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Extracting multi-scale models from system identification of stationary or nonstationary
measured signals (e.g., time series) is of great importance in engineering and the applied
sciences. We propose a new computational method for harmonic analysis and decomposi-
tion of signals based on the inverse wavelet transform and demonstrate its efficacy in
diverse areas in dynamics. The wavelet transform is a linear transformation of a signal
measured in the temporal/spatial domain to the time–frequency/space-wavenumber
domain and applies to stationary and nonstationary measurements. The new method is
based on a numerical inverse wavelet transform and yields decomposition of the measured
signal in terms of its dominant harmonic components. First, we formulate the analytical
continuous inverse wavelet transform in a way that is suitable for computational imple-
mentation. Then, taking as example a general measured signal in the time domain, (i)
we numerically compute its numerical wavelet transform spectrum, (ii) define a set of
‘‘harmonic regions” in the wavelet spectrum containing the dominant harmonics to be
inverted and studied, and (iii) by numerically inverse wavelet transforming each of the har-
monic regions separately, obtain the respective decomposed harmonics in the time
domain. Note that, by construction, the superposition of all decomposed harmonics recon-
structs the original signal. Next, we demonstrate the efficacy of the method with some
examples. We start with an artificial signal with prescribed harmonic components to high-
light the method and its accuracy. Then, we show applicability of the method to system
identification, by applying it to the modal analysis of a system of linearly coupled oscilla-
tors with closely spaced modes. Lastly, we show how the new method enables quantifica-
tion of the energy captured by each of the decomposed components (harmonics) in the
response of a strongly nonlinear system. To this end, a single degree of freedom geometri-
cally nonlinear oscillator is considered, and the method is used to quantify nonlinear
energy ‘‘scattering” in its frequency domain. These examples hint at the broad applicability
of the new method to diverse areas of signal processing and dynamics, including discrete
and continuous dynamical systems with strongly (and even non-smooth) nonlinearities.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

In studying dynamical systems, it is often crucial to identify and study the different time-scales that govern their
responses. To this end, system identification addresses the issue of constructing mathematical reduced-order models for
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dynamical systems by analyzing their measured responses [1]. System identification typically relies on post-processing
measured data either in the frequency domain, e.g., Fourier transforms, or in the time–frequency domain, e.g., short-time
Fourier and wavelet transforms.

One of the widely used time–frequency analysis techniques is the Empirical Mode Decomposition (EMD) [2], which is a
data-driven technique that decomposes measured signals into independent oscillatory wave-functions, termed Intrinsic
Mode Functions (IMFs). Unfortunately, often the identified IMFs are not entirely monochromatic, capturing more than a
single time (frequency) scale of the signal; this important limitation of EMD is referred to as mode mixing. Mode (or scale)
mixing occurs, e.g., when the measured signal possesses closely spaced frequency components; this typically happens
when 0:5 < xi=xj < 2, where xi and xj are two closely spaced frequency scales contained in the signal [3]. Another case
resulting in mode mixing is when the amplitude ratio of two IMFs is either very large or very small. Accordingly, several
modifications have been proposed to EMD to address the mode mixing issue. Kurt et al. obtained accurate EMD decom-
position by manually applying and optimizing masking signals in the measured response [4–7], successfully decomposing
one IMF component at a time. Building on this concept, Moore et al. introduced the wavelet-bounded empirical mode
decomposition (WBEMD) [8,9], which relies on the use of wavelet transforms to optimize the ‘‘separation” of an IMF
around a characteristic frequency scale to yield well-separated (in scale) IMFs. In another study, Qin et al. introduced a
modal analysis technique based only on output measurement, by employing an improved version of EMD to avoid mode
mixing [10]. Lastly, Sadhu combined multi-variate with ensemble EMD to overcome mode mixing and compute scale-
independent IMFs [11]. Apart from posing limitations in EMD, the problem of mixed scales (i.e., of non-separable, closely
spaced scales) is a far more general issue in engineering and the applied sciences, as it is often related to highly nonsta-
tionary phenomena and increased complexity in the measured outputs. This is a common occurrence, e.g., at points of
bifurcation, in sudden dynamical transitions, or during break of synchronicity, adding new scales in the responses due
to the governing physics.

Issues such as scale mixing highlight the need for developing robust methods to perform effective harmonic decomposi-
tion of measured highly non-stationary signals, where current techniques are not effective. Accordingly, in this work we pro-
pose a new method for accurate harmonic decomposition of measured signals based on the inverse wavelet transform. The
wavelet transform, similar to the short-time Fourier transform [12–14], is a method of transforming a signal from the tem-
poral/spatial domain to the time–frequency/space-wavenumber domain. This enables direct study of the temporal/spatial
evolutions of the dominant harmonic components (scales) contained in the measured signal. Moreover, due to its mathemat-
ical closed-form formulation, the wavelet transform is convenient in its implementation even for signals where mixed scales
are present [15]. These observations provide ample motivation for the proposed method, which relies on numerical inverse
wavelet transforms, and is applicable to the analysis of even complex and nonstationary signals that are encountered in
diverse applications in dynamics.

Wavelet transform – in both continuous and discrete forms – has been used as a means to perform modal separation and
system identification. For instance, Boltežar and Janko [16] proposed different methods to rectify numerical ‘‘boundary
effects” when computing the continuous wavelet transform for damping identification in measured signals. This work
focuses on linear and lightly damped mechanical systems with proportional damping. Huang and Su [17] and Wang et al.
[18], also employed continuous wavelet transforms for system identification of linear time-invariant systems. Their method-
ology was developed solely to accommodate linear dynamical systems. Employing the wavelet transform, Quqa et al. pre-
sented a decentralized procedure for nearly real-time modal identification. Through a modal assurance criterion (MAC)-
based clustered filter bank (CFB) they were able to determine time-varying natural frequencies and mode shapes of dynam-
ical systems which then used for damage diagnosis [19] In another study, they further developed their methodology to per-
form robust modal identification for dynamical systems that is robust to narrow-band disturbances and white noise, and is
applicable to systems with vanishing modes [20].

In this paper, we propose a harmonic (mode) decomposition technique based on the continuous wavelet transform.
Apart from being a harmonic decomposition technique which can be applicable to multi-harmonic signals, e.g., response
of dynamical systems, sound signals, etc., the proposed technique can be used in the form of a purely data-driven system
identification methodology. In what follows, we begin by discussing the continuous wavelet transform (CWT), the inverse
continuous wavelet transform (ICWT), efficient computation techniques for CWT and ICWT, and the basic aspects of the
proposed method. Next, we apply the method to a signal with two time-varying frequency components, in order to exam-
ine if mode mixing can be addressed by our approach. Moreover, we compare the separated harmonics from this example
to those obtained by an EMD-based method. Next, we study a three degree-of-freedom (DOF) system of linear coupled
oscillators and demonstrate the applicability of the ICWT-based method for system identification of a linear system with
closely spaced and vanishing modes. Lastly, we switch to a nonlinear application by studying the free response of a single-
DOF, geometrically nonlinear oscillator [21–23] in two different configurations: One yielding hardening stiffness nonlinear-
ity, and the other a combination of hardening and softening stiffness nonlinearity. For this system we show that the pro-
posed method can be used to quantify the energy scattering in the frequency domain that is caused by the geometric
nonlinearity. We end with a synopsis of the main findings of this work and a discussion of its applicability to a broad class
of dynamical systems.
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2. Background and ICWT-based harmonic decomposition method

2.1. Continuous wavelet transform (CWT)

The CWT is a method of transforming a signal from the temporal/spatial domain, to the time–frequency/space-wavenum
ber domain, revealing important features that are not readily available, e.g., by the Fourier transform. Considering a signal in
the time domain, x tð Þ, its CWT is defined by the following general expression,
X a; bð Þ ¼ 1ffiffiffi
a

p
Z 1

�1

x sð Þw s� b
a

� �
ds ð1aÞ

X x; tð Þ ¼
ffiffiffiffiffiffi
x
xc

r Z 1

�1
x sð Þw x

s� t
xc

� �
ds ð1bÞ
where the wavelet w tð Þ is a complex function that is localized in the time and frequency, b represents time and a is the so-
called ‘‘dilation parameter” of the wavelet. In order to relate the dilation parameter a, to frequency, x, it is replaced by
a ¼ xc=x – cf. Eq. (1b). Additionally, overbar denotes complex conjugate, and xc , the center frequency of the wavelet, is
defined by,
xc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR1
0 x2 W xð Þj j2dxR1

0 W xð Þj j2dx

vuut ð2Þ
where W xð Þ ¼ R1
�1 w tð Þ exp �ixtð Þdt denotes the Fourier transform of w tð Þ, i ¼

ffiffiffiffiffiffiffi
�1

p
, and �j j the magnitude of its

argument. Note that the wavelet w tð Þ defines the specific wavelet family considered and is not unique in its definition.
In scenarios where computing the Fourier transform of a signal is not possible, implementing fast Fourier transform
(FFT) is more suitable. In such scenarios, there are several practical issues that need to be considered though, such
as zero-padding the signal, x tð Þ, to ensure that the number of samples of x tð Þ is a power of 2. Additionally, it is pre-
ferred that x tð Þ is sampled uniformly, and, to obtain a meaningful wavelet transform in the frequency domain, the
sampling frequency of the signal must be at least twice the maximum frequency that is to be studied by the wavelet
transform.

For a function w tð Þ to be classified as a wavelet it should possess certain properties. Namely, it should possess finite ‘‘sig-
nal energy,”
I ¼
Z 1

�1
w tð Þj j2dt < 1 ð3Þ
and zero mean (admissibility condition):
C ¼
Z 1

0

W xð Þj j2
x

dx < 1 ð4Þ
Moreover, for complex wavelets, such as the Morlet wavelet [15], it must hold that:
lim
x!�1

Re W xð Þf g ¼ 0; Im W xð Þf g ¼ 0 ð5Þ
The Morlet wavelet is a complex wavelet capable of separating the phase and the amplitude of the harmonic components
within a signal and is defined as:
w tð Þ ¼ p�1=4 eixc t � e�x
2
c =2

� �
e�t2=2 ð6Þ
Accordingly, based on (1b), the Morlet CWT of the signal x tð Þ is expressed as:
X x; tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x

p1=2xc

r Z 1

�1
x sð Þ e�ix s�tð Þ � e�x

2
c =2

h i
e� xs�t

xcð Þ2=2ds ð7Þ
Relation (7) is the exact analytical expression of the CWT of signal x tð Þ, but it is computationally expensive when dis-
cretized in practical applications, especially when dealing with large datasets. To remedy this issue, we refer to (1b) and rec-
ognize that X x; tð Þ is expressed as the convolution of two functions, namely, x tð Þ and w xt=xcð Þ; therefore, by applying
Parseval’s theorem to (1b), we express X x; tð Þ as,
X x; tð Þ ¼
ffiffiffiffiffiffi
xc

x

r Z1
�1

x
�

nð ÞW
�

nx=xcð Þeintdn ð8Þ
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Relation (8) is an efficient representation of the wavelet transform in practice, since it incorporates the Fourier transform
– which translates to the numerical fast Fourier transform (FFT) in practice, and consequently, leads to significant speedup in
computing the wavelet transform of a signal. However, as stated earlier special care regarding the sampling rate, number of
samples, etc. must be taken to ensure meaningful outputs.

2.2. Inverse continuous wavelet transform (ICWT) and proposed method

Now for the same signal, x tð Þ, with wavelet transform, X x; tð Þ, given by (1b) or (8), the ICWT of X x; tð Þ – which recovers
x tð Þ, is computed by:
x tð Þ ¼ � 1
xcC

Z 1

0

Z 1

�1
X x; sð Þ

ffiffiffiffiffiffi
x
xc

r
w x

t � s
xc

� �
dsdx ð9Þ
Similar to (1b), the exact expression of the ICWT, (9), is computationally inefficient. Therefore, to be able to employ the
FFT and inverse Fourier transform (IFFT) techniques and improve the efficiency of the ICWT, we apply again Parseval’s the-
orem to (9) and obtain,
x tð Þ ¼ 1
xcC

Z1
0

ffiffiffiffiffiffi
xc

x

r Z1
�1

X
�
x; nð ÞW nx=xcð Þeintdndx ð10Þ
where X
�
x; nð Þ is the Fourier transform of X x; tð Þ with respect to its second argument, t. Similar to (8), (10) is now in a

form that is amenable to direct application of the FFT and IFFT, so it is computationally efficient.
In the practical implementation of the ICWT (such as the applications discussed in the next sections), one can express

X x; tð Þ in the following series form,
X x; tð Þ ¼
XN
j¼1

Xj x; tð Þ ð11Þ
where Xj x; tð Þ is the j-th ‘‘harmonic region” in the time–frequency plane of the CWT spectrum X x; tð Þ, and is expressed
explicitly as,
Xj x; tð Þ ¼ X x; tð Þ H x�xj�1 tð Þ� �� H x�xj tð Þ� �	 

;xj�1 tð Þ < xj tð Þ ð12Þ
where x0 ¼ 0, xN ! 1, and H :ð Þ represents the Heaviside function. Note that, geometrically, the harmonic regions (12)
correspond to non-uniform ‘‘strips” in the frequency-time plane, with each capturing a separate harmonic of the CWT. More-
over, in practical applications, xN at most can be equal to the Nyquist frequency of the discretized signal. Substituting (11)
and (12) into (9), we obtain the recovered signal from the ICWT in terms of a superposition of N harmonics xj tð Þ,
x tð Þ ¼
XN
j¼1

xj tð Þ ð13Þ
where,
xj tð Þ ¼ � 1
xcC

Z1
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and X
�
j x; nð Þ is the Fourier transform of Xj x; tð Þwith respect to its second argument, t. With proper choice of the harmonic

regions in the frequency-time plane, xj tð Þ represents the j-th decomposed harmonic of x tð Þ.
Expression (13) yields a harmonic decomposition of the signal x tð Þ in terms of its dominant harmonics. The distinct ben-

eficial feature of this method is its versatility and flexibility in its application, as the user can select manually the harmonic
regions that need to be inverted in the frequency-time domain; given that the CWT provides detailed information on the
evolution of the dominant harmonics of the measured signal in time or space, the user can select and separate the different
harmonics based on a number of criteria, and invert them one by one to obtain a very effective harmonic decomposition of
the signal. This feature makes the method applicable to diverse applications in dynamics, including stationary or nonstation-
ary measurements, linear or nonlinear responses and signals with separated scales or mode mixing.
3. Numerical examples and applications

To demonstrate the method of application and capacity of the proposed harmonic decomposition method, we now apply
it to three different applications. Starting from the decomposition of an artificial nonstationary signal, we proceed to apply
the method to modal analysis of a three DOF linear system of coupled oscillators with two closely spaced modes (i.e., mode
4
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mixing). Lastly, we implement the method to a geometrically nonlinear single-DOF oscillator to show how the proposed
method can provide a quantification of nonlinear energy scattering in the frequency domain of the system dynamics.

3.1. Artificial signal – Method verification

We start by considering the following artificial signal composed of stationary and nonstationary (with time-varying fre-
quency) components and use non-dimensional units for convenience,
y tð Þ ¼ y1 tð Þ þ y2 tð Þ ¼ 1
4
e�0:05t sin/1 tð Þ þ e�0:05t cos/2 tð Þ ð15Þ
where,
/1 tð Þ ¼
Z t

0
X1 sð Þds ¼

Z t

0
1þ 4e�0:025s� �

ds ð16aÞ
and
/2 tð Þ ¼
Z t

0
X2 sð Þds ¼

Z t

0
5þ 2 H sð Þ � H s� t0ð Þ½ � cos ps=t0ð Þ � H s� t0ð Þ½ �f gds ð16bÞ
where t0 ¼ 50. The CWT spectra of the signal y tð Þ and its components, y1 tð Þ and y2 tð Þ are depicted in Fig. 1.
We now proceed to decomposing the harmonic components of y tð Þ by the proposed method. In accordance with (11), as a

first step we select the harmonic regions in the CWT spectrum of y tð Þ (cf. Fig. 1a) that contain the harmonics that we wish to
separate. In this simple example only two harmonic regions need to be defined, each having time-varying boundaries in the
frequency-time plane – cf. Fig. 2.

Applying the ICWT expression (14), separately to each of the selected harmonic regions we compute the ‘‘inverted” har-

monic components to obtain y
�
1 tð Þ and y

�
2 tð Þ, which yields the harmonic decomposition of the signal y tð Þ. In addition, by

applying numerical Hilbert transforms [24] to y
�
1 tð Þ and y

�
2 tð Þ we can numerically estimate the corresponding approxima-

tions for their frequencies, X
�
1 tð Þ and X

�
2 tð Þ. In Fig. 3 we depict the comparisons between y

�
k tð Þ, yk tð Þ and the signal yk tð Þ

that was identified using the WBEMD [8,9] method. In addition, we depict X
�
k tð Þ, Xk tð Þ and the identified signal frequency

Xk tð Þ by the WBEMD method, for k ¼ 1;2. These results show almost exact recovery of the two harmonic components of
the original signal using the proposed ICWT, whereas WBEMD (and, in turn, EMD) fails. The inability of EMD-based tech-
niques to separate y1 tð Þ and y2 tð Þ stems from the fact that the frequency ratio between harmonics is between 0:5 and 2,
and also, since EMD-based methods perform the decomposition based on stationary (time-invariant) masking frequencies.
Note that this example highlights the capacity of the method to decompose even nonstationary measured responses. This
is confirmed further by the plot of Fig. 4 depicting the comparison between the original signal, y tð Þ, and the reconstructed

signal, y
�

tð Þ ¼ y
�
1 tð Þ þ y

�
2 tð Þ. To quantify the discrepancy between the original and reconstructed signals, we computed the

coefficient of determination as R2 ¼ 0:999461. It should be noted that even though the superposition of the extracted EMD
components reconstruct the original signal, this does not guarantee that the extracted harmonics are necessarily
meaningful.

Finally, we note that apart from the capacity of the proposed method to accurately decompose the harmonics of nonsta-
tionary signal, these results also show that the method is not affected by the issue of mode-mixing (which is a basic limi-
tation of EMD) as the frequency ratio of the two harmonics of this signal varied between 0:5 and 2. This is further
studied in the next section where the proposed method is applied to modal analysis of a linear system with two closely
spaced modes.

3.2. Linear system of coupled oscillators – System identification and modal analysis

In this section we consider a linear 3 DOF system of coupled oscillators and show how the proposed inverse wavelet har-
monic decomposition method is used to performmodal analysis of its dynamics. Due to a weak coupling stiffness this system
has two closely spaced modes (or there is mode mixing), which makes purely data-driven system identification challenging
to implement. The schematic of this system is shown in Fig. 5.

The governing equations of motion are given by,
€xþ D _xþ Sx ¼ 0 0 f tð Þ
m

h iT
;x 0ð Þ ¼ 0; _x 0ð Þ ¼ 0 ð17Þ
where,
D ¼ M�1C ¼
1
m 0 0
0 2

m 0
0 0 1

m

264
375 c 0 0

0 c=2 0
0 0 c

264
375 ¼

c
m 0 0
0 c

m 0
0 0 c

m

264
375;
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Fig. 1. Time series and respective CWT spectrum of (a) the signal y tð Þ, (b) the harmonic component y1 tð Þ and (c) the harmonic component y2 tð Þ; red curves
are the exact component frequencies. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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S ¼ M�1K ¼
1
m 0 0
0 2

m 0
0 0 1

m

264
375 2k �k 0

�k 2kþ ek �ek
0 �ek k3 þ ek

264
375 ¼

2k
m � k

m 0

� k
m

2þeð Þk
m � ek

m

0 � ek
m

k3þek
m

2664
3775
where M, K and C are the mass, stiffness and damping system matrices, respectively. In the specific application consid-

ered, we take c=m ¼ 0:1Nsm�1kg�1, k=m ¼ 100Nm�1kg�1, and e ¼ 0:1. In addition, by selecting k3=m ¼ 100 3�
ffiffiffi
3

p� �
, the fre-

quency of the rightmost oscillator with response x3 is equal to the frequency of the first mode of the two DOF subsystem
composed of the oscillators with responses x1; x2, obtained in the degenerate limit of e ¼ 0. This ensures that when e is
non-zero but small, the 3 DOF system, as a whole, possesses two closely spaced modes. Moreover, we select a transient exci-
tation of the form,
6
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Fig. 2. Selected harmonic regions for the ICWT computations for the signal y tð Þ, cf. eq. (15).
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f tð Þ
m

¼ f 0 sin p
td
t 0 � t � td

0 td � t

(
; ð18Þ
with f 0 ¼ 10Nkg�1. The responses of the oscillators of system (17) subjected to the transient forcing (18), is depicted in
Fig. 6, together with their corresponding CWT spectra. Note that the two closely spaced modes result in a beat phenomenon
between the two lower modes, which clearly appear in the wavelet spectra. This beat phenomenon introduce additional
challenges in the harmonic decomposition exercise.

The three modes of the system were extracted by solving the corresponding eigenvalue problem for (17), yielding the
following results,
bx1; k1;u1

	 
 ¼ 11:2603;0:1; 0:6947;0:5086;0:5086½ �T
n o

;

bx2; k2;u2

	 
 ¼ 12:5858; 0:1; 0:5234; 0:2177;�0:8238½ �T
n o

;

bx3; k3;u3

	 
 ¼ 22:7288; 0:1; 0:3005;�0:9515;0:0652½ �T
n o
where bxi, ki and ui denote the natural frequency, modal damping coefficient and mode shape of the i� th mode, respec-
tively. We note that by design the first and the second modes of this system are closely spaced, and so mode mixing exists.

Now, without assuming any prior knowledge of the system, except for the measured velocity time series, _xi tð Þ, i ¼ 1;2;3
and their corresponding CWT spectra, we apply the proposed inverse wavelet harmonic decomposition, with the purpose of
performing modal analysis. We begin by selecting appropriate harmonic regions of the velocity wavelet spectra in the
frequency-time domain, as shown in Fig. 7. Note that the boundary between the first and the second harmonic regions par-
titions the wavelet spectra of the beat phenomena, so the selection of the harmonic regions was dictated by our observations
of the topologies of the CWT spectra. A tip for selecting the harmonic regions in the wavelet spectra of the responses of mul-
tiple points of a system (similar to this example) is to select the signal with the richest harmonic content in its wavelet spec-
trum, and then select its harmonic regions accordingly. Then use the same harmonic regions for the other of the responses.
Since the harmonics represent the component dynamics of a system, their traces exist in all measured responses. This further
illustrates the versatility of the proposed method.

Applying numerically the inverse CWT expression (14) to each of the three harmonic regions of Fig. 7, we derive the har-

monic decompositions shown in Figs. 8-10. Each of these figures depicts the decomposed harmonic components _x jð Þ
i ,

i; j ¼ 1;2;3, i.e., the j-th harmonic component of the measured velocity time series _xi tð Þ. Due to the near-monochromatic nat-
ure of the extracted harmonics, their frequencies can be extracted by applying the numerical Hilbert transform. Considering

the results, we notice that the amplitudes of the two lower-frequency decomposed harmonics _x 1ð Þ
i and _x 2ð Þ

i , i ¼ 1;2;3, are

modulated, rather than being exponentially decaying (as the third harmonic _x 3ð Þ
i , i ¼ 1;2;3). Clearly, this is due to the closely

spaced frequencies of the first and the second modes (harmonics), so the modulations are direct reflections of the aforemen-
tioned beat phenomena. It will be shown later, however, that the modulations do not affect the following modal analysis that
is based on the identified decomposed harmonics.
7
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Fig. 3. Comparison between the time series, wavelet spectra and frequencies of the (a) first and (b) the second harmonic component of y tð Þ, using the
proposed ICWT and WBEMD methods with ground truth signal and values, yk tð Þ and Xk , k ¼ 1;2.
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Disregarding the early and late portions of the decomposed signals (which are ‘‘polluted” by boundary effects [15]), i.e.,

the first and the last 10 s of the time series of the decomposed harmonics, _x jð Þ
i , i; j ¼ 1;2;3, we obtain three different estimates

for the j-th natural frequency by fixing j and applying the numerical Hilbert transform to the j-th decomposed harmonics
_x jð Þ
1 tð Þ; _x jð Þ

2 tð Þ and _x jð Þ
3 tð Þ. Then, the temporal average of the three resulting estimates x1j tð Þ, x2j tð Þ and x3j tð Þ provides the

numerically estimated j-th natural frequency, bxij, of the system based on the i-th velocity time series _xi tð Þ,
bxij ¼
R t2
t1
xij tð Þdt
t2 � t1

; i; j ¼ 1;2;3 ð20Þ
where t1 and t2 represent the start and end boundaries defining the time interval of the measured signal that is consid-
ered in the system identification. Then, the final estimate for the j-th natural frequency is computed bybxj ¼ 1

3

P3
i¼1 bxij; j ¼ 1;2;3:
8



Fig. 4. Comparison between the original signal y tð Þ, and the reconstructed y tð Þ.

Fig. 5. The linear 3 DOF system with closely spaced modes.
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Moreover, considering _x jð Þ
i

D E
, which denotes the amplitude of the decomposed harmonic _x jð Þ

i , the j-th orthonormalized

mode shape is estimated as follows,
uj ¼ s1 _x jð Þ
1

D E
; s2 _x jð Þ

2

D E
; s3 _x jð Þ

3

D Eh i
=Mj; j ¼ 1;2;3 ð21Þ
where,
sk _x jð Þ
k

D E
¼ sgn

_x jð Þ
k t�ð Þ
_x jð Þ
1 t�ð Þ

" #
; _x jð Þ

1 t�ð Þ–0; k ¼ 1;2;3;Mj ¼
X3
k¼1

_x jð Þ
k

D E" #1=2
ð22Þ
where sgn Â�
� �

represents the signum function, and t� is an arbitrarily selected time within the time interval where the

system identification is performed.
Lastly, we obtain three different estimates for the j-th modal damping coefficient by fixing j and applying the concept of

equivalent damping [25] for each of the j-th decomposed harmonics _x jð Þ
1 tð Þ; _x jð Þ

2 tð Þ and _x jð Þ
3 tð Þ. Then, taking the temporal aver-

age of the three resulting estimates bk1j tð Þ; bk2j tð Þ and bk3j tð Þ provides the numerically estimated j-th modal damping coeffi-

cient, bkij, of the system based on the i-th velocity time series _xi tð Þ,
bkij ¼
R t2
t1
bkij tð Þdt

t2 � t1
; bkij tð Þ ¼ �

d
dt

_x jð Þ
i tð Þ

D E2
� �

_x jð Þ
i tð Þ

D E2 ; i ¼ 1;2;3 ð23Þ
Then, the final estimate for the j-th modal constant coefficient is computed by kj ¼ 1
3

P3
i¼1
bkij; j ¼ 1;2;3: This completes the

modal analysis based on the measured velocity time series.
In Table 1 we list the system identification results for the natural frequencies and compare them to the exact correspond-

ing values. Note that the percentage relative error is computed as, bxj � bxj




 


= bxj � 100 and is below 2.3%. However, due to the

significantly small amplitude of x3 tð Þ in the third mode (being a node for the third mode) from Fig. 10 we observe that the
9



Fig. 6. Transient responses of system (17–18): (a) Velocity time series, and (b) respective CWTs.

A. Mojahed, L.A. Bergman and A.F. Vakakis Mechanical Systems and Signal Processing 156 (2021) 107691
third harmonic is the one most polluted by the boundary effects due to the numerical CWT; accordingly, if we exclude bx33

(as an outlier) when estimating the third natural frequency, we obtain the estimate bx3 ¼ 22:5596rad=s which would lead to
the much smaller percentage relative error of 0:7444% for the third natural frequency. The identified and exact values of the

modal damping coefficients are listed in Table 2. The j-th percentage relative error is computed by bkj � kj



 


=kj � 100. Owing

to the fact that the equivalent damping computation (23) results from an averaging operation, the slight modulations in the
amplitude of the first and the second decomposed harmonics (cf. Figs. 8–10) are averaged out and the resulting final aver-

aged estimates bkj are close to their exact corresponding values, with the resulting percentage relative errors being less than

10%. However, if we exclude bk33 as outlier from the error computation (for the reason discussed above regarding the third

harmonic), it would lead to the estimate bk3 ¼ 0:1001Nsm�1kg�1, which would reduce the relative error to 0:1% in the third
modal damping coefficient. These error estimates are satisfactory given that the two lower modes are closely spaced and the
study is purely data-driven.

Lastly the identified and estimated mode shapes are listed in Table 3, and define the percentage relative error as
kuj �ujk=kujk � 100. From the listed values we conclude that the percentage relative error is below 1:5%. We observe
10



(a) (b) (c)

Harmonic region 1

Harmonic region 2

Harmonic 
region 3

Fig. 7. The three selected harmonic regions in the CWT spectra of (a) _x1 tð Þ, (b) _x2 tð Þ and (c) _x3 tð Þ; red lines represent the boundaries of the selected harmonic
regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Harmonic decomposition of the velocity _x1 tð Þ: Time series and respective CWT spectrum of (a) first, (b) second and (c) third decomposed harmonic;
the amplitude modulations and frequencies of the decomposed harmonics are shown.
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Fig. 9. Harmonic decomposition of the velocity _x2 tð Þ: Time series and respective CWT spectrum of (a) first, (b) second and (c) third decomposed harmonic;
the amplitude modulations and frequencies of the decomposed harmonics are shown.
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that the error for the third mode shape is higher compared to the other two modes. This is due to the fact that the mag-
nitude of the third harmonic is very small in the response x3 tð Þ compared to the magnitudes of the other two harmonics –
cf. Fig. 10; this renders the identification of the third mode shape susceptible to the boundary effects in the CWT spectra
and affects the numerical inverse wavelet transform as well. It must be noted that to compute the modal damping coef-
ficients, one can consider the free decay (free response) of the system subjected to an impulse excitation. In most cases,
the force applied to the system is known and using that information, user can determine when the free response of the
system begins. However, in cases where the applied force is unknown, the time when the free response (free decay) of the
system commences can be determined by examining its total energy and its corresponding decay rate. In this case, the
free response of the system commences when the energy of the system begins to monotonically decay (for negative decay
rates).

In conclusion, this example with coupled oscillators demonstrates the capacity of the proposed inverse wavelet-based
method for modal analysis of measured data. Note that the achieved harmonic decomposition method is purely data dri-
ven, as it relies exclusively on the post-processing of measured time series. Also, the method allows the user to make
intelligent selection of the topologies of the harmonic regions in order to achieve optimal decomposition (separation)
of the dominant harmonic components; this aspect was particularly useful in this application as the measured data con-
tained beat phenomena due to mode mixing. The application further illustrates the validity of the proposed method for
system identification of general classes of single/multi-input – single/multi-output and time-varying / time-invariant lin-
ear systems. Moreover, the accuracy of the identified estimates, despite the existence of a pair of closely spaced modes,
highlights the efficacy of the method as a valuable tool for performing modal analysis. In the next section we consider
our last example with a strongly nonlinear oscillator, demonstrating the applicability of the proposed method for nonlin-
ear systems as well.
12



Table 1
Identified, averaged and exact natural frequencies of system (17).

bx1j bx2j bx3j bxj ¼ 1
3

P3
i¼1 bxij

bxj Relative error (%)

j ¼ 1 11:4365 11:3729 11:3743 11:3946 11:2603 1:1921
j ¼ 2 12:4384 12:3771 12:5634 12:4596 12:5858 1:0023
j ¼ 3 22:4863 22:6329 21:5285 22:2159 22:7288 2:2565

Table 2
Identified, averaged and exact modal damping coefficients of system (17).

bk1j bk2j bk3j bkj ¼ 1
3

P3
i¼1
bkij kj Relative error (%)

j ¼ 1 0:1035 0:1027 0:0970 0:1011 0:1000 1:0617
j ¼ 2 0:1109 0:1154 0:1024 0:1096 0:1000 9:5713
j ¼ 3 0:1001 0:1001 0:0700 0:0900 0:1000 9:9514

Fig. 10. Harmonic decomposition of the velocity _x3 tð Þ: Time series and respective CWT spectrum of (a) first, (b) second and (c) third decomposed harmonic;
the amplitude modulations and frequencies of the decomposed harmonics are shown.
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3.3. Single DOF nonlinear oscillator – Energy scattering in the frequency domain

In this last application we will be examining the response of a single DOF oscillator with geometric stiffness and damping
nonlinearities. By applying the introduced harmonic decomposition technique to analyze its transient response, we will
decompose its dominant harmonics which, contrary to the previous example, are nonstationary. More importantly, based
on this information we will quantify the energy captured by each harmonic, and, therefore, study the scattering of energy
in the frequency domain due to the geometric nonlinearities.
13



Table 3
Identified and exact mode shapes of system (17).

Identified (uj) and exact (uj) mode shapes Relative error (%)

u1 ¼ 0:6916; 0:5066; 0:5122½ �T 0:5243

u1 ¼ 0:6947; 0:5086; 0:5086½ �T
u2 ¼ 0:5251; 0:2195;�0:8218½ �T 0:3163

u2 ¼ 0:5234; 0:2177;�0:8238½ �T
u3 ¼ 0:3002;�0:9505; 0:0800½ �T 1:4820

u3 ¼ 0:3005;�0:9515; 0:0652½ �T

A. Mojahed, L.A. Bergman and A.F. Vakakis Mechanical Systems and Signal Processing 156 (2021) 107691
The considered single-DOF oscillator is shown in Fig. 11. It consists of a mass m, attached to ground by a linear spring–
viscous damper pair deforming in the direction of oscillation, and an inclined linear spring and damper pair situated with an
initial angle /0 with respect to the vertical direction. An intriguing feature of this system is that depending on angle /0 the
nonlinear response can be hardening or hardening–softening; in this section we will consider both of these cases. No external
forcing is applied, and the response is due solely to the initial conditions. Even though this system is composed of linear ele-
ments, the geometric effects due to the deformation of the inclined spring-damper pair yield strong nonlinearities [21–23].
Assuming the oscillator deforms in the horizontal direction by x tð Þ and arbitrary initial conditions, the governing nonlinear
equation of motion is given by,
m€x tð Þ þ dl _x tð Þ þ klx tð Þ þ di _x tð Þ y2 tð Þ
L2 þ y2 tð Þ

" #
þ kiy tð Þ 1� Lsec/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ y2 tð Þ
q

264
375 ¼ 0;
x 0ð Þ ¼ X0; _x 0ð Þ ¼ V0 ð24Þ

where y tð Þ ¼ x tð Þ þ Ltan/0, and overdots denote differentiation with respect to time t. The dimensional equation (24) can

be rewritten in non-dimensional form as,
u00 sð Þ þ kl þ ki
ŷ2 sð Þ

1þ ŷ2 sð Þ

 !
u0 sð Þ þ u sð Þ þ bŷ sð Þ 1� sec/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ŷ2 sð Þ
q

0B@
1CA ¼ 0;
u 0ð Þ ¼ u0;u
0
0ð Þ ¼ w0 ð25Þ
where we introduce the normalized time s ¼ t
ffiffiffiffiffiffiffiffiffiffiffi
kl=m

p
, and kl;i ¼ dl;i=

ffiffiffiffiffiffiffiffi
klm

p
, b ¼ ki=kl, u ¼ x=L, ŷ ¼ y=L, and :ð Þ0 denotes dif-

ferentiation with respect to s.
Due to the nonlinearity the response of this system contains multiple harmonics, in contrast to an unforced linear single-

DOF oscillator that responds with a single harmonic (at its natural frequency). Each of these harmonics captures a portion of
the energy of the oscillator, resulting effectively in nonlinear scattering of energy in the frequency domain. We wish to apply
the proposed method to quantify this nonlinear energy scattering. Accordingly, before discussing the response of (25), we
provide a formulation that enables quantification of the contribution of each of the dominant harmonics of the nonlinear
Fig. 11. System with inclined support yielding geometric stiffness and damping nonlinearities.
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response to the energy of the oscillator. To achieve this, we assume that the velocity of the oscillator (25) consists of several
harmonics, so we may express it in the following form,
u
0 sð Þ 	 v sð Þ ¼

XN

i¼1
v i sð Þ ð26Þ
where N is the number of (monochromatic) harmonics present in v sð Þ, and v i sð Þ represents the i-th harmonic in the
velocity time series. Then, assuming that the time interval required for the response to decay nearly to zero is equal to T ,
we express the time-averaged energy of the signal v sð Þ as follows:
K
�
¼ lim

T!1
1
2T

ZT
0

v2 sð Þds ¼ lim
T!1

1
2T

XN
i¼1

ZT
0

v2
i sð Þds ¼

XN
i¼1

K
�
i ð27Þ
In writing (27) we omitted the cross-product terms in the integrand, as it can be shown that all terms of the formR T

0
v i sð Þv j sð Þdsmay be omitted for i; j 2 1; � � � ;N½ �; i–j, provided that the amplitudes of v i sð Þ and v j sð Þ are slowly varying com-

pared to their fast frequencies (which are the dominant harmonics); this is what happens typically in the decaying responses
of lightly damped, single-DOF oscillators, as is the oscillator (25). Note that the first averaged expression in (27) has the form
of averaged (normalized) kinetic energy. Therefore, we can directly express the percentage contribution of each harmonic to
the instantaneous kinetic energy of the oscillator as:
Ri ¼ K
�
i

K
� � 100 ð28Þ
Although (28) has been derived as the percentage kinetic energy captured by the i-th harmonic component, as shown in the
Appendix, for lightly damped, SDOF oscillators the ratio Ri is identical to the percentage total energy captured by the i-th har-
monic. Note that all quantities in (27) and (28) are readily available when we apply the proposed ICWT-based method to
harmonically decompose the velocity time series (as we did in the previous two examples). It follows that now we have
the tools not only to decompose the dominant harmonics of the nonlinear response, but also to quantify the relative impor-
tance of each of the decomposed harmonics in terms of the portion of the total kinetic energy that it captures.

In the following study we consider two different configurations of the nonlinear oscillator of Fig. 11, to show the tunabil-
ity of its transient dynamics to the initial geometry (i.e., the initial angle of inclination /0). In both cases considered we fix
the system parameters to the values, b ¼ 10, ki ¼ 0 and kl ¼ 0:025. In case I we consider a zero initial angle of inclination,
/0 ¼ 0, and initial conditions u0 ¼ 0;w0 ¼ 10, whereas in case II we consider the nonzero angle of inclination, /0 ¼ 23



,

and initial conditions u0 ¼ 0;w0 ¼ 4. We will show that the transient dynamics changes completely when /0 changes. In
each case, we will apply the ICWT-based method to decompose the harmonics of the velocity response in the normalized
frequency window 0;10½ �, and ignore higher-frequency harmonics since their contributions to the response are negligible.
Then, based on these harmonic decompositions we will examine the percentage of instantaneous total energy captured
by each identified harmonic through the relations (27) and (28). This will provide us with quantitative information on
the scattering of energy in the frequency domain that is induced by the geometric nonlinearities of the system.

In Fig. 12 we present the velocity time series and the corresponding CWT spectrum for case I. Since this is the transient
response of a nonlinear system, it possesses multiple harmonics, which are odd multiples of the fundamental harmonic;
moreover, since the frequencies of all harmonics vary with time – as expected since due to the nonlinearity there is a non-
trivial frequency-amplitude dependence – the harmonic components are nonstationary signals. What is even more interest-
ing in the nonlinear oscillator of Fig. 11 is that, as explained in [21–23], due to the symmetry of the restoring stiffness force–
displacement relationship for initial angle /0 ¼ 0, only the odd harmonics appear in the response of the system (cf. Fig. 12)
and the stiffness nonlinearity is of the hardening type. This means that the frequencies of the harmonics decrease with
decreasing energy. It follows that since we will be considering the dominant harmonics with nondimensional frequencies
below 10, only the two lower harmonic components need to be considered in the ICWT-based harmonic decomposition
method. Note, however, that these nonlinear features will change when the initial angle /0 is increased, as discussed below.

In Fig. 13 we show the two selected harmonic regions, with each containing a dominant lower harmonic component of
the velocity time series of Fig. 12. Applying the proposed method to perform the ICWT operations to the two harmonic
regions – through relation (14) – we compute the two lower decomposed harmonics of the velocity and their corresponding
CWT spectra. These are depicted in Fig. 14. As in example 1 (Section 3.1), the results show the capacity of the proposed
method to decompose nonstationary harmonic components.

After decomposing the lower dominant harmonics of the velocity time series, we apply relations (27) and (28) to estimate
the percentages of total energy captured by each. Doing so for the normalized time interval from s ¼ 0 to s ¼ 400, the per-
centages of the energies associated with each of the lower two dominant harmonics are depicted in Fig. 15. Note that in that
plot the dependent variable s was replaced by the instantaneous total (normalized) energy at the same time instant, E sð Þ:
E sð Þ ¼ 1
2
u

0 2 sð Þ þ 1
2
u2 sð Þ þ 1

2
b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u sð Þ þ tan/0ð Þ2

q
� sec/0

� �2
; ð29Þ
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Fig. 12. Case I: (a) Velocity time series and (b) corresponding CWT spectrum; this is a case of hardening stiffness nonlinearity (/0 ¼ 0).

Harmonic region 1

Harmonic region 2

Fig. 13. The selected harmonic regions of the CWT spectrum for case I; the red curves represent the boundaries of the two harmonic regions. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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this is permissible since, for the oscillator (25) the equivalence s$ E sð Þf g holds. The first observation is that the majority
of the energy, above 99%, is captured by the first harmonic. Second, the results indicate that within a certain energy range,
i.e., in the non-dimensional energy range [1–10], the second harmonic possesses its maximum percentage energy and this
decreases for higher or lower energies. The fact that the second harmonic (which is entirely due to the geometric nonlinear-
ities) possesses less percentage of energy at lower energy of the system is to be expected; indeed, as the energy of the system
decreases, the effect of the nonlinearity decreases as well, and the higher harmonics playing a lesser role in the transient
dynamics. It is interesting to note, however, that for this particular nonlinear oscillator, a similar effect occurs at high energy
levels: As the energy of the system increases, the percentage of energy captured by the second harmonic component is found
to decrease. This is explained when one notes that in the limit of high energies, i.e., large displacements, the expression for
the restoring stiffness force attains a linear limit,
16



Fig. 14. Decomposed harmonic components for case I: Velocity time series and respective CWT spectra for (a) the first (lower frequency) harmonic, and (b)
the second harmonic.

Fig. 15. Case I: Percentage of total energy captured by the first harmonic (solid curve – left vertical scale) and the second harmonic (dashed curve – right
scale).
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lim
u!1

uþ b uþ tan/0ð Þ 1� sec/0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ uþ tan/0ð Þ2

q
0B@

1CA
264

375 ¼ 1þ bð Þu sð Þ ð30Þ
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which implies a linear limiting elastic restoring force and a linearization of the transient dynamics. In turn, this results in
a decrease of the intensity of the second harmonic. Hence, the nonlinear oscillator of Fig. 11 tends to two linear systems in
the limits of low or high energies, although these limiting linear systems differ. This explains the nonmonotonic behavior of
the percentage of energy captured by the second harmonic component in Fig. 15. We conclude that the proposed method can
be successfully applied to estimate the nonlinear energy scattering in the frequency domain.

Now we consider case II corresponding to the nontrivial initial angle of inclination /0 ¼ 23


. The velocity response of the

system for this case is shown in Fig. 16. Since /0 is nonzero, in this case the restoring stiffness force–displacement relation-
ship is asymmetric about u ¼ 0; therefore, unlike the previous case with /0 ¼ 0 the nonlinear behavior of the system pos-
sesses both hardening and softening phases [16–18]. Indeed, from the wavelet transform spectrum of Fig. 16 we note
that in the early, highly energetic phase of the dynamics the frequencies the dominant harmonics decrease with decreasing
energy (i.e., as time increases), which indicates hardening nonlinear behavior; however, as time progresses these frequencies
are shown to increase with decreasing energy, indicating softening nonlinear behavior. We conclude that, in contrast to case
I where the nonlinear response was purely hardening, in case II there are hardening and softening phases in the transient
dynamics. Moreover, from the results of Fig. 16 we deduce that, owing to the asymmetry of the stiffness restoring force, there
are three dominant harmonic components below the non-dimensional frequency of 10, all of which need to be considered in
the analysis. With these remarks we proceed to define 3 harmonic regions in the CWT spectrum of the velocity, each con-
taining a dominant harmonic component, cf. Fig. 17. Then, by applying the ICWT inversion formula (14) to each selected har-
monic region we decomposed the three leading harmonics, as shown in Fig. 18.

A noticeable observation in this case is that, unlike the first and the third harmonics whose amplitudes are monotonically
decaying, the amplitude of the second harmonic initially increases and reaches its maximum at the approximately the same
time when the nonlinearity switches its behavior from hardening to softening; after that point its amplitude decreases. This
is in contrast to the monotonically decaying behavior of the two dominant harmonics in case I (cf. Fig. 14). This result is in
agreement with the fact that the presence of the second harmonic is solely due to the softening nonlinear behavior of the
system in this case, which, in turn, is directly related to the asymmetry of the restoring force–displacement relationship.
Hence, the increase of the second harmonic is directly related to the ‘‘switch” of the nonlinear dynamics from hardening
to softening behavior, so the plots of Fig. 18 corroborate the CWT spectrum of Fig. 16b. We deduce that in case II the second
harmonic plays an important role in the transient dynamics, as it causes the switch between the hardening and softening
nonlinear behavior.

After the harmonic decomposition of the velocity time series we proceed to apply the relations (27) and (28) to the iden-
tified harmonics in order to determine the percentages of energy captured by each. Fig. 19 depicts the percentage energy
(a)

(b)

Fig. 16. Case II: (a) Velocity time series and (b) corresponding CWT spectrum; this is a case of hardening–softening stiffness nonlinearity /0 ¼ 23

� �
.
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Harmonic region 1

Harmonic region 2
Harmonic region 3

Fig. 17. The selected harmonic regions of the CWT spectrum for case II; the red curves represent the boundaries of the three harmonic regions.

Fig. 18. Decomposed harmonic components for case II: Velocity time series and respective CWT spectra for (a) the first (lower frequency) harmonic, (b) the
second harmonic, and (c) the third harmonic.
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captured by each harmonic as function of the instantaneous energy of the system (as the energy decays from its initial value
due to damping – so increasing time from left to right is equivalent to decreasing energy from right to left in that plot). Sim-
ilar to what we observed in case I (cf. Fig. 15), the percentage energies captured by the second and third harmonics decrease
as the energy of the system decreases and the system reaches a linear limiting behavior; as a result, the first harmonic cap-
tures nearly the entire energy in that regime. What is of importance, though, is that at the intermediate normalized energy
level of 0:35 the percentage energy captured by the second harmonic increases significantly from less than 1% (at the high
and low energy levels) to more than 4%, when at the same time the percentage energy captured by the first harmonic
decreases from 98.5% to 95.5%. This intermediate energy level corresponds approximately to the time instant s 111, which
is when the stiffness nonlinearity of the system switches from hardening to softening (cf. Fig. 16b and 18). What this indi-
cates is that the geometric nonlinearity of the system shown in Fig. 11 can be tuned by changing the initial angle of
19



Fig. 19. Case II: Percentage of energy captured by the first harmonic (solid curve – left vertical scale), the second harmonic (dashed curve – right scale), and
the third harmonic (dashed-dotted line – right scale).
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inclination /0 so that the dynamics possesses combined hardening–softening type of nonlinearity; as shown by the results
reported herein, this type of nonlinearity has enhanced capacity to scatter energy in the frequency domain.
4. Concluding remarks

A post-processing computational tool capable of decomposing different temporal (or spatial) scales in a signal is of great
importance due to its applications in mechanical system identification, effective scale identification in dynamics and acous-
tics, signal processing, etc. In this work, we introduced a harmonic decomposition technique based on the numerical inverse
continuous wavelet transform that overcomes the limitation of other current techniques, e.g., well-known limitations of
EMD when mode mixing occurs in the measured data. The linear wavelet transformation transforms a signal from the time
(or spatial) domain to the time–frequency (or space-wavenumber) domain. Because of this, the wavelet transform is capable
of revealing important characteristics of signals that are not amenable to analysis by the classical Fourier transform, e.g.,
nonstationary nonlinear measured data.

Taking advantage of such benefits provided by the wavelet transform, we proposed a harmonic decomposition method
based on the numerical inversion of the wavelet transform, and we successfully applied it to extract stationary and nonsta-
tionary frequency components of given signals. First, we introduced a basic formulation for computing the inverse contin-
uous wavelet transform and expressed it in a way that is more suitable for efficient computational implementation. Then, we
proposed the following algorithm to separate the scales (frequencies in our examples) in a measured signal in time domain:
(i) Compute the wavelet transform of the signal; (ii) select a disjoint set of harmonic regions in the frequency-time domain of
the computed wavelet spectrum, with each harmonic region containing a dominant harmonic frequency component that the
user is interested to investigate; (iii) apply the numerical inverse wavelet transform formula to ‘‘invert” each harmonic
region, thus recovering the corresponding dominant harmonic component in the time domain; and (iv) by superimposing
all decomposed dominant harmonic components (nearly) reconstruct the original signal in the time domain. Following these
steps, the user can extract the harmonic components of even nonstationary signals.

We demonstrated the efficacy of the proposed method with three examples of increasing complexity. First, we considered
an artificial signal with prescribed stationary and nonstationary harmonic components and applied the inverse wavelet
method to accurately recover them. Then, we applied the method to modal analysis of a system of linear coupled oscillators
with a pair of closely spaced modes and were able to accurately identify the modal parameters despite the presence of mode
mixing. Key to the success of modal analysis in this example was the versatility and flexibility of the method, which allowed
us to carefully select the appropriate harmonic regions in the wavelet transform that allowed us to accurately decompose the
two closely spaced modes.

In the last example we demonstrated applicability of the proposed method to nonlinear time series analysis, and showed
that, apart from harmonically decomposing nonstationary harmonics, it can be used to quantify their relative importance,
that is, the percentage of total energy of the system captured by each. Specifically, the method was applied to analyze
the response of a lightly damped, single-DOF, geometrically nonlinear oscillator to investigate how the nonlinearity scatters
energy in the frequency domain. Considering the dynamics in two different, hardening and hardening–softening regimes, we
quantified the nonlinear scattering of energy from the first to higher harmonics. Moreover, we observed that the nonlinearity
inflicts more intense energy scattering at the onset of switching behavior from hardening to softening nonlinearity.

The examples shown in this work demonstrate the broad applicability of the proposed method to general classes of
dynamical and acoustical systems, linear and nonlinear, distributed and discrete, and time varying or time invariant.
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Potential applications of this method are broad, e.g., linear and nonlinear system identification, study of nonlinear modal
interactions and nonlinear modal energy exchanges, nonlinear energy scattering in the frequency domain, etc. Moreover,
the proposed method can be directly applied to the analyze in detail the response of a nonlinear system, separate its funda-
mental harmonic from the rest of harmonics, and then obtain the frequency-amplitude relation not only for the fundamental
but also for the other harmonics. Therefore, we envision application of the method in diverse applications across scales.
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Appendix

For most mechanical systems, at a time instant where their kinetic energy reaches a maximum, the local maximum of the
kinetic energy equals their total energy. Knowing this and the fact that the total energy of a damped system in a free
response is monotonically decaying, we can approximate the total energy of a mechanical system by the envelope of the
local maxima of its kinetic energy [20]. Now considering the free response of a lightly damped, single-DOF oscillator, where
the decay of its total energy is a slow process governed by a time-scale that is much slower than the that of the ‘‘fast” oscil-
lation at the fundamental harmonic inside the envelope, we may write,
Z tþTp

t
E sð Þds ¼ TpmaxTp K tð Þf g ðA1Þ
where E tð Þ is the instantaneous total energy of the oscillator, Tp the period of the fundamental harmonic, and K tð Þ its
instantaneous kinetic energy. Moreover, we can express the mean of K tð Þ over a period of the fundamental harmonic as
follows:
Z tþTp

t
K sð Þds ¼ TpmeanTp K tð Þf g ðA2Þ
Combining (A1) and (A2), we obtain the following relation:
Z tþTp

t
E sð Þds ¼ maxTp K tð Þf g

meanTp K tð Þf g
Z tþTp

t
K sð Þds ðA3Þ
Expression (A3) relates the temporal integrals of the total and kinetic energies of a lightly damped, single-DOF oscillator.
Combining (A3) with equations (26)–(28), we can compute the percentage of total energy allocated in each harmonic of the
nonlinear response without explicitly computing the quantities maxTp K tð Þf g and meanTp K tð Þf g, as these are constant factors
in the numerator and denominator of expression (28) for Ri, so they cancel out.
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