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Data detection in magnetic recording (MR) channels can be viewed as an image processing problem, proceeding from the 2-D
image of readback bits, to higher level abstractions of features using convolutional layers that finally allow classification of individual
bits. In this work, convolutional neural networks (ConvNets) are employed in place of the typical partial response equalizer and
maximum-likelihood detector with noise prediction to directly process the un-equalized readback signals and output soft estimates.
Several variations of ConvINets are compared in terms of network complexity and performance. The best performing ConvNet detector
with two convolutional layers provides a data storage density of up to 3.7489 Terabits/in? on a low track pitch two-dimensional MR
channel simulated with a grain-flipping-probability (GFP) model. An alternate ConvNet architecture reduces the network complexity
by about 74%, yet results in only a 2.09% decrease in density compared to the best performing detector.

Index Terms— Convolutional neural network (ConvNet), grain-flipping-probability (GFP) model, machine learning, symbol

detection, two-dimensional magnetic recording (TDMR).

I. INTRODUCTION

ONVENTIONAL detection systems in hard disk drives
(HDDs) typically include a partial response (PR) equal-
izer that pre-processes the readback signals and shapes
the output to a controlled target response, followed by a
maximum-likelihood (ML) sequence detector, such as the
Viterbi algorithm [1], or a maximum a posteriori (MAP)
detector, such as the Bahl-Cocke-Jelinek—Raviv (BCJR)
detector [2], which outputs log-likelihood ratios (LLRs) to be
passed to a channel decoder. Pattern-dependent noise predic-
tion (PDNP) [3], [4] is usually incorporated into the metric
computation of the trellis in the ML/MAP detector to combat
media noise intrinsic to the magnetic recording (MR) channel.
Two-dimensional magnetic recording (TDMR) is a promis-
ing technology for increasing areal density, where two or more
readers are placed on top of one or more closely packed
tracks so that the 2-D signal processing can be done to equal-
ize ITI, as opposed to one-dimensional magnetic recording
(IDMR) where only one track is processed at a time. For
TDMR channels, such conventional Viterbi-PDNP detectors
would suffer from impractically large trellis state cardinality
when performing multi-track detection, and they may no
longer be capable of handling the increased nonlinearities in
high-density recording channels.
Research on machine learning applications in MR channels
dates back to 1997 [5], in which equalizers based on mul-
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tilayer perceptron were studied. Recent works have started
to investigate more advanced machine learning techniques
for MR channels. In [6], a fully connected deep neural
network (DNN) detector with no prior PR equalization is
employed in a simulated IDMR channel with transition jitter
noise and additive white Gaussian noise (AWGN). In [7],
a DNN-based media noise predictor for IDMR channel is
proposed that accepts the BCJR’s LLR estimates as input
and outputs media noise estimates to be passed back to the
BCIJR. Both fully connected DNNs and convolutional neural
networks (ConvNets) are studied in [7]. In [8], a nonlinear PR
equalizer based on fully connected neural network structure
and adapted with cross-entropy criterion between the true
probability of the bit and detector’s estimate of it is proposed.

In [9], we investigate a DNN-based detector with prior
PR equalization for TDMR channels simulated on a realistic
channel model called grain-flipping-probability (GFP) model.
Three types of DNN architectures are studied, including
fully connected DNN, ConvNet, and long short-term mem-
ory (LSTM) network, a type of recurrent neural network.
Simulation results show that all three DNN architectures yield
significant detector bit error rate (BER) reductions over a 2-D
PDNP system [10] and a local area influence probabilistic
(LAIP)-BCIJR system [11]-[13]. It is also shown in [9] that
ConvNet achieves the lowest detector BER as well as the
highest code rate and informational areal density.

In this work, we further study a stand-alone ConvNet
detection system without prior PR equalization, which directly
processes the un-equalized readback signals and outputs soft
estimates. ConvNets are special DNNs that assume the inputs
are images and perform convolution instead of applying affine
functions in the network’s forward pass [2]. This enables
far fewer parameters in ConvNets than regular DNNs of
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Fig. 1.

Capture of the readback signals simulated from the GFP model.

the same depth and therefore allows for deeper networks.
The motivation to use ConvNets is the resemblance between
the MR data detection problem and the typical image
processing problems. In MR channels, the write process
converts temporal data into spatial patterns recorded on a
magnetic medium, which transforms sequential correlation
into spatial ISI/ITIL. Data detection in MR channels can thus
be viewed as an image processing problem, proceeding from
the 2-D image of the shingled bits (see Fig. 1), to higher
level abstractions of features using convolutional layers that
finally allow classification of individual bits.

To our knowledge, this article is one of the first to employ a
stand-alone ConvNet detector and to combine it with a channel
decoder to obtain achieved code rate/areal density results.

II. SYSTEM MODEL

The ConvNet detection system assumes a discrete channel
model for the kth readback signal ry

r = (hxu)g + neg (D

where h is the 2-D channel response, u is the 2-D block
of coded bits, x indicates discrete 2-D convolution, and
nek 1s reader electronics, modeled as AWGN. The channel
response h is implicitly time-varying and pattern-dependent
because the channel is inherently nonlinear, thus giving rise
to pattern-dependent noise.

In our experiments, the system is trained and tested using
data from a GFP model, a realistic channel model that closely
replicates output from micro-magnetic simulations but can be
generated several orders of magnitude faster [14]. Several
existing works, including [15]-[18], provide validation of
the GFP model. The simulated media has a grain density
of 11.4 Teragrains/in>. The GFP data include five tracks of
Np = 41,206 coded bits (tracks 0-4); only the three central
tracks (tracks 1-3) have available readback signals. Fig. 1
shows a capture of the GFP readback signals. The blue and
red stripes represent —1 and +1 coded bits, respectively.
They are curved and overlapping each other because of the
shingled writing process. Track 0 was written first and track 4
was written last. The combination of white rectangles on top
of the stripes indicates a convolutional filter applied on the
data, and the white arrow indicates the direction that this
filter moves (further explanation in Section III). The ConvNet
system is tested on two GFP data sets, each containing
100 simulated blocks. The two data sets have the same bit
length (BL) of 11 nm, but different track pitches (TPs): TP
15 nm [equivalently 2.916 grains per coded bit (GPB)] and
TP 18 nm (equivalently 3.491 GPB).

III. CONVNET DETECTOR

Fig. 2 shows the block diagram for the proposed Con-
vNet detection system. Three identically structured ConvNets

IEEE TRANSACTIONS ON MAGNETICS, VOL. 57, NO. 3, MARCH 2021

ConvNet
Detector

r
—
—

Fig. 2. Block diagram for the ConvNet detection system.

estimate tracks 1-3 in parallel, each in a downtrack sliding
window. The ConvNet detector processes a 2-D patch of
readback signals r from three tracks and outputs a probability
estimate for the center bit of the patch. These soft estimates are
converted into LLRs Lgei(u) before being magnitude limited
to T, de-interleaved (71'_1), weighted by W, and passed to
a low-density parity check (LDPC) decoder. The dotted lines
and box in Fig. 2 indicate future work, i.e., iterative detection
between the ConvNet detector and the LDPC decoder, where
extrinsic information components of the decoder output LLRs
Lgec(u) get magnitude limited to 75, interleaved (z) and
passed back to the ConvNet detector.

The ConvNet detector has a general architecture of
[INPUT - CONV - RELU - CONV - RELU - FC - softmax]
in forward pass. The INPUT layer denotes the input to the
network. It is a matrix representation of an image-like object:
[3, win], where three indicates three tracks and w;, denotes
the width of the input. The GFP data are shaped into many
examples of dimension [3, wj,] prior to ConvNet processing.
The bit to be classified per example is the one at the center of
the 2-D image, i.e., the one with coordinate (1, ((wi, — 1)/2))
if the point at the top-left corner has coordinate (0, 0); here,
wip 1s always an odd number. For detection of tracks 1 and 3,
binary bits on boundary track (tracks O and 4) are used
to form the image object. Although a typical image object
in ConvNet usually has a third dimension representing the
number of color channels, i.e., whether it is a red/green/blue
(RGB) color channel or a black/white (BW) channel, there
is no such physical implication in the MR channel, and we
simply set the third input dimension to 1. Note that for iterative
decoding investigated in [9], the image input in the second
iteration has a third dimension of 2, considering both the
readback values and the channel decoder’s estimate of the bits
in the first iteration. CONV layer #k computes dot products
between ¢, different trained filters of size [3, w,,] (black
rectangles in Fig. 3) and the same-sized patches in its input
(red solid rectangles in Fig. 3), with the filters moving in a
sliding window fashion in both horizontal (downtrack) and
vertical (crosstrack) direction of the layer input. Assuming that
the CONV layer input dimension is [/, w], then the dimension
of each filter’s output at this CONV layer is also [A, w], due
to zero padding (outermost red dotted rectangles in Fig. 3)
that preserves its input dimension. Therefore, the total output
dimension of CONV layer #k output is [k, w, ci].

The RELU layer applies the rectified linear unit (ReLU)
activation function f(z) = max(0, z) element-wise on its
input z. Between the CONV and RELU layers, a batch nor-
malization layer is added to normalize the mean and variance
per mini batch of CONV layer output, thereby accelerating the
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Fig. 3. Convolutional filters (thick black rectangles at the top-left corner)
of CONV layer moving across layer input (solid red rectangles) with zero
padding (outermost thin dotted red rectangles).

training. This introduces two network learnables f and y as
defined in [19]. At the end of training, the mean and variance
over all training examples are calculated and stored; these
values are loaded during inference. Experiments show that
two stacks of CONV-RELU layers are sufficient to yield a
low BER or 107> or lower. FC stands for fully connected
layer, in which each node x; at the current layer is connected
to all nodes z; in the previous layer’s output, and an affine
function x; = Zj Wk -z + by is applied to them, where w j«
are trainable connection weights. A probability estimate pix
of the center bit in each example is then formed using the
softmax function p;x = eXp(xkl))/ z%zl exp(x,&')), where i
represents the ith example, k denotes which class it belongs to,
and pjx indicates the probability that the ith example belongs
to class k. Since coded bit detection is a binary classification
problem, k can assume two values; k = 1 represents a —1 bit
and kK = 2 a +1 bit. During the training phase, the ConvNet
is optimized in backward pass using gradient descent with
cross-entropy loss J = > . Zi:l 1(@(@) = k) - log(pix),
where 1(-) denotes the indicator function, which evaluates
to 1 when its input is true, and (i) denotes the ConvNet
detector’s estimation of the coded bit u (i) (target bit of the ith
example). The network is updated every mini batch of Ny
training examples, which accelerates the training compared
to processing all training examples in one single batch. Our
choice of optimizer is the adaptive moment estimation (Adam)
optimizer [20], which is a variant of classical stochastic gra-
dient descent that utilizes an adaptive learning rate to improve
performance. At the end of training, the ConvNet stores all
the learnables that have been optimized. During the inference
phase, the ConvNet loads all the learnables and computes in
forward pass its probability estimates of the center bits in
testing examples.

IV. SIMULATION RESULTS

The proposed ConvNet symbol detector is tested on the two
GFP model data sets with different TPs described in Section II.
The raw BERSs of readback signals ry are roughly 20.44% for
TP 15 nm data set and 16.41% for TP 18 nm data set. For each
GFP data set, of the 100 blocks available, 80 blocks are used
for training and the remaining 20 blocks for inference. The
total number of training examples is thus 80 - (N, — wiy + 1).
In the Adam optimizer, default values for hyperparameters
p1, P2, and € as suggested in [20] are used: f; = 0.9,
fr = 0.999, and € = 1078, The learning rate is chosen
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TABLE I
CONVNET BER AND STORAGE COMPLEXITY, TP 15 nm, TRACK 2

Network Structure BER train-test | # learnables
[3,11], [3,11]x 128, [3,9]x64 0.0060-0.0118 230,210
[3,15], [3,11]x 128, [3,9]x64 0.0021-0.0053 231,746
[3,17], [3,11]x 128, [3,9]x64 0.0016-0.0040 232,514
[3,21], [3,11]x 128, [3,9]x 64 0.0011-0.0029 234,050
[3,21], [3,11]x 64, [3,9]1x32 0.0035-0.0068 61,730
[3,21], [3,9]1x 128, [3,7]x64 0.0017-0.0041 184,130
[3,21], [3,11]1x32, [3,9]x16 0.0186-0.0213 17,042

TABLE 11
OVERALL CONVNET DENSITY PERFORMANCE

Average Average Us.er

TP ConvNet Structure Code Rate Areal Density
(Th/in?)

15 | #1:[3,21], [3,11]x 128, [3,9]x64 0.9567 3.7489 (2.6278)
15 #2: [3,21], [3,11]x64, [3,9]1x32 0.9367 3.6706 (2.5728)
18 | #1:[3,21], [3,11]x 128, [3,9]x64 0.9783 3.1949 (2.3569)
18 #2: [3,21], [3,11]x64, [3,9]x32 0.9700 3.1677 (2.3368)
18 ConvNet with PR equalizer [9] 0.9467 3.0915 (2.2806)

to be x4 = 1073, For the batch normalization layer, default
value for hyperparameter ¢y, is used: €, = 107>. Network is
updated every mini batch of Npyp, = 10,000 training examples,
resulting in roughly 330 iterations in one training epoch
(during which one pass of going through all training examples
is completed), given the values of wj, in our experiments.
The network is trained for 30 epochs, which we observe to be
sufficient.

Table I summarizes the BER performance and storage
complexity of ConvNets trained with different values of wjp,
we, , and ¢y, for track 2 of TP 15 nm data set. The first column,
network structure, lists from left to right the size of INPUT
layer [3, win], the dimension of CONV layer #1 [3, w¢,] X c1,
and the dimension of CONV layer #2 [3, w,, ] x 2. The second
column indicates training and inference BER at the ConvNet
output. The third column shows the total number of learnables
in the network. Comparing the first four rows, input width
win = 21 yields the lowest BER. Comparing the last four
rows, we conclude the number of filters ¢ at each CONV
layer has the most influence on both storage complexity and
performance. Specifically, rows 4 and 5 show that reducing
both ¢ and ¢ by half lowers storage complexity by roughly
a factor of 3.8 but only suffers a factor of 3 increase in
BER. The lowest BER, 0.0029, is achieved from a ConvNet
of 234050 learnables shown in row 4. The ConvNet structure
in row 4—[3,21], [3,11] x 128, [3,9] x 64 is denoted
as ConvNet #1 and that in row 5—[3,21], [3,11] x 64,
[3,9] x 32 is denoted as ConvNet #2. ConvNets #1 and #2 are
used for further analysis in this article.

The ConvNet detector output LLRs are passed to an irregu-
lar repeat accumulate (IRA) decoder. IRA codes are a special
type of LDPC codes that have linear encoding time. Because
the GFP data set is random rather than encoded, coset decod-
ing is employed. Table II shows the average achieved code rate
R and user areal density (UAD) results over tracks 1-3 from
ConvNet #1 and ConvNet #2, for both TP 15 nm and TP 18 nm
data sets. The achieved code rate R per track is the highest

Authorized licensed use limited to: Washington State University. Downloaded on March 31,2021 at 04:32:29 UTC from IEEE Xplore. Restrictions apply.



3100905 IEEE TRANSACTIONS ON MAGNETICS, VOL. 57, NO. 3, MARCH 2021
TABLE III TABLE IV
DETECTOR AND DECODER BER, TP 18 nm COMPUTATIONAL COMPLEXITY COMPARISON
Average Detector mul/div add/sub exp/log
Detector Detector BER Decoder BER 3D-PDNP 7481 7216 757

2D-PDNP 6.4856e-2 0(6.8377e-6) ConvNet with PR equalizer [9] 1,687,850 1,687,850 3

ConvNet with PR equalizer [9] 6.9667¢-3 0(1.6153¢-6) ConvNet #1 5,045,826 | 5,045,826 3
ConvNet #1 2.1333e-3 0(1.6153e-6) ConvNet #2 1,311,522 | 1,311,522 3
ConvNet #2 3.5333¢-3 0(1.6153¢-6)

code rate after puncturing data on the track that achieves a final
decoded BER of 107> in the Monte Carlo simulations. The
puncturing scheme employed in the system simulates practical
puncturing in an HDD and is described in detail in [12]. The
UAD per track is calculated as UAD = R/GPB-Grain-density,
where GPB and Grain-density are specified in Section II. The
unit of UAD is Terabits/in?> (Tb/in%). The UAD values in
parentheses are scaled density values after a 6.4 nm squeeze
margin, i.e., UADgyy = UAD - (TP/(TP + 6.4)). The highest
density before squeeze margin, 3.7489 Tb/in?, is achieved on
TP 15 nm data set, as shown in row 1. To the best of our
knowledge, this is one of the highest densities ever reported
on GFP model data with a grain density of 11.4 Teragrains/in?.
It is 21.27% higher than the highest density of 3.0915 Tb/in>
achieved by the ConvNet designed in [9] in row 5 (the number
reported in [9] is 3.081; a more optimal IRA code as used in
this article updates it to 3.0915). Furthermore, the first two
rows of Table II show that for TP 15 nm data set, a 2.0905%
degradation in UAD performance can be exchanged for a
factor of 3.8 decrease (74% decrease) in complexity, whereas
rows 3 and 4 show that for TP 18 nm data set, only 0.8484%
performance degradation results from the same amount of
decrease in complexity. Such complexity—performance trade-
off is helpful for hardware implementation.

Table III shows the average detector BER and decoder BER
at highest achieved code rate in one shot for the proposed
ConvNets #1 and #2, a 2-D PDNP detector and a different
ConvNet with prior PR equalizer. The 2-D PDNP detects two
tracks simultaneously, using the following 2-D autoregressive
model to predict media noise [10]:

Np

0 =D Pi(Ami + AA)w ©)
i=0

where ny; denotes the two-element vector of predicted noise
samples from both tracks at downtrack position k, N, denotes
the order of predictor, Ay denotes the pattern matrix, P;(Ay)
denotes the coefficient matrix, A(Ag) denotes the standard
deviation matrix, and w; ~ N(0,I) is a vector of AWGN.
Details of our implementation of 2-D PDNP are described
in [13]. Details for the ConvNet with prior PR equalizer are
presented in [9]. The number in parenthesis a conservative
BER upper bound estimates with a 95% confidence level when
the error count is 0, computed as 3/Np, where Ny, is the
total number of transmitted information bits [21]. The BERs
of the proposed ConvNets #1 and #2 are 69.67% and 49.28%
less than that of the ConvNet in [9] with prior PR equalizer,
as well as factors of 1/30 and 1/18 that of 2-D PDNP.

Because the GFP data set contains no AWGN to account
for read-head electronics, we manually add AWGN at an SNR
of 20 dB using the following formula:

SNR=10"1lo er?] 3)

N 810 2-R-0?

where ¢ is the variance of the AWGN and R is the code
rate. No performance degradation is found in the average
code rate and UAD numbers reported in row 1 of Table II.
For rows 2—4, there are 0.7117%, 0.3407%, and 1.3746%
reductions, respectively. Future work could consider a more
realistic boundary condition, i.e., assuming certain prior BER
for the input bits on the two boundary tracks (tracks 0 and 4).

Table IV compares the computational complexity (per bit)
of the proposed ConvNets with 2-D PDNP and the ConvNet
in [9] with prior PR equalizer. We point out that the numbers of
computations for the ConvNet with prior PR equalizer reported
in [9, Table IV] should be multiplied by a factor of 15; they
are reported correctly in row 2 of Table IV. We also consider
a more efficient implementation of trellis-based 2-D PDNP,
leading to different numbers of computations reported in row 1
of Table IV than in [9, Table IV]. The relatively short detection
time of the ConvNet with priori PR equalizer reported
in [9] is likely due to MATLAB’s vector implementation
(which accelerates equivalent codes implemented with loops).
Table IV shows that all the ConvNets require several orders of
magnitude more computations than conventional 2-D PDNP—
a price paid for superior performance. The computational
complexity required by ConvNet #1 is roughly 3x that of the
ConvNet in [9] with PR equalizer, in exchange for 69.67%
detector BER decrease (see Table III) and equivalently 3.34%
areal density increase (see Table II). On the other hand,
ConvNet #2 requires 24.13% less computational complexity
than the ConvNet in [9] with PR equalizer, yet still gives
49.28% detector BER decrease and 2.46% areal density
increase.

V. CONCLUSION

We design a ConvNet-based symbol detector for TDMR
that involves only two convolutional layers and achieves UAD
as high as 3.7489 Tb/in> on densely recorded GFP model
data. The proposed system suffers from as low as 0.8484%
performance degradation when another ConvNet with 74%
lower complexity than the best performing architecture is used.
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