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Abstract

Forecasting complex vehicle and pedestrian multi-modal
distributions requires powerful probabilistic approaches.
Normalizing flows (NF) have recently emerged as an attrac-
tive tool to model such distributions. However, a key draw-
back is that independent samples drawn from a flow model
often do not adequately capture all the modes in the under-
lying distribution. We propose Likelihood-Based Diverse
Sampling (LDS), a method for improving the quality and
the diversity of trajectory samples from a pre-trained flow
model. Rather than producing individual samples, LDS pro-
duces a set of trajectories in one shot. Given a pre-trained
forecasting flow model, we train LDS using gradients from
the model, to optimize an objective function that rewards
high likelihood for individual trajectories in the predicted
set, together with high spatial separation among trajecto-
ries. LDS outperforms state-of-art post-hoc neural diverse
forecasting methods for various pre-trained flow models as
well as conditional variational autoencoder (CVAE) mod-
els. Crucially, it can also be used for transductive trajectory
forecasting, where the diverse forecasts are trained on-the-
fly on unlabeled test examples. LDS is easy to implement,
and we show that it offers a simple plug-in improvement
over baselines on two challenging benchmarks. Code is at:
https://github.com/JasonMa2016/LDS

1. Introduction
A key challenge facing self-driving cars is accurately

forecasting the future trajectories of other vehicles. These
future trajectories are often diverse and multi-modal, requir-
ing a forecasting model to predict not a single ground truth
future but the full range of plausible futures [25].

With the increasing abundance of driving data [4, 6],
a promising approach is to learn a deep generative model
from data to predict the probability distribution over fu-
ture trajectories [24, 15, 18, 37, 33, 34, 36, 30]. However,
due to natural biases, sampling i.i.d. from a deep generative
model’s prior distribution may fail to cover all modes in the

Figure 1: (a) At this intersection, 90% of cars turn right, and
10% drive straight in our training dataset. (b) A normaliz-
ing flow trajectory predictor trained on this data, sampled
100 times i.i.d., does not produce any straight trajectories.
(c) With our LDS sampler plugged in, the same predictor
generates both straight and right-turn trajectories with just
2 samples. Details are in Appendix B.

trajectory distribution, especially given the uneven distribu-
tion of real-world traffic maneuvers. Consider the scenario
in Figure 1(a) and a normalizing flow (NF) [32] forecast-
ing model [35, 34]. The i.i.d. forecasts from the flow model
in Figure 1(b) successfully capture the major mode corre-
sponding to turning right; however, for driving safely at this
intersection, we must also anticipate the minor mode corre-
sponding to vehicles driving straight.

We propose a general, post-hoc approach, called
Likelihood-Based Diverse Sampling (LDS), for enhancing
the quality and the diversity of samples from a pre-trained
generative model. The key idea is that rather than drawing
i.i.d. samples from the generative model, LDS learns a sam-
pling distribution over an entire set of trajectories, which
jointly maximizes two objectives: (i) the likelihood of the
trajectories according to the model, and (ii) a robust goal-
based diversity objective that encourages high final spatial
separation among trajectories. Intuitively, these two objec-
tives together encourage a set of forecasts to cover modes in
the underlying trajectory distribution. The result of running
LDS on our toy example is shown in Figure 1(c); it correctly
discovers the minor mode of heading straight and distributes
samples over both modes. Figure 2 provides an overview of
the LDS objective and architecture. Because our technique
leverages trajectory likelihood under the learned underly-
ing generative model, it is naturally suited for NF-based

https://github.com/JasonMa2016/LDS


Figure 2: Left: Fitted on data at this intersection where most vehicles turn right and a small fraction head straight, (1): LDS
predicts a set of paths that cover both modes and are realistic, (2): Optimizing for only model likelihood generates samples
that are realistic but miss the minor mode (small star) at the top, and (3): Optimizing for only diversity generates samples
that may cover both modes but are not realistic. Right: LDS architecture overview. LDS replaces standard i.i.d. sampling in
the flow model with a learned joint distribution over a set of samples in the latent space. These samples allow the pre-trained
flow model to output diverse and realistic trajectories.

models, which compute the exact likelihood of their gener-
ated samples. To the best of our knowledge, our method is
the first diverse sampling technique tailored for NF models.
We note, however, that our technique can also be applied to
other likelihood-based models—e.g., we can handle VAEs
by using the evidence lower-bound for the likelihood.

A key advantage of LDS is that it can be leveraged in the
setting of transductive learning [38]. In particular, since
LDS does not require paired trajectories (history and fu-
ture) for training, it can directly tailor the sampler to im-
prove predictions for a given novel test instance, even with-
out any prior training. By specializing to this test instance,
transductive learning can outperform supervised learning
which cannot perform test-time adaptation. To the best of
our knowledge, the tranductive setting has not been previ-
ously considered for trajectory forecasting, but we believe
it most closely mirrors the forecasting task autonomous ve-
hicles face in the real world.

LDS is simple to implement, requiring fewer than 30
lines of code. We evaluate LDS on nuScenes [4] and Fork-
ing Paths [25], two challenging single-future and multi-
future [25] benchmarks. Our experiments demonstrate that
LDS provides a reliable performance boost when plugged
into various existing NF/CVAE forecasting models and out-
performs competing approaches. These results further im-
prove when LDS is applied for transductive forecasting.

2. Related Work

Multi-Modal Forecasting. There are various approaches
to the multi-modal forecasting problem. One approach is
to pre-define trajectory primitives that serve as candidate
outputs and formulate the forecasting problem as a mix of
classification and regression [10, 5, 9, 31]. However, these
approaches require extra labeled information; furthermore,
they often only output a deterministic set of predictions for

a given input. We instead build on deep generative mod-
els [15, 24, 37, 18, 36, 35, 30] that directly model multi-
modal densities. In particular, normalizing flows [32, 29]
have become a popular choice due to their comparative ease
of optimization [33, 30, 35, 13], as well as their flexibil-
ity for downstream tasks such as goal-conditioned planning
[34]. Our method is designed as a plug-in improvement
for sampling better and more diverse predictions from any
model within this family. Our method is also compatible
with VAE [21]-based forecasting models [24, 40, 36, 27].
Our diversity loss is formulated using predicted trajecto-
ries’ endpoints. Similar ideas have been explored recently
[27, 42, 7], but our method is a post-hoc approach and infers
plausible endpoints in an unsupervised manner while previ-
ous works are end-to-end architectures and require ground
truth endpoints to guide model training.

Post-Hoc Neural Diversity Sampling. Several prior works
learn to sample from pre-trained generative models [3, 14,
12, 27]. Our approach is most closely related to two recent
neural post-hoc diverse sampling methods for forecasting,
DSF [40] and DLow [41]. DSF uses a neural network to
parameterize a deterministic point process (DPP) [22] from
which samples are drawn. The DPP kernel chooses samples
using a threshold function based on the Euclidean distance
of the latent samples from its prior distribution mean. DSF
inherits the disadvantages of slow training and inference
from its DPP. Computational issues aside, DSF fails to scale
to high-dimensional latent spaces where Euclidean distance
is not an informative metric of closeness. In comparison,
DLow uses a modified ground truth trajectory reconstruc-
tion loss and KL divergence to shape the latent samples and
an exponential kernel function to induce sample diversity.
However, it restricts the architecture of its sampling net-
work to be a single-layer linear network with respect to the
latent samples to admit tractable KL-constraint computa-



tion in its objective. This limits the expressiveness of the
learned sampling distribution. In addition, because its ob-
jective requires ground-truth trajectory futures for training,
it cannot be used in the transductive setup we introduce in
our experiments. Both DSF and DLow also introduce ad-
ditional kernel-related hyperparameters that are difficult to
optimize. Compared to DSF and DLow, LDS permits multi-
layered sampling architectures and high-dimensional latent
spaces, exploits trajectory likelihood under the generative
model to permit flexible application including transductive
forecasting, introduces few hyperparameters, and performs
consistently better across our experiments.

3. Problem Setup
Consider the problem of predicting the trajectory of an

agent whose 2D position at time t is denoted as St =
(xt, yt). We denote the current time step as t = 0, and
the future aggregated state as S := S1:T ∈ RT×2. At time
t = 0, the agent has access to observation o, which may
include contextual features such as Lidar scans, physical at-
tributes of the vehicle/pedestrian agent (e.g. velocity, yaw),
and the state histories of all agents in the scene. The goal
of trajectory forecasting is to predict S given o, p(S|o). We
denote the training dataset as D = {(o,S)}.

Our approach assumes as given, a flow model fθ that has
been pre-trained to learn the distribution pθ(S|o;D). At a
high level, assuming a multivariate Gaussian base sampling
distribution Z ∼ PZ ≡ N (0, I), fθ is a bijective mapping
between Z and S, captured by the following forward and
inverse computations of fθ:

S = fθ(Z; o) ∼ pθ(S | o), Z = f−1θ (S;o) ∼ PZ (1)

To draw one trajectory sample S, we sample Z ∼ PZ and
compute S = fθ(Z;o). Furthermore, the exact likelihood
of a trajectory S is given by the change of variables rule:

log pθ(S|o) = log

(
p(Z) ·

∣∣∣∣det
dfθ
dZ

∣∣∣
Z=f−1

θ (S;o)

∣∣∣∣ 1−1) ,
(2)

where the bijective property and standard architectural
choices for fθ permit easy computation of the determinant.
We refer readers to Appendix A for a more detailed intro-
duction to flow-based trajectory forecasting.

4. Diversity Sampling for Flow
In stochastic settings, it is often necessary to use K > 1

trajectory predictions rather than just one, to ensure that the
samples cover the full range of possible stochastic futures;
we assume the number of predictions K is a given hyper-
parameter. However, as Figure 1 shows, simply drawing
K i.i.d. samples from the flow model fθ may undersam-
ple from minor modes and fail to capture all potential out-
comes. We propose an alternative strategy, which we call

Likelihood-Based Diverse Sampling (LDS), that learns a
joint distribution over K samples {Z1, ...,ZK} in the latent
space of fθ. In doing so, it aims to improve the diversity of
the trajectories fθ(Z1), ..., fθ(ZK) while maintaining their
plausibility according to the flow model1.

In particular, LDS trains a neural network rψ to trans-
form a Gaussian distribution ε ∼ N (0, I) into a distribu-
tion over a set Z := {Z1, ...,ZK} = rψ(ε;o) of latent
vectors given an observation o. This set in turn induces
a distribution over trajectories S := {S1, ...,SK}, where
Sk = fθ(Zk;o) for each k. Since the distribution is de-
fined over multisets of samples, the individual samples Sk
are no longer independent. Informally, they should be anti-
correlated to ensure they cover different modes. We train
rψ to minimize the following loss function:

LLDS(ψ) := NLL(ψ)− λdLd(ψ), (3)

which combines the negative log likelihood (NLL) loss
from the flow model and a goal diversity loss Ld. Figure
2 (Left) provides intuition for these two terms, and we ex-
plain them in detail below.

Likelihood Objective. The NLL term is defined as:

NLL(ψ) := −
K∑
k=1

log pθ(Sk|ok), (4)

where {S1, ...,Sk} = fθ(rψ(ε;o)) and log pθ(Sk|o) is
computed as in Equation (2). This NLL term incentivizes
LDS to output a set of forecasts that all have high likelihood
according to the flow model fθ. This term incentivizes fθ
to maximize the likelihood of the training trajectories D by
selecting trajectories that are plausible and likely to occur.
By itself, it does not incentivize diversity among forecasts;
they may easily concentrate around the major mode as in
the “most likely” trajectories in Figure 2 (Left).

Diversity Objective. To combat this tendency, we intro-
duce the minimum pairwise squared L2 distance between
the predicted trajectory endpoints:

Ld(ψ) := min
i6=j∈K

‖fθ(Zi)T − fθ(Zj)T ‖22. (5)

The minimum formulation strongly incentivizes LDS to dis-
tribute its samples among different modes in the distribu-
tion, since any two predictions that end up too close to each
other would significantly decrease Ld. In our experiments,
we have observed mean-based diversity formulation suffers
from network “cheating” behavior, in which all but one pre-
diction collapse to a single trajectory and the left-out tra-
jectory is distant, resulting in comparatively high average

1Though our technical discussion focuses on NF models, we emphasize
that LDS can also be applied to CVAE models by replacing NLL with
ELBO; we provide details on LDS-CVAE in Appendix C.



Algorithm 1 Batch LDS Training

Input: Flow fθ, Observation Batch {o}
1: Initialize LDS model rψ
2: for oi ∈ {o} do
3: Sample ε ∼ N (0, I)
4: Compute Z1, ...,ZK = rψ(ε;oi)
5: Generate predictions fθ(Z1), .., fθ(ZK)
6: Compute losses using Equations 4 & 5
7: end for
8: Perform stochastic gradient descent on ψ to minimize

LLDS (Equation 3)
Output: Trained LDS model rψ

diversity. Our formulation is robust to this degeneracy as
only the pairwise minimum will be considered. While many
other notions of distances between trajectories are compati-
ble with our framework, we measure the distances at the last
time step alone, since spatial separation between trajectory
endpoints is a good measure of trajectory diversity in our
applications [27, 42, 7]. Finally, to train rψ , LDS minimizes
LLDS using stochastic gradient descent; see Algorithm 1.

Implementation Details. LDS rψ is implemented as a 3-
layer feed-forward neural network with K heads, each of
which corresponds to the latent zk for a single output in the
predicted set. We assume access to the input embedding
layers of the pre-trained flow model, which embeds high-
dimensional (visual) input o into lower dimensional feature
vectors. These feature vectors are taken as input to LDS.
Additionally, we fix the dimensions of the input Gaussian
noise ε to be the same as the trajectory output S from fθ
(i.e. T × 2). Furthermore, to prevent the diversity loss from
diverging, we clip it to a positive value. Additional details
are in Appendix F.5 & G.3.

5. Transductive Trajectory Forecasting
Transductive learning refers to “test-time training” on

unlabeled test instances [38, 19]. For diversity sampling, it
amounts to the following: given a new observation o, com-
pute a set of diverse trajectories that best captures the pos-
sible stochastic futures. That is, whereas supervised learn-
ing focuses on average accuracy across all test trajectories,
transductive learning focuses on the vehicle’s current situ-
ation. This setting closely captures the forecasting prob-
lem autonomous vehicles face in practice; however, exist-
ing end-to-end forecasting models typically lack the capa-
bility for the transductive setting because their training pro-
cedures require data with ground truth labels.

In contrast, LDS’s objective function does not depend
on access to any ground truth future trajectories, and re-
lies only on the pre-trained generative model and unlabeled
inputs o. In this sense, the LDS sampler is trained with-

out supervision. It can therefore be used transductively and
adapt on-the-fly to a given new observation (e.g. a new traf-
fic scene the vehicle enters). Formally, given an unlabeled
input o, we can train a LDS model rψ tailored to o. We
call this variant LDS-TD-NN. Compared to vanilla “batch”
LDS, LDS-TD-NN does not need to be trained offline with
a large dataset, making it also suitable for settings where
little or no training data is available —e.g., the training set
for the pre-trained flow model is unavailable.

In the transductive setting, LDS could eschew the neu-
ral network and directly optimize the latent space samples
Z1, ...,ZK . We call this particle variant LDS-TD-P. Note
that, unlike the neural variant, LDS-TD-P cannot take the
observation o as input. LDS-TD-NN and LDS-TD-P are
summarized in Algorithm 2 and 3 in Appendix D.

6. Experiments
Our experiments aim to address the following ques-

tions: (1) Does LDS boost performance across different
pre-trained flow models? (2) Can LDS be applied to pre-
trained VAE models as well?, (3) How does LDS compare
against (a) other learning-based diverse sampling methods
and (b) existing end-to-end multi-modal forecasting mod-
els?, (4) Is LDS effective in the transductive learning set-
ting? (5) Which components of LDS are most important for
performance? We address questions 1-4 via experiments on
two qualitatively different datasets, nuScenes [4] and Fork-
ing Paths [25] (Section 6.3 and 6.4). For each one, we use a
distinct pre-trained flow model with architecture and input
representation tailored to that dataset. We address question
5 via an ablation study in Section 6.5.

6.1. Datasets and Models

We begin by describing our datasets, models, and eval-
uation metrics; see Appendix F & G for details on model
architectures, hyperparameters, and training procedures.

NuScenes. NuScenes is a multi-purpose autonomous ve-
hicle dataset with a large trajectory forecasting dataset [4].
Following prior work [9, 31, 13], the predictor takes as in-
put the current observation (e.g., Lidar scan) and attributes
(e.g., velocity) of a vehicle, and forecasts this vehicle’s tra-
jectory over the next 6 seconds (i.e., 12 frames).

LDS Models. We train an autoregressive affine flow model
(AF) proposed by [35, 34] as our underlying flow model
for trajectory prediction. On top of AF, we train three
variants of LDS. The first is LDS-AF, the batch ver-
sion in Algorithm 1. The latter two are the transductive
neural and particle-based variants LDS-AF-TD-NN and
LDS-AF-TD-P discussed in Section 5. To further illustrate
the generality of LDS, we also consider LDS-CVAE, a LDS
applied to a CVAE model. Here, we replace the exact like-
lihood in Equation 4 with ELBO.



Baselines. For neural diverse sampling approaches, we
consider DLow and DSF and apply them to both CVAE and
AF to form DLow-{AF, CVAE} and DSF-{AF, CVAE}.
In addition to neural diverse sampling baselines, we in-
clude three end-to-end multi-modal forecasting models:
CoverNet [31], MultiPath [5], and MTP [9]. For the first
two, we directly report results published in [31]; for MTP,
we re-train the model using nuScenes’ official implementa-
tion to provide an end-to-end model for evaluation metrics
not included in [31]. We choose these end-to-end models
for comparison since they use the same inputs as our AF
and CVAE backbones, and we aim to test whether post-
hoc sampling methods applied to simple backbone models
are competitive with specialized end-to-end models. In Ap-
pendix F.7, we compare to Trajectron++ [36], which uses an
experimental setup different from other prior approaches.

Forking Paths. One limitation of most trajectory forecast-
ing datasets such as nuScenes is that there is only a single
ground-truth future trajectory for each training sample. To
evaluate each forecasting model’s ability to predict diverse,
plausible future trajectories, it is critical to evaluate the
model against multiple ground-truth trajectories in a multi-
future dataset. This approach directly evaluates whether a
model captures the intrinsic stochasticity in future trajecto-
ries. Therefore, we additionally evaluate LDS on the re-
cent Forking Paths (FP) dataset [25]. FP recreates scenes
from real-world pedestrian trajectory datasets [28, 2] in the
CARLA simulator [11], and asks multiple human annota-
tors to annotate future trajectories in the simulator, thereby
creating multiple ground truth future pedestrian trajectories
for each scene. The flow model takes as input the trajectory
of a pedestrian over the past 3 seconds (i.e., 12 frames), and
its goal is to predict their trajectory over the next 5 seconds
(i.e., 20 frames).

LDS Models. For this dataset, we focus on flow mod-
els and use the recently introduced Cross-Agent Attention
Model Normalizing Flow (CAM-NF) [30] as our underly-
ing flow model for trajectory prediction; see Appendix G
for CAM-NF details. Compared to AF used for nuScenes
experiments, CAM-NF is an already performant generative
model, and an additional goal of this experiment is to inves-
tigate whether LDS can be useful for already performant
generative models. As before, we train LDS and LDS-TD-
NN on top of CAM-NF.

Baselines. We compare to DSF and DLow applied to
CAM-NF. All other baseline results are taken directly from
[25] (rows with ∗ in Table 2 (Left)), including Social-
LSTM [1], Social-GAN [15], Next [26], and Multiverse
[25], as well as simple Linear and LSTM networks.

Training and Evaluation. We follow the procedure in
[25]. We first train CAM-NF using VIRAT/ActEV [28, 2],
the real-world datasets from which FP extracts simulated

pedestrian scenes. Then, we train {DLow, DSF, LDS} on
top of the pre-trained CAM-NF model using the training
dataset (VIRAT/ActEV). Finally, we evaluate all models on
the test set FP using K = 20 samples against the multiple
ground-truth futures. For LDS-TD-NN, we directly train
and evaluate rψ on FP using small minibatches as described
in Algorithm 2 in Appendix D.

An important challenge is that trajectories in FP have dif-
ferent (typically longer) lengths compared to trajectories in
VIRAT/ActEV, since the human annotators provided trajec-
tories of varying durations; this complicates the forecasting
problem on the FP test set.

6.2. Evaluation Metrics

We report minimum average displacement error
minADEK and final displacement error minFDEK of
K prediction samples Ŝk compared to the ground truth
trajectories S1, ...,SJ [37, 5, 25]:

minADEK(Ŝ,S) =

∑J
j=1 mini∈K

∑T
t=1‖Ŝi,t − St‖2

T × J
,

minFDEK(Ŝ,S) =

∑J
j=1 mini∈K‖Ŝi,T − ST ‖2

J

These metrics are widely used in stochastic prediction tasks
[37, 15] and tend to reward predicted sets of trajectories
that are both diverse and realistic. In multi-future datasets
(J > 1) such as Forking Paths, these metrics are standalone
sufficient to evaluate both the diversity and the plausibility
of model predictions, because a set of predictions that does
not adequately cover all futures will naturally incur high er-
rors. In single-future datasets (J = 1) such as nuScenes,
however, they do not explicitly penalize a predicted set
of trajectories that simply repeats trajectories close to the
single ground truth. To explicitly measure prediction di-
versity on nuScenes, we also report the minimum average
self-distance minASDK and minimum final self-distance
minFSDK between pairs of predictions samples:

minASDK(Ŝ) = min
i6=j∈K

1

T

T∑
t=1

‖Ŝi,t − Ŝj,t‖2

minFSDK(Ŝ) = min
i6=j∈K

‖Ŝi,T − Ŝj,T ‖2

These metrics evaluate the lower bound diversity among a
predicted set of trajectories, and they tend to decrease as
K increases since the predictions become more “crowded”
around the modes already covered. Note that minFSD is
identical to the diversity term in the LDS objective (Equa-
tion (5)). Several prior works have reported the average
ASD (meanASD) and FSD (meanFSD) instead [40, 41];
however, we observe that minASD is a superior metric since
it is more robust to outliers among the predictions (see Ap-
pendix F.8 for an illustrative example). For completeness,



we also report meanASD and meanFSD in Appendix F.7;
our findings are consistent with those presented here. Fi-
nally, since minFDEK, minASDK, and minFSDK were not
reported in previous work, we only report them for the mod-
els we implement.

All compared models, except vanilla CVAE and NF, take
the number K of modes/number of samples in the predic-
tion set as a hyperparameter. We report results for each
metric using the corresponding model configurations—e.g.,
when measuring minASD5, we use K = 5 for all models.

6.3. Quantitative Results

NuScenes. In Table 1 (Left), we compare the prediction
accuracy of LDS-AF, LDS-AF-TD-{NN, P}, and the base-
lines described above. The best method within each sub-
category is bolded. LDS-AF and LDS-AF-TD-NN achieve
the best overall performance.

Comparing AF and CVAE to prior multi-modal mod-
els, we see that although the two “vanilla” generative mod-
els achieve better one-sample prediction (i.e., minADE1),
they perform significantly worse when more predictions
are made. This confirms our hypothesis that i.i.d. samples
from a generative model do not adequately capture diverse
modes, causing it to fail to cover the ground truth with good
accuracy. Consequently, post-hoc diverse sampling signif-
icantly improves the performance of these models. Out of
all the post-hoc neural diverse sampling methods, LDS pro-
vides the most significant improvement for both AF and
CVAE. In particular, the most performant model LDS-AF
achieves the best results out of all models in the batch set-
ting, even outperforming the strongest multi-modal model
CoverNet. This suggests there is much to gain from a (sim-
ple) pre-trained model by applying appropriate post-hoc di-
verse sampling. We highlight that despite not being de-
signed for CVAE, LDS still outperforms DSF and DLow,
both of which are originally intended for CVAE, demon-
strating the general merit of our approach. Next, in the
transductive setting, LDS-AF-TD-NN is indeed able to tai-
lor its predictions towards each small batch of test instances
and achieves the overall best results among all models. Fi-
nally, LDS-AF-TD-NN also significantly outperforms the
particle variant LDS-AF-TD-P, likely due to the neural vari-
ant having the advantage of explicitly conditioning the sam-
ples on the observation input o.

Next, we compare the models in terms of their predic-
tion diversity in Table 1 (Right). LDS models consistently
outperform the baseline models by a large margin. In par-
ticular, they are the only models whose diversity does not
collapse when the number of modes increases from 5 to
10. This shows that LDS is more “efficient” with its sam-
ples, since it does not repeat any trajectories. In contrast,
all other methods produce pairs of very similar predictions
when K = 10. Given that LDS also produces accurate

predictions, these results provide strong evidence that LDS
is able to simultaneously optimize accuracy and diversity.
Furthermore, LDS also achieves the highest diversity under
the mean diversity metrics in Appendix F.7.

Forking Paths. The training set results on ActEV/VIRAT
for CAM-NF and various baseline models are included in
Appendix G.5. To summarize the training set results, we
find CAM-NF effective on this dataset, only outperformed
by the current state-of-art method Multiverse [25], thus sat-
isfying our goal of testing whether LDS can improve a
strong backbone model. Now, we show the FP test results
in Table 2 (Left). Note that the FP dataset comes with two
different categories “45-Degree” and “Top Down” depend-
ing on the camera angle view of the human annotators. We
report the average results between the two views for read-
ability, and leave the full results split over each sub-category
to Appendix G.6. We observe that CAM-NF already outper-
forms all prior methods on all metrics. With LDS, CAM-NF
improves even further, outperforming all prior methods by
a large margin. In comparison, DSF and DLow are not able
to achieve the same level of performance boost, and in the
case of DSF, the effect is even detrimental. The transduc-
tive variant LDS-TD-NN improves performance further on
FDE metrics, while performing on par with LDS on ADE
metrics; this results is promising as the transductive variant
never observes the training set, and this dataset consists of
a clear distributional shift between the training set and the
testing set. In Appendix G.7, we provide additional analysis
on Forking Paths results.

6.4. Qualitative Results

Next, we illustrate trajectories from LDS and baselines
in the two benchmarks to demonstrate that LDS indeed out-
puts more diverse and plausible trajectories.

NuScenes examples. In Figure 3, we show visualizations
of two separate frames of the same nuScenes instance, over-
laid with predictions from LDS-AF, AF, and MTP. Overall,
LDS produces the most diverse and plausible set of trajecto-
ries in both frames. In the first frame, AF exhibits a failure
mode as some of its predictions go far off the road. This
provides evidence that sampling i.i.d. from a vanilla flow
model may fail to identify realistic trajectories. But when
LDS is used to draw samples from the same flow model
(i.e., LDS-AF), the trajectories become both more diverse
and more realistic. In the second frame, MTP outputs a few
trajectories that violate road constraints, while AF trajecto-
ries are concentrated in one cluster. Again, LDS-AF is the
only model that predicts both diverse and plausible trajec-
tories. In Appendix F.9, we provide additional visualiza-
tions including LDS-AF-TD-NN trajectories (Figure 8), as
well as visualizations of different sets of trajectories LDS-
AF outputs by varying the ε input to the model (Figure 9).



Method Modes minADE1(↓) minADE5(↓) minADE10(↓) minFDE5(↓) minFDE10(↓) minASD5 (↑) minFSD5 (↑) minASD10 (↑) minFSD10 (↑)
MultiPath∗ [5] 64 5.05 2.32 1.96 – – – – – –
CoverNet∗ [31] 232 4.73 2.14 1.72 – – – – – –

MTP [9] 5, 10 4.68 ± 1.04 2.61 ± 0.17 1.84 ± 0.04 5.80 ± 0.49 3.72 ± 0.07 1.74 ± 0.32 4.31 ± 1.60 0.97 ± 0.15 2.43 ± 0.34

CVAE N/A 4.20 ± 0.03 2.71 ± 0.03 2.08 ± 0.02 6.20 ± 0.05 4.58 ± 0.05 1.28 ± 0.03 2.99 ± 0.07 0.57 ± 0.02 1.30 ± 0.04
DSF-CVAE [40] 5, 10 – 2.54 ± 0.21 2.02 ± 0.11 5.77 ± 0.51 4.44 ± 0.27 1.38 ± 0.22 3.33 ± 0.58 0.78 ± 0.04 1.85 ± 0.13

DLow-CVAE [41] 5, 10 – 2.23 ± 0.13 1.75 ± 0.03 5.00 ± 0.29 3.71 ± 0.08 2.64 ± 0.25 6.38 ± 0.65 1.18 ± 0.16 2.73 ± 0.43
LDS-CVAE (Ours) 5, 10 – 2.16 ± 0.03 1.75 ± 0.05 4.82 ± 0.06 3.71 ± 0.14 3.02 ± 0.23 7.46 ± 0.44 1.74 ± 0.46 4.07 ± 1.10

AF N/A 4.01 ± 0.05 2.86 ± 0.01 2.19 ± 0.03 6.26 ± 0.05 4.49 ± 0.07 1.58 ± 0.02 3.75 ± 0.04 0.70 ± 0.01 1.63 ± 0.02
DSF-AF 5, 10 – 2.61 ± 0.12 2.23 ± 0.10 5.91 ± 0.33 4.80 ± 0.23 0.87 ± 0.13 2.14 ± 0.41 0.44 ± 0.05 1.11 ± 0.10

DLow-AF 5, 10 – 2.11 ± 0.01 1.78 ± 0.05 4.70 ± 0.03 3.77 ± 0.13 2.56 ± 0.12 6.45 ± 0.24 1.05 ± 0.11 2.55 ± 0.28
LDS-AF (Ours) 5, 10 – 2.06 ± 0.09 1.66 ± 0.02 4.67 ± 0.25 3.58 ±0.05 3.13 ± 0.18 8.19 ± 0.26 2.11 ± 0.05 6.22 ± 0.09

LDS-AF-TD-P (Ours) 5, 10 – 2.46 ±0.09 1.91 ± 0.04 5.21 ± 0.15 3.71 ± 0.11 2.39 ± 0.08 7.07 ± 0.18 1.60 ± 0.06 5.70 ± 0.10
LDS-AF-TD-NN (Ours) 5, 10 – 2.06 ± 0.03 1.65 ± 0.02 4.62 ± 0.07 3.50 ± 0.05 3.09 ± 0.07 8.15 ± 0.17 1.98 ± 0.03 5.91 ± 0.04

Table 1: NuScenes prediction error results (lower is better) and diversity results (higher is better), including previously
reported results (top), and results of LDS variants and newly implemented baselines (bottom). LDS-based models produce
the most plausible and diverse predictions throughout.
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Figure 3: Model trajectory forecasts at two separate frames in the same scene. K = 5 predicted trajectories are shown in
red, and the true recorded future trajectory from the dataset is shown in green. LDS predicts more diverse and plausible
trajectories than both baselines.

Forking Paths examples. Visualizations of LDS (on top of
CAM-NF), CAM-NF, and Multiverse predictions on the FP
test set are shown in Figure 4. Additional visualizations are
provided in Figure 11 in Appendix G. Again, LDS outper-
forms the other two methods and is the only approach that
comes close to covering the diverse ground-truth futures.

6.5. Ablation Study

We conduct an ablation study to understand the impact
of the various design choices in LDS—specifically, the im-
portance of the different parts of the LDS loss function to
its empirical performance. To this end, we train four abla-
tions of LDS-AF on nuScenes. The first two omit one of the
terms in the LDS objective—i.e., one without the diversity
loss (Ours w.o. Diversity), and one without the likelihood
loss (Ours w.o. Likelihood). The latter two modify the two
LDS loss terms: one replaces the NLL loss (Equation 4)
with DLow’s Reconstruction+KL losses (see Appendix F
for details) (Ours w. Rec), and the other replaces the mini-

mum in the diversity loss (Equation 5) with the mean (Ours
w. meanDiv). All four of these models are trained using the
same procedure as LDS. As shown in Table 2 (Right), the
first two ablations significantly deteriorate performance. As
expected, Ours w.o. Diversity records close to zero diver-
sity, and Ours w.o. Likelihood achieves high diversity but
at the cost of plausibility. Note that Ours w.o. Diversity
also performs poorly in terms of accuracy; this result shows
that diversity is necessary to achieve good accuracy due to
the stochastic nature of future trajectories. Thus, both terms
in the LDS objective are integral to its success, and taking
away either completely erases its benefits.

Next, we find that Ours w. Rec also reduces perfor-
mance. This result demonstrates that leveraging the gen-
erative model’s likelihood better captures the ground truth
trajectory future. Finally, Ours w. meanDiv significantly
reduces overall performance—the prediction error increases
two-fold while the diversity metrics collapse. This result
demonstrates the importance of using the more robust mini-



LDS (Ours) CAM-NF Multiverse

Figure 4: Visualization of predictions from various models on a single scene from the Forking Paths dataset. The red-yellow
heatmap corresponds to the visited state density from the 20 predicted trajectories from each model; yellow indicates higher
density. The green lines are the ground-truth human annotated futures. LDS produces diverse forecasts that cover the diverse
futures, while the other two methods appear to have collapsed to a single output.

Method minADE20(↓) minFDE20(↓)
Linear∗ 205.0 ± 0.0 388.0 ± 0.0
LSTM∗ 192.4 ± 2.2 368.3 ± 3.4

Social-LSTM∗ [1] 189.0 ± 1.7 363.7 ± 3.0
Social-GAN∗ [15] 179.9± 4.3 334.4 ± 9.0

Next∗ [26] 176.8 ± 2.4 343.4 ± 6.1
Multiverse∗ [25] 163.3 ± 2.3 325.2 ± 3.5
CAM-NF [30] 148.0 ± 2.3 293.6 ± 4.7

DSF [40] 162.8 ± 2.0 320.6 ± 3.6
DLow [41] 137.8 ± 5.9 273.4 ± 14.0
LDS (Ours) 98.6 ± 5.8 182.0 ± 14.5

LDS-TD-NN (Ours) 100.0 ± 3.2 178.1 ± 7.6

Method/Metric mADE5(↓) mFDE5(↓) minASD5 (↑) minFSD5 (↑)
Ours 2.06 4.62 3.09 8.15

Ours w.o. Diversity 5.95 14.63 0.16 0.37
Ours w.o. Likelihood 8.06 19.40 10.16 24.83

Ours w. Rec 2.16 4.89 3.29 9.00
Ours w. meanDiv 4.85 11.43 0.17 0.36
Method/Metric mADE10(↓) mFDE10(↓) minASD10 (↑) minFSD10 (↑)

Ours 1.65 3.50 1.98 5.91
Ours w.o. Diversity 4.97 12.52 0.07 0.15

Ours w.o. Likelihood 5.61 13.20 4.55 11.02
Ours w. Rec 1.78 3.85 2.92 5.73

Ours w. meanDiv 4.92 11.66 0.03 0.05

Table 2: Left: Forking Paths results. LDS-augmented CAM-NF significantly outperforms all other methods, including
Multiverse and DLow-augmented CAM-NF. Right: LDS ablation results on NuScenes. In row 2-3, one of the LDS losses
is removed, and performance significantly deteriorates. In row 4-5, one of the LDS losses is replaced by an alternative, and
performance again declines sharply.

mum diversity metric compared to the mean diversity in the
objective. In particular, the mean diversity does not penalize
the degenerate case where most of the forecasts collapse to
one trajectory, but one outlier forecast is very distant from
the others. Together, these ablations all validate the key de-
sign choices in LDS. We include additional ablation studies
assessing LDS’s sensitivity to the pre-trained model, depen-
dence on ε, and its training stability in Appendix F.8.

Finally, we have set the number of modes K based on
predefined metrics for each dataset. However, this choice
may not always be easy to make in practice. In general, a
good strategy is to select a K large enough and then discard
samples based on ascending likelihood. Because LDS ex-
hibits mode-seeking behavior, a large K will likely ensure
that the modes are included in the samples. Then, we can
use likelihood as a reasonable proxy for the plausibility of
each sample to guide the discarding process. In Appendix
F.8, we illustrate an example of selecting a K larger than
the number of modes and discuss potential pitfalls.

7. Conclusion

We have proposed Diversity Sampling for Flow (LDS),
a post-hoc learning-based diverse sampling technique for

pre-trained generative trajectory forecasting models. LDS
leverages the likelihood under the pre-trained generative
model and a robust diversity loss to learn a sampling dis-
tribution that induces diverse and plausible trajectory pre-
dictions. Though intended for normalizing flow models,
LDS is also compatible with VAEs, and independent of this
choice, consistently achieves the best results compared to
other sampling techniques and multi-modal models on two
distinct forecasting benchmarks. Beyond its simple “plug-
in” improvement nature, through extensive ablation studies,
we validate our method’s design choices responsible for its
effectiveness. Finally we introduce the transductive learn-
ing problem for trajectory forecasting, and show that LDS
can be readily used to adapt to test instances on the fly and
present a competitive solution to this novel problem setting.
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A. Normalizing Flow Models for Trajectory
Forecasting

In this section, we review some preliminaries on normal-
izing flow based trajectory forecasting models. We refer
readers to [29] for a comprehensive review of normalizing
flows.

Normalizing flows learn a bijective mapping between a
simple base distribution (e.g. Gaussian) and complex tar-
get data distribution through a series of learnable invertible
functions. In this work, we denote the flow model as fθ,
where θ represents its learnable parameters. The base dis-
tribution is a multivariate Gaussian Z ∼ N (0, I) ∈ RT×2,
which factorizes across timesteps and (x, y) coordinates.
Then, the bijective relationship between Z and S is captured
by the following forward and inverse computations of fθ:

S = fθ(Z; o) ∼ pθ(S | o), Z = f−1θ (S; o) ∼ PZ (6)

We further impose the structural dependency between S and
Z to be an invertible autoregressive function, τθ, between
the stepwise relative offset of the trajectory and the corre-
sponding z sample [35, 13]:

st − st−1 = τθ(zt; z<t)

The flow model can be trained using maximum likeli-
hood. Because τθ is autoregressive (zt does not depend on
any zk where k > t), its Jacobian is a lower-triangular ma-
trix, which admits a simple log-absolute-determinant form
[29]. The negative log-likelihood (NLL) objective is

− log pθ(S; o)

=− log
(
p(Z)

∣∣det
dfθ
dZ
|Z=f−1

θ (S;o)

∣∣−1)
=−

( T∑ D∑
log p(Zt,d)−

T∑ D∑
log

∣∣∣∣ ∂τθ∂Zt,d

∣∣∣∣)
(7)

Once the model is trained, both sampling and exact infer-
ence are simple. To draw one trajectory sample S, we sam-
ple Z ∼ PZ and compute S = fθ(Z;o) Additionally, the
exact likelihood of any trajectory S under the model fθ can
be computed by first inverting Z = f−1θ (S; o) and then com-
puting its transformed log probability via the change of vari-
able formula, as in the second line of Equation 7.

B. Toy Example Details
In the example given in Figure 1(a), we simulate a vehi-

cle either going straight or turning right at the intersection.
The vehicle obeys the Bicycle dynamics [23] and uses a
MPC-based controller with intermediate waypoints to guide
it to its goal. In each simulation, the vehicle starts behind
the bottom entrance of the intersection with a fixed initial
position perturbed by white noise, and the simulation ends

when the vehicle reaches its goal. We collect 100 simu-
lations where the vehicle’s final goal is the top exit of the
intersection) and 900 simulations where the vehicle’s final
goal is the right exit of the intersection. They combine into
a training dataset of 1000 trajectories. Each trajectory is of
100 simulation steps. We downsample it by a factor of 10
and use the first two steps as the history input to the flow
model and the task is to forecast the next 8 steps. With the
first 2 steps “burned” in, the vehicle is exactly at the bottom
entrance of the intersection, creating a bi-modal dataset that
proves to be difficult to model for a normalizing flow model.

After the data collection, we train an autoregressive
affine flow as in Appendix F.3 using the entire dataset until
the log likelihood converges; Then, we sample 100 times
from the flow model using i.i.d unit Gaussian inputs to cre-
ate trajectories as in Figure 1(b). We train a LDS model
with K = 2 on top of this flow model and generate 2 sam-
ples using one Gaussian noise ε to generate the trajectories
in Figure 1(c).

C. LDS-CVAE Objective

As shown in our experiments, LDS can also be applied
to CVAE models. Doing so requires changing the NLL
term in the LDS objective (Equation 3 to ELBO. Because
ELBO is a lower bound of the true likelihood, optimizing
for this modified objective would still achieve optimizing
for the original objective. Formally, let qφ(Z|o) be the ap-
proximate latent posterior computed from the encoder and
pθ(S|Z) be the likelihood computed from the decoder, we
have

LLDS-CVAE(ψ) := ELBO(ψ)− λdLd(ψ) (8)

where ELBO(ψ) = EZ∼qφ(Z|o)[log pθ(S|Z)] −
KL(qφ(Z|o)|p(Z)). The Zs fed into CVAE are gen-
erated from rψ(ε;o), while the prior distribution is
p(Z) ∼ N (0, I).

D. Transductive LDS Algorithms

Algorithm 2 LDS-TD-NN Training

Input: Flow fθ, Context o
1: Initialize LDS model rψ
2: for i=1,... do
3: Sample ε ∼ N (0, I)
4: Compute Z1, ...,ZK = rψ(ε;o)
5: Transform fθ(Z1), .., fθ(ZK)
6: Compute losses using Equations 4 & 5
7: Update ψ w.r.t gradient of Equation 3
8: end for
9: Compute Z1, ...,ZK = rψ(ε;o)

Output: S = fθ(Z1), .., fθ(ZK)



Algorithm 3 LDS-TD-P Training

Input: Flow fθ, Context o
1: Randomly initialize Z1, ...,ZK ∼ N (0, I)
2: for i=1,... do
3: Transform fθ(Z1), .., fθ(ZK)
4: Compute losses using Equations 4 & 5
5: Update Z1, ...,ZK w.r.t gradient of Equation 3
6: end for

Output: S = fθ(Z1), .., fθ(ZK)

E. DLow & DSF Details
Our implementations of DLow and DSF utilizes the

same architecture as LDS. The main difference is the loss
functions of the two methods. The DLow objective includes
three terms:

Reconstruction Loss : Er(ŝ) = min
k∈K
‖ŝk − s‖2

Diversity Loss : Ed(ŝ) =
1

K(K − 1)

∑
i6=j∈K

exp
(
− ‖ŝi − ŝj‖2

σd

)

KL Loss : LKL(z) =
K∑
k=1

KL(pψ(zk|o)||p(zk))

(9)
and the whole objective is:

LDLow(ψ) = λrEr + λdEd + λKLLKL

We tune the hyperparameters of DLow and find the follow-
ing setting to work the best: λd = 0.5, λr = 1, λKL = 1,
and σd = 1.

DSF is a bit more involved. First, suppose that given
input o, DSF network ψ learns a set of latent samples
z1, ..., zK , and the flow model decodes them to s1, ..., sK .
DSF constructs a deterministic point process (DPP) kernel
L = Diag(r)·S·Diag(r), where Sij = exp

(
−k·‖si−sj‖2

)
for some k > 0. Each entry in the quality vector r is de-
fined as ri = ωexp

(
− z>i zi + R2

)
if ‖zi‖ ≤ R; oth-

erwise, ri = ω. R is chosen as the x-th quantile of the
chi-squared distribution with degree of freedom equal to
the dimension of zi. Finally, DSF objective is LDSF(ψ) =
−trace(I− (L(ψ) + I)−1), and stochastic gradient is back-
propagated with respect to DSF parameters ψ. We choose
k = 1 and x = 90 to be consistent with the original work;
however, we find DSF to be sensitive to these hyperparam-
eter choices and fail to scale to large-dimension tasks (e.g.
Forking Paths).

F. NuScenes Experimental Details
F.1. Dataset Details

NuScenes [4] is a large urban autonomous driving
dataset. The dataset consists of instances of vehicle trajecto-

ries coupled with their sensor readings, such as front camera
images and lidar scans. The instances are further collected
from 1000 distinct traffic scenes, testing forecasting mod-
els’ ability to generalize. Following the official dataset split
provided by the nuScenes development kit, we use 32186
instance for training, 8560 instances for validation, and re-
port results on the 9041 instances in the test set.

F.2. Model Inputs

Model Inputs. All models we implement (AF, CVAE
baseline models and MTP) accept the same set of contextual
information

o = {Lidar scans, velocity, acceleration, yaw}

of the predicting vehicle at time t = 0. Below we visualize
an example Lidar scan and its histogram version [34] that is
fed into the models.

Figure 5: LiDAR inputs in nuScenes.

The Lidar scans are first processed by a pre-trained
MobileNet-v128 [17] to produce visual features. These
features, concatenated with the rest of the raw inputs, are
passed through a neural network to produce input features
for the models.

F.3. Autoregressive Affine Flow Details

Our architecture is adapted from the implementation2

provided in [13]. Here, we describe it in high level and
leave the details to the architecture table provided below.

2https://github.com/OATML/oatomobile/blob/
alpha/oatomobile/torch/networks/sequence.py

https://github.com/OATML/oatomobile/blob/alpha/oatomobile/torch/networks/sequence.py
https://github.com/OATML/oatomobile/blob/alpha/oatomobile/torch/networks/sequence.py


AF consists of first a visual module that transforms the ob-
servation information o into a feature vector h0. Then, h0 is
processed sequentially through a GRU network [8] to pro-
duce the per-step conditioner ht of the affine transforma-
tion: ht = GRU(st, ht−1). Finally, we train a neural net-
work (MLP) on top of ht to produce the modulators µ, σ of
the affine transformation:

st − st−1 = τθ(zt; z<t)
= µθ(s1:t−1, φ)︸ ︷︷ ︸

MLP1(ht)

+ σθ(s1:t−1, φ)︸ ︷︷ ︸
EXP

(
MLP2(ht)

) zt (10)

Table 3: AF Architecture Overview

Attributes Values

Visual Module MobileNet(200 × 200 × 3, 128)
Linear(128+3,64)
Linear(64,64)
Linear(64,64)

Autoregressive Module GRUCell(64)

MLP Module ReLU ◦ Linear(64,32)
Linear(32, 4)

Base Distribution N (0, I)

F.4. CVAE Details

Our CVAE implementation is adapted from the imple-
mentation3 in [41]. It takes the same set of inputs as our
AF model except the addition of a one-frame history in-
put. The history is encoded using a GRU network of hidden
size 64 to produce h0, which is then concatenated with the
rest of the inputs. This concatenated vector is then encoded
through a 2-layer fully-connected network. To encode the
future, our CVAE model uses a GRU network of the same
architecture as the GRU encoder for the history. Finally, the
encoded input and output (i.e. future) is concatenated and
passed through another 2-layer network to give the mean
and the variance of the approximate posterior distribution.
For the decoder, we first sample a latent vector z using the
reparameterization trick. Then, z is concatenated with the
encoded inputs to condition the per-step GRU roll-out of
the reconstructed future. The model is trained to maximize
ELBO.

3https://github.com/Khrylx/DLow/blob/master/
models/motion_pred.py

Table 4: CVAE Architecture Overview

Attributes Values

History Encoder GRU(2, 64)
Visual Module MobileNet(200 × 200 × 3, 128)

Full Input Encoder Linear(128+64+3, 64)
Linear(64, 64)
Linear(64, 64)

Full Output Encoder GRU(2, 64)

Input Output Merger Linear(64+64, 64)
Linear(64, 32+32)

µ, σ R32,R32

Decoder GRU(2+32+64, 64)
Linear(64, 64)
Linear(64, 32, 2)

F.5. LDS Architecture Details

LDS rψ is a single multi-layer neural network with K
heads, the number of modes pre-specified. To ensure stable
training, we clip the diversity loss to be between [0, 40] for
K = 5 and [0, 30] for K = 10. DSF and DLow use the
same architecture as LDS.

Table 5: LDS Architecture and Hyperparameters Overview

Attributes Values

LDS Architecture Linear(Input Size, 64)
Linear(64,32)
Linear(32, 2 × T × K)

Learning Rate 0.001
λd 1
Diversity function clip value 40/30

F.6. Training Details

We train the “backbone” forecasting models AF, CVAE,
MTP-Lidar for 20 epochs with learning rate 10−3 using
Adam [20] optimizer and batch size 64. LDS-AF iterates
through the full training set once, while LDS-AF-TD di-
rectly optimizes on the test set with a minibatch size of 64
and 400 adaptation iterations for every minibatch. For all
LDS models, we set λd = 1 and do not experiment with fur-
ther hyperparameter tuning. LDS training also uses Adam.
For all models, we train 5 separate models using random
seeds and report the average and standard deviations in our
results.

https://github.com/Khrylx/DLow/blob/master/models/motion_pred.py
https://github.com/Khrylx/DLow/blob/master/models/motion_pred.py


F.7. Additional Results

Comparison with Trajectron++ To test the limit of our
approach, we additionally compare against Trajectron++
[36]. Different from other baselines we include in the
main paper, Trajectron++ utilizes additional inputs such
as spatio-temporal graph and vehicle/pedestrian dynamics
and evaluates on a shorter horizon (i.e. 8 frames). Here,
we re-train an AF model by truncating all trajectories to 8
frames, and then train a LDS model on top, giving us LDS-
AF-8. Trajectron++ only reports minFDE10 and obtains
2.24. LDS-AF-8 obtains minFDE10 : 2.28,minADE10 :
1.09,minASD10 : 2.18,minFSD10 : 5.80, where we
include the other three metrics for completeness. As
shown, LDS-AF-8 is slightly worse than Trajectron++ on
minFDE10; however, giving that the backbone model LDS
utilizes here is a much weaker model than Trajectron++.
this result is encouraging and suggests that even a weak
model can produce competitive predictions when it is aug-
mented with an effective sampling mechanism.

minASD vs. meanASD. Here, we illustrate the robustness
of minASD compared to meanASD. Consider the follow-
ing two sets of 10 predictions. In the first set, the pairwise
distance between all pairs is exactly 1. In the second set, 9
predictions are identical, but their distance to the remaining
one is 100. The first set achieves identical diversity value
1 under the two metrics, whereas the second set achieves 0
minASD but 20

9 meanASD. Therefore, we might incorrectly
conclude that the second set is more diverse if we were to
solely rely on mean metrics for diversity.

Mean diversity results. Here, we report the meanASD
and meanFSD metrics for diversity. As shown, LDS still
achieves the highest diversity on these metrics and provide
greater diversity boost than DLow; however, the relative dif-
ferences among models are much smaller. Additionally, by
examining the tables from K = 5 to K = 10, we no longer
find the pattern that LDS being the only model whose diver-
sity does not deteriorate as we did in Table 1 (Right). This is
because the mean metric only captures the average behavior
and not the worst case behavior. Thus, our hypothesis that
the min metrics are more informative than the mean metrics
are supported by the following results.

Method Samples meanASD (↑) meanFSD (↑)
MTP-Lidar-5 5 5.74 ± 0.79 13.80 ± 2.00
CVAE 5 5.38 ± 0.09 12.28 ± 0.16
DLow-CVAE 5 6.66 ± 0.21 15.43 ± 0.44
AF 5 6.21 ± 0.02 14.48 ± 0.04
DLow-AF-5 5 7.41 ± 0.29 17.90 ± 0.67
LDS-AF-5 5 7.89 ± 0.29 19.06 ± 0.58

Method Samples meanASD (↑) meanFSD (↑)
MTP-Lidar-10 10 5.24 ± 0.30 12.71 ± 0.59
CVAE 10 5.38 ± 0.10 12.28 ± 0.18
DLow-CVAE 10 6.96 ± 0.20 16.16 ± 0.45
AF 10 6.21 ± 0.01 14.48 ± 0.04
DLow-AF-10 10 7.88 ± 0.57 19.49 ± 1.36
LDS-AF-10 10 7.90 ± 0.28 19.71 ± 0.74

Table 6: NuScenes prediction mean diversity results.

F.8. Additional Ablation Results

In this section, we provide some additional ablation stud-
ies to further understand the effectiveness of LDS. First, we
aim to understand: how sensitive is LDS to the quality
of the underlying flow model? To answer this question,
we train an additional AF model with half the number of
epochs as the original one (AF−), and then train LDS as
before. The comparisons are shown in Table 7. With only
half the training time, AF− performs considerably worse
than AF, yet LDS is still able to provide a significant per-
formance boost, achieving 33% reduction in both minADE
and minFDE. This reduction is greater than that of LDS ap-
plied to the stronger AF model (27%), suggesting the utility
of LDS is greater for weaker pre-trained model and high-
lighting that its overall effectiveness is robust to the quality
of the underlying flow.

Method S mADE5 ↓% mFDE5 ↓% minASD ↑% minFSD ↑%

AF− 5 3.49 ± 0.16 - 7.79 ± 0.41 - 1.99 ± 0.15 - 4.58 ± 0.46 -
LDS-AF− 5 2.31 ± 0.19 34% 5.17 ± 0.39 34% 2.91 ± 0.05 146% 8.25 ± 0.32 180%
LDS-AF−-TD 5 2.35 ± 0.16 33% 5.24 ± 0.33 33% 3.00 ± 0.16 151% 8.36 ± 0.14 183%

AF 5 2.86 ± 0.01 - 6.26 ± 0.05 - 1.58 ± 0.02 - 3.75 ± 0.04 -
LDS-AF 5 2.06 ± 0.09 28% 4.67 ± 0.25 25% 3.13 ± 0.18 98% 8.19 ± 0.26 118%
LDS-AF-TD 5 2.06 ± 0.02 28% 4.62 ± 0.07 26% 3.09 ± 0.07 95% 8.15 ± 0.17 117%

Table 7: LDS ablations on the pre-trained flow models.

LDS training stability. We track the state of minADE
and minASD on the mini nuScenes validation set over
the course of LDS training. On the mini version of the
nuScenes dataset, we train a LDS-AF (K = 5) model, and
for every training iteration, we compute the current LDS-
AF model’s minADE and minASD on the mini validation
set. The mini version is a much smaller dataset with only
1000 instances, making this procedure manageable. The se-
quence of (ASD, ADE) pairs are traced as a trajectory on a
2D plane, where the x-axis corresponds to minASD5 and
the y-axis corresponds to minADE5.

The entire trajectory is visualized in Figure 6. We addi-
tionally visualize both minADE and minASD individually
over the course of training in the middle and the right pan-
els. In all three plots, the initial AF model’s (ASD, ADE)
point is colored in red, and the final LDS-AF’s (ASD,ADE)
point is colored in blue. Focusing on the left panel, we



Figure 6: Left: LDS (ASD, ADE) plot on nuScenes mini. LDS offers stable and fast improvements to flow outputs in both
accuracy and diversity during its training. Middle: LDS ADE over the course of training. Right: LDS minASD over the
course of training.

note that the initial point at the top left corner represents
the ADE/ASD of the pre-trained flow backbone, which
has relatively high error and low diversity. However, LDS
quickly discovers good sampling distribution and offers fast
and near “monotonic” improvements along both axis. This
provides evidence that the joint objective is effective and
helps avoiding potential local minima in the loss landscape.
The rapid improvement early on in training also explains
why LDS’s transductive adaptation procedure can be effec-
tive. Finally, an early stopping mechanism may be effective
given the fast convergence to the optimum (i.e. the bottom
right corner); we leave it to future work to investigate the
precise stopping criterion.

Dependence on ε. One may eliminate the dependence
on ε by making the mapping procedure deterministic:
{Z1, ...,ZK} = rψ(o). In theory, this simplified formu-
lation should optimize for the same objective as the objec-
tive itself does not explicitly depend on ε. However, in
practice, we find this ablation reduces performance as the
trained LDS model may be overfitting to some determinis-
tic set of trajectories to multiple different inputs. We report
the average results over 5 seeds on LDS-AF for K = 10
where we do not utilize the ε sampling procedure (Step 3
and 4 in Algorithm 1): minADE10 : 1.74,minFDE10 :
3.73,minASD10 : 2.06,minFSD10 : 6.03. These results are
slightly worse than the original LDS-AF results reported in
Table 1. Therefore, we confirm that adding innate stochas-
ticity to the training procedure with ε boosts performance,
validating our original formulation.

Mismatched K. Here, we perform a controlled experi-
ment analyzing LDS outputs when the number of samples
K it learns to output mismatches the number of modes in
the underlying distribution. To do this, we return to our toy
intersection environment as in Figure 1(a). Instead of train-
ing a LDS with K = 2 as done in Figure 1(c), we train
one with K = 5. This LDS’s set of 5 samples are shown

in Figure 7. Among the 5 trajectories, the two modes are
still captured. Importantly, the major mode (turning right)
is captured twice. However, the remaining two trajectories
represent the average of the two modes and correspond to
potentially unrealistic behaviors. Note that this set of five
trajectories would achieve very low minADE errors in both
single and multiple-future evaluations, since at least one tra-
jectory in the predictions is close to both modes. However,
for planning settings, this set of predictions may not be op-
timal. Hence, choosingK carefully is important in practice,
and we leave it to future work for further investigations.

Figure 7: LDS outputs for K = 5.

F.9. Additional Visualizations

LDS-AF vs. AF vs. MTP-Lidar. Additional visualizations
of LDS-AF, AF, and MTP-Lidar outputs (Figure 10).

LDS-AF vs. LDS-AF-TD-NN. Visualizations of LDS-AF
(red) vs. LDS-AF-TD-NN (blue) are provided in Figure 8.
As shown, LDS-AF-TD-NN generally adapt its predictions
to the current observation better and produce more realistic
trajectories with respect to the ground truth.

Varying ε. Finally, we visualize different sets of LDS-AF



trajectories by randomly sampling different ε ∼ N (0, I).
The visualizations are in 9.

G. Forking Paths Experimental Details

G.1. Dataset Details

Here, we briefly describe the Forking Paths evalua-
tion dataset [25]. FP semi-automatically reconstruct static
scenes and their dynamic elements (e.g. pedestrians) from
real-world videos in ActEV/VIRAT and ETH/UCY in the
CARLA simulator. To do so, it converts the ground truth
trajectory annotations from the real-world videos to coordi-
nates in the simulator using the provided homography ma-
trices of the datasets. Then, 127 “controlled agents” (CA)
are selected from the 7 reconstructed scenes. For each CA,
there are on average 5.9 human annotators to control the
pedestrian to the pre-defined destinations in a “natural” way
that mimics real pedestrian behaviors. The scenes are also
rendered to the annotators in different camera angles rang-
ing from ‘Top-Down’ to ‘45-Degree’. The annotation can
last up to 10.4 seconds, which is far longer than the 4.8 sec-
onds prediction window in the original datasets, making the
forecasting problem considerably harder. In total, there are
750 trajectories after data cleaning.

G.2. CAM-NF Model Details

Compared to the perception-based flow model we use
in nuScenes, CAM-NF only uses the historical trajectory
of the agent and other surrounding agents in the scene,
consistent with various prior methods [15, 1] in pedestrian
forecasting; we leave exploring the utility of added per-
ception modules as in [26, 25] to future work. Hence,
o = {Sa−Thist:0

}Aa=1, where A is the number of pedestrians
in the scene and Thist the length of history. CAM-NF first
encodes the history of all pedestrians in the scene using a
LSTM encoder. Then, it computes cross-pedestrian atten-
tion feature vectors using self-attention [39] to model the
influences of nearby pedestrians, and uses these attention
vectors as features for a normalizing flow decoder, which
outputs future trajectories of the predicted pedestrian. The
decoder is an autoregressive affine flow similar to the one
used for nuScenes. Here, we briefly describe the architec-
tures and refer interested readers to the original work.

The encoder first uses an LSTM of hidden dimension
512 [16] to extract a history embedding for every agent up
to the most recent timestep t = 0:

hat = LSTM(sat−1, h
a
t−1) t = Thist − 1, ..., 0

Then, the history embedding of all agents h0t , ..., h
A
t are ag-

gregated to compute a corresponding cross-agent attention
embedding using self-attention. This embedding is then
combined with the history embedding to form the inputs

to the normalizing flow decoder:

h̃a = ha0 + SELF-ATTENTION(Qa,K,V)

where (Qa,Ka, V a) is the query-key-value triple for each
agent, and the bold versions are their all-agent aggregated
counterparts. Note that h̃a is passed through a linear layer
of hidden dimension 256 before passed to the decoder.

The decoder is similar to the autoregressive affine flow
used for nuScenes with a few minor changes. First, σθ ∈
R2×2 to model correlation between the two dimensions
(i.e. x, y) of the states. Second, a velocity smoothing term
α(st−1 − st−2) is added to the step-wise update. That is,

st − st−1 = τθ(zt; z<t)
= α(st−1 − st−2) + µθ(s1:t−1, φ)︸ ︷︷ ︸

MLP1(ht)

+ σθ(s1:t−1, φ)︸ ︷︷ ︸
EXP

(
MLP2(ht)

) zt

(11)
We set α = 0.5 as in the original work. Our implementation
is adapted from the original implementation4.

G.3. LDS Architecture Details

Since trajectories in FP have different lengths, we set
T = 25 in the LDS architecture to ensure that a bijective
mapping between Z ∈ RT×D exists for all samples in FP.
This also means that during training, we optimize LDS for
up to 25 steps. We also slightly increase the size of LDS
neural network and set the maximum diversity loss to be 80,
which we find to work well empirically. As before, DLow
and DSF use the same architecture as LDS. The whole ar-
chitecture is as follows:

Table 8: LDS Architecture and Hyperparameters Overview

Attributes Values

LDS Architecture Linear(Input Size, 128)
Linear(128,64)
Linear(64, 2 × 25 × K)

Learning Rate 0.001
λd 10
Diversity function clip value 80

G.4. Training Details

We train CAM-NF for 200 epochs with learning rate
10−3 using Adam optimizer and batch size 64. We train
LDS, LDS-TD, and DLow models using mode hyperparam-
eter K = 20. LDS and DLow iterate through the full train-
ing set once, while LDS-AF-TD directly optimizes on the
test set with a minibatch size of 64 and 200 adaptation it-
erations for every minibatch. For all LDS models, through

4https://github.com/kami93/CMU-DATF

https://github.com/kami93/CMU-DATF


a hyperparameter search , we set λd = 10. For all models,
we train 5 separate models using random seeds and report
the average and standard deviations.

G.5. ActEV/VIRAT Results

Method minADE1(↓) minFDE1(↓)
Linear∗ 32.19 60.92
LSTM∗ 23.98 44.97
Social-LSTM∗ 23.10 44.27
Social-GAN∗ 23.10 44.27
Next∗ 19.78 42.43
Multiverse∗ 18.51 35.84

CAM-NF 19.69 ± 0.15 39.12 ± 0.31

Table 9: Training Results on ActEV/VIRAT. Our backbone
flow model CAM-NF achieves comparable performance to
the current state-of-art Multiverse.

G.6. Forking Paths Full Sub-Category Split Results

Method minADE20(↓) minFDE20(↓)
45-Degree Top Down 45-Degree Top Down

Linear∗ 213.2 197.6 403.2 372.9
LSTM∗ 201.0 ± 2.2 183.7 ± 2.1 381.5 ± 3.2 355.0 ± 3.6

Social-LSTM∗ [1] 197.5 ± 2.5 180.4 ± 1.0 377.0 ± 3.6 350.3 ± 2.3
Social-GAN∗ [15] 187.1 ± 4.7 172.7 ± 3.9 342.1 ± 10.2 326.7 ± 7.7

Next∗ [26] 186.6 ± 2.7 166.9 ± 2.2 360.0 ± 7.2 326.6 ± 5.0
Multiverse∗ [25] 168.9 ± 2.1 157.7 ± 2.5 333.8± 3.7 316.5 ± 3.4
CAM-NF [30] 155.2 ± 2.4 140.8 ± 2.2 305.0 ± 4.6 282.2 ± 4.9

DSF [40] 169.7 ± 1.8 155.77 ± 2.1 331.7 ± 3.7 309.5 ± 3.5
DLow [41] 144.5 ± 3.8 131.0 ± 8.1 284.6 ± 8.4 262.1 ± 20.5
LDS (Ours) 103.8 ± 6.9 93.4 ± 4.8 190.6 ± 16.3 173.4 ± 12.8

LDS-TD-NN (Ours) 105.1 ± 4.3 94.9 ± 2.1 188.7 ± 10.4 167.4 ± 4.8

Table 10: Evaluation results on Forking Paths. LDS-
augmented CAM-NF significantly outperforms all other
methods, including Multiverse and DLow-augmented
CAM-NF.

G.7. Additional Analysis on Forking Paths

As shown in Table 2, compared to nuScenes experi-
ments, LDS exhibits larger improvement over DLow on
the FP dataset. We believe that this is because the ground
truth futures in the FP test set tend to be longer than in the
ActEV/VIRAT training set. Since DLow optimizes for the
L2 reconstruction loss between its forecasts and the ground-
truth future trajectories in the training set, it is limited to
improving diversity over the horizon of these training tra-
jectories. Thus, it is unable to produce diverse predictions
for longer horizon trajectories, such as those in the test set.
In contrast, since LDS directly optimizes the likelihood of
future trajectory according to the flow model, it does not
rely on ground truth futures. Thus, it can improve diversity

over much longer time horizons than in the training data.
This contrast further highlights the flexibility of LDS. Fi-
nally, we note that we were not able to achieve positive re-
sults for DSF; this is likely due to the much larger latent
sample dimension (2 × 20 = 40) for this dataset, which as
stated in Section 2, would be an issue for DSF.

G.8. Additional Visualizations

In this section, we provide some additional visualiza-
tions of LDS, CAM-NF, and Multiverse outputs (Figure 11).



Figure 8: LDS-AF (red) vs. LDS-AF-TD-NN (blue) in NuScenes.

Figure 9: Effect of varying ε on LDS-AF in NuScenes. The three colors (red, blue, orange) denote three different sets of
trajectories by randomly sampling ε.
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Figure 10: Additional model visualizations. The models from left to right: LDS, AF, and MTP-Lidar.
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Figure 11: Additional model visualizations. The models from left to right: LDS, CAM-NF, and Multiverse.


