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To increase the storage capacity limit of magnetic recording channels, recent studies proposed multilayer magnetic recording
(MLMR): the vertical stacking of magnetic media layers. MLMR readback waveforms consist of the superposition of signals from
each layer recovered by a read head placed above the upper layer. This article considers the problem of equalization and detection
for MLMR comprising two layers. To this end, we use MLMR waveforms generated using a grain switching probability (GSP)
model that is trained on realistic micromagnetic simulations. We propose three systems for equalization and detection. The first is
a convolutional neural network (CNN) equalizer followed by an MLMR Viterbi algorithm (VA) for detection. We show that this
system outperforms the traditional 2-D linear minimum mean squared error (2-D-LMMSE) equalizer. The second system uses CNNs
for equalization and separation of signals from each layer, which is followed by a regular VA. The third system contains CNNs
trained to directly provide soft bit estimates. By interfacing the CNN detector with a channel decoder, we show that an areal density
gain of 16.2% can be achieved by a two-layer MLMR system over a one-layer system.

Index Terms— Convolutional neural network (NN) (CNN), detection, dual-layer recording, multilayer magnetic recording (MLMR),

partial response equalization, two-dimensional magnetic recording (TDMR), Viterbi algorithm (VA).

I. INTRODUCTION

HE hard disk drive (HDD) industry stores data at

areal densities close to the capacity limit of the one-
dimensional magnetic recording (1-DMR) channel [1].
New technologies are emerging to increase density,
including heat-assisted magnetic recording (HAMR),
microwave-assisted magnetic recording (MAMR), and
two-dimensional magnetic recording (TDMR). TDMR
employs 2-D signal processing to achieve significant density
gains, without changes to the existing magnetic media.
Simple versions of TDMR are already being shipped in HDD
products. However, because HAMR and MAMR require
substantial changes to the read/write head and the magnetic
media, their deployment will occur after TDMR.

Recent encouraging studies [2]-[6] propose multilayer mag-
netic recording (MLMR): the vertical stacking of an addi-
tional magnetic media layer to a TDMR system to achieve
further density gains. Using a realistic grain switching prob-
ability (GSP) model to generate waveforms in a two-layer
MLMR system as in [2]-[4], this article investigates methods
based on deep neural networks (NNs) (DNNs) for equalization
and detection for MLMR. This article addresses only the
processing of readback data and not the write process.

The first work to design detection methods for MLMR
is [5]. Therein, Chan et al. model readback in a multi-
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layer system, where each layer is a 1-D recording structure.
Such a system can potentially be realized using perpendicular
magnetic recording (PMR), including the use of MAMR to
write selectively on each layer. The model and simulations use
a convolutional model to generate waveforms. The readback
waveforms are measured only above the upper layer but consist
of a superposition of signal contributions from both the upper
and lower layers. The challenge is to detect correctly the bits
on each layer from such superposition waveforms.

Building upon the work in [5], Chan ef al. [6] extend the
MLMR system to also include inter-track interference (ITI)
in the received waveforms. In realistic waveforms, ITI is
caused by the tight packing of tracks using shingled magnetic
recording (SMR) to increase areal density [1]. An appropri-
ate Viterbi algorithm (VA) is designed for maximum likeli-
hood (ML) detection, and another least-squares (LS)-based
detection method is included for comparison. Working in
parallel, Greaves et al. [2], [3] generate MLMR waveforms
by using a micromagnetic model to train a GSP model.
In addition to incorporating the superposition of signals from
the upper and lower layer (including the ITI) in the readback
waveforms, this GSP model uses realistic media noise models
and incorporates transition noise during the write process that
was not considered in previous models.

High-density magnetic recording channels suffer from
inter-symbol interference (ISI) that can span many bits in the
down-track direction. The number of trellis states required by
a VA is exponential in the length of the ISI. Thus, to avoid the
trellis state explosion problem, in a typical detection system,
an equalizer precedes a VA to reduce the effective length
of the ISI. The equalization is traditionally implemented
using the linear minimum mean squared error (LMMSE)
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equalizer actualized as finite impulse response (FIR) filter
for its simplicity. The LMMSE equalizer is MSE optimal
for additive white Gaussian noise (AWGN) channels with
ISI (see [7]). Matcha and Srinivasa [8] study 2-D LMMSE
equalization and pattern-dependent noise prediction (2-
D-PDNP) for TDMR systems. In MLMR, the presence
of data-dependent media noise is further exacerbated by
inter-layer interference (ILI). Hence, preliminary experiments
on MLMR waveforms revealed poor bit error rate (BER)
performance achieved by the conventional 2-D-LMMSE
equalizer followed by the VA system.

To achieve high recording densities, NN-based media
noise prediction, equalization, and detection are proposed
in [9]-[13]. Sayyafan et al. [9] designed hybrid Bahl-Cocke—
Jelinek—Raviv (BCJR) and DNN systems for iterative detection
over 1-D channels. Among these DNN-based systems, the con-
volutional NN (CNN) system outperforms a conventional
method comprised of a BCJR followed by a PDNP in terms
of detector BERs. Furthermore, the BCJR-CNN system avoids
the state explosion problem due to the PDNP and is not limited
by the linear auto-regressive model assumed by the PDNP.

Nair and Moon [10] (and references therein) investigate
equalization using NNs for high-density 1-D channels. For
such channels, their study shows that non-linear NN equal-
izers outperform the LMMSE equalizer when the readback
waveforms include non-linear distortions, such as bit transition
shifts, partial erasures, and jitter noise. For TDMR channels,
Luo et al. [13] show that an NN equalizer-VA system out-
performs a 2-D-LMMSE-VA system in terms of BER. Shen
and Nangare [11] propose using an NN with one hidden
layer and non-linear tangent hyperbolic activation functions
to equalize TDMR readback waveforms. Their results show
that, under both mean squared error (MSE) and cross-entropy
(CE) adaptation, the non-linear NN equalizer outperforms
the 2-D linear equalizer while requiring a modest increase
in complexity. Shen ef al. [12] design DNN-based detection
systems for high-density TDMR systems. In comparison with
a conventional system consisting of 2-D-LMMSE followed by
a 2-D-BCJR and a 2-D-PDNP, a 2-D-LMMSE equalizer fol-
lowed by a CNN detector achieves a higher information areal
density gain. Thus, NNs are crucial for achieving high-density
gains in magnetic recording channels.

The novel contributions of this article are summarized as
follows.

1) We propose the design of and training method for

a hybrid CNN equalizer followed by an MLMR VA.
We test this system using realistic readback waveforms
generated via a GSP model. We show the proposed
system outperforms the conventional 2-D-LMMSE
equalizer-VA systems in terms of both MSE and detector
BER.

2) We propose a CNN equalizer/separator system that
equalizes and separates readback waveforms from each
layer. The separation of signals allows using regular VAs
for each layer.

3) We design a CNN detector system for MLMR.
We show that this system provides a good
performance—complexity tradeoff. We also discuss good
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Fig. 1. Cross-track view of an MLMR system. The bit sequences on the
top left, top right, and bottom tracks are denoted by a>r, a> g, and aj,
respectively. Reading sequences taken at read head positions left, center, and
right are denoted by ry, rc, and rg, respectively.

practice techniques for tuning the CNN performance
during the design stage.

4) We investigate the density gain achieved by our
CNN equalizer/separator-VA and CNN detector sys-
tems on realistic GSP model waveforms for MLMR.
By interfacing the detection systems with an irregular
repeat-accumulate (IRA) decoder, we provide a realis-
tic estimate of the areal density gain of 16.2% for a
two-layer magnetic recording system over a one-layer
magnetic recording system.

II. SYSTEM MODEL
A. GSP Model

Fig. 1 shows a cross-track view of the MLMR system
considered. On the upper layer, six tracks are written at a track
pitch (TP) of 48 nm and a bit length (BL) of 11 nm. On the
lower layer, three tracks are written at a TP of 96 nm and a
BL of 22 nm. Hence, the system stores one bit on the lower
layer for every four bits on the upper layer. The magnetic
media thicknesses on the upper and lower layers are 5 and 7
nm, respectively. A non-magnetic 2 nm thick layer separates
the upper and lower layers. Consistent with the notation
in [5], [6], the lower layer is indexed by 1 and the upper
layer by 2. For the tracks of interest, we denote the bit
sequences written on the upper left and right tracks by a ;.
and a, p, respectively, and the bit sequence on the lower
track by a;. Readings are obtained every 11 nm down-track
at the left, center, and right cross-track positions. Measured
reading sequences are denoted by ry, r¢, and rg, respectively.
The readback waveforms are generated according to the GSP
model in [2], [3]. We use the GSP model to test the methods
discussed in all our simulation results. The GSP model used
in this article is detailed in [2, Sec. III]. To motivate the use of
CNNs for MLMR, we summarize important aspects of write
and readback processes assumed by the GSP model.

The write process introduces the data-dependent noise in
the readback waveforms, which is explained as follows. The
input coded bits determine the polarity of the write head field
applied to grains in the recording medium. In this work, the TP
and BL are 48 nm x 11 nm and 96 nm x 22 nm for the top
and bottom layers, respectively. The grains in the recording
media were modeled as Voronoi cells with an average grain
size of 8 nm, an average grain pitch of 9 nm, and a grain
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size distribution of 17%. The distribution of grain sizes and
shapes gives rise to transition jitter in the readback waveforms.
The GSP model gives the probability that the magnetization of
grain in the recording medium will switch in the direction of
the head field when a bit is written. The switching probability
of grain depends on the position of the grain relative to the
write head, i.e. the strength of the write head field acting on
the grain, and also on the magnetization of nearby grains via
magnetostatic interactions. For example, the magnetization of
grain i is affected by the magnetization of grains contained
within the neighborhood of grain i, denoted by N;. In this
article, N; includes grains in the same layer within a 30 nm
radius of grain i and also the grain immediately above/below
grain i in the other layer.

If the nearby grains in the same layer are magnetized in
the same direction as grain i, the magnetostatic field from the
nearby grains will increase the probability that the magneti-
zation of grain i will switch. Conversely, for two vertically
stacked grains in different layers, the magnetostatic field will
reduce the probability of switching if the grain magnetizations
are parallel and increase it when the magnetizations are anti-
parallel. By taking account of the magnetization of grains
in V;, the switching probability of grain i becomes dependent
on the data sequence written to the medium; as a result,
in some cases, the magnetization of grains within a written bit
will not switch into the desired direction, or the magnetization
of a grain in a previously written bit might be inadvertently
switched, resulting in partial erasure.

During the read process, the read head is placed above the
upper layer. The readback signal for cross-track position m
observed for the down-track bit cell n is denoted by r,,[n]. The
discrete-time reading r,,[n] includes the effect of down-track
IST and cross-track ITI, as well as the superposition of signals
from different layers. Let a; denote the magnetization pattern
for layer k, and hg[i, j] the 2-D ISI/ITI reader response to
magnetization pattern on layer k, calculated using the method
in [2] and [3]. Then, r,[n] is the superposition of signal
contributions from each layer. The signal component of each
layer is the convolution of the reader sensitivity response with
the magnetization pattern. More precisely, for the two-layer
system, r,,[n] is computed as

2
ruln) = D> i, jlaglm —ion = jl+nulnl (1)

k=1 i,j

where n,,[n] is AWGN with zero-mean and variance aez to
model the reader head’s electronics’ noise.

The GSP model is trained on realistic micromagnetic
simulations comprising tens of thousands of written bits.
As detailed in [2], the waveforms generated by the GSP
model match very closely the micromagnetic waveforms. The
GSP model provides a computationally efficient, yet accurate,
method of generating readback waveforms.

The conventional 2-D-LMMSE equalizer is optimal in terms
of MSE only in the absence of the pattern-dependent media
noise, partial erasures, and transition jitter [10]. Accurately
characterizing the bit-grain interactions and transition jit-
ter is difficult. Hence, an optimal model-based detector is
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challenging to design. In contrast, NNs learn to adapt their
learnable parameters based on the raw readings without any
assumption about the channel model except that the inputs
and true outputs tuples are sampled from a common joint
distribution [15]. Hence, NNs are better equipped to handle the
mentioned distortions. Furthermore, an NN with one hidden
layer and sigmoid activation is a universal function approx-
imator, i.e., given enough hidden nodes, it can accurately
approximate any continuous mapping from the inputs to the
true outputs [16]. Recent studies [17] (and references therein)
have established that CNNs with rectified-linear unit (ReLLU)
activation with enough hidden layers are also universal func-
tion approximators.

The caveat to using CNNs (and NNs) is that the labeled
training data are needed to adapt the learnable parameters
of the network. Also, the training data should be randomly
generated (or sampled) so that the joint probability distri-
bution of the inputs and true outputs is well-represented
(see [15, Ch. 6]). Fortunately, labeled data generated with ran-
dom input bit sequences can be readily generated for magnetic
recording applications, e.g., using the GSP model or mea-
surements from HDDs. Another aspect of NNs that must be
considered is their computational complexity. High complexity
CNNss can provide significant performance improvements over
model-based methods. Hence, the desired complexity of the
CNN must be balanced with expected performance improve-
ment based on the available computational resources.

B. 2-D-LMMSE Equalizer-1024-State MLMR VA

For use over the GSP model, where ISI spans about 17 bits
down-track, the 2-D-LMMSE equalizer minimizes the MSE
between ideal PR signals and the actual output of the equalizer.
The ideal partial response (PR) signals can be based on the
ideal convolutional model in [6] and are given by

YL = wigr xa; +g *xay, (2)
Yo = g1 *a; +wgr kA + Wy *x A2 R 3)
Yr = wi1g1 *a; + g *x AR 4)

where w; and w, are weights tuned during training, and g
and g, are 1-D targets of appropriate length that are adapted
during training. For interfacing with the 1024-state VA in [6],
the lengths of g; and g, are seven and three, respectively.
The 2-D-LMMSE equalizer consists of three 2-D filters
F; =1[fi.,.fic.figl, i =1,2,3—one filter per PR target bit
stream in (2)—(4). For example, for obtaining F;, we solve for

F; = argmin E[y, — (fiz *r. +fic *rc +Ffi g * rR)]2

fi.0.f1 0.t R
(5)

where [E denotes the expectation operator. The derivation for
solving for F; is shown in the Appendix. Similar training is
used to obtain F, and F3 except that yo and yg are used,
respectively, in place of y.. Once optimal F;’s are found,
the equalized signal is passed to a constrained MSE solver
that optimizes w;, w», gi, and g, for fixed equalizers under
energy or monic constraints on the target masks. The trellis
state definitions and branch metric computation for such a
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Fig. 2. State definitions and branch metric computation for the 1024-state
VA designed for an ideal MLMR system. The branch metric is computed
as the sums of the squared Euclidean distance between the equalizer output
(denoted as y[k]) and the ideal PR target signal (denoted as y[k]).

model are shown in Fig. 2. This article uses this 1024-state
VA in conjunction with linear and non-linear equalizers on
GSP model waveforms.

III. PROPOSED EQUALIZATION AND DETECTION SYSTEMS

We propose three methods for detection and equalization of
bit sequences aj, a, 1, and a, z from readings r;, rc, and rg.

A. Nonlinear CNN Equalization-VA System

1) Motivation for Non-Linear Equalization for MLMR:
Consider the equalization of a signal that consists of the super-
position of two responses r = h; xa; +h; x a,. To reduce the
number of states to a manageable amount before interfacing
with a VA, an equalizer is used. We would like the equalizer
output to approximate the PR target y = g; x a; + g, * ap,
where the lengths of g; and g, are less than the lengths of h;
and hy, respectively. Applying a linear equalizer f to r gives

y=fFfxr (6)
=fxh xa +fxhyxa, (7)

where the second equality follows because of the principle of
superposition and since f is linear. From (7), we observe that
the same f is tasked with mapping h; to g; and h; to g;.

Whereas, if we apply a non-linear equalizer F{-} to r,
the equalized signal is given by

y = Flr}. (8)

The non-linear equalizer is not restricted by the superposi-
tion principle. Hence, the equalized signal can generally be
comprised of the sum of different mappings applied on r to
approximate the individual components of the ideal PR signal,
that is

¥y = Filr} + Foir} 9)

where Fi{-} and F,{-} are generally different mappings that
focus on equalizing r to g; x a; and g, * a,, respectively. For
the CNN equalizer, it can be intuitive to consider that the
mappings F{-} and F,{-} are subset weights and non-linear
activation functions of F{-}. Fig. 3 illustrates applying linear
and non-linear equalizers to r.
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Fig. 3. Actual and target responses are represented with respect to some
arbitrary basis functions ¢;. LMMSE equalization maps the response from
each layer to target PR signals using the same mapping due to the principle of
superposition, whereas nonlinear CNN equalization potentially uses different
mappings for mapping r to each component of the target signal, resulting in
smaller magnitudes for the error vectors e; and e;. (a) Linear equalization.
(b) Nonlinear CNN equalization.

Trellis-based

Soft-output
Detection

CNN

Constrained-
MSE Solver

Fig. 4. CNN equalizer-VA system.

2) Training the Non-Linear Equalizer CNN: Fig. 4 shows
the nonlinear CNN equalizer followed by a VA system. During
training, the CNN equalizer iterates with a constrained MSE
solver to adjust the target PR masks. We use the VA in [6],
which is the ML detector for an ideal MLMR channel that
does not consider the signal-dependence of the noise caused
by the write process and the magnetic medium.

The CNN equalizer training assumes fixed target masks
and superposition weights. Using stochastic gradient descent
on mini-batches of length N (see [18]), the equalizer CNN
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minimizes the average MSE Jyisg between its output and the
ideal PR waveforms y;, yc, and yg, defined as

-1

1 R 2

Juse = 35 D D9k = ylk)”.
je{L,C,R} k=0

N
(10)

Once the CNN equalizer has converged and the MSE does
not decrease significantly, the CNN equalizer’s output (now
fixed) is passed to a constrained MSE solver that finds new
targets and superposition weights that further decrease the
MSE subject to certain constraints. The constraints imposed
provide upper and lower bounds on the energy of the masks
and include a monic constraint ul.T g = 1,i =1, 2, where the
monic vector u; consists of zeros except at the central element
that is set to one, ie., w; = [0,...,0,0,1,0,0,...,0].
We find that including the monic constraint improves consider-
ably the detector BER. Also, upper bounds on the magnitudes
of the superposition weights are incorporated. More precisely,
the constrained MSE problem can be written as

minimize Jyvsg (11a)

81,82,W1,W2

SubjeCt tO Cimin = ”gl”% = Ci,max, (11b)
weg =1, |wl<p,i=12 (llc)

where ¢; min and ¢; max are the lower and upper bounds on the
masks’ energies, and p;’s are upper bounds on the magnitudes
of the superposition weights. The energy and magnitude con-
straints prevent the optimizer from possibly reaching a trivial
solution (via lower bound) or diverging to infinite-energy
masks (via upper bound). The specific values for the bounds
can be tuned during a design stage.

After the constrained MSE solver finds a solution, the new
targets and weights are fixed and used to generate new ideal
PR signals using (2)-(4) for continuing the training of the
CNN equalizer. Then, once the CNN equalizer has converged
and achieved a new minimum MSE, its (fixed) output is
fed to the constrained MSE solver to get new targets and
superposition weights. The process repeats until the learnable
parameters of the CNN, the targets, and superposition weights
have converged, yielding no more improvements in MSE.
Note that this iterative training reduces the search space and
avoids possible divergence due to having both the CNN and
targets adapting simultaneously.

Fig. 5 shows the architecture of the CNN equalizer used.
The inputs to the CNN equalizer are observations of readings
r., rc, and rg over a sliding window of size 3 x 17. The
type of convolutional operation performed is “same,” which
means that the input is padded with zeros at the beginning
of the input sequence such that the size of the output is the
same as the size of the input. Hence, the output of each
convolutional layer is 3 x 17 x D, where D is the number
of groups of convolutional filters; D is 27, 9, and 3 for the
first, second, and third convolutional layers. The number of
filters per group at the current layer is equal to the number
of groups of convolutional filters in its preceding layer. The
first layer consists of 27 groups of convolutional filters. Each
convolutional filter is a 2-D FIR filter of size 3 x 11. The sec-
ond layer contains nine groups of convolutional filters. Each
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Fig. 5. CNN equalizer architecture.

group consists of 27 convolutional filters since the previous
layer outputs samples of size 3 x 17 per filter group. The size
of each filter is 3 x 7. The third layer contains three groups of
convolutional filters. Each group consists of nine convolutional
filters since the previous layer contains nine convolutional filter
groups. The filters on the third layer are size 3 x 3.

To reduce the chance of over-fitting, a dropout layer is
applied at the output of the first convolutional layer [19].
During training, dropout randomly zeroes the outputs of the
convolutional layer according to a defined probability of
dropout p, preventing the CNN from over-relying on certain
hidden outputs for estimation. This procedure has the effect
of sampling from a collection of possible thinned CNNs
and training these thinned CNNs. During testing, no outputs
are zeroed out. However, the weights of the layer preceding
dropout are multiplied by 1 — p. This is approximately
equivalent to averaging the performance of all thinned CNNss.
The first convolutional layer uses the largest number of filters.
Hence, it contains a relatively large number of learnable
parameters that can cause over-fitting of the learned parameters
to the training data [15, Sec. 5.2]. Thus, we use a dropout layer
after the first convolutional layer. The dropout probability is
tuned during the design stage to avoid over- or under-fitting.
Note that adding too many dropout layers or including dropout
layers with large p may lead to under-fitting which results in
the CNN achieving suboptimal performance.

Batch normalization is used at the output of the convolu-
tional layers to reduce CNN'’s sensitivity to random weights
initialization and provide some regularization benefits [20].
It computes the element-wise means and variances for each
output dimension over a mini-batch and then normalizes
each output so that each output dimension is zero-mean and
has a unit variance. At the end of the training, the batch
normalization means and variances are computed over the
entire training data set and stored for normalization during
the testing stage.

Following batch normalization, a non-linear activation
function is applied. We use the ReLLU activation function,
defined by the element-wise relation f(x) = max(0, x). The
ReLU activation function lowers implementation complexity
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Fig. 7. CNN architecture used for the equalizer/separator-VA system.

compared with the conventional sigmoid activation and ame-
liorates the issue of vanishing gradients encountered when
using sigmoid and other activation functions [21]. The output
of the last convolutional layer is flattened to a column vector
of size 153 x 1 before being fed to the last layer, which is
a fully connected (FC) layer comprised of a matrix of size
153 x 3 and three bias variables. The outputs of the FC layer
are the estimates y[k], Yc[k], and Pr[k].

B. Nonlinear CNN Equalization/Separation-VA System

To simplify the optimization of the parameters in (11),
we also propose a CNN equalizer/separator system that dele-
gates the problem of signal separation to the equalizer instead
of the detector. In this system, the CNN is trained to both
equalize and separate the signals from each layer. Thus,
the target optimization stage can focus on optimizing only the
individual target masks. Fig. 6 shows a block diagram of the
CNN equalizer/separator-VA system. The equalized and sep-
arated signal are passed to regular 1-D-25-state VA detectors.
The ideal PR signals for this system are given by

S| = g xa (12)
S)L =g xay (13)
S3,R = € kAR (14)

where our implementation uses (S + 1)-tap targets g; and g,.
Note that, in the previous CNN equalizer-1024-state VA sys-
tem, the length of the bit sequence on the lower layer is
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repetition coded at rate-1,/2 so that the PR target is compatible
with the expected input signal into the MLMR 1024-state VA,
whereas, for this system, such repetition coding is not needed
because a separate VA is used for each layer.

1) Training: Two CNNs are trained for equalization on each
layer. Assuming fixed target masks, the objective functions to
minimize during the CNN training are given by

N/2—1
Juser =~ ; ($11K] — 51 k1) (15)
1 N—-1 )

Juseo = o0 D D (5l = s lk)T (16)

je{L,R} k=0

for the lower and upper layers, respectively. Once the training
of the CNN equalizer has converged, the CNN outputs are
fixed and used to adapt the targets to further minimize the
MSE. In this case, the target optimization problem simplifies
to (fori =1,2)

minimize JMSE,i (173.)
8i
: T 2

SUbJeCt tou; g = 1, Cimin = ||gz||2 =< Ci,max (17b)

where the bounds on ||g; ||§ restrict the search space to feasible
solutions. Following the targets optimization, the CNN is
retrained to further minimize the MSE assuming the new
targets. This iteration process repeats until no further sub-
stantial reductions in MSE are observed. Compared with
target optimization in the previous system in (11), the target
optimization problem in (17) is simpler to tune.

2) CNN Architecture: Fig. 7 shows the CNN architecture
used for the CNN equalizer/separator-VA system. The input
to the CNN equalizer/separator for the upper layer is a 3 x 17
sliding window. Its outputs are the estimates of the PR signals
in (13) and (14) for the left and right tracks of interest. For
the lower layer, an input sliding window of length 6 x 17 is
used since two samples per read head are taken for each lower
layer bit. The output is an estimate of the ideal PR signal for
the lower layer in (12).

C. CNN Detection System

1) Training the CNN Detectors: CNNs can be trained to
detect bits from raw readings. For instance, the readback sam-
ples contained within a sliding window can be used to detect
bits on the upper or lower layers. In this view, the samples
contained within each interval of the sliding window constitute
an image whose correct classification label is the true bit at the
center of the window. Thus, bit detection can be represented
as an image classification problem (see [12]). CNNs have been
successful at accurately classifying images when appropriately
trained [15]. Thus, CNN provides a promising method for
bit detection over realistic digital storage channels when the
training data are available, but the channel model is difficult
to characterize.

Fig. 8 illustrates the CNN-only system that consists of
CNNs for detection on each data stream. Here, the CNN per-
forms the actual data detection rather than providing nonlinear
equalization for a subsequent conventional detector. Readings
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T, N samples
v CNN
L Detector 2

Fig. 8. CNN detector system.

within a 3 x 17 sliding window comprise input samples to
the CNN for detecting the upper layer bits. Since each reader
collects two samples per lower layer bit, and to maintain a
17-bit down-track footprint, a rate converter multiplexes these
additional readings across-track, resulting in size 6 x 17 lower
layer input samples. Each CNN detector accepts input samples
within the sliding window and estimates its corresponding
bit label. The detector CNN minimizes the CE loss function
between the correct bit labels and its soft-output estimate.
Consider estimating the kth bit a, [k], and let a, [k] represent
its estimate. Let the indicator function 1,4, xj=; = 1 if a.[k] =
i,i = 0,1, and zero otherwise. Then, the CE loss is defined as

Hiarlkl, ark]} = —14, (k=0 log(Pr{a. [k] = 0})
— 14, m=1log(1 — Pr{a.[k] = 0}). (18)

During training, stochastic gradient descent minimizes the
average CE loss Jog = (1/N) >0 Hiarlkl, ar[k]} com-
puted over a length-N mini-batch (see [15, Section 8.1.3]).
Let C;, i =0, 1, denote the ith output of the final M x 2 FC
layer, where M is the length of the vectorized output of the
penultimate layer. Then, the soft bit estimate is obtained using
the softmax activation function [15, eq. (6.29)]

e

2) CNN Detection Architectures: Fig. 9 shows CNN detec-
tor architectures. The CNN detector supersedes the equal-
izer (whether linear or non-linear) and the conventional
trellis-based detector. Hence, its complexity is expected to be
higher than the CNN equalizer. The increase in complexity
can be due to increasing the width (the number of filters at
each layer or the sizes of the filters) or depth (the number of
hidden layers) of the CNN. Deeper CNNs can achieve higher
classification accuracy in image recognition tasks compared
with wider CNNs with the same complexity [22]. Increasing
the depth of CNN usually leads to an increase in the training
time required to observe accuracy improvements over shal-
lower CNNs. We mitigate this increase in training time by
using residual paths and replacing the ReLU activation with a
leaky ReLU activation. Residual learning is proposed in [23] to
exploit the improved learning capability enjoyed by deep CNN
while easing the training and optimization stage. In regular
CNNgs, the input to the current layer is the output from the
previous layer. In residual learning, the input to the current
layer is the sum of the outputs from the previous layer and
another preceding layer. Including such residual paths provides

Pr{a,lk] =0} = (19)

3101012

more direct paths from the input to the output. Hence, CNN
can use relevant information from the input more directly
to perform the bit detection task, instead of waiting for the
previous layer to learn an appropriate representation of the
input. Thus, residual learning can improve the image classifi-
cation accuracy [23]. Hence, we leverage residual learning for
designing the detection CNNs. Given the same training time,
we find that, for deep CNNs, including the residual learning
paths achieves slightly higher accuracies than CNNs with the
same number of parameters but without residual paths.

Furthermore, ReLU activation may not be optimal in terms
of training time. For instance, a hidden output activated by
a ReLU can get stuck at zero for most of the input samples
during training [24]. Thus, the gradient corresponding to the
weights associated with such hidden output can also be zero
for most of the training duration. Since training time is limited,
this phenomenon may also result in the suboptimal final per-
formance, which was observed for predecessor architectures
of CNN Detector D1 in Fig. 9(a). To alleviate this issue,
Mass et al. [24] proposed the leaky ReL.U activation that is
defined by the element-wise relation

X, if x>0

20
ifx <0 (20)

Leaky ReLU(a, x) = [
ax,

where a is tuned during the design stage and is typically set
between zero and one. As long as a > 0, the hidden outputs
are generally non-zero during training. Hence, the problem of
having zero gradients is avoided. However, if a = 1, the CNN
loses the improved capability for generalization due to using
non-linear activation. Thus, a must be carefully tuned during
the design stage.

IV. SIMULATION RESULTS

We generate 100 blocks of waveforms based on the GSP
model in [2] and [3]. Each block contains 82412 bits per track
on the upper layer and 41206 bits per track on the lower
layer. We use 60 blocks for training, 20 blocks for valida-
tion, and 20 blocks for testing. Stochastic gradient descent
computes gradients and updates weights using mini-batches
that are subsets of the training blocks. To prevent over- or
under-fitting at the design stage, the performances of the
CNN-based systems on the validation data set are used to
tune the hyperparameters of the CNN and the adjustable
properties training algorithm. The CNN hyperparameters are
the properties of the CNN that are determined by the designer
before training—including the CNN topology, the input size,
the number of layers, the number and sizes of convolutional
filters in each layer, the activation functions used, and the value
of the dropout probability. Also, the validation results can be
used to tune properties of the learning algorithm, such as the
model regularization parameter and the learning rate, stop the
training after a certain number of epochs have passed, or adjust
the learning rate schedule [15, Ch. 7]. Finally, we assess the
methods on the testing data set. To reflect realistic performance
during implementation, no hyperparameters are tuned based on
testing results.
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Fig. 9. CNN detector architectures incorporating residual paths. To illustrate their performance—complexity tradeoff, we show the detector BER on the upper
layer achieved by each architecture in parenthesis. (a) CNN Detector D1 (6.610%). (b) CNN Detector D2 (6.758%). (¢) CNN Detector D3 (6.867%).

(d) CNN Detector D4 (7.304%).

We use the Adam optimizer, a variant of stochastic gra-
dient descent that uses the first- and second-order moments
of the gradients to adapt the learning rates for individual
learnable parameters [18]. Compared with standard stochas-
tic gradient descent, Adam requires little additional memory
and computations but provides significant performance gains.
Consistent with previous empirical results on high-density
magnetic recording data in [12], we also observed that Adam
gives better error performance than the standard stochastic
gradient descent algorithm and its variant root-mean-squared
propagation (RMSProp) algorithm [25].

For training the CNN equalizer, the mini-batch length is
set to 500 samples, and the learning rate is set to 1073,
The CNN equalizer/separator system was first trained using
a small mini-batch length of 100 samples during the first four
iterations with constrained MSE solver to obtain most of the
gains quickly. In the following iterations, the mini-batch length
was increased to 500 samples to achieve further gains. For
training the CNN detector D1, training was started using a
mini-batch length of 100 samples, which was then gradually
increased to 1000 samples as training iterations progressed.
Increasing the batch size in this manner speeds convergence
by obtaining most of the performance at the beginning of
training before extracting final performance gains with more
computationally expensive gradient steps. Such a scheme has
been studied by Smith et al. [26] and shown to also reduce
the chances of over-fitting. The learning rate was initialized to
10~ and decreased to 1073 in the final few iterations to ensure
that possible small final performance gains are achieved.

For training CNN detectors D2, D3, and D4, the mini-batch
length is fixed to 1000 samples, and an adaptive learning rate
is used.

The 2-D-LMMSE and CNN equalizers require a delay
of eight samples before they can provide outputs. Also, for
optimal performance, the 1024-state VA requires starting from
the state with all inputs set to —1. To remedy these issues and
jump-start the equalizer-VA systems, eight samples are gener-
ated based on the ideal PR signal and using inputs of —1s.

A. Equalizer MSEs

The constraints imposed on the masks affect the MSE and
BER performances obtained from equalizers. We consider two
constraint scenarios. The first imposes only energy constraints
and relaxes the monic constraint in (11). This scenario sets
the lower and upper bounds as ¢y min = 0.25, c2.min = 0.5,
Cl.max = 2, and ¢z max = 4. In the second constraint scenario,
the monic constraint is additionally imposed on both g; and g,
which automatically sets ¢j min = ¢2,min = 1. In both scenarios,
the upper bounds on the superposition weights are set to the
nominal values used in the ideal convolutional model in [6]
for nominal cross-track positions of the read heads, i.e., p; =
0.9092 and p, = 0.5. Fig. 10 shows the MSE performance of
the 2-D-LMMSE and the CNN equalizer. It is clear that the
CNN equalizer outperforms the 2-D-LMMSE. Furthermore,
although imposing the monic constraint increases the MSE,
the detector BERs benefit considerably from including the
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Fig. 10. MSE versus the equalizer iteration with a constrained MSE solver
for linear and nonlinear CNN equalizers. (a) Unit energy constraint. (b) Monic
constraint.

TABLE I
AVERAGE MSE AND BER COMPARISON FOR THE CNN EQ.-1024-STATE
VA SYSTEM UNDER DIFFERENT CONSTRAINTS ON THE TARGETS

Metric
) Average MSE ~ Upper BER  Lower BER
Constraint

0.05037 0.08370 0.2506
0.2536 0.06733 0.1190

Energy Constraint
Monic Constraint

constraint in the equalization, especially for the lower layer’s
BER, as shown in Table I.

B. Effect of Residual Paths on Training the CNN Detector

To investigate the benefits of adding the residual paths
to the CNN detector, we train CNN detector DO and CNN
detector D1, where CNN detector DO is a deeper version of
CNN detector D1 without the residual paths. CNN detector
DO is constructed based on CNN detector D1 such that both
architectures have the same number of parameters. The layers
along the residual paths (in CNN detector D1) are integrated
along the main paths such that layers with the same number of
filters are consecutive in CNN detector DO. Both architectures
are trained in this comparison with a fixed mini-batch size
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Fig. 11.  Accuracy of bit detection versus the number of training iterations.

TABLE 11
BERS FOR THE ONE-LAYER TDMR SYSTEM. THE INDIVIDUAL
LAYERS’ SIGNALS (INSTEAD OF THE SUPERPOSITION IN
MLMR) ARE USED TO OBTAIN THE BERS

L
aver Upper Lower
Method

VA 0.07939  0.02805
CNN Detector ~ 0.0563 < 10~3

of 1000 samples at an initial learning rate of 0.01, which
is set to decrease by a factor of 0.4 every two epochs. The
total number of epochs for training is 16, and the training
accuracy on a random mini-batch and the validation accuracy
are plotted every 4000 iterations. In Fig. 11, the learning
curves resulting from training CNN detector DO and CNN
detector D1 are shown. The training trajectory is similar for
both architectures except that the validation accuracies saturate
at about 93.34% and 93.38% for DO and DI, respectively.
This difference in final validation accuracy translates to BERs
of 0.066492 and 0.066212 on the testing data set achieved
by DO and DI, respectively. Hence, using the residual paths
in the CNN detector can provide small BER improvements,
given the same number of learnable parameters.

C. Detector BERs

As a reference, in Table II, we evaluate the BER for
one-layer TDMR systems comprised of the same dimensions
as the layers of the MLMR system. Table III shows the
detector BERs on each layer for the MLMR system using
the baseline and proposed architectures. To use the 1024-state
VA directly on raw readings, an MSE-optimal 2-D ISI/ITI
mask is fitted to the readings and used for computing the
branch labels. Due to the sources of distortions discussed
in Section II-A, the BER performance of the 1024-state
VA is poor. Preprocessing the waveforms with a 2-D-LMMSE
equalizer improves the BERs out of the 1024-state VA.
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TABLE III
DETECTOR BERS FOR THE MLMR SYSTEM

Layer
Upper BER  Lower BER
Method

Channel BER 0.2247 0.2135
1024-State VA 0.1861 0.2080
2D-LMMSE-1024-State VA 0.1335 0.1812
CNN Eq.-1024-State VA 0.06733 0.1190
CNN Eq./Sep. S1-2-State VA 0.06874 0.1083
CNN Eq./Sep. S2-2-State VA 0.06811 0.1048
CNN Eq./Sep. S3-2-State VA 0.06854 0.1076
CNN Eq./Sep. S4-2-State VA 0.07079 0.1289
CNN Eq./Sep. S5-2-State VA 0.06978 0.1190
CNN Eq./Sep. S6-2-State VA 0.07223 0.1225
CNN Eq./Sep. S7-2-State VA 0.06809 0.1096
CNN Eq./Sep. S3-4-State VA 0.06985 0.1150
CNN Eq./Sep. S6-4-State VA 0.07071 0.1146
CNN Eq./Sep. S7-4-State VA 0.06889 0.1087
CNN Detector D1 0.06610 0.1020
CNN Detector D2 0.06758 0.1133
CNN Detector D3 0.06867 0.1290
CNN Detector D4 0.07304 0.1399

However, despite such improvement, relatively low code rates
would need to be used to correct most errors. Using a
CNN equalizer before the 1024-state VA results in more
significant reductions in the BER. CNN detector D1 performs
similar to the CNN equalizer-1024-state VA and the CNN
equalizer/separator S1 two-state VA system. The small reduc-
tions in the CNN detector BERs are attributed to the fact
that it trains directly on CE loss. A low average CE loss
corresponds directly to a low BER and good log-likelihood
ratios (LLRs) distribution. Minimizing the MSE under the
monic constraint has been shown to provide close to minimum
BERs in the work by Moon and Zeng [27]. Consistent with
the thesis in [27], our CE-trained CNN detector provides the
minimum BERs that are closely followed by the equalizer-VA
systems’ BERs.

Different architectures of the equalizer/separator-VA system
with varying complexities are also investigated. The CNN
equalizer/separator architectures S2-S7 are summarized
in Table IV. The CNN equalizer/separator provides a good
tradeoff between performance and complexity. Increasing the
number of states of the VA from two to four corresponding
to using a three-tap target provides minor BER improvements
for the low-complexity architecture S6. However, the same
increase in the number of states does not improve the BER
performance of the relatively high complexity architecture S3.
A further increase in the number of states to eight did not
yield any reductions in the BER for S6. Hence, additional
experiments with increasing the number of states of the VA for
the equalizer/separator system were not pursued.

D. Density Results

We are interested in whether the effective information
areal density of the MLMR is significantly higher than the
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TABLE IV
SUMMARY OF THE TOPOLOGIES OF THE CNN EQ./SEP. ARCHITECTURES
CONSIDERED. BATCH NORMALIZATION AND THE LEAKY RELU
ACTIVATION (WITHa = 0.1) ARE USED BETWEEN
THE CONVOLUTIONAL LAYERS

CNN Architecture Topology Summary

CNN Eq./Sep. S1
CNN Eq./Sep. S2
CNN Eq./Sep. S3
CNN Eq./Sep. S4
CNN Eq./Sep. S5
CNN Eq./Sep. S6
CNN Eq./Sep. S7

Displayed in Fig. 7
[3 x 11, conv. 16], [3 x 3, conv. 8], [3 x 3, conv. 4]
[3 x 11, conv. 8], [3 X 3, conv. 4], [3 X 3, conv. 2]
[3 x 11, conv. 4], [3 x 3, conv. 2], [3 x 3, conv. 1]
[3 x 11, conv. 1], [3 X 3, conv. 8]
[3 x 11, conv. 1], [3 X 3, conv. 4]
[3 x 11, conv. 2], [3 X 3, conv. 4], [3 X 3, conv. 8]

information areal density of the TDMR one-layer system.
Following CNN detector D1, we interfaced an IRA chan-
nel decoder that performs coset-decoding using appropriate
code rates [28, Sec. IV-B]. We then adjusted the rates via
code design and puncturing so that the decoder BER is less
than 107>, This results in a maximum code rate of 0.7477
achieved by the one-layer TDMR system. In comparison,
the maximum code rates achieved by the two-layer MLMR
system are 0.7116 and 0.6289 on the upper and lower layers,
respectively. Since there are four bits on the upper layer per
one bit on the lower layer, the effective rate of the MLMR
system is 0.7116 4+ 0.6289/4 = 0.8688. Hence, the areal
density gain of the MLMR system over the TDMR system
is (0.8688 — 0.7477)/0.7477 = 16.20%. Using CNN detector
D2, the maximum code rates achieved are 0.7137 and 0.5945
for the upper and lower layers, respectively, in the two-layer
structure. Thus, the small BER gains on the upper layer due
to using D1 over D2 do not yield a higher information density
on the upper layer. However, using D1 over D2 gives about
5.79% information density increase for the lower layer.

To obtain a density gain with the CNN equalizer and
separator system, appropriate IRA decoders are also interfaced
with the CNN equalizer/separator S3 system. The maximum
code rate achieved by the reference one-layer TDMR system is
0.7157. In contrast, the two-layer MLMR system achieves the
maximum code rates of 0.6861 and 0.5911, respectively. Thus,
the CNN equalizer/separator system achieves a density gain of
16.51% for two-layer magnetic recording over the one-layer
system. Note that, for the two-layer system, the overall density
achieved by the CNN detector is 18.56% higher than the over-
all density achieved by the CNN equalizer/separator system.
The reason is that the CNN detector is trained to detect bits
directly from readings using the CE loss. However, the CNN
equalizer/separator system is trained on MSE. The MSE loss
may not necessarily preserve all relevant information needed
for optimal soft detection.

To observe the impact of the reader electronics’ noise on
the density gain, we added AWGN with variance 2 such that
the SNR for coded bits is given by

Py,
SNReoded, AWGN = 1010g10(ﬁ) 1)

e
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TABLE V
COMPLEXITY COMPARISON IN TERMS OF THE NUMBER OF OPERATIONS
PER BIT ESTIMATE. THE CNN DETECTOR ALSO REQUIRES
TWO exp(-) COMPUTATIONS PER BIT ESTIMATE

Operation s Additions ( omparisons
P Multlpllcatlons A
Method

2D-LMMSE Egq.-1024-State VA 2478 4935 6984
CNN Eq.-1024-State VA 58,840 61,298 7759
CNN Eq./Sep. S1-2-State VA 101,466 101,471 1787
CNN Eq./Sep. S2-2-State VA 116,670 116,675 1787
CNN Eq./Sep. S3-2-State VA 34,444 34,450 895
CNN Eq./Sep. S4-2-State VA 11,251 11,256 449
CNN Eq./Sep. S5-2-State VA 5495 5501 347
CNN Eq./Sep. S6-2-State VA 3362 3368 194
CNN Eq./Sep. S7-2-State VA 22,411 22,417 895
CNN Detector D1 1,088,057 1,085,000 9486
CNN Detector D2 33,227 32771 1224
CNN Detector D3 9629 9403 765
CNN Detector D4 2033 1960 153

where Py, = (1/3)(PL + Pc + Pg), and P; = E{r%pper,i}
for i € {L,C, R} is the average power of the upper layer’s
signal rypper,; in the superposition reading r;. Note that the
SNR is computed with respect to the upper layer’s signal
as in [6], which allows for a fair comparison between the
one- and two-layer systems. We tested CNN detector D2 with
SNRcoded, awan = 20 dB. This increased the detector BERS to
0.08243 and 0.1266 for the upper and lower layers, respec-
tively. The maximum code rate obtained for the one-layer
reference system is 0.7076. In comparison, the maximum code
rates for the two-layer system are 0.6695 and 0.5577 for the
upper and lower layers, respectively. Hence, the density gain
of the two-layer system is 14.32%.

E. Complexity Comparison

This section presents a complexity comparison between
the baseline 2-D-LMMSE equalizer-1024 state VA, the CNN
equalizer-1024-state VA, and the CNN detector. Table V
details the number of operations per bit estimate required
by each system. For the CNN-based systems, the oper-
ations include the multiplications and additions due to
2-D-convolution, batch normalization, matrix multiplication
at FC layers, leaky ReLU, and residual paths’ associated
additions. The comparisons performed by the CNN systems
are only to obtain the sign of hidden outputs to compute the
ReLU and leaky ReLU operations. For the VA, the multi-
plications and additions are due to branch and path metric
computations. The comparisons in the VA are performed
between accumulated path metrics to determine the surviving
path at each trellis state.

Since the input to the CNNs is a sliding window over
the readings, many of the hidden outputs are equal between
sample estimates and need not be computed for every bit
estimate in practice (see the discussion in [10, Sec. IV]).
However, because such simplifications were not taken into
account in our implementation, they are not reflected in our
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operations counting. Furthermore, our current implementation
of the CNN detector estimates one bit during each sampling
interval. In contrast, the VA estimates five bits every two
sampling intervals, which saves complexity on the number of
operations required per bit estimate. The CNN detector can
also be configured to estimate more than one bit every sam-
pling time using appropriate mapping of short bit sequences
to classification classes. The CNN equalizer used with the
1024-state VA provides three equalized samples for every
sampling interval. The complexity of the CNN detector for
the lower layer can be reduced by decreasing the size of the
input using an averaging filter over the extra samples per bit.

V. CONCLUSION

Using realistic readback waveforms for a two-layer mag-
netic recording system, we investigated the performances of
a conventional linear equalizer, trellis-based detectors, and
convolutional NNs (CNNs) for equalization and detection.
Due to the presence of pattern-dependent media noise and
jitter noise in the readback waveforms, the CNN systems
outperformed the conventional system comprised of a linear
equalizer followed by a trellis-based detector. The linear
equalizer cannot handle well equalizing signals comprised of
the superposition of two waveforms. As a non-linear equal-
izer/detector trained on raw readings and a universal function
approximator, the CNN is better equipped to compensate
for the sources of distortion and achieve better performance.
The CNN systems provide a good performance—complexity
tradeoff. We interfaced the CNN detector system with chan-
nel decoders to obtain a density estimate for the two-layer
system. Our experiments yield a 16.2% areal density increase
for two-layer magnetic recording over one-layer recording.
When the reader electronics’ noise is considered, a moderate
complexity CNN detector achieves an areal density gain of
14.32%. Future research works can optimize the design of the
channel encoder and decoder architectures for the two-layer
system.

APPENDIX
DERIVATION OF THE 2-D-LMMSE EQUALIZER

Let M denote the order of f; ;. The MSE, 02, between the
ideal PR signal and the linear equalizer output is given by

o2k] = E[y,[k] — (Fi. % vs +f1.c % ve +F g rg) K]
(22)

We drop the subscript index 1 from f; ;, j € L,C, R, for
convenience of notation, since it is clear from context that
we are solving for f; ;. Writing out the convolution and
simplifying gives

2

M
okl = E| ylk] =D D" filmlrilk —m] (23)

j m=0

= Ely kI =2 > filmlE[y.lklr;lk —m]] + -

J m
S Z z filmlfy [m'| E[r;lk — mlry [k —m]].

JJ' m,m’

(24)
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Define the auto-correlation vector R; j[m —m’] £ E[r ik
m]rjy[k — m']] and the cross correlation vector g;[m]
E[y.[k]r;j[m — k]]. Note that the definitions implicitly assume
that r;[k]’s are wide sense stationary (WSS) random processes.
Taking the derivative of (24) with respect to f;[m] and setting
the outcome to zero, we obtain the MSE minimizing f; by
solving

L

> Rjj[m—m'] flm] = q;[m). (25)
-

We can write the condition in (25) in matrix form. Let
R; ; denote a Toeplitz matrix (of size M + 1 x M + 1)
constructed from the vector [R; [0], R; y[1],..., R; /[M]]
and q; denote the column vector col[g;[0], g,[1], ..., g;[M]].
If f; is a column vector of length M + 1, then the solution f;
solves the equation

Risp | Rec y Rer|[fe ar
Rer 't Rec 1 Regr ([ fe | =] qc (26)
Rrr ' Rrc ' Rpo || fr qr

where the leftmost matrix is a doubly block Toeplitz matrix
of size 3(M + 1) x 3(M + 1), and the central and right-hand
side column vectors both have length 3(M + 1).

Note that, given observations of length N, the auto-
and cross-correlations in (26) are estimated empirically as
(for m > 0)

N—m—1
N 1
Ry ylml = > riln+mlrpn] 27)
n=0
1 N—m—1
gjlml = — yLln 4 mlr;[n]. (28)
n=0
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