial erasures can occur, where the grains are not magnetized or are
inadvertently switched to a different polarity. Hence, writing such
sequences on the media increases the chances of partial erasures since
grains in neighboring bit cells would exert magnetic fields in the oppo-
site direction to the intended polarity. For 2D channels, this problem
becomes more severe since grains in the down-track and cross-track
directions impact the magnetization of grains in a given bit cell, as
illustrated by the pattern on the upper layer in Fig. 13. In Ref. 49, a
modulation coding scheme is proposed where select bits in the prob-
lematic 2 x 2 patterns are deliberately flipped before the write process.
The decoder employs a 2D belief propagation algorithm on the factor
graph associated with these patterns to correct the flipped bits. In
MLMR, the magnetostatic interactions extend beyond the 2D grid to
include grains from different layers, as shown in Fig. 13. Thus, 3D
problematic bit patterns should be identified and considered by the
modulation coding scheme. Such coding schemes can be difficult to
design due to the large number of possible problematic patterns. Also,
typical coding schemes assume tractable analytical models that are
used to derive the solution. However, such models may not be accurate
in practice. Hence, the resulting solutions are inherently sub-optimal.

To overcome these limitations, an autoencoder (AE) CNN can
be trained for joint modulation coding and detection/equalization.
Such a CNN autoencoder is shown in Fig. 14. The encoder CNN
accepts bit sequences to be written and outputs modulation-coded
binary sequences. To give the encoder enough degrees of freedom to
choose a good set of non-problematic encoded bit sequences, gener-
ally, the encoding rate is less than one, i.e., each encoded bit will corre-
spond to less than one original bit. To train the AE, a storage channel
approximator is needed for the backpropagation algorithm to compute
the channel output given coded input bits. The channel approximator
can be realized using analytical models or using a separate CNN that is
trained as a model approximator on realistic data. The decoder CNN

‘(C)/

FIG. 13. Example problematic patterns for two-layer recording. Dark and light
squares represent bit cells with different polarities. In (a), the magnetization of dark
squares on the upper and lower layers undermines the magnetization on the light
square. In (b), the light square’s magnetization on the lower layer reinforces the
light square on the upper layer, but hinders the magnetization of dark squares on
the upper layer. In (c), the opposite polarities of bits on different layers can cause
partial erasures.
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FIG. 14. CNN autoencoder system. The CNN encoder learns a modulation coding method for encoding the input bit sequence x. The encoded binary sequence is written on
the hard disk. The storage channel can be approximated by stochastic models for the write and read processes or by a CNN model approximator. The channel output is
passed to the CNN decoder for detecting the transmitted bits. The CNN encoder and decoder are trained jointly to minimize the objective function.

can be implemented as a detector (which outputs an estimate X of the
input bits x) or an equalizer which outputs a partially equalized signal
y for further processing in the receiver. The encoder and decoder
CNNs are simultaneously trained to minimize an objective function
such as the CE or MSE. Thus, the CNN AE learns the modulation cod-
ing and decoding from the data without requiring analytical solutions.
An additional possibility at the encoding side of the AE is to integrate
the encoder with the write-head signal processing, so that the
encoder’s output is effectively a write waveform rather than binary
bits. Thus, the AE could enable joint optimization of the write wave-
forms and the receiver processing.
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